
ar
X

iv
:2

20
4.

02
66

2v
2

 [
cs

.L
G

]
 1

0
O

ct
 2

02
2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Accelerating Backward Aggregation in GCN
Training with Execution Path Preparing on GPUs

Shaoxian Xu, Zhiyuan Shao, Member, IEEE, Ci Yang, Xiaofei Liao, and Hai Jin, Fellow, IEEE

Abstract—The emerging Graph Convolutional Network (GCN) has been widely used in many domains, where it is important to

improve the efficiencies of applications by accelerating GCN trainings. Due to the sparsity nature and exploding scales of input

real-world graphs, state-of-the-art GCN training systems (e.g., GNNAdvisor) employ graph processing techniques to accelerate the

message exchanging (i.e. aggregations) among the graph vertices. Nevertheless, these systems treat both the aggregation stages of

forward and backward propagation phases as all-active graph processing procedures that indiscriminately conduct computations on all

vertices of an input graph. In this paper, we first point out that in a GCN training problem with a given training set on an input graph, its

aggregation stages of backward propagation phases (called as backward aggregations in this paper) can be equivalently converted to

partially-active graph processing procedures, which conduct computations on only partial vertices of the input graph. By leveraging

such a finding, we propose an execution path preparing method that collects and coalesces the graph data used during different

training layers of backward aggregations, and constructs their corresponding sub-graphs (called as execution paths in this paper) as

inputs to conduct the backward training on GPUs. Further, we propose a structural-aware strategy for the execution paths to compute

their optimal group sizes, so as to gain as high as possible performances on GPUs during the backward aggregations. The experiment

results by conducting GCN training in typical real-world graphs show that compared with GNNAdvisor, our approach improves the

performance of backward aggregations by up to 5.68x on NVIDIA P100 GPU, and up to 6.57x on NVIDIA V100S GPU.

Index Terms—graph convolutional network, backward aggregation, graph processing, graphics processing unit

✦

1 INTRODUCTION

B Y taking a real-world graph as input and conducting
convolution operations in it, Graph Convolutional Net-

work (GCN) [1] is extensively used in many fields to extract
interesting findings. For example, GCN in recommendation
systems [2] recommends products of interest to the users
based on their browsing and purchasing history; GCN in
traffic predictions [3] helps drivers make the most time-
efficient route; GCN can also be used in stock price predic-
tion [4] helping people get a head start in the stock market;
GCN in the field of medicine helps people to discover new
antibiotics [5], predict protein functions [6], predict drug-
drug interactions [7], etc.

Before using GCN in an application, a corresponding
GCN model needs to be trained. The GCN training is time-
consuming as an iterative process that typically consists
of hundreds or thousands of epochs, each of which mainly
contains two phases: a forward propagation and a backward
propagation. To study the overheads of different processing
phases in GCN training, Figure 1 breaks down the training

• Shaoxian Xu and Zhiyuan Shao are with the National Engineering
Research Center for Big Data Technology and System/Services Computing
Technology and System Lab/Cluster and Grid Computing Lab, School
of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan, 430074, China, and also with Zhejiang Lab,
Hangzhou, 311121, China. E-mail: {sxxu, zyshao}@hust.edu.cn.

• Ci Yang, Xiaofei Liao, and Hai Jin are with the National Engineering
Research Center for Big Data Technology and System/Services Com-
puting Technology and System Lab/Cluster and Grid Computing Lab,
School of Computer Science and Technology, Huazhong University of
Science and Technology, Wuhan, 430074, China. E-mail: {yangci, xfliao,
hjin}@hust.edu.cn.

This work was supported by the National Natural Science Foundation of China
under Grant No. 61972444, 61825202, 62072195, and 61832006. This work
was also supported by Zhejiang Lab (Grant No. 2022P10AC02).
(Corresponding author: Zhiyuan Shao.)

times on four typical real-world graphs taken from Table 3.
From Figure 1, we can observe that the backward propaga-
tion phase typically occupies about half (50%∼56%) of the
GCN training time, and in the backward propagation time,
the aggregation stage (message exchanging among vertices)
constitutes the major part of 51%∼78%. Hence, it is lucrative
to improve the efficiency of the backward aggregation1stage
to accelerate the overall GCN training conducted in real-
world graphs, and the theoretical upper bound on overall
performance improvement can be up to 1.66x (assuming the
backward aggregation times ≈ 0).

Considering the sparsity nature and exploding scales
of input real-world graphs, today’s state-of-the-art GCN
training systems employ graph processing techniques to ac-
celerate both the forward and backward aggregation stages.
For example, compared with PyTorch [8] which conducts
aggregations based on matrix operations [9], GNNAdvi-
sor [10] improves the efficiency of aggregation by about 5x
on GPUs. However, all these existing systems treat both the
forward aggregation and backward aggregation as all-active
graph processing procedures that conduct computation in-
discriminately on all vertices of an input graph.

In this paper, we show that although the forward ag-
gregation is all-active by the nature of GCN training, the
backward aggregation can be equivalently converted to a partially-
active graph processing procedure, which needs only partial
graph data during computation. We leverage such a finding
to further optimize the backward aggregation on GPUs (the
mainstream vehicles for GCN training), by proposing an
execution path preparing approach. Before the invocations of

1. For brevity of discussions in this paper, we call the aggregation
stage of backward propagation phase as backward aggregation, and
equivalently, that of forward propagation as forward aggregation.

http://arxiv.org/abs/2204.02662v2

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

50% 51%
56% 55%

Twitter Blog Amazon Google

0

20

40

60

80

100

p
ro

p
.

o
f

ex
ec

.
ti

m
e

(%
)

backward forward misc.

(a) Overall GCN training
breakdown

74% 78%

53% 51%

Twitter Blog Amazon Google

0

20

40

60

80

100

p
ro

p
.

o
f

ex
ec

.
ti

m
e

(%
)

aggregation combination

(b) Backward propagation
breakdown

Fig. 1: GCN training time breakdown2

backward propagation, our approach first extracts the graph
data (vertices and edges of the input graph) to be accessed
by each layer of the GCN model, and then constructs
corresponding sub-graphs (called as execution paths in this
paper), in which the backward aggregations are conducted
(instead of the original input graph).

As the portions of graph data accessed during backward
aggregation differ from one training layer to another, the
execution paths (i.e., extracted sub-graphs in each training
layer) produced by our approach differ from each other.
The backward aggregations that are conducted in one in-
put graph of the original GCN training problem are now
conducted in multiple sub-graphs. The important parameter
(i.e., group size) computed from the input graph and lead-
ing to optimal performances for GCN trainings conducted
on GPUs, does not also lead to optimal performances for
the sub-graphs during backward aggregations. We further
study the effectiveness of the group sizes on performances
of backward aggregation in the sub-graphs, and propose
a structure-aware method to compute the group sizes to
achieve as high as possible performances for the execution
paths.

Our proposed approach not only reduces the amount
of computation during backward aggregation, but also
overcomes the performance problems (e.g., branch diver-
gence [12]) on GPUs caused by straightforward selective
scheduling methods (e.g., conditional statements), and leads
to 1.48x∼5.68x performance improvements on backward
aggregation compared with the state-of-the-art GNNAdvi-
sor [10]. Moreover, the overall GCN training can benefit
from our approach: when using our approach during pre-
processing, the performance of overall GCN training is
improved by about 1.05x∼1.37x; when using our approach
on-the-fly (i.e., along with training), the overall training
performance is improved by about 1.03x∼1.35x.

This paper makes the following contributions:

• points out that from the angle of graph processing, the
backward aggregation of GCN training can be equivalently
converted to a partially-active graph processing procedure.

• proposes an execution path preparing approach to
reduce the amount of computation in the training by lever-
aging the partially-active nature of backward aggregation.

• studies the effectiveness of group sizes on perfor-

2. Trainings in this figure are conducted with GNNAdvisor [10] on
an NVIDIA Tesla P100 GPU [11], while the input graphs are taken from
Table 3. In each training, each vertex is given a 128-length random
feature vector, and the training set contains 10% vertices of each input
graph.

mances of backward aggregation in different execution
paths, and proposes a structure-aware method on comput-
ing the optimal group sizes for the execution paths.

• implements and extensively evaluates our proposed
approach by revising GNNAdvisor to study the effective-
ness of our approach in GCN trainings. Our code is publicly
available at https://github.com/Catriminal/EPPGCN.

