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Abstract—To trust findings in computational science, scientists need workflows that trace the data provenance and support results

explainability. As workflows become more complex, tracing data provenance and explaining results become harder to achieve. In this

paper, we propose a computational environment that automatically creates a workflow execution’s record trail and invisibly attaches it to

the workflow’s output, enabling data traceability and results explainability. Our solution transforms existing container technology,

includes tools for automatically annotating provenance metadata, and allows effective movement of data and metadata across the

workflow execution. We demonstrate the capabilities of our environment with the study of SOMOSPIE, an earth science workflow.

Through a suite of machine learning modeling techniques, this workflow predicts soil moisture values from the 27 km resolution satellite

data down to higher resolutions necessary for policy making and precision agriculture. By running the workflow in our environment, we

can identify the causes of different accuracy measurements for predicted soil moisture values in different resolutions of the input data

and link different results to different machine learning methods used during the soil moisture downscaling, all without requiring

scientists to know aspects of workflow design and implementation.

Index Terms—Scientific workflows, scientific computing, provenance, reproducibility, replicability, soil moisture predictions
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1 INTRODUCTION

COMPUTATIONAL workflows play a key role in scientific
discovery. These workflows are growing more complex:

they consist of different modeling, analysis, and visualiza-
tion modules; they run on increasingly heterogeneous sys-
tems; and they use machine learning (ML) methods with
limited transparency. For scientists using these workflows
to study scientific phenomena, trusting data, methods, soft-
ware, and hardware becomes more necessary than ever. Sci-
entists can trust their findings only through in-depth data
lineage and the complete record trail of the methods gener-
ating the results. The data lineage and record trail combined
enables scientists to trace data back to its sources and
explain computational methods and their output.

Provenance collection techniques [1], [2], [3] and container
technologies [4], [5], [6], [7] are promising approaches to
achieve data traceability through data lineage and result

explainability through record trails. Provenance provides data
lineage with a thorough description of the history of the data
evolution, allowing the scientist to trace the data back to its ori-
gin and observe interactions between data and applications.
However, there are twomain limitations of current provenance
solutions. First, the provenance metadata is separate from the
dataflow, so any effort to matchmetadata to workflow compo-
nents (i.e., data and applications) requires manual work. For
example, solutions such as PASS [8], Pachyderm [9], and
REANA [10] use separate metadata databases. Because the
metadata is in a different location than the workflow compo-
nents, it is harder for the scientists to query metadata and
match with the components to do any provenance analysis.
Second, scientists track provenance with custom systems that
do not offer portability across heterogeneous platforms. For
example, work in [8], [11], [12] builds on custom file systems,
andwork in [13], [14], [15], [16], [17] builds on custom software
packaging. Containers offer a lightweight solution to track
provenance across platforms by encapsulating applications
and dependencies into an isolated environment [18], [19], [20],
[21]. However, there are three main limitations of current con-
tainer solutions. First, containers are used for services that do
not save long-term states; state storage is relegated to existing,
shared storage infrastructure. Second, container solutions do
not automatically create data lineage and record trails. Third,
current container technologies lack an effective way to move
data through a containerizedworkflow.

To overcome these limitations, we propose a computa-
tional environment that is seamlessly integrated with
container technology, automatically creates a workflow exe-
cution’s record trail, and invisibly attaches the trail to the
workflow’s intermediate and output data. To this end, we
decouple data and applications of traditionally tightly cou-
pled workflows and encapsulate data and applications into
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individual fine-grained containers. We augment both data
and application containers to expose provenance metadata
and to move data across the containerized workflow effec-
tively. Additionally, we create an interface for visualizing
and studying the metadata that scientists can use to under-
stand data lineage and computational methods. We demon-
strate how our environment enables data traceability and
results explainability for the SOMOSPIE (Soil Moisture Spa-
tial Inference Engine) workflow [22]. SOMOSPIE uses a
suite of ML modeling techniques to downscale the 27 km
resolution satellite data from the ESA-CCI soil moisture
database [23] to higher resolutions necessary for practical
use in earth sciences including precision forestry and agri-
culture, hydrology for landscape ecology, and regeneration
dynamics [24], [25].

Our environment enables scientists to link differences in
scientific results back to different input data sources (data
lineage for traceability); and link different results to specific
methods used, without necessarily mastering all the aspects
of implementation and execution of the workflow (record
trail for explainability). For example, with SOMOSPIE, our
environment enables scientists to identify different pre-
dicted soil moisture values caused by different input data
sources and their resolutions; or to connect different results
to specific ML methods used during the soil moisture
downscaling. We measure the performance of our environ-
ment in terms of execution time, storage space, and IO
bandwidth. We demonstrate how our environment has lim-
ited overhead and is effective for establishing trustworthi-
ness in the SOMOSPIE workflow. While we demonstrate
the benefits of our environment with soil moisture predic-
tion, our solution is application-agnostic: our environment
can be easily adapted to general workflows consisting of
self-contained applications.

This work makes the following contributions:

� An environment based on fine-grained containeriza-
tion of both data and applications which automati-
cally creates data lineage and record trail of workflow
executions, enabling traceability of data and explain-
ability of results.

� A Singularity/Apptainer based implementation of
our fine-grained containerized environment which
automatically annotates each container with its data
lineage and record trail and effectively supports
zero-copy movement of data across containers.

� A demonstration of the environment capabilities to
trace data sources and explain ML results for an
exemplary earth science workflow, SOMOSPIE [22].

The paper is organized as follows. Section 2 describes the
methodology to model a workflow into a fine-grained con-
tainerized environment. The implementation of the environ-
ment using Singularity/Apptainer as the selected container
technology is explained in Section 3. Section 4 demonstrates
the use of our containerized environment for an earth sci-
ence workflow for traceability and explainability. We quan-
tify the impact on overhead and performance in Section 5.
We discuss the interoperability and adaptation of our envi-
ronment in distributed systems in Section 6. Section 7 dis-
cusses the related work. Finally, Section 8 concludes with a
summary of the findings and directions for future work.

