arXiv:2205.04190v1 [cs.DC] 9 May 2022

The Role of Idle Waves,

Desynchronization, and

Bottleneck Evasion in the Performance of
Parallel Programs

Ayesha Afzal, Georg Hager, and Gerhard Wellein

Abstract—The performance of highly parallel applications on distributed-memory systems is influenced by many factors. Analytic
performance modeling techniques aim to provide insight into performance limitations and are often the starting point of optimization
efforts. However, coupling analytic models across the system hierarchy (socket, node, network) fails to encompass the intricate
interplay between the program code and the hardware, especially when execution and communication bottlenecks are involved. In this
paper we investigate the effect of bottleneck evasion and how it can lead to automatic overlap of communication overhead with
computation. Bottleneck evasion leads to a gradual loss of the initial bulk-synchronous behavior of a parallel code so that its processes
become desynchronized. This occurs most prominently in memory-bound programs, which is why we choose memory-bound
benchmark and application codes, specifically an MPI-augmented STREAM Triad, sparse matrix-vector multiplication, and a
collective-avoiding Chebyshev filter diagonalization code to demonstrate the consequences of desynchronization on two different
supercomputing platforms. We investigate the role of idle waves as possible triggers for desynchronization and show the impact of
automatic asynchronous communication for a spectrum of code properties and parameters, such as saturation point, matrix structures,
domain decomposition, and communication concurrency. Our findings reveal how eliminating synchronization points (such as collective
communication or barriers) precipitates performance improvements that go beyond what can be expected by simply subtracting the

overhead of the collective from the overall runtime.

Index Terms—Parallel distributed computing, scalability, bottleneck, synchronization, desynchronization, performance modeling,

performance optimization

1 INTRODUCTION

WHITE—BOX (i.e., first-principles) performance model-
ing of distributed-memory applications on multicore
clusters is notoriously imprecise due to a wide spectrum of
random disturbances whose performance impact is multi-
faceted. Possible sources are system noise, variations in
network performance, application load imbalance, and con-
tention on shared resources. Among the latter, the memory
interface of a processor on a ccNUMA domain and the net-
work interface of a compute node are only the most promi-
nent ones. The typical “lock-step” pattern of many paral-
lel programs in computational science, where computation
phases alternate with communication in a regular way, can
be destroyed by these effects. We call this process desyn-
chronization. It arises even if the application is completely
balanced and all computation and communication phases
take the same amount of time on all processors, breaking the
inherent translational symmetry of the underlying software
and hardware. As a consequence, simply adding modeled
computation and communication times does not yield reli-
able runtime predictions. There have been numerous efforts
to assess, categorize, and reduce disturbances. In contrast,
there has been relatively little work on studying disturbance

o A Afzal, G. Hager and G. Wellein are with the Erlangen National High
Performance Computing Center (NHR@FAU)
Friedrich-Alexander-Universitit Erlangen-Niirnberg, Germany.

E-mail: {ayesha.afzal, georg.hager, gerhard.wellein j@fau.de

o G. Wellein is with Department of Computer Science, Friedrich-Alexander-

Universitit Erlangen-Niirnberg, Germany.

propagation across the processes of MPI-parallel programs,
which goes under the name of idle waves. The propagation
speed of idle waves and the dynamics of their interaction
with the system (e.g., with natural system noise or with
each other) can be modeled accurately in some cases. In the
presence of bottlenecks, desynchronization can be initiated
by the presence of idle waves and lead to a stable, persistent
desynchronized state, which we call computational wavefront.
In stark contrast to the general wisdom that perfect synchro-
nization is always desirable, the computational wavefront
state can lead to a better utilization of the bottlenecked
resource by automatic overlap of communication overhead
with useful work. This mechanism depends on the presence
of a bottleneck among processes and is influenced by the
“strength” of the bottleneck, i.e., how many processes are
needed to saturate it. Canonical examples are the memory
bandwidth on a ccNUMA domain and the network connec-
tion of a compute node. Still, a full quantitative understand-
ing of the performance consequences of desynchronization,
idle wave propagation, and computational wavefronts is still
lacking, as is their impact on real-world applications.

In this paper we address the latter by investigating
distributed-memory bulk-synchronous parallel benchmarks
that perform computation and communication in a “lock-
step” pattern. They interact with either contended or scal-
able resources available across the allocated set of compute
nodes. The definition of contention is as follows: We assume
that the N MPI processes access multiple shared resources,
such as memory bandwidth, shared cache bandwidth, node

TABLE 1: Programs and the investigated parameter space.

Parallel codes Parameter space for analysis

STREAM Triad provoked and spontaneous disturbances
SpMVM matrix topology, communication concurrency
ChebFD communication scheme, domain decomposition

network injection bandwidth, or even the full-system bisec-
tion bandwidth. Each resource ¢ applies to a group of N;
MPI processes, which leads to N/N; contention groups. For
example, on a 20-core CPU with a single ccNUMA domain
per package we have Nyempw = 20 if one MPI process is
running per core. A program is resource scalable if there are
no contention groups. This can happen because there are
no contended resources or because the execution mode of
the program does not expose them. In the example above, if
one MPI process with 20 OpenMP threads is running per cc-
NUMA domain, there is no memory bandwidth contention
group among processes.'

Table 1 shows an overview of the microbenchmarks and
the two mini-apps under investigation and which part of
the parameter space we investigate for each. The selec-
tion aims to provide a spectrum of program properties
and how idle waves and desynchronization impact their
performance. The strongly memory-bound STREAM Triad
code was augmented from its original [1] by adding next-
neighbor communication in order to construct the cleanest
possible setup that can show the desired effects. The Sp-
MVM benchmark issues back-to-back sparse matrix-vector
multiplications and thus represents many sparse iterative
algorithms. It is also memory bound on the node level but
adds additional complexity via problem-dependent com-
munication patterns. Finally, in case of Chebyshev Filter
Diagonalization (ChebFD) [2], all collectives can be elimi-
nated from the algorithm without limiting its functionality,
which makes it a representative of the growing field of
communication-avoiding algorithms [3], [4]. The choice of
a blocking factor also allows to fine-tune its computational
intensity. In Sect. 3, each program will be described in more
detail. We restrict ourselves to pure MPI applications; the
basic phenomenology of hybrid MPI+OpenMP codes in
terms of desynchronization and have been addressed in [5].

Relevance and generalization of desynchronization

Desynchronization is a very common phenomenon in par-
allel programs. As shown in previous work [5], [6], the pres-
ence of a resource bottleneck is decisive for the initial lock-
step mode to become unstable even under natural system
noise without any explicit disturbance from the outside. We
call this instability bottleneck evasion. In absence of globally
synchronizing operations, an initially small deviation from
lock-step is allowed to evolve into an eventually stable pat-
tern. This is especially easy to observe in implementations of
algorithms such as synchronization-free polynomial filters
[7], [8] or communication-avoiding Krylov subspace meth-
ods [3], [4]. However, even in the presence of collectives it
is possible for idle waves and the desynchronized pattern
to survive, depending on the particular implementation

1. This does not mean that there is no memory bandwidth contention;
it just plays no role for desynchronization phenomena.

2

of the collective [9]. In the desynchronized state, different
loop kernels with different behavior towards chip-level
bottlenecks can execute concurrently on different cores, or
execution of code can overlap with communication-induced
waiting time. The performance impact of desynchronization
for the whole program mainly depends on the saturation
characteristics of the relevant hardware bottlenecks and
where the system eventually settles in terms of how many
cores execute which code at any point in time. If back-
to-back program phases with different behavior towards
a common bottleneck overlap in time, their characteristics
also govern the further evolution of the desynchronized
state [10]. This phenomenon is not restricted to standard
multicore architectures; it is also common in task-parallel
programs and in GPUs where threads execute different
kernels in parallel [11].

Idle waves and computational wavefronts

In prior work we also presented a validated analytic model
for the idle wave propagation velocity [6], [9], which shows
the influence of execution and communication properties of
the application, with a special emphasis on sparse commu-
nication patterns. The propagation speed is the number of
processes the delay travels per time unit, and it is measured
in ranks per second. We pointed out how idle waves decay
under system noise and due to topological differences in
communication characteristics among parts of the system.

In the presence of a memory bandwidth bottleneck, the
propagation of idle waves is superimposed by the band-
width limitations, which cause a decay of the wave over
time [5], [12]. In this scenario, a deliberate injection of an
idle period can initiate an idle wave which, after its eventual
disappearance, leaves an “echo” in the form of a desyn-
chronized computational wavefront. Hence, adding some
delay on one of the processes can accelerate the transition to
the desynchronized state, possibly leading to better overall
time to solution. This constitutes the important connection
between idle waves and desynchronization.

1.1 Related Work
1.1.1 Noise

Extensive research [13], [14], [15], [16], [17], [18], [19], [20],
[21] has been conducted for almost two decades to charac-
terize noise, identify sources of noise outside of the control
of the application, and pinpoint its influence on collective
operations. Explicit techniques for asynchronous communi-
cation, mitigation of noise, MPI process placement, dynamic
load balancing, synchronization of OS influence, lightweight
OS kernels, etc., have been explored. In contrast, the present
paper investigates the favorable consequences of noise as
an enabling factor for desynchronization and — in case
of parallel programs with bottleneck(s) among processes
— automatic partial or full overlap of communication and
computation. Hoefler et al. [22] used a simulator based
on the LogGOPS communication model to investigate both
point-to-point (P2P) and collective operations to study the
influence of system noise on large-scale applications. They
found that application scalability is mostly determined by
the noise pattern and not the noise intensity. However, their
data was not taken on a real cluster and it is neither aware of

node-level bottlenecks nor does it take the system topology
and different kinds of delay propagation into account. In the
specific context of idle wave decay, Afzal et al. [9] found that
the noise intensity is the main influence factor rather than
its detailed statistics.