The rest of our paper is organized as follow: Section 2
introduces background knowledge about GCN training and
graph processing, and discusses the related works of this
paper. Then Section 3 proves our finding of the partially-
active nature of backward aggregation, and proposes an
improved algorithm of backward aggregation. We elaborate
our execution path preparing method in Section 4, and our
structure-aware grouping in Section 5. Section 6 evaluates
the proposed methods, and Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORKS

2.1 GCN training

We list the notations used in explaining GCN training
in Table 1, and the training process in Algorithm 1. The
training of a GCN model takes as input an undirected graph
G =< V,E > (V stands for the vertex set and E denotes the
edge set), a vertex feature matrix X(0), a training set Vt and
a reference matrix R. The input feature matrix X(0), sized
|V | × f (f is the number of features of a vertex), consists
of the feature vectors of all vertices in V . The training set
Vt (Vt ⊂ V) is the subset of vertices (called training vertices)
with known labels. And the ratio of training vertices to total
vertices (i.e., |Vt|/|V |) is known as the training ratio. The
reference matrix R, sized |V | × c (c is the number of classes
of vertices), contains the one-hot vectors for training vertices
and zero vectors for others.

The objective of GCN training is to correct a series of
weight matrices W (l)s to improve the inference Accuracy3. A
typical GCN model mainly consists of multiple (L in Table
1) convolutional layers, at each of which a weight matrix
W (l) (l ∈ [0, L − 1]) is given. The weight matrices are used
to transform input features to obtain classification results.
However, since we do not know the relationship between
vertex features and vertex categories at the beginning, we
have to initialize the weight matrices randomly and conduct
a training process.

The training process is organized into multiple epochs
(as listed in Algorithm 1) to correct the weight matrices
iteratively, where max epoch is generally up to hundreds
or thousands. Each of the epochs mainly contains a forward
propagation phase and a backward propagation phase. As
the names suggest, the forward propagation phase conducts
the computation from lower layers to higher layers, while
the backward phase follows the reverse direction.

During the forward propagation at Layer l, each vertex
v ∈ V accumulates (by vector addition) the information
from all its neighbors (line 2∼5 of Algorithm 1), where the
information of a neighbor vertex (say u) is computed by
multiplying the weight of the edge euv with u’s feature

vector X
(l)
u . Such an accumulation stage is known as the

3. “Accuracy” is a metric for evaluating classification models, and
is defined as the number of correct predictions divided by the total
number of predictions made by the model.

https://github.com/Catriminal/EPPGCN

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1: Notations for GCN training
Symbol Description

G =< V,E >
The input undirected graph G. V denotes the
vertex set, and E denotes the edge set.

euv The weight of the edge u → v.
Vt The input training set (a subset of V).
f The number of input features of each vertex.

X(0) The |V | × f feature matrix of the input graph,
whose vth row is the feature vector of vertex v.

c The number of classes of vertices.

R
The input reference |V |× c matrix, whose vth row
is a one-hot vector to mark which class vertex v
belongs to.

L
The number of layers of the GCN model, and we
take L = 2 in this paper.

diml

The number of vertex features generated in for-
ward propagation of Layer l. We take dim0 = 16

and dim1 = c in this paper, following the GCN
paper [1] and GNNAdvisor [10].

W (l) The (randomly-initialized) weight matrix of Layer
l. W (0) ∈ R

f×dim0 and W (1) ∈ R
dim0×dim1 .

Y (l) The result matrix of the forward aggregation of
Layer l.

Z
The output result |V |×c matrix, where the value of
the element at vth row and jth column represents
the probability that vertex v belongs to class j.

W (l)T Transpose matrix, the same for Y (l)T .

W (l)′
Derivative matrix, also known as the gradient

matrix, the same for Y (l)′ and X(l)′ .
N k

Vt
The set of k-neighbors of vertices in Vt, N 0

Vt
= Vt.

∂ Partial derivative.
⊙ Scalar-Matrix multiplication.
⊗ Matrix-Matrix multiplication.

“Aggregation” in GCNs. Then a “Combination” stage (line
6) is conducted to multiply the aggregation result matrix
Y (l) with the weight matrix W (l), and apply an activation
function σ(·)4 on the multiplication result to obtain the
output feature matrix X(l+1) of Layer l. After the forward
propagation phase, Loss computing(·) function computes
the loss, i.e., the distance value between the known classi-
fication results (stored in R) of vertices in Vt and their pre-
dicted results (stored in X(L)). Grad computing(·) function
then computes the partial derivative of loss with respect
to X(L), and the derivative result (known as the gradient)

is stored in the matrix X(L)′ , which will be used in the
backward propagation phase.

Subsequently, a backward propagation phase is con-
ducted to compute the series of gradient matrices (i.e.,
W (l)′s) for all training layers. At layer l, it first combines

the derivative values in X(l+1)′ and the aggregation result
(i.e., Y (l)T , which is the transpose of Y (l)) from the for-
ward propagation to compute the gradient of the weight
matrix W (l). To further compute the weight matrix of the
next (i.e., l − 1, recall that we are going in a backward
direction) layer, the backward propagation first computes

an intermediate gradient matrix of Y (l)′ , and then uses it

to compute the derivative matrix of X(l)′ . The method on
computing X(l)′ is to invoke another aggregation stage (i.e.,
the for-loop in line 12∼14, called as backward aggregation in
this paper), during which each vertex of the input graph
accumulates information from all its neighboring vertices.
Finally, Param updating(·) function employs the Adam
algorithm [13] to implement the gradient descent [14] on

4. We use the ReLU function and Softmax function [1], [10] as the
activation functions for Layer 0 and Layer 1 respectively.

Algorithm 1: GCN training (all-active version)

Input: G(A), Vt, f , X(0), c, R, L, W (l), max epoch
Output: Z , W (l) of each layer

1 for epoch in [0, 1, ..., max epoch-1] do
// Forward propagation

2 for l in [0, 1, ..., L-1] do
3 foreach v in V do // Aggregation

4 foreach u in N(v) do

5 Y
(l)
v += euv ⊙X

(l)
u ;

6 X(l+1) = σ(Y (l) ⊗W (l));// Combination

7 loss = Loss computing(X(L), R, Vt);

8 X(L)′ = Grad computing(X(L), R, loss);
// Backward propagation

9 for l in [L-1, L-2, ..., 0] do

10 W (l)′ = Y (l)T ⊗X(l+1)′ ;// Combination

11 Y (l)′ = X(l+1)′ ⊗W (l)T ;// Combination

12 foreach v in V do // Aggregation

13 foreach u in N(v) do

14 X
(l)′

v += evu ⊙ Y
(l)′

u ;

15 Param updating(epoch, W (0), W (0)′ ... W (L−1),

W (L−1)′);

16 Z = X(L);

the weight matrices of W ls by using the gradient matrices
W (l)′s computed during backward propagation, such that
later epochs of the training will have smaller losses.

2.2 Graph processing systems on GPUs

Graph processing on GPUs considers basic graph algo-
rithms (like PageRank [15] and Breadth First Search [16])
in graphs that are much larger than the size of L1 cache,
but smaller than that of the GPU global memory. Popular
graph processing systems on GPUs adopt the vertex-centric
programming model [17] that conducts a graph algorithm
by iteratively executing its corresponding function over the
vertices of an input graph. The algorithm’s corresponding
function typically declares how data are transmitted along
the incident edges of a vertex. Regarding the direction of
data transmission, there are two modes: push and pull.

In push mode, a vertex pushes its messages to its
neighbors and updates the properties of the neighbors. In
pull mode, a vertex pulls the properties of its neighbors
and updates itself. The push mode leads to huge atomic
overheads during a highly paralleled execution [18], since
different vertices (threads) may push (write) their data to the
same vertex simultaneously. Whereas, the pull mode needs
to traverse extra edges than necessary if only part of the
vertices hold useful data [18].

