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Abstract—Fully Homomorphic Encryption (FHE) enables secure offloading of computations to untrusted cloud servers as it allows

computing on encrypted data. However, existing well-known FHE schemes suffer from heavy performance overheads. Thus numerous

accelerations based on FPGAs, ASICs, and GPUs have been proposed. Compared to FPGAs and ASICs, GPUs have obvious

advantages in productivity and development costs. And also, GPUs have already been widely deployed in commercial cloud or

supercomputing centers. Therefore, we present HE-Booster, an efficient GPU-based FHE acceleration design. For single-GPU

acceleration, a thorough systematic design is exploited to map five common phases in typical FHE schemes to the GPU parallel

architecture. In particular, inspired by the regular architecture of NTT/INTT, a novel inter-thread local synchronization is proposed to

exploit thread-level parallelism. For multi-GPU acceleration, we propose a scalable parallelization design that exploits data-level

parallelism through fine-grained data partition under different representations. Finally, experiments on 1 NVIDIA GPU demonstrate that

our work outperforms 251.7�, 78.5� and 164.9� than three mainstream CPU-based libraries HElib, SEAL, and PALISADE, and up to

170.5� speedup is obtained compared to the GPU-accelerated library cuHE. What’s more, performing 8 homomorphic multiplications

on 8 GPUs can deliver up to a 7.66� performance boost compared to a single-GPU implementation.

Index Terms—Fully homomorphic encryption, GPU acceleration, number-theoretic transform

Ç

1 INTRODUCTION

AS cloud computing becomes more widespread, it also
opens up potential security and privacy risks due to

the need to access raw data [1], [2], [3]. Fully homomorphic
encryption (FHE) is considered a promising technology to
address these challenges as it allows computing on
encrypted data (ciphertext). Specifically, it enables the cli-
ent’s computation to be securely offloaded to an untrusted
server, which directly processes the ciphertext without
decryption and returns the encrypted result to the client.
The decryption of the resulting ciphertext matches the result
of performing the same computation on the unencrypted

data (plaintext). In this way, clients can leverage the com-
puting power of the cloud to gain meaningful insights from
the data while effectively protecting the confidentiality of
the data. Furthermore, compared to partially homomorphic
encryption (PHE) that only supports addition or multiplica-
tion (e.g., Paillier[4], RSA[5] and ElGamal[6]), FHE allows
arbitrary computation on ciphertext, which motivates a
great deal of research work[7], [8], [9], [10], [11].

However, FHE is not yet widely deployed due to its signifi-
cant performance overhead. Ciphertext computation can intro-
duce more than 4 orders of magnitude slowdown compared to
plaintext computation. In typical FHE schemes like BGV[12],
BFV[13], [14] and CKKS[15], the major performance bottleneck
comes from massive polynomial arithmetic. Specifically,
encrypted data generally consist of a pair of polynomials,
whose coefficients reach hundreds or thousands of bits,
demanding expensivemulti-word arithmetic.Moreover, a large
polynomial length exacerbates the computational complexity,
especially for polynomial multiplication. Therefore, the essence
of FHE acceleration lies in accelerating polynomial arithmetic.

The prevalent acceleration strategy is offloading time-
consuming polynomial arithmetic to hardware accelerators
(e.g., FPGAs, ASICs, and GPUs). Several studies propose
kinds of acceleration mechanisms based on FPGAs. They
use fixed-size parameter sets that limit the FHE configura-
tions in diverse application scenarios [16], [17], [18]. More-
over, such FPGA-based solutions face the challenge of
productivity. Alternatively, F1 [19], CraterLake[20], BTS
[21], ARK[22] and BASALISC[23] respectively designs ASIC
accelerator architectures that target different optimizations,
but they have only been implemented on simulators so far.
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Furthermore, implementing such kind of ASIC chip
requires huge development costs. By contrast, GPU is a bet-
ter candidate since there exists a series of commercial and
off-the-shelf products. Therefore, it is worth investigating
an efficient GPU-based FHE acceleration design.