1.1.2 Parallel computing dynamics

There is very little research on idle wave propagation and
spontaneous pattern formation in parallel code, especially
in the context of memory-bound programs. Hence, none
of the existing prior work addressed spontaneous pattern
formation and desynchronization. Markidis et al. [23] used
a LogGOPS simulator [22] for a phenomenological study of
idle wave propagation. They concluded that isolated idle
periods propagate among MPI processes as nondispersive,
damped linear waves. However, their simulator is neither
aware of communication topology, concurrency, and mode
(rendezvous vs. eager) nor does it consider the socket-level
character of the code and the quantitative investigation of
the connection between damping and noise. Their specu-
lation that idle waves are described by a linear cannot be
upheld [6]. Gamell et al. [24] observed the emergence of
idle periods in the context of failure recovery and failure
masking of stencil codes. Boheme et al. [25] presented a tool-
based approach to attribute propagating wait states in MPI
programs to their original sources, helping to identify and
correct the root issues. Kolakowska et al. [26] carried out
a study of the virtual time horizon in conservative parallel
discrete-event simulations (PDES). However, in all studies,
the global properties of such waves, like damping and veloc-
ity, and the interaction with memory-bound characteristics
of the application were ignored.

Afzal et al. [5], [6], [9], [9], [12], [27] were the first
to investigate the dynamics of idle waves for a variety
of communication patterns, (de)synchronization processes,
and computational wavefront formation in parallel pro-
grams with core-bound and memory-bound code, show-
ing that nonlinear processes dominate there. It turned out
that on real cluster systems with their complex node-level
topology, MPI-parallel memory-bound programs exhibit lo-
cal, non-static idles waves (variable frequency and speed)
which ripple through the MPI processes. These distur-
bances ultimately settle down into a global steady state,
the computational wavefront. This transition time is depen-
dent on numerous factors, such as communication volume,
system size, seeds for naturally occurring one-off distur-
bances (“kicks”), etc. Our work takes up from this point
and extends it towards investigating the influence of such
dynamics on the performance of real-world distributed-
memory parallel codes.

1.1.3 Performance modeling and optimization

Performance modeling is a powerful tool to investigate
the properties of code in order to get insight into its
bottlenecks and, consequently, identify optimization op-
portunities. In contrast to white-box (i.e., first-principles)
performance models, accurate black-box approaches for de-
scribing the performance and scalability of highly parallel
programs have been available for some time. These typically
employ curve fitting, machine learning, and general Al
methods [28], [29]. A lot of related research has also been

TABLE 2: Key hardware and software traits of systems.

Systems Meggie (M) SuperMUCNG (S)
@ Processor Intel Xeon Broadwell EP Intel Xeon Skylake SP
g Processor Model E5-2630 v4 Platinum 8174
£ Base clock speed 2.2GHz 3.10 GHz (2.3 GHz used*)
-5 Physical cores per node 20 48
& Numa domains per node 2 2
£ Last-level cache (LLC) size 25 MB (L3) 33MB (L3) + 24 MB (L2)
S Memory per node (type) 64 GB (DDR4) 96 GB (DDR4)
Theor. memory bandwidth 68.3GB/s 128 GB/s
% Node interconnect Omni-Path Omni-Path
g Interconnect topology Fat-tree Fat-tree
9 Raw bandwidth p. Ink n. dir 100 Gbit s~ 100 Gbit s~
o Compiler Intel C++ v2019.5.281% Intel C++ v2019.4.243
s Optimization flags -O3 -xHost -08 -qopt-zmm-usage=high
E SIMD -XAVX -xCORE-AVX512

Intel MPT v2019u5 Intel MPT v2019u4
CentOS Linux v7.7.1908 SUSE Linux ENT. Server 12 SP3
v2019u5 v2019
5.0.1 5.0.1

* A power cap is applied on SuperMUC-NG, i.e., the CPUs run by default on a lower than
maximum clock speed (2.3 GHz instead of 3.10 GHz).
*oneapi/2021.1.1 is used, whenever specified specifically.

& Message passing library
Operating system

<2 ITAC

ﬁ LIKWID

done on code optimization, focusing on new data structures,
efficient algorithms, and parallelization techniques, all of
which require explicit programming [30]. In the present
paper we investigate a specific mechanism - automatic
communication overlap — which does not need any code
changes. Note that this does not mean that “traditional”
means of ensuring communication overlap such as implicit
or explicit asynchronous progress threads, DMA transfers,
etc., become non-essential. Depending on the details, auto-
matic overlap may not be able to hide all the communication
cost or — in general — settle in the most favorable state in
terms of time to solution. What we want to highlight here is
the impact of automatic desynchronization on performance
in terms of easily obtainable metrics and a well-defined
experimental procedure, and to identify which properties
of the code-machine interaction influence this effect.

1.2 Contribution

This paper tries to fathom the role of desynchronization
in parallel application programs by analyzing microbench-
marks and popular proxy applications. It makes the follow-
ing relevant contributions:

e The slope of a computational wave, i.e., the degree
of desynchronization among processes, is directly
correlated with idle wave speed on the same system.
This serves as a guiding principle to assess desyn-
chronization phenomena in applications.

e An established computational wavefront can be
shifted through the system (along the process direc-
tion) by deliberately injecting a delay which, how-
ever, has to be strong enough to provoke the change.

o Slow idle wave propagation speed caused by a small
matrix bandwidth facilitates automatic overlap of
communication and computation in SpMVM.

e In ChebFD, the particular domain decomposition
and its impact on communication distances and idle
wave speed is decisive for automatic communication
overlap.

This paper is organized as follows: We first provide details
about our experimental environment and methodology in
Sect. 2. In Sect. 3 we discuss the performance phenomenol-
ogy and implications of desynchronization on a stream-like

Rank

H

Wall-clock time [s]

() d = +(1,2)

=
Wall-clock time [s]

(© d=+(1,12) (d) d = £(1,2,...,12)

Wall-clock time [s]

Wall-clock time [s]

(a) d =+£(1)

Fig. 1: Snippets of MPI trace timelines of a fully devel-
oped computational wavefront state in the MPI-augmented
STREAM Triad with different communication topologies
((a)~(d)), open boundary conditions, and 5 x 10? iterations
on 40 cores (four cNUMA domains) of the Meggie cluster.
Only the waiting time spent in the MPI library (red) and the
message transfers (black lines) are shown.

microbenchmark, sparse matrix-vector multiplication (Sp-
MVM), and a Chebyshev filter diagonalization application
(ChebFD). In Sect. 4 we summarize the paper and give an
outlook to future work.

2 TEST BED AND EXPERIMENTAL SETUP
2.1 HPC platforms and architectures

To ensure the broad applicability of our results, we conduct
most experiments on two different clusters:

1) SuperMUC-NGZ, an Omni-Path cluster with two
Intel Xeon “Skylake SP” CPUs per node and 24 cores
per CPU (hyper-threading enabled)

2) Meggie®, an Omni-Path cluster with two Intel Xeon
“Broadwell” CPUs per node and 10 cores per CPU
(hyper-threading disabled)

Both systems have significant differences in the numbers of
cores per ccNUMA domain and their memory bandwidth.
Although hyper-threading is active on SuperMUC-NG, we
ignore it in this work. Further details of the hardware and
software environments can be found in Table 2.

2.2 Parameters, notations, and methodology

Runtime traces were visualized using the Intel Trace An-
alyzer and Collector (ITAC) tool. Process-core affinity was
enforced using the I_MPI_PIN_PROCESSOR_LIST envi-
ronment variable. The clock frequency was always fixed
(2.2 GHz base clock speed on Meggie and 2.3 GHz in case of
SuperMUC-NG because of the power capping mechanism).
Unless otherwise noted, to enable overlap via hiding com-
munication in parallel with computation supported by the
MPI implementation, we set the I_MPI_ASYNC_PROGRESS
environment variable to one and use the Intel MPI multi-
threaded optimized release_mt* library, which supports

2. https://doku.lrz.de/display /PUBLIC/SuperMUC-NG

3. https:/ /anleitungen.rrze.fau.de/hpc/meggie-cluster

4. https:/ /software.intel.com/content/www /us/en/develop/doc
umentation/mpi-developer-reference-linux/top /environment-variabl
e-reference /environment-variables-for-asynchronous-progress-contro
Lhtml

0 A 0 0 W 0
& 3 =
1 1 =
5 5 =
L £
10 - : 10} f: 10 frms -
- f g ¥ =
S 20 8 20 F ¥ 20 friE -
A A =
F i P =
i oF 4 E FA =
30 -F 3 4 30 -F F = 4
I s s I s =
[P57 =
o Fo 7 EAE O
80 100 £ 50 100 F200 =
LN LLMEE— L1 39 39 L LA L L IMAE 11 39 —_—

L
39 UL LU

5 552 6774 19 W,

5 5507 7582 87
Time step (above); Wall-clock time [s] (below) Time step (above); Wall-clock time [s] (below)

(a) 15Mdivides as one-off extra workload (b) 150 Mdivides as one-off extra workload

Fig. 2: Stability of computational wavefronts against (a)
small and (b) large disturbances. The slope of the wavefront
is the same (60 ranks/s) before the extra workload is injected
(79th iteration) and after the idle wave dies out (200th
iteration). (a) The “lagging” ccNUMA domain (first socket)
remains the same for a small disturbance. (b) The “lagging”
ccNUMA domain shifts to the second socket, which is where
the large disturbance was injected.

asynchronous progress threads. Working sets for memory-
bound cases were chosen large enough to not fit into the
available cache, i.e., at least 10x the size of all last-level
cache (LLC), which is the L3 caches (non-inclusive victim
L3 caches) in the Broadwell (Skylake) processors of Meggie
(SuperMUC-NG). All floating-point computations are done
in double precision. Individual kernel executions were re-
peated at least 15 times to even out variations in runtime.
We report statistical fluctuations if they were significant.