To balance the load among thousands of hardware
threads of a GPU, modern graph processing systems (e.g.,
Tigr [19]) divide the neighbor lists into multiple groups (we
call this method as neighbor grouping in this paper), whose
size is subject to an upper-bound value (i.e., group size), and
distribute the groups among participating software threads.
By assuming the group size equals 3, Figure 2 gives an
example graph in Figure 2(a), and divides the neighbor

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1 3

2 4

56

7

neighbor list

11

22

g1

77

g2 g3

g8

2 7 1 3 4 5 2 4edge

(d) CSR representation after group-based partition

2 3 5 2 4 7 1

(a) example graph

(c) group-based partition

6

vertex

edge

(b) CSR representation

 2 7 1 3 4 5 2 4 2 3 5 2 4 7 1 6

2 6 7vertex 1 2 3 4 5

g1 g2 g3 g4 g5 g6 g7 g8

6 71 2 3 4 5

 2 7

1 3 4 5

1 6

Fig. 2: Example of neighbor grouping, assuming group
size=3.

lists, whose sizes are larger than 3, in its CSR representation
(in Figure 2(b)) into multiple groups (in Figure 2(c-d)). In
this example, as the length of vertex v2’s neighbor list is
bigger than 3, its neighbor list is thus being divided into
two groups (i.e., g2 and g3). During processing, different
groups will be assigned to different hardware threads of
the GPU. Although the neighbor grouping technique also
introduces atomic overheads when writing the results of
vertices back to the global memory of GPU (e.g., write back
the result of v2, while g2 and g3 are distributed two software
threads running on two different hardware threads in our
example), such atomic overheads can be much lower than
that of push mode when the group size is appropriately
chosen and sufficiently large.

Use of graph processing in GCN training: State-of-the-
art GCN training systems on GPUs [10], [20], [21] widely
adopt techniques (such as vertex-centric programming and
neighbor grouping) used in graph processing systems to
improve their efficiencies on aggregation. Nevertheless, in
GCN training, the number of vertex features can be up to
hundreds, which is much larger than that in basic graph
algorithms, and thus leads to high atomic overheads if
the push mode is used. The pull mode is hence widely
employed by the GCN training systems on GPUs. Besides,
different from the graph processing systems that generally
invoke one hardware thread to conduct the processing of a
vertex, GCN training systems typically divide the features
of a vertex into multiple fragments, and assign them to
different hardware threads for parallel processing. For load-
balancing, the neighbor grouping technique used in graph
processing is also used by recent GCN training systems on
GPUs [10], [21]. Similarly, the use of neighbor grouping also
leads to atomic overheads on updating the data attached to
the vertices as in graph processing systems.

2.3 Related works

By leveraging the technologies of graph processing, GCN
training systems on GPUs [9], [10], [20], [21] have exhib-
ited significant performance improvements over popular
deep learning frameworks such as PyTorch [8] and Tensor-
Flow [22]. G3 [9] proposed to use Gunrock [23], a popular
graph processing framework on GPU, to conduct GCN
training. NeuGraph [20] proposes a new programming
model named as Scatter-ApplyEdge-Gather-ApplyVertex by
combing the dataflow model and vertex-centric model to
support scalable parallel Graph Neural Network (GNN) train-
ing. The work in [21] accelerates the GNN inference by

improving the data locality and load balance. GNNAdvi-
sor [10] employs a vertex reorder method (i.e., Rabbit [24])
to improve the data locality, and proposes a 2D workload
management method to balance the workloads at vertex
level and vertex feature level. Besides, the python libraries
for GNNs, such as DGL [25] and PyG [26] built on top of
existing deep learning frameworks like PyTorch, are lever-
aging state-of-the-art Sparse Matrix Multiplication (SpMM)
and graph-processing-like techniques (such as representing
matrices with vertex arrays and edge lists) to improve their
performance.

All these existing GCN training systems still treat both
forward and backward aggregations as all-active graph
processing procedures, leading to excessive computations
during the backward aggregation.

3 PARTIALLY-ACTIVE BACKWARD AGGREGATION

In this section, we focus our discussions on the backward
aggregation of GCN training, and show that it can be
regarded as an equivalent partially-active graph process-
ing procedure where only a fraction of the graph data is
needed. To demonstrate this finding, we first scrutinize the
Loss computing(·) and Grad computing(·) functions, and
investigate how the gradients in X(L)′ are computed (in line
8 of Algorithm 1).

In line 7 of Algorithm 1, loss is a scalar value computed
in Equation 1:

loss = Loss computing(X(L), R, Vt)

= −
∑

v∈Vt

1

|Vt|

c−1∑

j=0

Rv,j · logX
(L)
v,j

(1)

where |Vt| is the number of the training vertices in Vt, R
is the reference matrix sized n × c (where n is the number
of vertices of input graph and c is the number of classes of
the vertices), and X(L) is the output of forward propagation
also sized n× c. From Equation 1, we can observe that only
vertices belonging to Vt participate in the computing of loss.

In gradient matrix X(L)′ , each element is the partial
derivative of loss with respect to its corresponding element
in X(L). The Grad computing(·) function computes the

element at the vth row and jth column of X(L)′ by using
Equation 2 listed in the following.

X
(L)′

v,j =
∂loss

∂X
(L)
v,j

= −
∂

∑
u∈Vt

1
|Vt|

∑c−1
k=0 Ru,k · logX

(L)
u,k

∂ X
(L)
v,j

(2)
From Equation 2, we observe that for any vertex v ∈

V \Vt, i.e., vertex belonging to the input graph but not in Vt,

X
(L)′

v,j will be zero. Since such X
(L)
v,j does not appear in the

computing of loss, and consequently, changes in the value

of such X
(L)
v,j do not cause any changes in loss. Therefore,

we have ∂loss/∂X
(L)
v,j = 0 and the following property for

X(L)′ :

Property 1. For ∀v ∈ V \ Vt, the elements in the vth row of
X(L)′ are all zeros.

Further, we generalize such a property to all the layers in
Theorem 1, where N k

Vt
denotes the set of k-neighbors (i.e.,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

if there exists a path from v to u, and the path consists of k
edges, u is a k-neighbor of v) of the training vertices in Vt:

Theorem 1. For ∀v ∈ V \ N k
Vt

(k ∈ [0, L] and N 0
Vt

= Vt), the

elements in the vth row of X(L−k)′ are all zeros.

Proof: We prove the theorem by induction, and dis-
cuss the case of increasing k from 0 to L. For the initial case
of k = 0, Property 1 indicates that for ∀v ∈ V \ Vt, the
elements in the vth row of X(L)′ are all zeros. The theorem
thus holds for the initial case. Then we only need to prove
that for an arbitrary k ∈ [0, L − 1], the theorem holds for
k + 1, as long as the theorem holds for k.

As the theorem holds for k, which means that ∀v ∈
V \ N k

Vt
, the elements in the vth row of X(L−k)′ are all

zeros. Such a property of X(L−k)′ will be transferred to
Y (L−(k+1))′ by the matrix multiplication (in line 11 of
Algorithm 1). Then in the aggregation stage, for ∀v, the

row X
(L−(k+1))′

v is computed by X
(L−(k+1))′

v += evu ⊙

Y
(L−(k+1))′

u . With the property of Y (L−(k+1))′ , we know

that the row X
(L−(k+1))′

v can have nonzero values if and
only if v is an immediate neighbor of N k

Vt
, which means

∀v ∈ V \N
(k+1)
Vt

, its corresponding row in X(L−(k+1))′ must
be all zeros.

With Theorem 1, we know that only partial data (the
nonzero rows) need to be processed during the backward aggre-
gation of GCN training, since all-zero rows do not produce
useful results in matrix-multiplications when computing the
gradient matrix of W (l)′s (line 10 of Algorithm 1).

Based on such a finding, we can leverage the idea of
“selective scheduling” from the graph processing commu-
nity to reduce the amount of computing in the aggregation
stage of backward propagation, and hence improve the
performance of GCN training. In Algorithm 2, we list the
partially-active version of backward aggregation. Rather
than conducting aggregation operations indiscriminately on
all vertices of an input graph as listed in Algorithm 1, the
partially-active version in Algorithm 2 confines the scope of
aggregation in the (L− l)-neighbors of the training set (i.e.,
NL−l

Vt
) at Layer l, where l decreases from L− 1 to 0.

Note that, it does not cause any accuracy degradation
that replacing the backward propagation phase (line 9∼14)
of Algorithm 1 with Algorithm 2. Since Algorithm 2 only

skips all-zero rows in Y (l)′ during the aggregation stage,
the backward propagation phase in Algorithm 2 can yield
exactly the same results (i.e., gradients of the weight matri-
ces) as that in Algorithm 1.