2 MODELING CONTAINERIZED WORKFLOWS

We describe how a scientific workflow can be modeled
using our fine-grained containerized environment. We pres-
ent our solution in terms of the decoupling of workflows
into application and data components, the communication
between these components, the automatic annotation of
each component, and the visualization of the associated
metadata.

2.1 From Native to Fine-grained Workflow Modeling

A workflow is composed of one or multiple interoperable,
self-contained applications, each with its own software stack
and input and output data. These applications can range
from data generation, data collection and merging, data pre-
processing and feature extraction to data analysis, modeling,
and visualization. Such a workflow can be executed on
native HPC and cloud platforms (Fig. 1a). When container
technologies are used in HPC or cloud platforms, the whole
workflow is usually deployed in a single coarse-grained
container (Fig. 1b). This coarse-grained containerization ena-
bles easy deployment and management. However, the
coarse-grained approach makes it difficult to exactly track
executions or identify all theworkflow components and their
interactions for building an in-depth data lineage and record
trail. In addition, such an approach does not enable reusabil-
ity and composability of individual workflow components.
Instead, we decouple the workflow into its components (i.e.,
applications and data) and use a fine-grained containerized
workflow approach that encapsulates each workflow com-
ponent into its own container (Fig. 1c). Each container serves
as an immutable object with a unique hash code for perma-
nent identification, enabling easy data lineage and record
trails creation. Our approach is applicable to workflows that
can be modeled as directed acyclic graphs (DAGs) whose
nodes (applications) and vertices (data in movement from
one application to another) can be both containerized. In

Fig. 1. Composition of scientific workflows on (a) native environment
(i.e., original workflow execution on backbone HPC or cloud platforms),
(b) using a coarse-grained containerized environment with a single
monolithic container and (c) using our proposed fine-grained container-
ized environment (i.e., decoupled workflow components in data and
application independent containers).
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theory any workflow with such features can be abstracted
into a fine-grained set of interconnected containers.

2.2 Designing Application and Data Containers

Given an application, we containerize it by encapsulating the
executable or script with the respective software stack (i.e.,
OS, libraries, and software packages). By doing so, scientists
can reuse the application container across different workflows
and reduce the overall storage requirement. Furthermore, in
our environment all application containers are annotatedwith
provenance information including their unique identifier and
creation time. The containerization of data is unique to our
approach. Because containers are isolated systems, they do
not support persistence of data; consequently, only applica-
tions are normally containerized, while the data is hosted in
local databases, storage volumes, or images [26], [27], [28]. We
move away from this implementation by leveraging the work
of Lofstead and co-authors called Data Pallets [29] that defines
data as a separate and immutable object once created. To cre-
ate this object, we define a data container that follows a file-
system-in-a-file model. Given an individual dataset (i.e.,
input, intermediary, or output data), we containerize it into a
single and independent data container. Similar to the applica-
tion container, data containers are augmented to expose prov-
enance information such as the unique hash code, creation
time, execution task and record trail. By doing so, data con-
tainers provide trustworthiness, portability, and shareability
of their content to users and acrossworkflows. Two important
principles inform our fine-grained containerized workflow
approach. First, we separate applications and data into their
own containers allowing specificity and unique identification
of the components in a workflow for traceability and explain-
ability purposes. Second, our approach values intermediate
data; rather than discharging intermediate data, it encapsu-
lates this data in order to provide a complete preservation of
the data lineage for traceability and reusability.

2.3 Designing Communication Between Containers

The fine-grained containerization of the workflow compo-
nents introduces a new challenge in the execution: data has to
be moved from one container to the next in an efficient way.
When themovement is done through standard container tech-
nology, it requires the usage of the host node’s storage to serve
as a buffer in a two-copy data transfer as shown in Fig. 2a. We
propose a new communication approach that enables a zero-
copy data transfer: we bindmount direct paths inside the data
and application containers through their namespaces, thus
avoiding data sharing via the host. This allows containers to
directly exchange data without creating extra copies or using
external storage. Ultimately, our approach reduces the time
and space needed to transfer data between containers. Fig. 2b
shows the same example of data transfer for the two-copy
approach in Fig. 2a but with our zero-copy data transfer
implementation. In essence, an application container can read
andwrite directly from one ormultiple data containers.

2.4 Designing Annotated Containers

The fine-grained containerization of a workflow allows us to
annotate its executions, capturing metadata at a fine-grained
level. To deploy the annotation for different workflow

executions, the metadata collection has to be automatic. There
are three open questions when automatically annotating
workflow executions:

1) Where should the metadata be allocated? We augment
each container with an extra partition, within which
we allocate the metadata. Our approach enables the
tight integration of each workflow component and
its metadata, facilitating the traceability of both the
individual components and the workflow as a
whole. While tightly coupling the metadata partition
with the workflow components, our environment
effectively stashes the metadata information from
regular workflow executions. This means that the
data or application itself in the container can never
be contaminated by managing the metadata parti-
tion. The metadata information can still be accessed
at any time through standard container partition
access commands.

2) What metadata should be captured?We capture the con-
tainer’s identification, creation time, execution task,
and record trail. The container identification is a
tuple (i.e., [UUID, name]) composed of a univer-
sally unique identifier (i.e., UUID) and a name
assigned when the container is created. While the
UUID is unique, the name can be modified. The crea-
tion time captures the point in time when the con-
tainer is written to disk. The execution task is the set
of instructions to run the application. This informa-
tion includes parameters such as initial conditions,
random seeds, and other setting values. The contain-
er’s record trail is a set of ordered tuples (i.e.,
[UUID, name]) that defines the pipeline of contain-
ers preceding the current one (i.e., data and applica-
tion containers used before the current container and
triggering its use).