2.3 Desynchronization speedup metric

We use performance measurements to quantify the speedup
caused by desynchronization via bottleneck evasion. Exper-
imentally, we determine the quantity

Pbarrier_free - Pbarrier

Pp = , 1)

|Pbarrier|

which measures the speedup of the program when eliminat-
ing an artificial barrier synchronization. To make this com-
parison useful, the actual barrier overhead (as measured by
a microbenchmark) is subtracted from the overall runtime
before calculating Pparrier- A higher Pp factor indicates a
more effective communication overlap and better scalability.

3 EVALUATION AND IMPLICATIONS

This section describes analysis results for the selected mi-
crobenchmarks and proxy applications with a focus on
idle waves and the automatic overlap communication and
computation via computational wavefronts. The goal is not
to provide a comprehensive analysis of each application but
an assessment of desynchronization impact. Great care has
been taken to separate the speedup observed by desynchro-
nization from other desirable effects, such as the removal
of synchronizing collectives or the reduction of communica-
tion volume.

3.1 MPl-augmented STREAM Triad

We start with the simple case of the pure-MPI version of the
McCalpin STREAM Triad [1]loop (A (:) =B (:) +s+C(:)). It

5

TABLE 3: Structure of the MPI-parallel SpMVM implementation. Split-wait and non-split are implementation alternatives.

Listing 2: SPLIT-WAIT mode

Listing 3: NON-SPLIT mode

Listing 1: CRS based SPMVM kernel

1: double :: valA[nnz], b[nr], x[nr] ; 1: while iter < nlters do

2: int :: colldxA[nnz], rowPtrA[nr + 1], tmp ; 22 MPI_Irecv ;

3: for row=0:nr—1 do 3: MPI_Isend ;

4: tmp = 0.0 ; 4: local_spMVM (A, x, b) ;
S: for idx = rowPtrA[row] : rowPtrAlrow+1]—1 do 5: MPI_Wait ; %

6: tmp += valA[idx] * x[colldxA [idx]] ; 6:

7. end for 7: MPI_Barrier ;

8: b[row] += tmp ; 8: swap (b, X) ;

9: end for 9: end while

remote_spMVM (A, x, b) ;

1: while iter < niters do

22 MPI_Irecv ;

3 MPI_Isend ;

4: MPI_Wait ; x

5: local_spMVM (A, x, b) ;
6: remote_spMVM (A, x, b) ;
7 MPI_Barrier ;
8: swap (b, X) ;
9: end while

* Two MPI_Wait routines wait for both MPI receive and send requests to complete.

allows a straightforward application of the Roofline model
to predict the memory-bound parallel performance limit on
a ccNUMA domain as P = bs/Bc, where bg is the domain
memory bandwidth and B. = 12byte/flop is the code
balance (assuming that streaming stores are used, i.e., write-
allocate transfers do not apply). A constant overall working
set of 2.4 GB (10° elements) is distributed evenly among the
MPI processes. Communication is added after each sweep of
the loop to mimic a real MPI-parallel program. The commu-
nication topology can be varied, but non-blocking point-to-
point calls (MPI_Isend/MPI_Irecv) together with a final
MPI_Waitall are used in all cases. The implementation
uses open boundary conditions (i.e., process 0 (n — 1) only
communicates with processes 1 and above (n—2 and below)
and bidirectional direct-neighbor communication (i.e., each
MPI process ¢ sends and receives 16 384 B to and from ¢ + 1
after each STREAM phase).

3.1.1 Shape of computational wavefronts

Figure 1 shows MPI traces of the MPI-augmented STREAM
Triad on 40 processes (two nodes of Meggie) with different
communication topologies. In these figures, code execution
is white and MPI waiting time is red. With pure next-
neighbor communication as in (a), the number of concur-
rently active (i.e., code-executing) processes per ccNUMA
domain settles in the vicinity of the performance satu-
ration point’>, as was already pointed out in [5]. In (b)
one can observe the difference to next-pair communication
(d = #£(1,2)): The developed desynchronized state (the
computational wavefront) is about 3x steeper, i.e., it has a
smaller amplitude. This correlates with the higher idle wave
velocity for longer-distance communication scenarios [9].
This restricts the communication-computation overlap, and
the number of concurrently active processes per ccNUMA
domain is higher than what is needed for saturation. With a
mixed short-/long-range communication topology as in (c),
computational wavefront structures on different scales over-
lap, i.e., two periodicities can be observed which emerge
from the long- and short-distance communication, respec-
tively. Compact long-distance communication as in (d) with
d = %(1,...,12) causes high-velocity idle waves [9], which
leads to steep computational wavefronts. Starting at a com-
munication distance of at least d = +(1,...,8), the pro-
cesses keep in lockstep for a system size of 40 ranks as in
the example. This is due to the comparatively small system

5. A saturation point is the minimum number of processes required
to achieve the maximum memory bandwidth on the ccNUMA domain.

size; idle waves are so fast that they leave the system in a
single compute-communicate cycle.

3.1.2 Wavefront stability

The question arises how stable a developed computational
wavefront is against disturbances like system noise or single
one-off delay injections. After all, the translational symme-
try of the system should not favor a particular position of the
“lagger,” i.e., the slowest process. In all our measurements,
natural system noise was never able to alter the shape or
position of computational wavefronts. However, long one-
off delay injections can. In Fig. 2 we show the results of an
experiment on the Meggie system, where a fully developed
computational wavefront state is disturbed by an injection
on a ccNUMA domain different from the one where the
lagger initially resides. To spark an idle wave, a series of
floating-point divide operations are performed by rank 15
at time step 80 as illustrated by blue bars in the second
and forth graph of Fig. 2. For one-off disturbances, we use
a core-bound workload which does not impose an addi-
tional strain on the memory interface. The overall impact
is independent of the nature of the disturbance though. As
a consequence, after the ensuing idle wave has run out,
the lagger shifts to the domain where the injection took
place if the injection is strong enough. There is currently no
first-principles understanding about what “strong enough”
means; experimentally, we observe that the idle wave must
at least be able to travel (despite the inevitable damping) far
enough as to intrude the slowest socket.

3.2 Sparse Matrix-Vector Multiplication (SpMVM)

The multiplication of a sparse matrix with a dense vector
(y = AZ) is a central component in numerous numerical
algorithms such as linear solvers and eigenvalue solvers.
For large matrices, the performance of sparse matrix-vector
multiplication (SpMVM) is memory bound on the node
level due to its low computational intensity. Distributed-
memory parallelization requires the matrix A and the vec-
tors z and y to be distributed across MPI processes. This can
cause significant communication overhead if the pattern of
nonzeros in the matrix is very scattered.

An SpMVM kernel is usually the dominant part of a
larger algorithm (such as Conjugate-Gradient); sometimes,
several SpMVM kernels are executed in a back-to-back man-
ner. Together with the properties described above, SpMVM
constitutes an interesting test bed for desynchronization
phenomena. In this section we investigate such a sequence
of MPI-parallel SpMVMs, with left-hand side (LHS) and

6

TABLE 4: Measured walltime minimum, maximum, and median for execution (rows 1-3) and communication (rows 4—6) of
one MPI-only SpMVM with the HHQ-1arge matrix on SuperMUC-NG, using strong scaling from 96 processes (two nodes)
up to 1296 processes (27 nodes) using barriers between successive SpMVMs. Row 7 shows the mean per-process message
sizes (transmitted via rendezvous protocol at small processes count till eager limit), and the last row denotes the median

of the communication-to-execution time ratio (CER). Color coding is used as a guide to the eye (white to pink scale).

Phase vs. Rank-order

96-pe 144-pe 240-pe 480-pe 720-pe 960-pe 1296-pe 96-ep 144-ep 240-ep 480-ep 720-ep 960-ep 1296-ep

Exec min [ms] 9670 428 313 244 132 BONDEEDERN 9720 392 272 199 135
Exec max [ms] 1349 1053 825 624 |[PEEGESSEEN 2213 1149 798 659 476
Exec median [ms] 8500 9.05 653 506 385 IZ5T) 823 57 454 3.03
Comm min [ms] 672 562 357 403 251 [ORSENSEN 373 248 204 118 245
Comm max [ms] 8460 14.83 12.97 11.32 [I9IB6L IS8 NITWLN 1536 1159 853 10.16
Comm median [ms] 11.28 978 7.99 JPOEENISOINMEN 1217 896 662 613
Mean P2P msg size [kB] 480 302 213 153 [EBEIOSISN 505 260 178 137 105

CER median

0.55

0.69

right-hand side (RHS) vectors swapped after every step.
There is no explicit or implicit synchronization among MPI
processes.