4 EXECUTION PATH PREPARING

Considering the partially-active nature of backward aggre-
gation discussed in Section 3, it is possible to reduce the
overheads of backward aggregation by selectively schedul-
ing. There are two straightforward methods on achieving
such an objective: if-else statements and frontier-based ap-
proaches. The first method can be implemented with a little
effort by simply judging whether a vertex is active (e.g., in-
cluded in N l

Vt
at the (L−l)th training layer during backward

aggregation) or not, and conducts computing only on the
active vertices. Such a method, however, leads to the branch
divergence problem [12], as GPUs are notorious for their

Algorithm 2: partially-active version of backward
aggregation in GCN training (N(v) denotes the set
of neighboring vertices of v, N k

Vt
denotes the set of

k-neighbors for vertices in Vt, and N 0
Vt

= Vt)

Input: X(L)′ , Y (l)s and W (l)s produced in forward
propagation

Output: W (l)′s
// Backward propagation

1 for l in [L-1, L-2, ..., 0] do

2 W (l)′ = Y (l)T ⊗X(l+1)′ ;// Combination

3 Y (l)′ = X(l+1)′ ⊗W (l)T ;// Combination

4 foreach v in NL−l
Vt

do // Aggregation

5 foreach u in N(v) ∩ NL−l−1
Vt

do

6 X
(l)′

v += evu ⊙ Y
(l)′

u ;

inefficiency in handling conditional statements. Moreover,
it also leads to uncoalesced memory accesses, as the active
vertices and their corresponding neighbor lists are scattered
among the vertex array and edge array respectively.

The frontier-based method is widely employed in graph
processing systems, such as Gunrock [23], that adopt push
mode computation. These systems dynamically build new
frontiers (e.g., bitmaps where active vertices are marked as
ones) at each iteration, and computations are conducted on
active vertices. However, as vertices have rich properties in
GCN training problems, pull mode computing is adopted
to avoid high performance penalties incurred by atomic op-
erations. Moreover, for a given GCN training problem with
a known training set of Vt, the sets of active vertices at each
layer do not change during all epochs of the training, which
makes it unnecessary to build new frontiers dynamically as
in graph processing systems.

Based on the partially-active nature of backward aggre-
gation of GCN training, we propose a simple yet effective
approach in this paper, and name it as execution path prepar-
ing. The basic idea of our proposal is that: for a given graph
G and training set Vt, we first compute all of the N k

Vt
s, where

k ∈ [0, L − 1]. And then, for each layer (say the lth layer),
we browse the input graph G to collect all the vertices and
their neighbor lists (after being filtered by joining NL−l−1

Vt
)

needed during backward aggregation according to NL−l
Vt

,
and store the collected data in sub-graphs (SGls), also called
as ”execution paths”. In SGl, the vertex set is NL−l

Vt
and the

edge set is {N(v) ∩ NL−l−1
Vt

, ∀v|v ∈ NL−l
Vt

}.
We give an example GCN training problem in Figure

3 to explain our proposal. The GCN training problem in
Figure 3 takes the training set of Vt = {v3, v5}, and conducts
backward aggregation on the example graph illustrated in
Figure 2(a). At the first (i.e., l = 1 as we assume L = 2)
layer of backward aggregation, computations are conducted
on vertices in N 1

Vt
= {v2, v4}, and messages are passed over

the edges of {v3 → v2, v5 → v2, v3 → v4, v5 → v4}. While
at the second layer (i.e., l = 0 as we are going backward)
of backward aggregation, computations are conducted on
vertices in N 0

Vt
= {v1, v2, v3, v4, v5}, and messages are

passed over the edges of {v2 → v1, v4 → v2, v2 → v3, v4 →
v3, v2 → v4, v2 → v5, v4 → v5}.

With our execution preparing approach, the execution

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

(b) l = 1 (c) l = 0

(a) initialization

training vertex ()

message
transmission

5

1 3

2 4

6

7

5

1 3

2 4

6

7

tV

5

1 3

2 4

6

7

5

1 3

2 4

6

7

},{ 53
0

vv
Vt
=N

},{ 42
1

vv
Vt
=N },,,,{ 54321

2
vvvvv

Vt
=N

Fig. 3: Execution paths of backward aggregations in two
layers on the example graph by assuming Vt = {v3, v5}

(a) input graph

(b) SGl=1, execution path for l=1 (c) SGl=0, execution path for l=0

vertex

edge

vertex

edge

vertex

edge

g2g1 g3 g4 g5 g6 g7 g8

g1’ g2’ g1’ g2’ g3’ g4’ g5’

data accessed by l=1

data accessed by l=0

data accessed by both layers

Fig. 4: Results of execution path preparing on Figure 3
(vertex array consists of destination vertices as pull mode
is adopted)

path of the first layer aggregation (shown in Figure 3(b)) will
be extracted and stored in SG1 whose CSR representation
is illustrated in Figure 4(b), while the execution path for
the second layer aggregation and its corresponding CSR
representation is shown in Figure 3(c) and 4(c), respectively.
With these execution paths, during the first training layer
of backward aggregation, the training will be conducted in
sub-graph SG1, rather than in the original input graph G,
and during the second training layer, SG0 will be used.

Note that, our approach is different from the stochastic
training [27], [28]. First, stochastic training uses sub-graphs
coming from graph sampling to replace original input
graphs to conduct the actual training. The graph sampling
generally leads to loss of structural information of the input
graph, and hence incurs degradation on the Accuracy [27],
[29]. On the contrary, our approach is an optimization tech-
nique that can be applied to traditional GCN training, where
the sub-graphs constructed by using our approach abide by
the actual execution paths of computation of GCN training,
and thus do not result in any loss of useful graph structural
information and training Accuracy. Second, in stochastic
training, sub-graphs are constructed at the beginning of
each epoch by sampling from the input graph, and used
during both forward and backward aggregations. On the
contrary, in our approach, sub-graphs are constructed only
once during pre-processing or the first epoch (on-the-fly) and
used only in the backward aggregations.

5 STRUCTURE-AWARE GROUPING

To efficiently use the many-core resource of a GPU, dividing
the neighbor list of each vertex into multiple “groups” (i.e.,
neighbor grouping) is a simple yet effective technique used
in state-of-the-art graph processing systems (e.g., Tigr [19])
as well as GCN training systems (e.g., GNNAdvisor [10]).
In neighbor grouping, the size of groups is subjected to an
upper-bound value, named as group size (gs for short).

However, when profiling the performance of our exe-
cution path preparing, we find that the grouping strategies
in state-of-the-art systems cannot find proper gses for our
execution paths (i.e., SGls), and thus lead to severe per-
formance problems (i.e., load unbalance and high atomic
overhead). For example, Tigr [19] chooses gs = 10 for all
graphs. And GNNAdvisor [10] computes the gs for an input
graph according to the vertex’s feature vector length (i.e.,

2 4 8 16 32 64 128

1

2

3

4

5

6

N
o

rm
al

iz
ed

ti
m

e
Group size

Cora (avg. deg. = 1.95)

Cora-SG
l=0 (avg. deg. = 1.05)

Blog (avg. deg. = 23.58)

Blog-SG
l=0 (avg. deg. = 18.68)

Fig. 5: Effectiveness of group size on backward aggregation
performance, normalized to the smallest aggregation time
(10% of the vertices are selected in the training set)

dim) as well as the number of hardware threads of the GPU
platform. However, in this way, GNNAdvisor assigns the
same gs to different graphs on a GPU, as long as the graphs
have the same feature vector length.

To show that it is not desirable to use the same gs for our
sub-graphs (execution paths) as for the original input graph,
and to find what factors determine the optimal gs of a (sub-
)graph, we choose two real-world graphs from Table 3, and
conduct GCN trainings5 by using GNNAdvisor (backward
aggregations run in original input graphs) and our approach
(backward aggregations run in SGls) respectively. Within
these experiments, we choose the gs to be 2, 4, 8, ...128,
and illustrate the backward aggregation performances of
Layer 0 in Figure 5, where the smallest aggregation times
are normalized to ones and marked with ×.

From Figure 5, we have three observations:

1) for our chosen graphs, the gap between the best and
the worst backward aggregation performances is huge. For
example, on Blog, the worst performance appears when
gs = 2, and is 5.3x worse than the best performance
(appears when gs = 64). Such an observation reveals that
the choice of gs has a significant impact on the performance
of backward aggregation.