3) How and when should the metadata be collected? For
each container, we expose information embedded in
the container environment, which is otherwise hid-
den to the workflow execution, to collect our meta-
data. For both data and application containers, the
structure of the metadata partition (i.e., [contain-
er’s identification, creation time, execu-

tion execution task, and record trail]) is

Fig. 2. Communication between the workflow components in two-copy
(a) and zero-copy (b) data transfer for our fine-grained containerized
environment.
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identical. The content of the partitions depends on
the type of container and is collected both statically
and dynamically. The static metadata is collected
when a container is created and includes the con-
tainer identification and creation time. The pool of
dynamic metadata includes the execution task and
record trail. For all containers, (a) the execution task
is initialized with noop meaning that there is no
operation; and (b) the record trail is initialized with
NULL meaning that there are not predecessor con-
tainers because an execution has not happened yet.
The dynamic metadata is populated only at the time
a workflow is executed. For purposes of reusability
across workflows, the static metadata of application
containers remains as initialized. On the other hand,
the execution task and record trail of the data con-
tainers are updated at the execution time to capture
the data generation.

Fig. 3 shows an example of automatic metadata collection
for a workflow with three data containers serving as input
(Input), intermediate (Inter), and output (Out) respectively,
and two application containers (App1 and App2). The static
metadata is initialized with the container identification
tuple and container creation time. During the execution of
the workflow, the execution task and record trail are
updated for the data containers. The figure presents a snap-
shot of when the whole workflow has finished its execution,
meaning that App1 and App2 have written the results into
the intermediate and output containers respectively. The
record trail of the output container includes the output,
App2, and intermediate containers’ identifications. With the
identification of the intermediate, we can retrieve its record
trail which includes the intermediate, application1, and
input containers’ identifications. We merge the two contain-
ers’ record trails and define all the containers used in the
workflow pipeline. The combination of the static and
dynamic metadata enables building the in-depth data line-
age and the complete record trail of the applications gener-
ating the results.

2.5 User Interface

We provide a user interface to facilitate the study of col-
lected metadata. This interface reads the metadata of one
or multiple containers. From this metadata, the interface
constructs a workflow visual representation as a directed

graph. Scientists can interact and adapt the graph to their
needs for further analysis. The nodes of the graph represent
each container in the workflow which are labeled by the
universally unique identifiers (i.e., UUID) and include their
respective metadata as their description. Additionally,
nodes are distinguished between data and application con-
tainers. For each container, the interface backtraces its
record trail and connects the nodes in the order of the line-
age of that execution. Subsequently, the interface constructs
individual subgraphs of each execution. These subgraphs
are merged to find common patterns and containers shared
across multiple executions, providing a graph with unique
nodes (data and application containers) connected based on
the data lineage constructed from the descriptions of the
metadata.

3 SINGULARITY/APPTAINER IMPLEMENTATION

We build our computational environment by augmenting
Singularity/Apptainer [5] container technology.We develop
a Jupyter Notebook [30] interface for the metadata visualiza-
tion and analysis.

3.1 Selecting the Container Technology

While there are many different container technologies (e.g.,
Docker [4], Singularity/Apptainer [5], Charliecloud [6], Pod-
man [7]), in our work, we use Singularity/Apptainer for three
main reasons. First, it does not require administrative privi-
leges that are challenging to obtain in tightly controlled envi-
ronments such as the US National Laboratories. Second, the
use of the SIF (Singularity Image File) format container allows
us to customize the content of each container with different
types of partitions (i.e., metadata partition, application parti-
tion, data partition), where each container can have one or
more partitions. Last, Singularity/Apptainer supports user-
defined add-on functionalities through plugins. These plu-
gins are packages that can be dynamically loaded by the Sin-
gularity/Apptainer at runtime, augmenting Singularity/
Apptainer with experimental, non-standard, and vendor-spe-
cific functionalities. Some of these functionalities allow users
to add commands and flags for the container’s creation and
execution; the functionalities can serve as an interface with
more complex subsystems (i.e, compute and storage devices)
at runtime. We extend Singularity/Apptainer to feature three
functionalities needed to implement the designed fine-

Fig. 3. Example of the metadata partitions for a workflow in our fine-grained containerized environment, composed of once executed three data con-
tainers serving as input (Input), intermediate (Inter), and output (Out) respectively, and two application containers (App1 and App2). The partitions
are populated with both static and dynamic information.
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grained containerized environment in Sections 2.2, 2.3, and
2.4. First, we use the SIF format container to automatically cre-
ate the individual application and data containers. We initial-
ize each container with a metadata partition, providing users
with access to information otherwise hidden to them. Second,
we design a zero-copy data transfer mechanism for the Singu-
larity/Apptainer’s technology which facilitates data move-
ment across containers. This zero-copy functionality is now
part of the Singularity/Apptainer code [31]. Last, we auto-
matically annotate the workflow with provenance informa-
tion. Both automatic creation and annotation functionalities
are integrated in a plugin that is part of our software
release [32], [33]. Furthermore, we implement a Jupyter note-
book that serves as the user interface designed in Section 2.5.

3.2 Creating Application and Data Containers

We augment the Singularity/Apptainer runtime with a
plugin that supports the automatic creation and execution of
fine-grained containerized workflows. The plugin can work
with any workflow that can be modeled as a DAG. Given a
workflow, our plugin has the ability to automatically create a
fine-grained sequence of data and application containers
using apptainer workflow–create. We use aweb service
on the local machine at port 5000 to facilitate the user with
the generation of the fine-grained workflow. Through the
web service, the user provides information about the work-
flow, such as the definition file of an application (i.e., applica-
tion executable and software stack); the number, location,
and size of each input data; and the expected size of the out-
put data. The plugin uses this information to create thework-
flow with its individual application and data containers.
Specifically, the plugin encapsulates individual datasets and
application executables or scripts into independent file sys-
tem partitions. For application containers, the plugin encap-
sulates the application executable or script together with the
software system stack in a squashFS partition. For data con-
tainers, the plugin compresses the data in an Ext3 file system
partition. Both types of containers include metadata in a
JSON generic file system partition.