3.2.1

A compressed storage format must be chosen for the sparse
matrix so that the SpMVM can be carried out efficiently.
On multicore CPUs, the standard Compressed Row Storage
(CRS) format is typically a good choice. It allows for a com-
pact implementation of the kernel that enables to exploit the
relevant bottleneck (memory bandwidth) in many cases (see
Listing 1 of Table 3). CRS requires one-dimensional arrays
for matrix entries (vala[]), column indices (colIdxA[]),
and row pointers (rowPtrA[]). If the matrix entries are in
double precision and the indices are 32-bit integers, the min-
imum code balance for CRS-SpMVM is 6 byte/flop® [31],
[32].

In the MPI-parallel SpMVM implementation, contiguous
blocks of matrix rows (and corresponding LHS and RHS
vectors) are assigned to the processes so that the number
of matrix nonzeros per process is as balanced as possible.
Each process can compute the part of the SpMVM for
which it already holds the LHS and RHS entries right
away. Matrix entries outside of this column range require
communication of the corresponding RHS values. Splitting
the operation into “local” and “remote” kernels causes an
additional memory traffic of 16/n,,,, byte per multiply-add
because the local result vector must be updated twice in
memory [31].

Two different implementations were tested:

1) SPLIT-WAIT mode: Communication is initiated with
non-blocking MPI calls before the local SpMVM and
finalized after it. Only after the call to MPI_Wait
can the remote SpMVM kernel be executed. This al-
lows for overlapping communication with the local
SpMVM if the MPI implementation supports it; see
Listing 2 of Table 3.

2) NON-SPLIT mode: The full non-blocking remote
communication is initiated and finalized before the
local and remote SpMVM kernels are called. This
rules out any communication overlap by MPI; see

Implementation

6. Per iteration, the kernel carries out 2 flops and causes a minimum
data traffic of 8byte for the matrix entry and 4byte for the column
index.

057 ECSINITSIOSIROS

0.49

0148 LST 146 202

TABLE 5: Key specifications of symmetric sparse matrices.

Matrix-order Bandwidth nelectrons — Msites — 7Lphonons§ Ny = ne* Nnz® Mgt Size [GB]Y

HHQ-large-pe high 3-8-10 60988928 889816368 13 10.9
HHQ-large-ep low 3-8-10 60988928 889816368 13 10.9
HHQ-small-pe high 6—-6-15 6201600 92527872 15 1.14
HHQ-small-ep low 6—-6-15 6201600 92527872 15 1.14

§ The described quantum system comprises neiectrons €lectrons on ngices lattice sites coupled to
Tphonons Phonons.

* n;, n. and n,. are the total number of rows, columns and non-zero entries of sparse square
matrix respectively.

* The inner loop length of the CRS SpMVM kernel n,.,(~ L‘""f) is the average number of
non-zero entries in each row of the sparse matrix.

¥ Data set size is estimated by 12n,.- +4n,. (eight byte per matrix entry and four byte for column
indices).

Listing 3 of Table 3. In this case, the two kernel
calls could be fused for improved computational
intensity, but we want to keep the properties of the
underlying kernels unchanged for the experiments
shown here.

3.2.2 Test matrices

For benchmarking we use real, symmetric matrices that
describe a strongly correlated one-dimensional electron-
phonon system in solid state physics (Holstein-Hubbard
Hamiltonian) [33]. The key specifications of the matrices are
shown in Table 5. Due to the moderate number of nonzeros
per row (13 and 15, respectively), the minimum code bal-
ance is about 6.9byte/flop and 7.1byte/flop, respectively
(assuming optimal reuse of the right-hand side vector; see
also [32].). Overall we use four variants that emerge from
two different problem sizes (numbers of electrons, phonons,
and lattice sites) and two different orderings of the degrees
of freedom (phonons first vs. electrons first). The “phonons
first” numbering (labeled “pe”) produces a more scattered
matrix, whereas with “electrons first” (labeled “ep”) the
nonzeros are closer to the diagonal (see (a) and (b) of Figs. 3
and 4). The motivation behind the different problem sizes
(10.9 GB and 1.135 GB for the matrix, respectively) is that the
smaller problem can fit into the aggregate last-level cache of
the CPUs in the chosen clusters at a moderate node count,
removing the memory bandwidth bottleneck at the socket
level. The matrices were generated using the scalable matrix
collection (ScaMac) library.”

7. TheScaMac library allows for scalable generation of large matrices
related to quantum physics applications. The open source implemen-
tation is available for download at https://bitbucket.org/essex/
matrixcollection/ and documentation of matrices can be found at
https:/ /alvbit.bitbucket.io/scamac_docs/_matrices_page.html.

—e— pe-barrier
—m®— pe-no barrier
—4— ep-barrier
—%— ep-no barrier |

80

60

—@— pe-NON-SPLIT
—M— pe-SPLIT-WAIT
—4— ep-NON-SPLIT
—<— ep-SPLIT-WAIT

Desync speedup, Pp [%]

[; Y 400 | —e— pe-barrier
\ 2 -no barri
008 N] E | e
\ W\ —<— ep-no barrier _|
Aé 400 |- \\\‘ SEE . E 300 e
g 600 |- N RN N ggg 200 | |
5 800 1 F 1 g
“ 000l S 100 .
1000 - 1 N “8
=¥
1279 : : 0 : ‘
0 500 12790 500 1279 0 500 1000 0

Receiver rank Receiver rank

(a) pe order (b) ep order

Number of processes Number of processes

(c) NON-SPLIT

| |
500 1000

Number of processes

| l
500 1000

(d) SPLIT-WAIT (e) Desync speedup

Fig. 3: (a-b) The communication topology of HHQ-large matrices using periodic boundary conditions in the wider pe
order (left/right bandwidth of 41385344) and slimer ep order (left/right bandwidth of 12907776), respectively. (c-d) Strong
scaling performance for 10° iterations on SuperMUC-NG using NON-SPLIT and SPLIT-WAIT algorithms, respectively.
(e) Performance boost as a result of improved overlap in the absence of barriers in the NON-SPLIT and SPLIT-WAIT
implementation on the SuperMUC-NG system. Markers in black at 1280 processes mark performance and the Pp factor

for the NON-SPLIT algorithm on the Meggie system.

3.2.3 Matrix topology and communication schemes

The communication characteristics of distributed-memory
SpMVM depend strongly on the structure of the sparse
matrix. Thus we expect the pe versions of the Hamiltoni-
ans to have larger communication overhead. The sparsity
pattern impacts the node-level performance and bandwidth
saturation as well, however, due to the indirect access to
the RHS vector. Table 4 shows execution and communi-
cation properties of one SpMVM execution with the large
pe and ep matrices, respectively, for different numbers of
MPI processes on the SuperMUC-NG system. To keep the
MPI processes in lockstep, an MPI barrier was called before
the SpMVM (the barrier time is not part of the reported
communication time). The data shows that the more scat-
tered pe matrix clearly causes much higher communication
overhead, especially at lower process counts where pe incurs
more communication partners per rank than ep. It can
be seen that the communication overhead in SpMVM is
significant but not dominant at 96 processes. The last row
of the table shows the median of the communication-to-
execution time ratio (CER), which can serve as a rough
indicator of communication boundedness. The minimum,
maximum, and median numbers for execution and commu-
nication times indicate that even in a single SpMVM without
desynchronization there is considerable variation in both
metrics across processes.

In order to fathom the consequences of desynchroniza-
tion, we compare the barrier version of the benchmark (i.e.,
a barrier after each Sp)MVM) with the barrier-free version.
Performance for the barrier version was calculated by sub-
tracting the actual barrier time (as determined by a separate
benchmark) from the measured walltime. Any observed
speedup of the barrier-free version must thus be caused by
automatic overlap of communication via desynchronization
of processes. Figures 3(c) and (d) show strong scaling per-
formance for the HHQ-1large matrices on SuperMUC-NG.
The behavior of the split (c¢) and non-split (d) variants is
similar. Note that the best version (ep without barrier) is

strongly communication bound at 1296 processes: Assum-
ing a socket memory bandwidth of 100 GB/s, the Roofline
limit is 760 Gflop/s, while the observed performance is
only about 270 Gflop/s. The speedup Pp (defined in Sec-
tion 2.3) caused by bottleneck evasion via desynchronization
is shown in Fig. 3(e). Depending on the matrix structure
and the communication scheme, performance gains between
20% and 55% (out of a theoretical maximum of 100%) can
be observed. This goes with a significant improvement in
scalability.

Although the details of matrix partitioning and commu-
nication topology add a considerable amount of variation,
the speedup Pp shows the expected behavior along the
scaling curve: It starts out small because the communication
overhead is small (albeit significant), providing only minor
opportunity for overlapping. As the number of processes
grows, this benefit becomes larger until at some point
communication and computation take roughly the same
amount of time. This is when no further speedup can
be expected. Scaling up further, the benefit drops because
communication is dominant. One can also see that the non-
split communication scheme (circles and triangles) generally
shows higher speedup than the split-wait scheme (squares
and diamonds). This is expected because no-split has no
potential for asynchronous MPI communication in the lock-
step case; this leaves more opportunity for overlap in the
desynchronized case.