Typically, polynomial arithmetic acceleration in FHE
consists of five phases, involving the Chinese Remainder
Theorem (CRT) and Number-Theoretic Transform (NTT)
for the forward transformation, Operation phase, and INTT
(inverse NTT) and ICRT (inverse CRT) for the backward
transformation. As a well-known state-of-the-art GPU-
based polynomial arithmetic library, cuHE [24] provides a
typical implementation, including efficient algebraic tools
and memory management. However, there exist two main
limitations: On the one hand, it only supports single-word
CRT moduli (less than 32-bit) for polynomial arithmetic.
Fewer bit representations fail to exploit potential parallel
sub-spaces, limit the configurability of FHE programs (e.g.,
multiplicative depth), and reduce performance (e.g., more
intensive computations). Similar problems are observed in
other solutions[25], [26], [27]. On the other hand, cuHE
adopts the cyclic convolution-based four-step Fast Fourier
Transform (FFT) algorithm [28] to implement NTT. How-
ever, it requires polynomial length doubling and additional
polynomial reduction operation, causing heavy computa-
tion overheads. Another study[29] reduces the overhead
through a GPU global synchronization-based NTT with neg-
ative wrapped convolution. However, it does not fully exploit
thread-level parallelism, causing long synchronization
delays and hurting performance.

In this paper, we present HE-Booster, an efficient GPU-
based FHE acceleration design. The primary contributions
are listed as follows:

� For single-GPU acceleration, we propose a thorough sys-
tematic design to map five common phases in typical FHE
schemes to the GPU architecture.(i) Performance-criti-
cal NTT/INTT operations involve multiple stages,
and these stages proceed sequentially due to data
dependencies. In conventional design, a thread can-
not be executed until all threads in the previous
stage are completed, causing a long synchronization
delay. Specifically, the coarse-grained global synchroni-
zation can be translated into local synchronization of
massive fine-grained thread pairs, that is, a thread of
the current stage depends only on another thread
of the previous stage in addition to itself. Moreover,
this regularity provides an opportunity to identify
stable and ordered dependencies between threads.
Therefore, HE-Booster employs a synchronization
trigger to capture the dependency precisely and
adopts inter-thread local synchronization to allow
threads to be executed as early as possible. Experi-
ments demonstrate that local synchronization intro-
duces up to 1.9� performance boost for a single NTT
execution. (ii) For CRT and ICRT phases, we propose
transpose to improve the memory access efficiency of
the coefficients matrix for the first time. (iii) For
Operation phase, we utilize kernel fusion to improve
GPU resource utilization and reduce overall launch
overhead effectively.

� For multi-GPU acceleration, we propose a scalable paral-
lelization design that exploits fine-grained data-level par-
allelism.We observe that homomorphic operations
majorly involve numerous calculations of polyno-
mials in different representations (e.g., CRT and
NTT representations.). These polynomials are calcu-
lated from original coefficient matrices. And the size
of each matrix is large and can thus be partitioned
for parallel execution. Therefore, in the case of the
acceleration on multiple GPUs, the opportunities
come from the tremendous data-level parallelism pro-
vided by those large coefficient matrices, which can
be exploited to map the same task on multiple GPUs
to process different data partitions. Since these coef-
ficient matrices are usually processed in different
patterns or granularity, three typical data partitions
strategies are adopted accordingly at different stages
of homomorphic multiplication.

� We implement HE-Booster based on CUDA and evaluate
overall performance on realistic NVIDIA GPU server.
For single-GPU implementation, HE-Booster can
produce 251.7�, 78.5� and 164.9� speedup com-
pared to three CPU-based libraries HElib, SEAL, and
PALISADE. Meanwhile, up to 170.5� performance
improvement is achieved compared to the GPU-
based library cuHE. For multi-GPU acceleration,
implementing 8 homomorphic multiplications on 8
GPUs can deliver up to 7.66� performance improve-
ment compared to a single GPU. Furthermore, we
implement the encrypted inference with a plaintext
CNN model and encrypted MNIST images based on
HE-Booster. Compared to the state-of-the-art HCNN
[10] with 1 GPU, running such encrypted inference
with HE-booster on 1 GPU achieves 1.23� speedup.
And this speedup increases to 4.3� on 8 GPUs.

2 BACKGROUND

In typical FHE schemes, BGV[12] and BFV[13], [14] perform
exact arithmetic on integer, and CKKS[15] supports approx-
imate arithmetic on complex or real numbers. They are all
built on the ring-learning-with-errors (RLWE) assumptions
to guarantee security[30]. Although these schemes differ in
their encryption methods, they all use the same data struc-
ture (e.g., polynomial) to represent ciphertext. It means the
parallel algorithms used to speed up computation are simi-
lar. Moreover, their fundamental homomorphic operations
are similar and share common ciphertext maintenance tech-
niques (e.g., key switching). Therefore, these commonalities
lend us an opportunity to present a general FHE accelera-
tion design. For concreteness, we use the BGV scheme as
the example to introduce FHE in Section 2.1. Besides, we
describe two popular parallel acceleration algorithms in
Section 2.2.