3.3 Zero-copy Communication Between Containers

We extend the Singularity/Apptainer technology to sup-
port direct transferring data between containers without
going through host or external storage (i.e., zero-copy data
transfer). We use the bind mount functionality to define a
bind path that directly links a directory from the source con-
tainer to a directory in the destination container. During an
execution, the bind path is parsed, capturing which contain-
ers and directories to use. The source and destination con-
tainers are loaded in the environment. The source directory
is replicated in the destination container; any change on the
directory inside the destination container is also reflected in
the source container and vice versa.

3.4 Implementing Annotated Containers

We define a second functionality in our plugin apptainer

workflow –run [workflow_description].json that
grants the user the ability to execute a fine-grained contain-
erized workflow while also annotating containers with
metadata. A user executes the fine-grained containerized

workflows by running the command apptainer workflow

–run [workflow_description].json. This command
triggers the Singularity/Apptainer API callback clicall-

back that activates our plugin. Once the plugin is active, it
starts the automatic collection of metadata in the workflow.
To this end, for each application container’s execution, the
plugin collects two pieces of information. First, it collects
the application’s execution task settings (e.g., initial condi-
tions, random seeds, and other setting values). Second, it
collects the bind path that lists all input and output data
containers for that application container. Following the data
containers listed in a bind path, the plugin uses the SIF API
to extract each container’s identification and creation time.
The plugin appends that information to the record trail of
output data containers for that bind path. Given an output
container, its execution task and record trail are trans-
formed into JSON format and added as a new file descriptor
in its metadata partition.

3.5 Jupyter Notebook User Interface

We develop a Jupyter notebook [30] that serves as a user
interface for inspecting and gaining insights from the col-
lected metadata. It allows the user to select the metadata of
one or more containers and to backtrace the execution data-
flow, which is represented through a directed graph. We
use the package NetworkX expanding the open-source func-
tion NetworkX Viewer [34] with a customized node token
class to tailor the interactive visualization of the workflow
graph. Specifically, our interface enables users to (i) create
the nodes based on the list of containers in the record trail
where the attributes of each node follow the structure of the
metadata; (ii) assign different colors to distinguish between
data and application containers; (iii) build independent sub-
graphs based on the dataflow stated in the metadata of each
container; (iv) merge the subgraphs to build larger graphs
by using common patterns and unique components; (v)
visualize the graphs in an interactive session where the user
can reorganize it; and (vi) obtain detailed provenance infor-
mation about any container.

4 TRACEABILITY AND EXPLAINABILITY IN A REAL

USE CASE IN EARTH SCIENCE

Wedemonstrate how our fine-grained containerized approach
is used to study two cases on an earth science workflow,
SOMOSPIE [22]. In the first case, the workflowhas to be traced
back to the input data to explain different levels of predictions’
resolutions (a case of missing data traceability). In the second
case, the annotations are used to discover which different ML
methods are the reason for different soil moisture predictions
when using the same data (a case of missing result
explainability).

4.1 A Data-driven Workflow for Soil Moisture
Prediction

Soil moisture, the percentage of water by weight or volume in
soil, is critical for linking climate dynamics to ecosystem func-
tioning, playing a key role in the Earth’s water and carbon
cycles. The current availability of spatial soil moisture infor-
mation across large areas (e.g., continents) comes from satel-
lite-based remote sensing sources (e.g., ESA CCI [23], NASA
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SMAP [35]). There are however twomajor limitations of satel-
lite-based soil moisture information: (i) large areas have spa-
tial information gaps (e.g., where there is high canopy density,
frozen soil, or extremely dry conditions); and (ii) they have
coarse granularity (around 27�27 km grids). There is a press-
ing need to improve the spatial representation of soil moisture
for applications in earth sciences (e.g., ecological niche model-
ing, carbonmonitoring systems, and other Earth systemmod-
els). Predictions can be used in policy making and precision
agriculture (e.g., optimizing irrigation practices and other
land management decisions). We use the open-source work-
flow for fine-grained soil moisture predictions called SOMO-
PIE [22]. The workflow fills missing spatial information and
increases spatial resolution of the satellite information. The
workflow consists of three steps: (i) satellite data and terrain
parameters are input to a sequence of execution steps; (ii) ML
methods transform the satellite data into higher resolution
and gap-free predictions using K-Nearest Neighbors (KNN),
Random Forest (RF), and Surrogate Based Modeling (SBM);
and (iii) visualization methods rebuild predictions into for-
mats suitable for further study. Fig. 4 shows an abstraction of
the workflow. For scientists, the entire workflow execution
can be opaque, preventing easy data traceability and results
explainability. For example, different resolutions of the terrain
parameters data (different input data) used for generating
fine-grained predictions are not easy to trace from the output.
Results obtained using different ML methods (different exe-
cutables) are not easy to link to the specific method used. We
show how our fine-grained containerized approach can be
applied to the SOMOSPIEworkflow to enable traceability and
explainability in two cases. In the first case, the different input
data fed into the workflow has to be traced back in order to
explain the different levels of details in the predictions (a case
ofmissing traceability). In the second case, differentMLmeth-
ods are the reason for different soil moisture predictionswhen
using the samedata (a case ofmissing explainability).