2) the patterns of the curves are similar, where there is
only one optimal gs for a graph, and smaller or larger gs
values lead to worse performances. The reason behind such
a phenomenon is that the choice of gs is in-essence a trade-
off problem. A small gs benefits load-balancing among the

5. Similar to the trainings in Figure 1, we use the NVIDIA Tesla P100
GPU, and set training ratio = 10%, f = 128, dim0 = 16 and dim1 = c.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

processors (hardware threads of GPUs). However, a smaller
gs also leads to a higher chance for a neighbor list of a
vertex to be divided into more groups, which increases the
atomic overheads on writing back the computing result of
each group to the global memory of a GPU. On the contrary,
larger group sizes lead to smaller atomic overheads but
worse load-balancing.
3) considering the optimal gses among different graphs, we
can observe that graphs with higher average degrees gener-
ally have larger optimal gs values. The reason behind such a
phenomenon is that for graphs with higher average degrees,
larger gs values lead to a better trade-off between load-
balancing and atomic overheads. Different optimal gses of
different graphs also reveal that the structure (e.g., degree
distribution) of the graph is a decisive factor to the group
size value. Note this observation differs GCN training sys-
tems from traditional graph processing systems on GPUs,
where a fixed gs works fine as in Tigr [19]. Since in GCN
training problems, vertices generally have rich properties
(e.g., long vectors), the computation on them hence raises
much higher atomic overheads than the graph algorithms.

Considering the third observation from Figure 5 together
with our proposed method of execution path preparing
which makes the backward aggregations conducted on mul-
tiple sub-graphs rather than the input graph, a method that
can compute optimal gses for different graphs based on
their structure information is needed to further improve
the efficiency of backward aggregations on GPUs. In this
paper, we propose two methods on computing the optimal
choice of gs by using not only the dim but also the structure
information of the graph.

Machine learning based grouping: In machine learning
based grouping, we convert the problem of computing opti-
mal gses for graphs into a graph classification problem [30],
[31]. The objective of a typical graph classification problem
is to identify the classes of graphs (e.g., distinguish whether
a graph is a cycle, star, or wheel graph). To achieve such
an objective, a graph classification system generally takes
as input the graphs as well as the features of vertices in
the graphs, and then generates a graph feature vector for
each graph according to its vertices’ features. Finally, the
system infers the classes of the graphs according to their
graph features. Besides, similar to GCN training, a subset of
input graphs with known classes is used as the training set.

In order to leverage the graph classification to compute
graphs’ optimal gses, we take the optimal gses of the graphs
as their classes. Thus, the results of graph classification
on such graphs are the inferred gses for them. There are
two reasons why optimal gses can be used as categories of
graphs. One reason is that gs must be a positive integer. The
second is that the optimal gs is unique: as discussed in the
second observation of Figure 5, from both the patterns of
curves and the trade-off essence of choices on gs, it can be
seen that the optimal gs for an input graph is unique on a
given GPU platform and GCN model.

In this paper, we employ SAGPool-GCN [31] (abbrevi-
ated as SAGPG, one of the state-of-the-art graph classifi-
cation neural networks) to infer the classes (the optimal
gses) of graphs. Based on our third observation on Figure
5, we take the degree of the vertex as the vertex feature
used by SAGPG. Besides, based on GNNAdvisor’s method

TABLE 2: Correlation analyses on the graph structure infor-
mation (# vertices, # edges, average degrees, and dim) and
the optimal gs of the graph

Group sizes
Bivariate correlation Partial correlation

Structure
information

p-value r p-value r

vertices 0.50218 0.07612 2.28E-04 0.40826
edges 5.66E-04 0.37703 0.00299 -0.33405
average degree 3.03E-25 0.86648 6.98E-23 0.85306
dim 0.01746 0.26515 0.00369 0.32713

r is the correlation coefficient, and p-value represents the probability
that the correlation in the data occurred by chance.

of computing gs, we input the dim of the graph to SAGPG
as a manual graph feature for the graph. As for the training
set, to make the SAGPG with high generalization ability,
we use not only the real-world graphs listed in Table 3
of Section 6 but also a set of synthetic graphs generated
via PaRMAT [32] as the training set. As for obtaining the
reference classification results (i.e., optimal gses) for graphs
in the training set, on each graph, we enumerate gs starting
from 1 until we find the optimal gs.

After completing the training of SAGPG, when we need
to compute the choice of gs for a graph G, we just input G as
well as its vertices’ features (i.e., the degrees of vertices) and
graph feature (i.e., dim) into the pre-trained SAGPG. And by
a single epoch of inference (forward propagation), the pre-
trained SAGPG outputs the inferred optimal gs for G. In
our execution path preparing, different from GNNAdvisor
which computes the gs for only one graph, we need to
compute multiple (i.e., L) gses for different execution paths
(i.e., SGl=L−1, SGl=L−2, ..., SGl=0) as we extract a separate
execution path for each training layer of the GCN model.
We input the multiple execution paths (as well as their
corresponding vertex degrees and dims) into the pre-trained
SAGPG. And then the SAGPG infers the optimal gs for each
inputted execution path.

Linear regression based grouping: In linear regression
based grouping, to make full use of the graph structure
information for the regression of gs, we take into account
not only the average degree and the dim of a graph, but
also the number of vertices and the number of edges.

Before building the regression equation, we need to
identify the linear relationship between the structure infor-
mation (as well as the dim) and the optimal gs of the graph
at first. We conduct the bivariate correlation analysis [33]
and the partial correlation analysis [34] on the metrics we
choose (i.e., # vertices, # edges, average degree, dim, and
optimal gs). The analysis results are reported in Table 2,
where r is the Pearson correlation coefficient between two
metrics, and p-value can be regarded as the probability that
the correlation shown in the data used in the analysis occurs
by chance. The closer the absolute value of r is to 1, the
stronger the linear correlation between the two metrics. And
the correlation is considered statistically significant (i.e.,
considered to be universal) when p-value is less than 0.05.

In Table 2, from the results of the bivariate correlation
analysis, we can find that the average degree and the
number of edges of the graph are the two metrics that
have the strongest (correlation coefficients of 0.87 and 0.38
respectively) correlation with the optimal gs. Further, the
partial correlation analysis shows that the number of ver-
tices of a graph has a moderate (correlation coefficient of

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 3: Graphs used in evaluations (graphs marked by ∗

are taken from [36], graphs marked by † are taken from [37]
and [38], Average degree = # edges/# vertices)

Graphs # vertices # edges Average degree
Cora∗ 2,708 5,278 1.95
Citeseer∗ 3,327 4,552 1.37
Pubmed∗ 19,717 44,324 2.25
Twitter† 81,306 1,342,296 16.51
Blog† 88,784 2,093,195 23.58
Amazon† 410,236 2,439,437 5.95
Google† 875,713 4,322,051 4.94
Youtube† 1,134,890 2,987,624 2.63

0.41) correlation with the optimal gs after controlling for
the effects of other variables. However, as for the dim, the
bivariate and partial correlation analyses show that dim
has only a weak (correlation coefficients of 0.27 and 0.33
respectively) correlation with the optimal gs.

Based on the results of the correlation analyses, we
decide to regress the optimal gs for a graph by its # vertices,
edges, and the average degree. The regression equation is
as follow:

gs =β0 + β1 ×# vertices+ β2 ×# edges

+ β3 × average degree
(3)

, where β0, β1, β2, β3 are the regression coefficients. We
then use least squares regression [35] to calculate the linear
regression coefficients and obtain β0 = 0.65538, β1 =
1.67431E − 5, β2 = −2.24342E − 6, and β3 = 0.63641.

After obtaining the regression coefficients, for a graph G,
we just bring in the structure information (i.e., the number
of vertices, the number of edges, and the average degree)
of G into the regression equation to compute its optimal
gs. The calculated regression value is rounded to its nearest
positive integer as the choice of gs for G.

6 EVALUATIONS

In this section, we first give the experimental setups, and
then evaluate our approach from the various angles includ-
ing space cost, effectiveness on performance improving.

6.1 Experiment settings

Dataset. Table 3 lists the graphs used in our evaluations.
All the graphs are converted to undirected graphs before
being used in GCN training. The density (computed by 2·#
edges/(# vertices·(# vertices−1))) indicates the sparsity of
an input graph. Typically, in a semi-supervised task, the
training set Vt is a small subset of the vertices of the input
graph [1], [39], [40], [41]. If not otherwise specified, we
randomly (with uniform distribution) select 10% vertices as
the training set for each tested graph in the following ex-
periments, i.e., training ratio = 10%. Note that 10% training
ratio is larger than most of the training ratios in real-world
graphs used in GCN-relevant papers.