2.1 BGV Scheme

In BGV scheme, the plaintext modulus t and ciphertext
modulus Q determine plaintext space Rt ¼ Zt=ðXN þ 1Þ
and ciphertext spaces RQ ¼ ZQ=ðXN þ 1Þ respectively,
whereQ� t andN is a power of 2. For example, BGV enco-
des each plaintext vector into a polynomial m 2 Rt, like
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m ¼ m0 þm1xþ � � � þmN�1xN�1 2 Rt:

Each plaintext is encrypted into a ciphertext consisting of a
pair of polynomials, and each polynomial contains N coeffi-
cients modulo Q. Note that all polynomial operations are
modulo Q andXN þ 1.

Encryption and Decryption: The secret key is uniformly
sampled in f�1; 0; 1g, denoted as s Xkey. To encrypt a
plaintext m, it samples a uniformly random a RQ, an
error e X err and computes the ciphertext ct as

ct ¼ ðb; aÞ ¼ ð�asþ teþm; aÞ:

To decrypt the ciphertext ct, it computes b + a � s and
modulo t to recover plaintext m.

Homomorphic addition (HEADD) of two ciphertexts ct0 ¼
ðb0; a0Þ and ct1 ¼ ðb1; a1Þ can be achieved by the polyno-
mial-wise addition: ctadd = (a0 þ a1, b0 þ b1).

Homomorphic multiplication (HEMUL) reqiures two steps.
First, the tensor product of two ciphertext is computed as
follows:

ct� ¼ ðc0; c1; c2Þ ¼ ðb0b1; a0b1 þ a1b0; a0a1Þ:

The ciphertext ct� can be regarded as a intermediate
result under a different secret key. Second, a critical cipher-
text maintenance technique, called key switching, is
employed to recover the original 2-dimension result. Specif-
ically, two key switching implementations can be adopted.

In the Brakerski-Vaikuntanathan (BV) variants[13], key-
switching matrices are computed: ksm = (ksm[k][0], ksm[k][1])
= (�aksþ tek þ vks2, akÞ, where radix v� Q, lv;Q =
blogvQe þ 1 and 0 � k < lv;Q. It first performs digit decom-
position on c2 to produce c

ðkÞ
2 : c2 =

Plv;Q�1
k¼0 c

ðkÞ
2 vk. Then, the

multiplicative accumulation (MAC) operation is computed
to produce

ðl0; l1Þ ¼
 Xlv;Q�1

k¼0
ksm½k	½0	 � cðkÞ2 ;

Xlv;Q�1
k¼0

ksm½k	½1	 � cðkÞ2

!

and the final ciphertext result can be computed: ctmul = (c0 +
l0, c1+ l1).

In the Gentry-Halevi-Smart (GHS) variant [31], it needs
to temporarily extend the size of Qwith another modulus P
and generates the key-switching keys ksk = (ksk1, ksk2) = (b0,
a0) 2 R2

PQ where a0  RPQ and b0 = �a0sþ te0 þ Ps2 2 RPQ.
Then it performs

ðl0; l1Þ ¼ ðbP�1 � c2 � ksk1e; bP�1 � c2 � ksk2eÞ
and the final ciphertext result can be computed: ctmul = (c0 +
l0, c1+ l1). Besides, a hybrid version combining both methods
is proposed to balance the tradeoff between the complexity
and the modulus increase [32], [33], [34].

Homomorphic Rotation (HEROT) provides a complete set of
operations over packed plaintext vectors in the encrypted
form [35]. Generally, in the HEROT implementation, an auto-
morphism should be computed first on the packed ciphertext,
which can be expressed as cts=(skðb), skða)). Specifically,

skðaÞ : ai ! ð�1Þsaik mod N for i ¼ 0; 1; :::; N � 1

where k is a positive odd less than N and s ¼ 0 if ik mod 2N
< N , and s ¼ 1 otherwise. Like HEMUL, HEROT requires a
key switching process to compute the final results: ctrot=
(l0+skðb), l1), where (l0, l1) = KeySwitching(skða)).

Besides, modulus switching technique can avoid the noise
explosion during the computation. It usually switches the
ciphertext from the current space RQ to a smaller space RQ0 ,
achieving a proportional noise reduction, which can be
expressed as ct0=bQ0Q cte.