Note that the “slimmer” ep matrix with its smaller
communication radius supports stronger desynchronization
due to a lower idle wave velocity [5], [9]. This effect is
counteracted, however, by the smaller absolute communi-
cation overhead of ep, which is why no clear advantage
of ep in terms of overlap can be observed in Fig. 3(e).
Note also that particular process counts can interact with
the inherent structure of the matrix, which leads to more
or less favorable communication topologies and adds extra
variation to the scaling behavior. The general trend is similar
but less pronounced on the Meggie system, as shown by the

0 N \ W —_ He pe-barrier-Meggie B pe-barrier-free-Meggie 1300
200 |\ - Lg\ . £ 40 o ep-barrier-Meggie BB ep-barrier-free-Meggie
\\\ : NN & Ba pe-barrier-SuperMUC-NG 0o pe-barrier-free-SuperMUC-NG
'é 400 R B | S o ep-barrier-SuperMUC-NG Ao ep-barrier-free-SuperMUC-NG
= = 30 X
= 600 : B N v =) J
3 £ s {200
= s 11] E s x
97 \\\\ = | R : o 0
“l ML am gl all g
SO A~ 7 =T -
1279 b | \ = [IEE =N Il L =100
0 500 12790 500 1279 0 Meggie SuperMUC-NG Meggie SuperMUC-NG 0

Receiver rank Receiver rank Memory-bound Communication-bound

(a) pe order (b) ep order (¢) Memory-bound performance (d) Communication-bound performance
Fig. 4: (a-b) Communication topology of HHQ-small-orderpe and HHQ-small-orderep Hamiltonian matrices. (c)
Performance (blue y-axis) and speedup for barrier-free (desynchronized) execution in the memory-bound case (60 processes
on Meggie and 96 processes on SuperMUC-NG) and in non-split mode. The percentage increments denote the speedup
of the no-barrier versions. (d) Same data but for the communication-bound case with performance on the red y-axis (1280

processes on Meggie and 1296 processes on SuperMUC-NG).

black markers in Fig. 3. This can be attributed to the larger
fraction of cores needed per ccNUMA domain to achieve
memory bandwidth saturation compared to SuperMUC-
NG.

In this experiment, the matrices were large enough to
keep the execution memory bound even at large scale,
which made memory bandwidth the relevant bottleneck for
desynchronization. The HHQ-small matrices in Table 5 fit
into the aggregate last-level cache (LLC) on 23 nodes and
beyond (for Meggie) and 18 nodes (for SuperMUC-NG),
respectively. The LLC shows much better bandwidth scal-
ability than the memory interface, so the bottleneck shifts to
the network communication for larger node counts. In Fig. 4
we show performance and speedup results for the small
matrices on small (memory bound, (c)) and large (network
bound (d)) numbers of nodes on the two test systems.
As before, the actual barrier duration has been subtracted
from the execution time of the version with barriers so that
the speedup observed when removing the barrier can be
attributed to desynchronization.

We concentrate on the non-split variant here. For small
numbers of processes (Fig. 4(c)), the speedups are small,
which is expected because the memory bandwidth is the
bottleneck and the communication overhead is small so
that there is little opportunity for overlapping. For the in-
memory case, the small ep matrix shows the same desyn-
chronization speedup of 3.9 % as its large counterpart. The
more communication-intensive pe matrix, on the other hand,
shows an extra speedup of 1.45% (this data is not con-
tained in the figure). The behavior persists in similar ways
on both systems. In the network-bound case (Fig. 4(d)),
however, the now-dominant communication can overlap
with code execution, which yields speedups of 38% and
37% in the pe and ep cases, respectively. We attribute the
minor difference in behavior between the two matrices to
the small message sizes, which make most of the point-
to-point communication latency bound. Compared to the
large-matrix cases, the in-cache execution leads to lower
speedup by desynchronization (4.4 % for ep and 8 % for pe).

On the Meggie system, the lower CER causes an additional
boost by 15.6 % (ep) and 10.5 % (pe), respectively.

In summary, our SpMVM experiments have shown
that significant performance speedups can be obtained
via desynchronization when the execution is limited by
memory bandwidth or communication and synchronizing
collectives (i.e., barriers or collectives with synchronizing
implementations) between back-to-back SpMVMs are re-
moved. Note that we relied on the natural irregularities of
the sparse matrices to destabilize the lock-step pattern; no
explicit noise injection was required.

Key takeaway: In MPI-parallel SpMVM, speedup by au-
tomatic overlap of communication and computation is
facilitated by (i) a larger communication overhead, which
is connected with a more spread nonzero distribution
in the matrix, (ii) a slow idle wave propagation speed,
which is caused by a low matrix bandwidth, and (iii) a
slow synchronized baseline that uses the simple non-split
communication scheme.

3.3 Chebyshev Filter Diagonalization (ChebFD)

The Chebyshev filter diagonalization (ChebFD) is a polyno-
mial filtering algorithm that is popular in quantum physics
and chemistry. It allows to compute parts of eigenvalue
spectra of large sparse matrices and is amenable to multiple
node-level and communication optimizations [2], [8]. For
example, a blocking parameter (number of block vectors
np) enables flexible tuning of the code balance of the main
iteration loop; larger block size causes lower code balance.

3.3.1
Our open-source® implementation of ChebFD is built with
the GHOST [34] building block library using tailored kernels
and 64 bits global and 32bits local index size, respectively.
It employs the standard CRS sparse matrix data format and

Implementation

8. Available as part of the GHOST package at https:/ /bitbucket.org/
essex/ghost

Algorithm: Structure of the MPI-parallel CHEBFD(H, U , W, X) implementation. NON-SPLIT, SPLIT-WAIT and

PIPELINE modes are implementation alternatives.

define vector blocks
u,w,X

NON- SPLIT mode
fork=0:

_twice SP MMV () swap(W U)

—1do
forp=0: npfldo

PIPELINE mode
forp=0:n,—1do
swap(W,U) ;
comm_init(Tp) ;

SPLIT-WAIT mode
fork:O:Z—zfldo
forp=0:n, —1do

U « (el +p)X AT swap(W,U) ; MPI_wait() ;
W « 2(aH +8)U — % comm_init_finalize(U) ; A fork—0:m _924d
P = =2 comm_int(U) ; ork=0U:2>—2do
WeQ(anLﬁ)UfW/ ——
BAXPY() and BSCAL() W.0 local_kernel ; comm_init(U;) ;
X gocoX + —(); Tg) MPI_wait() ; kernely() ;
giceilU + gacoW <U U); ;.3 remote_kernel ; MPI_wait() ;
X ~ X+ ngpW end for end for
Ma1ré loop:IID\ION- | end for end for kerneln: () ;
'b
. SPLIT/SPLIT/PIPELINE mode end for end for
TABLE 6: Key specifications of Hamiltonian matrices for the 30
ChebFD application. = 6ol BB n=32 BE o, = 32
& A n, =2 A n,=2
Matrix Traits’ Data-type s = (e Nz Tingpr Size [GBJ % 50 + b 20 |- b
TOPI-ENH 1,-1m,-m.-128-128-64 complex double 268435456 3487563776 13 70.8* — 40
SPIN26* 26-13-1 double 10400600 145608400 14 18 3
SPIN28* 28-14-1 double 40116600 601749000 15 74 % 30 |
SPIN30* 30-15-1 double 155117520 2481880320 16 30.4 & 20 10 -
§ Traits for the TOPI-ENH matrix represent the 1m,-1m,-m.-n,-n,-n., while for the sPIN :@
matrices mark n,,,-disorder-seed.) 10 =
* Eight (sixteen) byte for double (complex double) precision numbers of matrix entries, and A~ Eﬂ E'I
four-byte indexing for 32-bit integers are considered. 0 ! ! ! ! I 0 ! I I ! !

* SPIN matrices comprising periodic boundary conditions with upper count are equal to the
half of the lower.

uses row-major ordering within a block of n; vectors to fa-
cilitate SIMD vectorization. The algorithm contains a sparse
matrix-multiple-vector multiplication (SpMMYV) and a series
of BLAS-1 vector operations. Non-blocking communication
is performed via MPI_Isend/MPI_Irecv/MPI_Waitall
sequences. Asynchronous progress was disabled in the Intel
MPI library as well as in GHOST. The code supports hybrid
MPI+OpenMP parallelization; unless otherwise noted, we
use the pure MPI version here.

We compare three communication schemes:

1) NON-SPLIT mode: blocking MPI communication,
followed by computation. It performs computation
of ChebFD polynomials to a block U of ny vectors
at a time.

2) SPLIT-WAIT mode: naive implicit overlapping of
non-blocking MPI communication of the non-local
vector elements with local computations. Only after
completing the outstanding receives via MPI_Wait
can the remote part of the kernel be done. It in-
creases the main memory data traffic since the local
result vector must be updated twice.

3) PIPELINE mode: pipelined asynchronous non-
blocking MPI communication with the subspace
blocking scheme, which does not require any extra
memory traffic. If n, is the subspace size, for suffi-
ciently large % this scheme enables explicit effective
overlap of computation on the current subblock
(local_kernel) with the communication needed for
the next sub-block. Details can be found in [8].