4.2 Integrating Traceability

Fig. 5 shows an example of missing data traceability. SOMO-
SPIE is used with different input data resulting in different
levels of details for the prediction of a region centered
around Oklahoma (a rich agricultural area). The longitude is
on the x-axis, the latitude is on the y-axis, and each of the pix-
els/coordinates represents a soil moisture (SM) value. Each

one of the three figures represents the same area of Okla-
homa where the longitude runs from -101.5 to -94.0 and the
latitude runs from 33.5 to 37.0. The soil moisture ranges from
0.175 to 0.35 and is mapped into a color gradient where the
lowest and driest SM value is red and the highest and most
moisturized SM value is blue.

The terrain parameters are selected from different datasets
with different resolutions: 1 km, 250 m, and 90 m. The ML
method is fed with the input datasets and generates predic-
tions from the satellite resolution (27 km) down to the terrain
parameters resolution. However, the figures do not reveal the
different resolutions of the input data to the scientists using
the same workflow. Our approach annotates the workflow to
capture the data provenance in themetadata, providing scien-
tists with full transparency in the data transformations from
input to output in the workflow. Fig. 6 shows the output of
our interface for the predicted soil moisture values in Fig. 5.
The interface is fedwith themetadata of the containers. Based
on themetadata, the interface builds and represents thework-
flow as a graph. The graph shows four data containers (nodes
in blue), symbolizing the input data containers connected to
an application container (first orange node). This application
container corresponds to the ML method that generates the
three data containers with the soil moisture predictions at a
higher resolution. These predictions are then visualized in the
second application container (second orange node), which are
encapsulated in three independent output data containers
(shown in Fig. 5). Based on the graph representation, the sci-
entist can interact with any container and obtain its lineage.
Fig. 6 presents themetadata partition of each of the containers
executed in the workflow. This metadata partition includes
the UUID (simplified in the figure), container name, creation
time, execution task, and the record trail. The record trail
shows the lineage of containers that were used to generate the
current component. Starting from the three output data con-
tainers (09,10,11) the record trail shows in bold that the same
visualization application (08) was executed on three indepen-
dent predictions’ datasets (05, 06, 07). Based on the metadata
of the intermediate data containers (05, 06, 07), the record trail
reveals (in bold) that each of these predictions were the result
of executing the KNN application (04) with the same training
data (00) and three independent evaluation datasets with dif-
ferent resolutions (01,02,03). Finally, scientists can trace the
three different outputs back to the data sources and explain

Fig. 4. SOMOPIE’s modular workflow for predicting soil moisture composed of four modules (i.e., data collation, preprocessing, modeling, and
analysis).
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how the observed differences come from the three input data-
sets, each with a different resolution. Furthermore, because
our interface directly maps any difference to specific contain-
ers used during the execution, it makes it easier for the scien-
tists to retrieve those containers and use them to reproduce
the results or generate new studies.

4.3 Integrating Explainability

Fig. 7 shows an example of lack of result explainability for the
same region. The figure shows three visualizations of the fine-
grained soil moisture predictions with the same resolution of
250 m. The three predictions are generated using the same
input data but different prediction methods (i.e., KNN, RF,
SBM). The figures and associated fine-grained predictions do
not reveal any information about the reasoning beyond the
sharpness and high mixture of dry andmoist values in Fig. 7a,

the tile-like values in Fig. 7b, or the smoother transition
between dry to moisturized values in Fig. 7c. Once again, our
automatic annotation of the workflow generates metadata
revealing the differences in the output data, providing the sci-
entists with an explanation of the results in terms of the meth-
odology used. Fig. 8 shows the output of our interface for the
predicted soil moisture in Fig. 7. As in the previous case, the
interface is fed with the metadata of the containers, and based
on the metadata it builds the workflow as a graph. The output
graph of the interface shows that there are three possible paths
that start from two input data containers (both blue nodes). A
fork in the execution occurs at the first stage of the workflow
where there are three different application containers corre-
sponding to the three different MLmethods (first three orange
nodes). Each of the ML methods generates an intermediate
data container with the soil moisture predictions. Finally, the
three predictions are visualized, generating three independent

Fig. 5. Example of soil moisture output visualization for Oklahoma predicted on three different resolutions (i.e., 1 km, 250 m, and 90 m) generated
with SOMOPIE.

Fig. 6. Graph representation of the SOMOSPIE workflow executions for Oklahoma on three resolutions (i.e., 1 km, 250 m, and 90 m) generated by
the Jupyter notebook interface. It includes the metadata visualization for each containerized component.
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output data containers including the three visualizations (last
three blue nodes). We also present the metadata partition for
each of the containerized components. By backtracking the
record trail, it is possible to reveal that the output containers
(10,16,17) were generated by using the soil moisture predic-
tions (06,14,15) from three different MLmethods (04,12,13). By
providing scientists with the workflow annotations automati-
cally generated by our environment, we enable scientists to
explain the different results by linking them to the ML meth-
ods used during downscaling. Furthermore, the application
containers can be reused to generate new workflows without
re-writing the application or re-installing the software stack.

5 MEASURING OVERHEADS AND PERFORMANCE

We collect the performance measurements of our fine-
grained containerized environment and compare them with
both a native environment (without containerization) and a

coarse-grained containerized environment (for which we
containerize all the applications inside a single container
and store the data on the native memory). The three envi-
ronments are part of a broader set of environment configu-
rations with our and the native settings at the two ends of
the testing spectrum and the coarse-grained environment as
a trade-off in between the other two. In other words, the
coarse-grained environment (single container) serves as the
link between the native (no containers) and the fine-grained
(multiple independent containers) environments.

5.1 Experimentation Platform Settings

We run a diverse set of tests for SOMOSPIE and collect execu-
tion time in seconds and storage space inMBs for the different
environments. Furthermore, we measure the bandwidth in
MB/s for different data read and write workloads. We run
the tests on XSEDE Jetstream2 [36] configured as a virtual

Fig. 7. Example of soil moisture output visualization for Oklahoma predicted with three different ML methods (i.e., KNN, RF, and SBM) generated with
SOMOSPIE.