Test-bed. We implement our proposals (both execution
path preparing and structure-aware grouping) by revising
the code of GNNAdvisor [10]. During revision, we use the
structure-aware methods on computing the optimal choice
of gs discussed in Section 5, but preserve the method on
computing the number of software threads in GNNAdvisor.
The prototype system is compiled with CUDA 10.1 and the
-O3 optimization level. We deploy our prototype system on

Cora Citeseer Pubmed Twitter Blog Amazon Google Youtube

1.00

1.04

1.08

1.12

1.16

1.20

M
em

o
ry

fo
o

tp
ri

n
t

ex
p

an
si

o
n

proportion of vertices in the training set (training ratio)

10% 30% 50% 80%

Fig. 6: The memory footprints of GCN training by using
execution path preparing (normalized to those by using
original GNNAdvisor)

a Linux server with two Intel Xeon E5-2680 v4 CPUs (14
cores for each, 2.40 GHz), 256 GB memory, and an NVIDIA
Tesla P100 GPU [11] (3584 cores, 16GB global memory, 64 KB
shared memory per streaming multiprocessor). Besides, we
evaluate the performances of both GNNAdvisor and DGL
when using our approach on an NVIDIA V100S GPU [42]
(5120 cores, 32GB global memory, 96 KB shared memory per
streaming multiprocessor).

Baseline. We choose the performance data of GNNAd-
visor [10] as the baseline. To be fair, during comparisons, we
conduct the same number (100) of epochs of GCN training
in both original and improved (using our proposals) GN-
NAdvisor.

6.2 Space cost

Our execution path preparing is essentially a trade-space-
for-time method. Figure 6 illustrates our memory footprint
expansions by normalizing our memory footprints to those
of GNNAdvisor. From Figure 6, we can observe that our
execution path preparing incurs only a small fraction (from
less than 1% to about 17%) of memory expansion compared
to GNNAdvisor.

The reason behind such small space costs is that in
GCN training problems, compared with feature matrices
(i.e., X(l)s), weight matrices (i.e., W (l)s) and intermediate
matrices (e.g., Y (l)s and X(l)′s in Algorithm 1), the graph
structure data (i.e., the CSRs shown in Figure 2) occupies
only a small portion of total memory footprint. Thus, the
execution paths (illustrated in Figure 4), as subsets of the
graph structure data, cause relatively small increments in
memory footprint, compared to the memory space con-
sumed by the whole training problem.

Another fact that can be observed from Figure 6 is that
the space cost incurred by execution path preparing almost
remains the same, when the training ratio changes from 10%
to 80% for the training problems conducted in our chosen
graphs. The reason for such a phenomenon is that with the
increasing training ratio, the storage space consumed by
the execution paths increases accordingly, as more vertices
participate in the backward aggregation. However, at the
same time, the storage space consumed by GNNAdvisor
(our baseline system) also increases, as the intermediate

matrices for computing loss and X(L)′ enlarge with more
training vertices. The memory footprint data in Figure 6
suggest that the expansion speed of execution paths due
to increasing training ratio does not necessarily exceed that
of the intermediate matrices in GNNAdvisor.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

1
.1

2

1
.0

4

0
.4

2

0
.3

0

0
.3

5

0
.3

2

0
.2

5

0
.2

0

Cora Citeseer Pubmed Twitter Blog Amazon Google Youtube
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
N

o
rm

al
iz

ed
ti

m
e

execution path preparing

conditional statements

Fig. 7: Backward aggregation times by using either execu-
tion path preparing or if-else statements (normalized to the
times by using original GNNAdvisor)

6.3 Performance improvement on backward aggrega-

tion

Figure 7 reports the time paid on backward aggregation
using execution path preparing. For comparison, Figure 7
also depicts the time of backward aggregation using straight
forward selective scheduling method, i.e., if-else statements.

Comparing the performances of backward aggregation
using our execution path preparing and those using if-else
statements in Figure 7, we can observe that the execution
path preparing outperforms if-else statements in all training
cases on our chosen graphs, while the highest performance
improvement (4.41x) appears on Youtube. The reason is
that straight-forward selective scheduling method like using
if-else statements leads to branch divergence overheads and
uncoalesced memory accessing when conducting backward
aggregation in the graph data structure, while our execution
path preparing technique avoids these overheads and hence
leads to better performances.

In Figure 7, compared with the original GNNAdvisor, on
the left-hand two graphs (i.e., Cora and Citeseer) with
only about three thousand vertices, using our execution
path preparation alone does not result in better perfor-
mance. The reason is that when conducting the backward
aggregation in Figure 7, we use GNNAdvisor’s built-in
method on computing the group sizes, which leads to severe
load imbalance on small graphs and thus degrades perfor-
mance. However, on the other six graphs (e.g., Pubmed,
Youtube), using our execution path preparing alone is able
to achieve significant performance improvements (3.4x on
average) on backward aggregations.

We further examine the backward aggregation perfor-
mances by using our structure-aware grouping techniques
discussed in Section 5. As we proposed two techniques
(machine learning based and linear regression based) on
computing the optimal gses for each training layer, Figure
8) presents the backward aggregation performances when
using execution path preparing with these two grouping
techniques respectively, and compares the performances
with those (presented in Figure 7) when using execution
path preparing with grouping strategies of GNNAdvisor.

From Figure 8, we can observe that both our machine
learning based and linear regression based methods on
computing gses are effective in improving the performance
of backward aggregations, and lead to relatively large per-
formance speedups on relatively small graphs like Cora

and Citeseer, where execution path preparing alone does
not achieve prominent acceleration as shown in Figure 7.
The reason is that on computing optimal gses during GCN

0
.5

2

0
.6

0

0
.5

7

0
.6

1

0
.6

2 0
.7

2

0
.8

9

0
.8

0

0
.8

1 0
.8

7

0
.8

5

0
.8

8

0
.8

5

0
.8

8

0
.8

8

0
.9

1

Cora Citeseer Pubmed Twitter Blog Amazon Google Youtube
0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

al
iz

ed
ti

m
e grouping based on

machine learning

linear regression

Fig. 8: Backward aggregation times by using execution path
preparing with structure-aware grouping strategies (nor-
malized to the times by using execution path preparing but
with default grouping strategy of GNNAdvisor)

1
.3

3

1
.1

2

1
.2

8

1
.2

2 2
.1

6

1
.9

5

3
.0

9

3
.2

5

3
.2

1

3
.1

5 4
.0

3

3
.9

8 5
.1

0

4
.9

1

6
.5

7

6
.3

7

Cora Citeseer Pubmed Twitter Blog Amazon Google Youtube
0

1

2

3

4

5

6

7

S
p

ee
d

u
p

grouping based on

machine learning

linear regression

Fig. 9: Speedups by using our approach compared with
original GNNAdvisor on backward aggregation stage on
NVIDIA Tesla V100S GPU

training, GNNAdvisor considers only the dimension prop-
erty of training at each layer, and does not lead to optimal
performances for small graphs as discussed in Section 5.
But our proposed methods achieve better performances as
we consider the structure of the input graphs.

Comparing our two grouping methods, it can be seen
that the machine learning based method always leads to
shorter backward aggregation times on all tested graphs
except Twitter. However, the machine learning based
method takes a much longer time (details in Table 5) to
compute the optimal gs for an input graph, while the linear
regression based method has negligible computation time of
the gs value. Therefore, the machine learning based method
is preferable when seeking the shortest aggregation time, or
when the input graph is used for many runs of the GCN
training and each run involves thousands of epochs [27],
[43]. And the linear regression based method can lead to
a shorter end-to-end time than the machine learning based
method when conducting small tests such as one run of 100
epochs.

Combining the performance data shown in Figure 7 and
Figure 8, we can obtain the effectiveness of our proposed
execution path preparing on the performances of backward
aggregation, when accompanied with the techniques on
computing the optimal group size. We can observe that
for all our chosen graphs, our proposal is effective in
accelerating the backward aggregations with varying de-
grees. The smallest speedup appears on the Cora graph,
where the performance speedup is 1.48x, computed by
(1/1.12)×(1/0.60) (speedup by execution path preparing ×
speedup by linear regression based grouping). The biggest
speedup happens in the Youtube graph, where the perfor-
mance speedup is 5.68x, computed by (1/0.20) × (1/0.88)
(speedup by execution path preparing × speedup by ma-
chine learning based grouping).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

Performance on NVIDIA Tesla V100S: We use our
approach to improve the backward aggregation of both
GNNAdvisor and DGL on an NVIDIA Tesla V100S GPU.

• Improving GNNAdvisor: Figure 9 reports the
speedups of the improved GNNAdvisor using our approach
over its original version. We can observe that our approach
is still effective in improving the performance of GNNAd-
visor (speedups range from 1.12x to 6.57x) when the GPU
device is upgraded from P100 to V100S. It is noticeable that
the speedups are higher (especially for Amazon, Google,
and Youtube) on V100S than those on P100. The reason
is that, when deciding the optimal gses for input graphs,
GNNAdvisor (considers only the platform parameters and)
does not take into account the structural information of the
graph, while our approach (discussed in Section 5) does
better on computing the optimal gses.