The polynomial filter degree (we use n, = 500 here,
which is a relevant value for practical applications) applies

0 2 4 6 8 10 0 2 4 6 8 10
Threads per socket Threads per socket

(a) TOPI-EHN matrix (b) SPIN26 matrix

Fig. 5: Single-socket performance scaling of ChebFD with
OpenMP on a contention domain of the Meggie system for
the block vector sizes of 2 and 32 and the (a) topological
insulator matrix (1.76 speed up at single thread) and (b)
SPIN26 matrix (2.89 speed up at single thread owing to
efficient data accesses), respectively.

independently to all search vectors n,. In the algorithm,
Niter 15 the number of iterations; the number of sought
inner eigenvalues of a topological insulator (n, = 128) is
taken to be a multiple of block vector size (n, = 2 or
ny = 32) for simplicity. In the implementation, a single,
fused, MPI-parallel CHEBFD() kernel (marked in the algo-
rithm) facilitates cache reuse. Moreover, the global reduction
needed for computation of the polynomial filter coefficients
7, and i, can be postponed until after the iteration loop,
which eliminates all (possibly) synchronizing collectives; the
communication topology is thus entirely determined by the
matrix structure. The sparse matrices and the code balance
of the algorithm (optimistically® (260/n; + 80)/146 B/flop
for double complex data and (48/n; + 40)/19B/flop for
double precision real data) were thoroughly investigated
in [2].

9. “Optimistically” means here that one assumes the minimum pos-
sible data transfer, i.e., each data element is only loaded once and then
reused from cache as often as necessary.

10

TABLE 7: (a) ChebFD message profile of topological insulator (TOPI-EHN) matrices of same problem sizes. It encompasses
nine domain configurations (M1-M9) with n,,,4es that facilitates a good mixture of eager and rendezvous messages. (b)—(c)

Communication matrices of Spin matrices of multiple sizes.

0r

Mg =My =M, Communication distances (nqodes = 64) Message sizes [kB] (nnodes = 64) ~ 200 A N
M1 1-1-Nnodes +1,-20, —19 1050, 105, 0.128 g 4001 J |
M2 1-Tnodes-1 +1,+20, +19 1050, 48, 8 = 6001 1 |
M3 Nnodes-1-1 +1 1050 3 AN
M4 1-\/Mnodes-/Tinodes +1,-20, +160, +159, —19 1050, 105, 48, 8,0.128 "g 800 - N N\ I
M5 \/Timodes-1-\/Tinodes +1,-20,—19 1050, 105, 0.128 $£1000 |- S N\ A
M6 \/Tinodes—/Mmodes-1 +1,-20,—140, —19, —141 1050, 48, 48, 8, 8 N .
M7 2-4-/Minodos +1,—20, —480, —160, —481, —159, —19 1050, 105, 48, 48, 8, 8,0.128 1279 . . .
M8 9\ /Mnodes-4 41, -20, =560, —80, =561, —79, —19 1050, 105, 48, 48,8, 8, 0.128 0 500 1270 500 1279
M9 Vnodes-2-4 +1,-20, —80, —79, —81, 19 1050, 105, 96, 8, 8, 0.128

Receiver rank Receiver rank

(a) TOPI-EHN

3.3.2 Test matrices

Two types of test matrices and scaling scenarios were con-
sidered for ChebFD: weak scaling for a topological insulator
problem (TOPI-ENH) [35] and strong scaling for a spin
system (Spin). For TOPI-ENH (see Table 6), the Hamiltonian
matrix emerges from a three-dimensional mesh with four
degrees of freedom (DOFS) per mesh point and thus exhibits
a rather regular, stencil-like structure. In order to study
different communication topologies, we chose a local (per-
node) problem size of n, x n, X n, = 1282 x 64 and a global
size of nymyny,myn.m,, where the m; are the number of
nodes in each Cartesian dimension. Each matrix row has
13 complex double-precision nonzero entries, leading to a
matrix size of (16 + 4)B x 128 x 128 x 64 x 13 = 273MB,
which much larger than the available LLC on the benchmark
platforms. Periodic boundary conditions in the z and y
directions lead to outlying diagonals in the matrix corners.

The real-valued SPIN matrix is used in three different,
fixed sizes (see Table 6) and has a structure that leads
to more communication overhead and a larger impact of
memory latency on the node-level performance. The socket-
level performance scaling data (using OpenMP) in Fig. 5
reveals interesting differences between the two matrices:
Although increasing the block size from nj = 2 to n, = 32
improves the performance in both cases as expected from
the reduced code balance, the impact on the scaling behavior
is different: While the SPIN-26 matrix starts off with very
low performance on a single thread with n; = 2 and thus
shows good scaling in this case (optimistic upper bandwidth
limit at 14.8 Gflop/s), the TOPI-ENH matrix shows strong
bandwidth saturation and achieves 90% of the optimistic
maximum of 34.8 Gflop/s already at eight cores. At n;, = 32,
the code balance is strongly reduced in both cases, so one
expects weaker saturation as the pressure on the mem-
ory interface is lowered and in-cache effects become more
prominent [2], [7]. While this can be clearly observed in
case of TOPI-ENH, saturation actually becomes stronger for
SPIN-26. This is rooted in a better utilization of the memory
interface and a lower impact of latency due to the vector
blocking technique.

All matrices are generated on the fly using the
ESSEX_PHYSICS library'?. Table 6 illustrates the key speci-
fications of both types of matrices.

10. The ESSEX_PHYSICS library is a open-source software of ESSEX
project, available for download at https:/ /bitbucket.org/essex/physic
s/src/master/.

(b) SPIN26/30 (c) SPIN28

3.3.3 Decomposition, communication schemes and block
vector sizes

TOPI-ENH matrices: Figure 6 shows the weak scal-
ing performance of ChebFD with the TOPI-ENH case in
nine domain decomposition variants and three commu-
nication modes. While the bars show the observed per-
formance with barrier-free code, the red line denotes the
performance with an explicit barrier added at each new
polynomial degree p (specifically when the W and V' vectors
are swapped). As expected, the pipelined mode exhibits
no noticeable performance hit from the barrier because
the vector swap occurs between the p and k loops. The
communication topology depends on the domain decom-
position, as do the communication data paths used (intra-
vs. internode). Hence, we expect a significant dependence
of the performance on the decomposition. Unlike in Sp-
MVM, where the matrix data dominates the code bal-
ance, ChebFD has a much stronger dependence on the
vector data; consequently, the split-wait variant shows the
worst performance among all schemes and decompositions
due to extra memory traffic. Favorable configurations for
the sync-free code are (in order of descending perfor-
mance): {M3, M2, M6, M5, M1, M9, M7, M8, M4}, which is
also roughly in rising idle wave speed order. With explicit
barriers, on the other hand, M7 is the worst configuration
and M8 is among the top performers. Configuration M3
uses a one-dimensional decomposition and thus has an
unfavorable communication pattern. However, it features
only direct next-neighbor communication, which leads to
the slowest possible idle wave speed and thus the highest
potential for desynchronization.

M4 the worst case among all studied decomposition
variants, and its CER is even larger than that of M3. For
instance, at the blocking vector size of 32, we observe with
the synchronized non-split variant {Tzc. [ms], Teomm [ms],
CER} = {214.6,30,0.14} for M3 and {258.6,43,0.17} for M4.
Thus, the configuration M4 spends more time communicat-
ing, while M3 has the slowest idle wave; both affect the
overall performance. In {NON-SPLIT, PIPELINE, SPLIT-WAIT}
mode, the performance increment between the worst M4
and best M3 corner cases is {11.1, 9, 6.9} % with n, = 2
and {6.1, 5.1, 2.8} % with n; = 32 at 1280 MPI processes
on Meggie. The n;, = 32 cases exhibit a stronger slowdown
from the non-split to the split version due to the dominant
data traffic from the vector blocks. The pipeline version is
always better than non-split in the synchronized scenario,

11

88 M1-Non-spLiTH f M1-SpLitl] 0 M1-PrreLiNel B M2-Non-spLitl] [M2-SpLitl] [l M2-PreeLineB B M3-Nown-spLitl] [M3-SpLit(] [M3-PIpELINE
B 8 Ma-Non-spLitl] 0 M4-spLitl] 1 M4-PrreLinel B M5-Non-spLitl] [M5-Spritl] [l M5-Preerine B M6-Non-spLitl] [M6-SpLit(] [M6-PIPELINE
B 8 M7-Non-spitl] 01 M7-SpLiTl] O M7-PrreLinel B Ms-Non-spLit(] 0 M8-SpLitl] 0 M8-PrreLinel 8 M9-Non-spLitl] [M9-SpLitl] 0 M9-PIPELINE

3000 EHEIEE,:EI'EIFEH:II'EFEF,
gzooo— . BB E B E T Hjﬁrﬁiﬁjﬁjgjajﬁj,
- searere MEATRTED R
Y ol amrmn BIE HIF[EI AI8IGIEIAIA| BIHIAIE(AIA]] AIEIEI8/H]4|EHIA
§4000— i EIE:EZIEIE:%-E:E:
& pooo| o BEEREE L

oL _srmrmn BTRTRT EWEJEIJ E|E|Ei§o\3ﬁé\ﬁ\ E‘E‘Hg‘@tﬁ‘ ALl Ejzﬁsogj aili

Number of processes 7, : number of nodes nnodes = MaMyMm

Fig. 6: Weak scaling performance of ChebFD with TOPI-ENH matrices in nine domain decompositions (M1-MJ9 in different
colors) with three communication schemes (NON-SPLIT in horizontal lines, SPLIT-WAIT in north east hatch lines, PIPELINE
in north west hatch lines) on the Meggie cluster. The number of MPI processes and compute nodes are shown on the z-axis.
Top: block vector size of ny = 2, bottom: n;, = 32. The red line indicates performance with a barrier in each p iteration (see

text).

while in the naturally desynchronized case, the non-split
version is generally on par or even better for the more satu-
rating case. Contrarily, the non-split version suffers a higher
performance hit at n, = 2 with synchronizing barriers in
place.