Fig. 8. Graph representation of the SOMOSPIE workflow executions for Oklahoma with three ML methods (KNN, RF, and SBM) generated by the
Jupyter notebook interface. It includes the metadata visualization for each containerized component.
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machinewith 16 coreswithAMDMilan 7713CPU type, 60GB
of RAM (DIMM), and 60 GB local disk (HDD) space with an
attached volume of 100 GB. In terms of software, the virtual
machine has Ubuntu 20.04 as the OS, Apptainer 1.1, Go 1.19,
and Python 3.8.10 using the next packages: numpy-1.23.2,
pandas-1.4.3, scipy-1.9.0, and scikit-learn-1.1.2.

5.2 Execution Times

We measure the execution times of all three environments
(i.e., the native, the coarse-grained, and the fine-grained).
Specifically, we measure the execution times of SOMOSPIE
on Oklahoma with three resolutions: (a) 1 km, (b) 250 m,
and (c) 90 m. We run each resolution 5 times using the three
MLmethods (i.e., KNN, RF, and SBM) for the different envi-
ronments on top of Jetstream2. Fig. 9 shows the results. In
the figure, we observe that the smaller the data and the
more inexpensive the application is, the more time over-
head is seen when deploying our fine-grained containerized
environment compared to the native (77%) and the coarse-
grained (53%) environments. As the data increases and the
application becomes more complex and time consuming,
the overhead drops to 10% compared to native and 1.5%
compared to coarse-grained. Overhead is always expected

given the extra layers of virtualization and the metadata
management. Still, as applications are more complex and
are deploying larger data, the observed overhead is an
acceptable trade-off for the gained traceability of data and
explainability of results.

5.3 Storage Space

We measure the storage space usage for the two environ-
ments at each end of our testing spectrum (i.e., native and
our fine-grained). We do not present results for the coarse-
grained containerized environment because we expect its
storage space to match the storage of the native for data,
and to match the fine-grained for applications. As we encap-
sulate the workflow components (data and applications) in
containers, the containerization adds extra space for the
encapsulation format. Depending on the type of containers,
this extra space is allocated for different purposes. We dis-
tinguish between data and application containers and com-
pare the storage space used in the native environment
versus our fine-grained containerized environment.

Data containers: In the native environment we have data,
and in our fine-grained containerized environment we have
data containers. A data container includes the data encapsu-
lated in an Ext3 file system, metadata partition, and the con-
tainer dependencies. We measure the size of all data
containers in SOMOSPIE when executing the three ML
methods for the different input data resolutions (1 km, 250
m, 90 m). Fig. 10 presents the size comparison between the

Fig. 9. Execution time of SOMOSPIE, running on Oklahoma with three
resolutions: (a) 1 km, (b) 250 m, and (c) 90m, with three ML methods
comparing the native (no containers), coarse (single container), and
fine-grained containerized (multiple containers) environments.

Fig. 10. Comparison between the native and the fine-grained container-
ized environment for the data storage including the input, intermediate
(inter), and output data of the earth science workflow running in Okla-
homa with two resolutions: (a) 1 km, and (b) 250 m.
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native environment and our environment for Oklahoma
with two resolutions: (a) 1 km and (b) 250 m. On the x-axis
we have the different data (data) and its containerization
(c_data): input, c_input, intermediate (inter), c_inter, out-
put, and c_output. Each is represented by a bar indicating
their size in MBs, as stated on the y-axis. First, we observe
that the container dependencies’ space (red bar) is constant.
As the data increases in size, the container dependencies’
space becomes imperceptible. Second, for all containers, we
observe that the space of the metadata partition (green bar)
is negligible and always in the order of KBs. Last, we see
that the extra space in the data container is mostly part of
the Ext3 file system space (orange bar) and is used to encap-
sulate the data (blue bar) that has the same size in both
native and containerized environments. The main cause of
the large space used by the Ext3 file system is that it reserves
space for the journaling information and 5% space for root
processes. Ways of reducing the reserved space have been
explored, and Ext4 [37] incorporates scalability and perfor-
mance enhancements. However, Singularity/Apptainer
chose Ext3 for their data containers as it is the most efficient
and modifiable file system currently available on a wide
variety of systems.

Application containers: In the native environment there are
applications in the form of scripts or executables which
require libraries and dependencies to run. In our fine-grained
containerized environment we have application containers
that include a script or executable, libraries, a metadata parti-
tion, and the container space which corresponds to the OS
and software dependencies. Fig. 11 presents the comparison
between native and fine-grained containerized applications
in SOMOSPIE. On the x-axis, we have the three ML methods
(application) and their containerization (c_application):
KNN, c_KNN, RF, c_RF, SBM, c_SBM, and the visualization
(visual) with its containerization (c_visual), all written in
Python. On the y-axis we have the size in MBs. We observe
these key properties: first, the scripts and libraries occupy the
same space for the native and our containerized environment;
second, as in the data containers, the metadata partition is
negligible; and last, the extra space in the application con-
tainer comes from the container space which includes the OS
and software dependencies. The identification of libraries,
software dependencies, and OS by the application container
ensures replicability and transparency of the software system
by guaranteeing that the user will always have the same ver-
sions of OS, libraries, and software dependencies, regardless
of the platform onwhich theworkflow is executed.

5.4 IO Bandwidth

We benchmark the IO bandwidth for the two environments
at each end of our testing spectrum (i.e., native and fine-
grained) using FIO, a Flexible IO tester. We do not present
results for the coarse-grained because its bandwidth is simi-
lar to the native, as shown in [38]. In the native environ-
ment, we measure the bandwidth of the benchmark to read
from and write to the virtual volume on Jetstream2. In the
fine-grained containerized environment, we measure the
bandwidth of the benchmark encapsulated in an application
container to read from and write to a data container stored
in the virtual volume. The raw size of the virtual volume is
100 GB. Because of the virtual volume file system overhead
(Ext4), the virtual volume is 90 GB. The storage for the con-
tainer adds additional overhead, thus the data container has
80 GB of usable capacity.