• Improving DGL: DGL uses SpMM to conduct back-
ward aggregation of GCN training. From the angle of graph
processing, SpMM in DGL during backward aggregation is
still an all-active procedure, since the same adjacency matrix
of input graph is used for both forward and backward
aggregations. Hence, we can also use our execution path
preparing approach to improve the backward aggregation
performance of DGL. The method is to represent the exe-
cution paths as matrices (with the same representation of
the adjacency matrix of input graph, but much smaller), to
convert a big SpMM problem into multiple smaller SpMM
problems during backward aggregation. Table 4 lists the
execution times of backward aggregation of GCN trainings
in our chosen graphs with DGL, before and after improve-
ments.

From Table 4, we can observe that our approach is
also effective in improving the performance of backward
aggregation in DGL. Nevertheless, the speedups in DGL are
generally smaller (1.02x∼2.78x) than those in GNNAdvisor.
The reason is that DGL uses SpMM and does not use the
grouping techniques, the technique on computing optimal
group sizes discussed in Section 5 cannot be used in such
improvements. Comparing the absolute execution times of
GNNAdvisor and DGL, both before and after improve-
ments, we can observe that although in some (Amazon,
Google, and Youtube) graphs, the backward aggregation
performances of original DGL are better than those of
original GNNAdvisor, they are much worse than those
of GNNAdvisor after both of them being improved. The
reason is that although the latest version (0.9.0) of DGL
uses customized SpMM libraries to conduct training, and
achieves even better performances than GNNAdvisor in
some graphs, it leaves little room except for using smaller
matrices (representing the sub-graphs) in backward aggre-
gation for our approach to further improve its performance.

6.4 Performance improvement on overall GCN training

In this subsection, we examine the effectiveness of our
proposed method (execution path preparing combined with
structure-aware grouping techniques) on improving the
performances of overall GCN training. According to the
overheads of our proposed techniques on execution path
preparing and computing the optimal group sizes, we con-
sider two scenarios that use our proposed method: during
pre-processing and on-the-fly.

TABLE 4: Backward aggregation times (in seconds) of DGL
(version 0.9.0) and GNNAdvisor before and after being
improved.

Graphs
DGL

Speedup
GNNAdvisor

Original Improved Original Improved
Cora 0.1506 0.1476 1.02 0.0038 0.0034

Citeseer 0.1534 0.1504 1.02 0.0039 0.0032
Pubmed 0.1546 0.1501 1.03 0.0084 0.0043
Twitter 0.1850 0.1652 1.12 0.1098 0.0338
Catalog 0.2474 0.2028 1.22 0.1572 0.0499
Amazon 0.2860 0.1497 1.91 0.3274 0.0823
Google 0.3648 0.1681 2.17 0.6101 0.1243

Youtube 0.6239 0.2244 2.78 0.7659 0.1203

TABLE 5: The overall training times (in seconds) of GN-
NAdvisor and the pre-processing version of our approach
(“Accuracy difference” is computed by subtracting the Ac-
curacy from GNNAdvisor with those from our approach)

Graph
Our approach GNNAdvisor

Speedup
Accuracy

Pre-proc. Training Training difference
Cora 0.1591 0.1999 0.2234 1.12 0.000

Citeseer 0.1640 0.2253 0.2374 1.05 0.000
Pubmed 0.2236 0.2396 0.2640 1.10 0.000
Twitter 0.7524 0.6333 0.8652 1.37 0.000

Blog 0.8578 0.8266 1.1051 1.34 0.000
Amazon 7.1804 1.8244 2.3003 1.26 0.000
Google 22.1762 3.5601 4.5226 1.27 0.000

Youtube 29.6670 4.9308 6.0142 1.22 0.000

During pre-processing: In this scenario, the pre-
processing first extract the execution paths of the backward
aggregation before the GCN training, then computes the
optimal group sizes by using the SAGPG neural network as
discussed in Section 5, and finally reconstructs the execution
paths by the computed group sizes. After pre-processing,
the GCN training is conducted while the reconstructed
execution paths are used during its backward aggregation.

Table 5 lists the pre-processing times and the training
times (in bold) separately. From the table, we can observe
that when comparing only the training times with those
of GNNAdvisor, our approach is effective in improving
the performances of overall training. The speedups range
from 1.05x to 1.37x, where small speedups appear on three
small graphs (i.e., Cora, Citeseer, and Pubmed), for the
proportions of backward aggregation in overall training on
these small graphs are relatively small (about 20%).

Moreover, from Table 5, we can also observe that the
times paid on pre-processing are higher than those paid
on training, and larger input graphs lead to higher pre-
processing time to training time ratios. The reason is that the
majority (99%) of pre-processing times are spent on the in-
ference of SAGPG. The neural network model of SAGPG is
more complex and deeper (i.e., 9 according to [31]) than that
of GCN, which explains the higher pre-processing times and
their faster increasing when processing larger input graphs,
than those of GCN training. Based on this observation, we
believe that the pre-processing scenario fits the case where
the training problem is fixed (G, Vt, and L do not change),
but the training is performed multiple times, and each time
contains thousands of epochs.

In addition, we compare the Accuracy (when training
with the same random seeds) of our approach and those
of GNNAdvisor by computing their differences in the last
column of Table 5. We can observe from the column that our
execution path preparing approach does not cause loss of
Accuracy as proved in Section 3. As further validation, our

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Cora Citeseer Pubmed Twitter Blog Amazon Google Youtube
0.000
0.002
0.004

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

ti
m

e
Our approach preparing backward aggregation remaining

GNNAdvisor backward aggregation remaining

Fig. 10: Overall training times by using our approach on-the-
fly (normalized to the training times of original GNNAdvi-
sor, and the remaining part includes the times of forward
propagation, combinations, and other misc. operations)

Amazon Google
1.0

1.1

1.2

1.3

1.4

M
em

o
ry

fo
o

tp
ri

n
t

ex
p

an
si

o
n

#layers 2 3 4 5 6

(a) Memory expansions

Amazon Google
0
1
2
3
4
5

#layers 2 3 4 5 6

S
p
ee

d
u
p

(b) Speedups

Fig. 11: Performances of GCN training with 2∼6 layers by
using execution path preparing and regression-based group-
ing (normalized to performances of original GNNAdvisor)

accuracies on the three citation graphs Cora, Citeseer,
and Pubmed are 81.2%, 71.2%, and 79.5%, respectively,
which are consistent with the results in [1].

On-the-fly: In this scenario, the execution path preparing
is conducted during the first epoch of training (before the
backward aggregation stage). Also before backward aggre-
gation, the linear regression based method is adopted to
compute the optimal group sizes for each execution path
at each training layer.

Figure 10 breakdowns the training, and illustrates the
execution times of different stages of the training by normal-
izing them to those GNNAdvisor. From Figure 10, we can
observe that by only improving the performances of back-
ward aggregation, our execution path preparing approach
is effective in improving the overall performances of GCN
training when used on-the-fly, and the speedups range from
1.03x to 1.35x.

6.5 Training with more than two layers

We evaluate the space costs and performance improvements
on backward aggregation when L > 2 by using execution
path preparing, where linear regression based method is
employed in computing the gses. Figure 11 reports the
experiment results when conducting GCN training on two
typical real-world graphs (i.e., Amazon and Google).

From Figure 11, we can observe that with increasing
training layers, the space costs increase gradually, and each
increasing training layer leads to about a 5% increment in
the memory footprint for both of our chosen graphs. This
is because our execution path preparing approach needs
to extract data from the original graph, and build the sub-
graph (i.e., execution path) for the increased training layer.

Moreover, it is likely for large training layers to obtain
the majority of data (vertices and edges) of the original
graph, according to the small-world theory [44] in real-
world graphs. We can also observe that the performance
speedups on backward aggregation gradually decrease with
more training layers. The reason is that at high training
layers, the execution path is close to the original graph by
including the majority of its vertices and edges, the perfor-
mance benefits from selective scheduling thus diminishes.

7 CONCLUSION AND FUTURE WORK

In this paper, we show that the backward aggregation stage
of GCN training uses only partial data of its input graph,
and thus can be treated as a partially-active graph process-
ing procedure. By leveraging this finding, we propose an
execution path preparing approach to improve the perfor-
mance of backward aggregation stage. Experiment results
show that with a small space cost, our proposal is effective
in improving the performance of backward aggregation, and
the overall performance of GCN training.