PIPELINE version. Also, the barrier-free NON-SPLIT variant
is consistently worse for n;, = 2, as expected.

Key takeaway: The domain decomposition that allows lower
idle wave speeds is better suited for automatic communi-

cation overlap.

SPIN matrices: Figure 7 shows strong scaling re-
sults for the SPIN matrices. Due to the working set
size, SPIN-28 can only be used on 36 nodes and more,
and SPIN-30 requires 64 nodes at least. Aggregate LLC
sizes of {0.05,0.35,0.6,1.2,1.8,2.4,3.2} GB are available
for {60,120, 240, 480, 720, 960, 1280} MPI processes on the
Meggie system. As a consequence, contrary to the SPIN28
and SPIN30 matrices, ChebFD with the SPIN26 matrix starts
to be cache bound from 720 processes up.

In NON-SPLIT mode and on 64 nodes on Meggie, we
observe {Tezee [MS], Teomm [ms], CER} = {0.6,0.41,0.68},
{2.38,1.86,0.78} and {10.2,7,0.69} for SPIN26, SPIN28 and
SPIN30, respectively. Similarly, the range of P2P message
sizes is {Vinin [Bl, Vinaz [kB] (red)} = {16,130} (SPIN26),
{64,501.5} (SPIN28) and {32,1939} (SPIN30). These matri-
ces cause significantly more communication overhead than
TOPI-ENH, which leads to more opportunity for desynchro-
nized execution and communication overlap in the NON-
SPLIT case. The case with n, = 32 shows stronger socket-
level saturation here, so it has a higher potential for desyn-
chronization than n, = 2, which can be observed in the
data in Fig. 7. There is no prominent advantage of explicit
overlap (PIPELINE). In fact, the speedup from removing the
barrier synchronization in the non-split version grows with
increasing communication volume along the strong scaling
curve and at certain points it becomes competitive with the

Key takeaway: Overlapping via explicit programming tech-
niques may not be necessary for strongly bandwidth-
saturating code with large (but not dominant) communi-
cation overhead due to the presence of natural overlap by
desynchronization.

4 OUTLOOK AND FUTURE WORK

Using MPI-parallel synthetic benchmarks and application
programs we investigated the consequences of desynchro-
nization via bottlenecks in bulk-synchronous parallel code.
Using a memory-bound microbenchmark we showed that
there is a strong positive correlation between idle wave
speed and the slope of a computational wave, indicating
that automatic communication-computation overlap can be
more effective in settings with low idle wave speeds. Using
one-off idle injections we also showed that a stable compu-
tational wave can be shifted along the MPI rank dimension
without losing its basic properties.

For back-to-back sparse matrix-vector multiplications,
we demonstrated that speedup by automatic desynchro-
nization is facilitated by large communication overhead,
slow idle wave speed, and a simple non-split commu-
nication scheme. Our investigation of a Chebyshev filter
diagonalization application showed that a more compact
communication topology, which can be affected by domain
decomposition strategies that allow for slower idle waves,
enables more effective communication overlap. Depending
on the underlying problem (and thus the sparse matrix
structure), forcing overlap by explicit programming may not
even be required.

We took great care to separate the effects of overhead
reduction via elimination of collective communication from

12

T
00 spin26-ny2-Non-spLit [0 SPlN26—nb32—NON—SPLlTD [SPIN26-np2-SPLIT-WAIT [] [] SPIN26-72432-SPLIT-WAITL [SPIN26-72 2-PIPELINE
600 | [0 SPIN26-n,32-PIPELINE 00 SPIN28-n3,2-NON-SPLIT (0 SP1N28-nb32-NON-SPL1Tm [l SPIN28-n;2-SPLIT-WAIT 0o SPIN28-n3,32-SPLIT-WAIT |

2 0o SPIN28-n4,2-PIPELINE (0 SPIN28-n4,32-PIPELINE 0 SPIN30-n32-NON-SPLIT 0o SPINSO—anQ—NON-SPLITD [l SPIN30-nj2-SPLIT-WAIT
§ 0o SPIN30-nb32-SPLIT—WAITD] SPIN30-ny2-PIPELINE [I[1 SPIN30-nj,32-PIPELINE
O, 400 - =
)
IS
E 200 S %FHT'DFD'H
: ‘ | | | I | ‘
a-‘)
~ 0 Tun=nsn il \l I ” | | | , 1 l \ | I s ! \
60 120 240 480 720 960 1160

Number of processes n,,

Fig. 7: Strong scaling performance of ChebFD with SPIN matrices of diverse sizes (SPIN26 in gray, SPIN28 in red, SPIN30
in green background) using various communication schemes (NON-SPLIT, SPLIT-WAIT, PIPELINE in different colors) with
block vector sizes of n;, = 2 (north east hatch lines) and n; = 32 (north west hatch lines) on the Meggie system. The red

line indicates performance with a barrier in each p iteration.

the actual benefit of desynchronization. Overall, our results
show that bottleneck evasion by desynchronization can be
regarded as a performance optimization technique, and that
forcing a parallel program into lock-step may be the wrong
course of action in some settings.

Future work: In this work we have only considered
memory bandwidth as the relevant bottleneck in desyn-
chronization phenomena, but we have reason to assume
that other bottlenecks, such as the compute node network
injection bandwidth or the network topology can effect
similar behavior in parallel codes. In future work we will
explore this option further. In addition we have as yet no
rigorous proof of instability for bottleneck-bound programs,
which is why we work towards an analytic description of
desynchronization processes that goes beyond idle wave
speed.

In order to study out-of-lockstep behavior in more de-
tail, we are working on a message passing and threading
simulator that can simulate large-scale applications while
taking the socket-level properties of code into account. It can
explore parallel program dynamics further in a controlled
environment, saving resources and time on real systems and
allowing for advanced architectural exploration.

ACKNOWLEDGMENTS

This work was supported by KONWIHR, the Bavarian
Competence Network for Scientific High Performance Com-
puting in Bavaria, under the project name “OMlI4papps.”
We are indebted to LRZ Garching for granting CPU hours
on SuperMUC-NG. We wish to thank Andreas Alvermann
for his ScaMaC library and the admin team at NHR@FAU
for excellent technical support on Meggie system.

REFERENCES

[1] J. D. McCalpin et al., “Memory bandwidth and machine balance
in current high performance computers,” IEEE computer society
technical committee on computer architecture (TCCA) newsletter, vol. 2,
no. 19-25, 1995.

[2] A. Pieper, M. Kreutzer, A. Alvermann, M. Galgon, H. Fehske,
G. Hager, B. Lang, and G. Wellein, “High-performance implemen-
tation of Chebyshev filter diagonalization for interior eigenvalue
computations,” Journal of Computational Physics, vol. 325, pp. 226—
243, 2016.

[3] E.C.Carson, “Communication-avoiding krylov subspace methods
in theory and practice,” Ph.D. dissertation, UC Berkeley, PZ, Italy,
2015.

[4] P. Ghysels and W. Vanroose, “Hiding global synchronization
latency in the preconditioned Conjugate Gradient algorithm,”
Parallel Computing, vol. 40, no. 7, pp. 224-238, 2014, 7th Workshop
on Parallel Matrix Algorithms and Applications. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
50167819113000719

[5] A. Afzal, G. Hager, and G. Wellein, “Desynchronization and Wave
Pattern Formation in MPI-Parallel and Hybrid Memory-Bound
Programs,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), P. Sadayappan, B. L. Chamberlain, G. Juckeland, and H. Ltaief,
Eds., vol. 12151 LNCS. Cham: Springer International Publishing,
2020, pp. 391411, cRIS-Team Scopus Importer:2020-07-10.

[6] ——, “Propagation and Decay of Injected One-Off Delays on Clus-
ters: A Case Study,” in Proceedings - IEEE International Conference
on Cluster Computing, ICCC, vol. 2019-September. Institute of
Electrical and Electronics Engineers Inc., 2019, cRIS-Team Scopus
Importer:2019-11-29.

[7]1 M. Kreutzer, A. Pieper, G. Hager, G. Wellein, A. Alvermann, and
H. Fehske, “Performance engineering of the Kernel Polynomial
Method on large-scale CPU-GPU systems,” in 2015 IEEE Interna-
tional Parallel and Distributed Processing Symposium, May 2015, pp.
417-426.