FIO has the flexibility to select different IO settings
including number of files, IO size, and sequential or random
reads and writes. FIO spawns a number of files on a particu-
lar location doing a type of IO action. The location and the
type of IO are specified by the user. We select four numbers
of files (i.e., 1, 10, 100, and 1000) and three IO sizes (i.e., 1
GB, 10 GB, and 80 GB) for each IO size. Depending on the
IO size and number of files, each test has a different configu-
ration. They are as follows:

� 1 file of size 1 GB, 10 GB, and 80 GB
� 10 files of size 0.1 GB (100 MB), 1 GB, and 8 GB each
� 100 files of size 0.01 GB (10 MB), 0.1 GB (100 MB),

and 1 GB each
� 1000 files of size 0.001 GB (1 MB), 0.01 GB (10 MB),

and 0.08 GB (80 MB) each
For all the listed tests, we set the block size equal to 4KB

(the default block size for the Ext3 and Ext4 file systems).
We select a sequential mix of read and write IO patterns,
mimicking the IO pattern of SOMOSPIE.

Fig. 12 shows the results of the bandwidth for the three
IO sizes: (a) 1 GB, (b) 10 GB, and (c) 80 GB. The x-axis shows
the number of files [1, 10, 100, 1000] and the y-axis shows the
measured bandwidth in MB/s. For each number of files we
measure the read and write IO 5 times for both environ-
ments. The measurements are represented in boxplots
where the native measurements are in pink and the fine-
grained containerized ones are in blue. We can extract two
main observations from this figure. First, we observe that,
as the number of files increases from 1 file to 100 files, the
bandwidth of the native environment also increases, rang-
ing from 45 MB/s to 140 MB/s. This trend is observed for
all IO sizes. For the larger number of files (i.e., 1000 files),
the bandwidth drops for the native environment. The band-
width is measured from the start of the metadata operation
to the end of the data transfer. Thus, while the metadata
operation time per file is fixed, the IO time grows propor-
tionally with the data size. In other words, when the files
are many and small, the metadata operation time signifi-
cantly impacts the IO time. Second, we compare IO band-
width when the data fits in the DRAM (in Figs. 12a and 12b)
versus when it does not (in Fig. 12c). In the figures, we
observe that for 1 GB and 10 GB IO sizes our fine-grained
containerized environment has higher IO performance than
native. As we reach 80 GB in IO size, the performance for

Fig. 11. Comparison between the native and the fine-grained container-
ized environment for the applications storage in SOMOSPIE.
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both environments are comparable. The higher performance
is due to the fact that the data container fits in the DRAM,
allowing faster data access. This is not the case for the larger
IO size for which the container must interact with the vir-
tual volume regularly, thus degrading performance back to
the native implementation. When running this test we deal
with two main constraints. First, the size of the DRAM (60
GB) is fixed and defined by the Jetstream2 virtual machine.
Second, users cannot control how the DRAM is managed. It
is the kernel that manages the loading of the containers’
content to the DRAM based on the availability of the resour-
ces. A modification of the kernel goes beyond the scope of
our work.

6 INTEROPERABILITY, HETEROGENEITY, AND
MULTIPLE INSTANCES

We discuss our environment’s interoperability with other
workflows and with resource managers, as well as the adap-
tation of our environment in distributed heterogeneous sys-
tems and with multiple container instances.

6.1 Environment Interoperability

Technology transfer, in which we envision the use of our
environment for other applications, has been a key driving
factor of our design. Our containerization approach requires
that workflows are composed of one or multiple self-con-
tained applications. Furthermore, users should be able to
model the workflows as DAGs whose nodes (applications/
tasks) and vertices (data in movement from one task to
another) can be containerized. Any workflow with such fea-
tures can be abstracted into a fine-grained set of intercon-
nected containers, making our approach application-
agnostic. We extend the Singularity/Apptainer runtime to
support the concept of automatic creation and execution of
fine-grained workflows that can be described as DAGs. We
implement the Singularity/Apptainer plugin described in
Section 3 which, given a workflow, has the ability to auto-
matically create a fine-grained sequence of data and appli-
cation containers, as well as the ability to execute these
workflows while also annotating containers with execution
metadata.

The integration of our environment into resource manag-
ers and orchestrators is possible as long as they manage con-
tainerized executions. Such containerized executions are
supported by HPC and cloud solutions such as Pegasus [39],
REANA [10], Pachyderm [9], and Kubernetes [40]. Because

data is containerized, the workflow manager does not have
to deal with data transfer from-to local storage, adding
additional portability for our containerized workflow across
platforms.

6.2 Distributed Heterogeneous Resources

Decomposing the workflow into fine-grained containers
enables deploying different components on different nodes
in a distributed system as long as the system shares storage
(e.g., GPFS, object or block storage solutions). The bind
mount across nodes can work through the shared storage
connecting the nodes. For example, when using a cloud
platform with object storage solution, an application con-
tainer on a node can write to a data container on a different
node; the content of the data container can be read by a sec-
ond application container on the same node or a different
node, using Kubernetes as the orchestrator of the contain-
ers’ execution. With the increase of GPU usage for ML-
based scientific workflows, container technologies such as
Docker, Singularity/Apptainer, and Podman support the
execution of applications in the scientific workflows on
GPUs. Specifically, for our containerized environment, Sin-
gularity/Apptainer supports running application contain-
ers that use NVIDIA’s CUDA GPU compute framework or
AMD’s ROCm solution. Regardless of the operative system
on the host machine, users can run GPU-enabled ML frame-
works (e.g., Tensorflow, MXNet, PyTorch). Regarding the
data generated by the GPU, we assume that this data is cop-
ied back to the CPU, given that GPU-direct is not a widely
available technology in most HPC and cloud platforms.
When data is copied back to the CPU, our fine-grained con-
tainerized environment encapsulates it in a data container
and automatically collects the data lineage.