The future work of this paper includes: 1) practically
applying our proposal to deep GCNs [45] (GCNs with
more than two layers); 2) extending our proposal to other
partially active situations such as the aggregations after
graph pooling [46] or sampling [27], both of which select
a subset of vertices in the input graph to participate in the
following computation in forward propagation.

REFERENCES

[1] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proceedings of ICLR’17.

[2] R. Ying, R. He, K. Chen et al., “Graph convolutional neural
networks for web-scale recommender systems,” in Proceedings of
KDD’18, pp. 974–983.

[3] C. Zheng, X. Fan, C. Wang et al., “GMAN: A graph multi-attention
network for traffic prediction,” in Proceedings of AAAI’20, pp. 1234–
1241.

[4] Y. Chen, Z. Wei, and X. Huang, “Incorporating corporation rela-
tionship via graph convolutional neural networks for stock price
prediction,” in Proceedings of CIKM’18, pp. 1655–1658.

[5] J. M. Stokes, K. Yang, K. Swanson et al., “A deep learning approach
to antibiotic discovery,” Cell, vol. 180, no. 4, pp. 688–702, 2020.

[6] V. Gligorijević, P. D. Renfrew, T. Kosciolek et al., “Structure-based
protein function prediction using graph convolutional networks,”
Nature communications, vol. 12, no. 1, pp. 1–14, 2021.

[7] X. Lin, Z. Quan, Z. Wang et al., “KGNN: knowledge graph neural
network for drug-drug interaction prediction,” in Proceedings of
IJCAI’20, pp. 2739–2745.

[8] A. Paszke, S. Gross, F. Massa et al., “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in NIPS’19,
pp. 8024–8035.

[9] H. Liu, S. Lu, X. Chen et al., “G3: when graph neural networks
meet parallel graph processing systems on GPUs,” Proc. VLDB
Endow., vol. 13, no. 12, pp. 2813–2816, 2020.

[10] Y. Wang, B. Feng, G. Li et al., “GNNAdvisor: An adaptive and
efficient runtime system for GNN acceleration on GPUs,” in
Proceedings of OSDI’21, pp. 515–531.

[11] NVIDIA. NVIDIA Tesla P100. NVIDIA. [Online]. Available:
https://www.nvidia.com/en-us/data-center/tesla-p100/

[12] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-aware
warp scheduling,” in Proceedings of MICRO’13, pp. 99–110.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of ICLR’15.

[14] S. Ruder, “An overview of gradient descent optimization algo-
rithms,” CoRR, vol. abs/1609.04747, 2016.

[15] J. Shi, R. Yang, T. Jin et al., “Realtime top-k personalized pagerank
over large graphs on GPUs,” Proc. VLDB Endow., vol. 13, no. 1, pp.
15–28, 2019.

https://www.nvidia.com/en-us/data-center/tesla-p100/

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[16] H. Liu and H. H. Huang, “Enterprise: breadth-first graph traversal
on gpus,” in Proceedings of SC’15, pp. 68:1–68:12.

[17] X. Shi, Z. Zheng, Y. Zhou et al., “Graph processing on GPUs: A
survey,” ACM Comput. Surv., vol. 50, no. 6, pp. 81:1–81:35, 2018.

[18] M. Besta, M. Podstawski, L. Groner et al., “To push or to pull: On
reducing communication and synchronization in graph computa-
tions,” in Proceedings of HPDC’17, pp. 93–104.

[19] A. H. N. Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregu-
lar graphs for GPU-friendly graph processing,” in Proceedings of
ASPLOS’18, pp. 622–636.

[20] L. Ma, Z. Yang, Y. Miao et al., “Neugraph: Parallel deep neural
network computation on large graphs,” in Proceedings of ATC’19,
pp. 443–458.

[21] K. Huang, J. Zhai, Z. Zheng et al., “Understanding and bridging
the gaps in current GNN performance optimizations,” in Proceed-
ings of PPoPP’21, pp. 119–132.

[22] M. Abadi, A. Agarwal, P. Barham et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” CoRR,
vol. abs/1603.04467, 2016.

[23] Y. Wang, A. A. Davidson, Y. Pan et al., “Gunrock: a high-
performance graph processing library on the GPU,” in Proceedings
of PPoPP’16, pp. 11:1–11:12.

[24] J. Arai, H. Shiokawa, T. Yamamuro et al., “Rabbit order: Just-in-
time parallel reordering for fast graph analysis,” in Proceedings of
IPDPS’16, pp. 22–31.

[25] M. Wang, L. Yu, D. Zheng et al., “Deep graph library: To-
wards efficient and scalable deep learning on graphs,” CoRR, vol.
abs/1909.01315, 2019.

[26] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” CoRR, vol. abs/1903.02428, 2019.

[27] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representa-
tion learning on large graphs,” in Advances in NIPS’17, pp. 1024–
1034.

[28] H. Zeng, H. Zhou, A. Srivastava et al., “Graphsaint: Graph sam-
pling based inductive learning method,” in Proceedings of ICLR’20.

[29] Z. Jia, S. Lin, M. Gao et al., “Improving the accuracy, scalability, and
performance of graph neural networks with roc,” in Proceedings of
MLSys’20.

[30] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional
neural networks for graphs,” in Proceedings of ICML’16, ser. JMLR
Workshop and Conference Proceedings, vol. 48, pp. 2014–2023.

[31] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in
Proceedings of ICML’19, pp. 3734–3743.

[32] F. Khorasani and R. Gupta. Parmat: A parallel
generator for large r-mat graphs. [Online]. Available:
https://github.com/farkhor/PaRMAT

[33] J. M. Swank and P. R. Mullen, “Evaluating evidence for conceptu-
ally related constructs using bivariate correlations,” Measurement
and Evaluation in Counseling and Development, vol. 50, no. 4, pp.
270–274, 2017.

[34] K. Baba, R. Shibata, and M. Sibuya, “Partial correlation and
conditional correlation as measures of conditional independence,”
Australian & New Zealand Journal of Statistics, vol. 46, no. 4, pp.
657–664, 2004.

[35] J. T. Pohlmann and D. W. Leitner, “A comparison of ordinary least
squares and logistic regression 1,” The Ohio Journal of Science, vol.
103, no. 5, pp. 118–125, 2003.

[36] P. Geometric. Pytorch geometric documenta-
tion. PyTorch Geometric. [Online]. Available:
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html

[37] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. Stanford University. [Online]. Available:
http://snap.stanford.edu/data

[38] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in Proceedings of
AAAI’15, pp. 4292–4293.

[39] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Mach. Learn., vol. 109, no. 2, pp. 373–440, 2020.

[40] M. Peikari, S. Salama, S. Nofech-Mozes et al., “A cluster-then-
label semi-supervised learning approach for pathology image
classification,” Scientific reports, vol. 8, no. 1, pp. 1–13, 2018.

[41] L. Wu, D. Wang, S. Feng et al., “MDAL: multi-task dual attention
LSTM model for semi-supervised network embedding,” in Pro-
ceedings of DASFAA’19, ser. Lecture Notes in Computer Science,
vol. 11446, pp. 468–483.

[42] NVIDIA. NVIDIA V100S. NVIDIA. [Online]. Available:
https://www.nvidia.com/en-us/data-center/v100/

[43] G. Li, C. Xiong, A. K. Thabet et al., “DeeperGCN: All you need to
train deeper GCNs,” CoRR, vol. abs/2006.07739, 2020.

[44] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law
distributions in empirical data,” SIAM Rev., vol. 51, no. 4, pp. 661–
703, 2009.

[45] Y. Rong, W. Huang, T. Xu et al., “Dropedge: Towards deep graph
convolutional networks on node classification,” in Proceedings of
ICLR’20.

[46] D. P. P. Mesquita, A. H. S. Jr., and S. Kaski, “Rethinking pooling in
graph neural networks,” in Proceedings of NeurIPS’20.

https://github.com/farkhor/PaRMAT
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
http://snap.stanford.edu/data
https://www.nvidia.com/en-us/data-center/v100/

	1 Introduction
	2 Background and Related Works
	2.1 GCN training
	2.2 Graph processing systems on GPUs
	2.3 Related works

	3 Partially-active Backward Aggregation
	4 Execution Path Preparing
	5 Structure-aware Grouping
	6 Evaluations
	6.1 Experiment settings
	6.2 Space cost
	6.3 Performance improvement on backward aggregation
	6.4 Performance improvement on overall GCN training
	6.5 Training with more than two layers

	7 Conclusion and Future Work
	References