[8] M. Kreutzer, D. Ernst, A. R. Bishop, H. Fehske, G. Hager, K. Naka-
jima, and G. Wellein, “Chebyshev filter diagonalization on modern
manycore processors and GPGPUs,” in High Performance Comput-
ing, R. Yokota, M. Weiland, D. Keyes, and C. Trinitis, Eds. Cham:
Springer International Publishing, 2018, pp. 329-349.

[9] A. Afzal, G. Hager, and G. Wellein, “Analytic Modeling of Idle
Waves in Parallel Programs: Communication, Cluster Topology,
and Noise Impact,” in Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), B. L. Chamberlain, A.-L. Varbanescu, H. Ltaief, and
P. Luszczek, Eds., vol. 12728 LNCS. Springer Science and Business
Media Deutschland GmbH, 2021, pp. 351-371, cRIS-Team Scopus
Importer:2021-08-20.

[10] ——, “Analytic performance model for parallel overlapping
memory-bound kernels,” Concurrency and Computation: Practice
and Experience, Jan 2022. [Online]. Available: https:/ /onlinelibrar
y.wiley.com/doi/10.1002/cpe.6816

[11] X. Zhao, M. Jahre, and L. Eeckhout, “Hsm: A hybrid slowdown
model for multitasking gpus,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2020, pp. 1371-1385.

[12] A. Afzal, G. Hager, and G. Wellein, “Delay flow mechanisms on
clusters,” poster at EuroMPI 2019, September 10-13, 2019, Zurich,
Switzerland. [Online]. Available: https://hpc.fau.de/files/2019/
09/EuroMPI2019_AHW-Poster.pdf

[13] E Petrini, D.J. Kerbyson, and S. Pakin, “The case of the missing su-

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

percomputer performance: Achieving optimal performance on the
8,192 processors of ASCI Q,” in Supercomputing, 2003 ACM/IEEE
Conference. IEEE, 2003, pp. 55-55.

T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner,]. Fier, R. Black-
more, P. Caffrey, B. Maskell, P. Tomlinson et al., “Improving the
scalability of parallel jobs by adding parallel awareness to the
operating system,” in Supercomputing, 2003 ACM/IEEE Conference.
IEEE, 2003, pp. 10-10.

P. Terry, A. Shan, and P. Huttunen, “Improving application per-
formance on HPC systems with process synchronization.” Linux
Journal, no. 127, pp. 68-71, 2004.

R. Gioiosa, F. Petrini, K. Davis, and F. Lebaillif-Delamare, “Anal-
ysis of system overhead on parallel computers,” in Proceedings of
the Fourth IEEE International Symposium on Signal Processing and
Information Technology. IEEE, 2004, pp. 387-390.

D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, “System
noise, OS clock ticks, and fine-grained parallel applications,” in
Proceedings of the 19th annual international conference on Supercom-
puting. ACM, 2005, pp. 303-312.

P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The influence
of operating systems on the performance of collective operations
at extreme scale,” in Cluster Computing, 2006 IEEE International
Conference on. IEEE, 2006, pp. 1-12.

K. B. Ferreira, P. Bridges, and R. Brightwell, “Characterizing
application sensitivity to OS interference using kernel-level noise
injection,” in Proceedings of the 2008 ACM/IEEE conference on Super-
computing. 1EEE Press, 2008, p. 19.

A. Morari, R. Gioiosa, R. W. Wisniewski, F.]J. Cazorla, and
M. Valero, “A quantitative analysis of OS noise,” in 2011 IEEE
International Parallel & Distributed Processing Symposium. IEEE,
2011, pp. 852-863.

H. Weisbach, B. Gerofi, B. Kocoloski, H. Hartig, and Y. Ishikawa,
“Hardware performance variation: A comparative study using
lightweight kernels,” in High Performance Computing, R. Yokota,
M. Weiland, D. Keyes, and C. Trinitis, Eds. = Cham: Springer
International Publishing, 2018, pp. 246-265.

T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the
influence of system noise on large-scale applications by simula-
tion,” in Proceedings of the 2010 ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE Computer Society, 2010, pp. 1-11.

S. Markidis, J. Vencels, I. B. Peng, D. Akhmetova, E. Laure, and
P. Henri, “Idle waves in high-performance computing,” Physical
Review E, vol. 91, no. 1, p. 013306, 2015.

M. Gamell, K. Teranishi, M. A. Heroux,]. Mayo, H. Kolla, J. Chen,
and M. Parashar, “Local recovery and failure masking for stencil-
based applications at extreme scales,” in SC "15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, Nov 2015, pp. 1-12.

D. Bohme, M. Geimer, L. Arnold, F. Voigtlaender, and F. Wolf,
“Identifying the root causes of wait states in large-scale parallel
applications,” ACM Trans. Parallel Comput., vol. 3, no. 2, pp. 11:1-
11:24, Jul. 2016.

A. Kolakowska and M. A. Novotny, “Desynchronization and
speedup in an asynchronous conservative parallel update proto-
col,” arXiv preprint ¢s/0409032, 2004.

A. Afzal, G. Hager, and G. Wellein, “Physical Oscillator
Model for Parallel Distributed Computing,” 2021, poster
at ISC High Performance 2021. [Online]. Available: https:
/ /www.researchgate.net/publication /354208484 _Physical_Oscil
lator_Model_for_Parallel_Distributed_Computing?_sg=1VYEm3
XWA4E921sf55nIWTxkXYhgpB13cA2Zi3zbsaP-YcPn2zMsmYHnI
URLA_eADEZioHef0aYKgIpaCYNIPewOH4GtDTB14Q-E_avYu.
W3TTE5Nzo7hjNZ45wagExeFe]B8qTBJQe764hOdVIpKO0IbGaFk
1mulggkEpWAveETapO_wOS8AKyPV]1-4g0WA

D. an Mey, S. Biersdorf, C. Bischof, K. Diethelm, D. Eschweiler,
M. Gerndt, A. Kniipfer, D. Lorenz, A. Malony, W. E. Nagel et al.,
“Score-p: A unified performance measurement system for petas-
cale applications,” in Competence in High Performance Computing
2010. Springer, 2011, pp. 85-97.

T.-T. Pham, M. Pister, and P. Couvée, “Recurrent neural network
for classifying of hpc applications,” in 2019 Spring Simulation
Conference (SpringSim), 2019, pp. 1-12.

G. Hager and G. Wellein, Introduction to high performance computing
for scientists and engineers. CRC Press, 2010.

W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F. Smith, “Toward

13

realistic performance bounds for implicit cfd codes,” in Proceedings
of parallel CFD, vol. 99. Citeseer, 1999, pp. 233-240.

[32] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R.
Bishop, “A unified sparse matrix data format for efficient
general sparse matrix-vector multiplication on modern processors
with wide SIMD units,” SIAM Journal on Scientific Computing,
vol. 36, pp. C401-C423, 2014. [Online]. Available: http:
/ /epubs.siam.org/doi/abs/10.1137/130930352

[33] H. Fehske, G. Wellein, G. Hager, A. Weille, and A. Bishop,
“Quantum lattice dynamical effects on single-particle excitations
in one-dimensional mott and peierls insulators,” Physical Review
B, vol. 69, no. 16, p. 165115, 2004.

[34] M. Kreutzer, J. Thies, M. Rohrig-Zollner, A. Pieper, F. Shahzad,
M. Galgon, A. Basermann, H. Fehske, G. Hager, and G. Wellein,
“GHOST: Building blocks for high performance sparse linear
algebra on heterogeneous systems,” International Journal of Parallel
Programming, vol. 45, pp. 1046-1072, 2017.

[35] M. Sitte, A. Rosch, E. Altman, and L. Fritz, “Topological insulators
in magnetic fields: Quantum Hall effect and edge channels with a
nonquantized theta term,” Physical review letters, vol. 108, no. 12,
p- 126807, 2012.

Ayesha Afzal holds a Master's degree in

Computational Engineering from Friedrich-

- Alexander-Universitat Erlangen-Nurnberg,

: Germany, followed by a Bachelor’s degree in

) .Q Electrical Engineering from the University of

(o Engineering and Technology, Lahore, Pakistan.

5 She is working toward the Ph.D. degree at the

professorship for High Performance Computing

at Erlangen National High Performance

Computing Center (NHR@FAU), Germany.

Her PhD research lies at the intersection of

analytic performance models, performance tools and parallel simulation

frameworks, with a focus on first-principles performance modeling of
distributed-memory parallel programs in high-performance computing.

Georg Hager holds a doctorate (Ph.D.) and
a Habilitation degree in Computational Physics
from the University of Greifswald, Germany. He
leads the Training & Support Division at Er-
langen National High Performance Computing
Center (NHR@FAU) and is an associate lec-
turer at the Institute of Physics at the Univer-
sity of Greifswald. Recent research includes
architecture-specific optimization strategies for
current microprocessors, performance engineer-
ing of scientific codes on chip and system levels,
and the modeling of out-of-lockstep behavior in large-scale parallel
codes.

Gerhard Wellein received the Diploma (M.Sc.)
degree and a doctorate (Ph.D.) degree in
Physics from the University of Bayreuth, Ger-
many. He is a Professor at the Department
of Computer Science at Friedrich-Alexander-
Universitdt Erlangen-Nlrnberg and heads the
Erlangen National Center for High-Performance
Computing (NHR@FAU). His research interests
focus on performance modeling and perfor-
mance engineering, architecture-specific code
optimization, and hardware-efficient building
blocks for sparse linear algebra and stencil solvers.