6.3 Metadata from Multiple Container Instances

Our design supports multiple container instances, in which
given an application container, we execute n instances of its
image as a service. The application container image has a
universally unique identifier (UUID). The n application
instances inherit the same UUID, and through the UUID they
link to the metadata of the image. When running multiple
instances of the same application image, the metadata of the
application image is not impacted but the metadata of the
output data containers is. Such an impact changes based on
where the multiple application instances write to. The n
instances can write to their own output data container(s) or

Fig. 12. Bandwidth comparison for the native (no containers) and the fine-grained containerized (multiple containers) environments for different file
counts and sizes.
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to a single, shared container(s). In the first case, the n appli-
cation instances are writing to their own output data con-
tainer(s) (i.e., each application instance generates one
output data container). For each output data container, the
container’s identification, creation time, and execution task
are unique to the output data container. The record trail is
the same across output data containers and links back to the
UUID of the application image. In the second case, the n
application instances are writing to a shared output data
container(s) (i.e., the application instances generate one sin-
gle output data container). For the shared output data con-
tainer, the container’s identification and creation time are
unique to the output data container. The execution task is a
list that contains n execution tasks including initial condi-
tions, random seeds, and other setting values of the n
instances. The single record trail links back to the UUID of
the application image.

7 RELATED WORK

Annotating a workflow execution with the provenance of its
components has been previously used for traceability, repro-
ducibility, and explaining results. Related work for collecting
and preserving the provenance of a workflow at the system
level include developing custom file systems tracking prove-
nance such as the Lineage File System (LinFS) [11], PASTA in
PASS (Provenance-Aware Storage Systems) [8], and Parrot
[12]; encapsulating workflows through ad hoc packages such
as CDE [13], ReproZip [14], Umbrella [15], and Occam [16]
[17]; and encapsulatingworkflows through existing container
technologies such as Pachyderm [9], REANA [10], and Sci-
ence Capsule [41]. The use of custom file systems and custom
ad hoc packages limits the portability and usability of their
solutions across systems. The use of existing container tech-
nology to encapsulate the workflows overcomes this chal-
lenge, offering portable solutions. Contrary to existing
containerization solutions, our approach decouples work-
flows into components (data and applications) at a finer level
and maps the components to one-to-one single and indepen-
dent containers.

Containerizing data facilitates transportation, interpreta-
tion, and use. We adapt the premise of the data containeri-
zation from Data Pallets [29]. It defines storage as a new
container type when running workflows, where the contain-
ers include the data and links to the application and the
input deck. Even when data is containerized, intermediate
data is treated as disposable for solutions like Prune [42],
CDE [13], ReproZip [14], Umbrella [15], and Occam [16][17]
where they focus on sharing final results of the workflow
executions. Only Pachyderm provides a complete audit trail
for all data across pipeline stages, including intermediate
results. As with Pachyderm, our solution grants first class
citizen access to the intermediate data and its metadata.
Moreover, we are the first to permanently and portably
attach the provenance invisibly to the data and the applica-
tions. We achieve this through the use of a second partition
in the container structure.

Finally, there has been a significant amount of work in
workflow management that targets provenance. Workflow
management systems like Pegasus [39], Kepler [43] and
DAGMan [44] provide a way to orchestrate workflows while

capturing the data provenance. Only Pegasus provides
application containers as a solution to package softwarewith
complex dependencies. Pegasus currently supports Docker,
Singularity/Apptainer, and Shifter. However, the workflow
managers use the scientific workflow system to track and
store the computational steps and their data dependencies,
but information about the environment is rarely gathered.
Furthermore, integrating a workflow to the management
systems can be complex. It requires the translation of the
workflow into the right format: DAX (Directed Acyclic
Graph in XML) for Pegasus, XML or KAR files for Kepler,
and DAG input file for DAGMan, for example. Finally, not
all workflows are in the stage of managing their pipelines
with these workflow tools, which makes a case for alterna-
tive solutions for hosting workflows and capturing prove-
nance to allow traceability of data and explainability of
results. Our work is intended to work together with these
systems, using their support for containerized workflows to
handle the workflow management tasks while we manage
the automatic provenance collection, enabling traceability
and explainability and annotation of data containers.

8 CONCLUSION

In this paper, we present a fine-grained containerized envi-
ronment using Singularity/Apptainer technology that ena-
bles scientists to achieve trust in findings from their
workflows by seamlessly providing data traceability and
results explainability. We demonstrate the benefits of our
environment for SOMOSPIE, an earth science workflow
that uses ML-methods to predict satellite soil moisture data
to a resolution necessary for policy making and precision
agriculture. Specifically, we use our environment for two
use cases in which we trace back differences in predictions
due to input data and ML-methods. When compared with
native and coarse-grained containerized environments, we
observe that our environment has limited overhead in terms
of time (10%), storage space (5% for data containers and
30% application container), and it has significantly higher
IO bandwidth, with a peak of 400 MB/s versus 50 MB/s for
native. Our solution is effective for establishing trustworthi-
ness in scientific findings. Future work includes the auto-
matic orchestration of the workflow in our containerized
environment and the creation of a catalogue of containers
that scientists can extend, share, and use to build new scien-
tific workflows in multiple domains.

CODE AVAILABILITY

The code implementing the augmented Singularity/App-
tainer can be found at: https://github.com/TauferLab/
ContainerizedEnv.
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