Based on the above overview, we can see that FHE
involves massive polynomial arithmetic, which becomes
the primary performance bottleneck.

2.2 Parallel Algorithms

Chinese Remainder Theorem (CRT): Translate expensive multi-
word arithmetic into parallel lightweight polynomial vector opera-
tions. FHE usually requires a wide ciphertext space RQ with
hundreds or thousands of bits, causing expensive multi-
word arithmetic. CRT addresses this problem by reducing
multi-word polynomial coefficients to multiple indepen-
dent small-integer polynomial vectors. For instance, the
ciphertext modulus Q is usually defined as the product of
distinct primes Q =

QL
i¼1 qi, where qi fits in a single or dou-

ble word. Then, a polynomial in RQ can be represented as L
polynomials in sub-space Rq1 , � � � , RqL . As a result, CRT
translates a complex multi-word polynomial arithmetic into
L parallel lightweight computations. Besides, there is an
obvious observation that the bit-width of the qi will affect
the number L of parallel sub-spaces.

Number-Theoretic Transform (NTT): Convert polynomial vectors
into point-valued representations, reducingmultiplication complexity
from OðN2Þ to OðNlogNÞ. Polynomial multiplication is com-
mon in cryptographic algorithms. Using conventional convolu-
tion coefficient method induces OðN2Þ time complexity. Thus,
NTT [36], a special generalization of the FFT [28], canbe applied
to reduce computation complexity to OðNlogNÞ. Specifically,
NTT converts a length-N polynomial vector into its point-val-
ued representation. Then, polynomial multiplication can be
achieved by element-wise multiplication in the NTT domain.
This process can be expressed as NTTðabÞ ¼ NTTðaÞ 
 NTTðbÞ
, where 
 denotes element-wise multiplication (i.e., hadamard
product). There are twomethods to implement NTT: cyclic con-
volution and negative wrapped convolution. Compared to the for-
mer, the latter has better performance since it can eliminate the
polynomial length doubling. It is worth noting that polyno-
mials represented in the NTT domain can avoid unnecessary
transformations across operations. It should be noted that the
NTT is a linear transformation, so addition and automorphism
operations can also be computed in theNTTdomain.

3 HE-BOOSTER ON A SINGLE GPU

3.1 Working Flow of HE-Booster

To accelerate FHE, it is natural to introduce parallel algo-
rithms into GPU many-core architectures. Moreover, the
acceleration process of ciphertext computation is essentially
an ordered dataflow graph, and its critical path can be
divided into five phases: CRT and NTT for the forward
transformation, FHE operations, INTT and ICRT for the
backward transformation [24], [25], [26], [37]. Therefore,
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this paper focuses on these five phases to build an efficient
FHE acceleration design.

Typically, in a GPU hardware architecture and program-
mingmodel, theGPUkernel execution utilizesmassive threads
to process data in parallel. These threads are organized into
multiple threadblocks (TBs), andTBs are assigned to Streaming
Multiprocessors (SMs). Different TBs can share the same SM,
but each TB can only be executed within a single SM. Further,
threads in a TB are grouped into multiple warps, which are
mapped to successive Streaming Processors (SPs). Then, these
warps run in an arbitrary order managed by the warp sched-
uler. Data required in programs are moved fromCPUmemory
to GPU global memory (GMEM), and then to L2 cache, L1
cache, and registers successively. Frequent access data may be
loaded into sharedmemory (SMEM) for better performance.

Following the above design principles, we can efficiently
map five phases to the GPU architecture. Fig. 1 shows our
design overview. In the working flow of HE-Booster, five
phases have their kernels and are executed sequentially.
First, CRT kernels take coefficient representations (Coeff
Rep.) and convert them to CRT representations (CRT Rep.).
Then, CRT Rep. is consumed by NTT kernels and converted
into NTT representations (NTT Rep.). After FHE computa-
tion in the Operation phase, the resulting NTT Rep. is recov-
ered to Coeff Rep. through INTT and ICRT phases. We will
describe each phase in detail below.

Phase 1: CRT decomposes ciphertext space into multiple
independent sub-spaces, providing an opportunity to uti-
lize the GPU parallel architecture. Specifically, each thread
in the CRT kernel performs coefficient reduction operation to
transform multi-word coefficients in ciphertext space into
multiple independent single- or double-word residues. HE-
Booster focuses on optimizing memory access efficiency in
this phase and introduces transpose optimization to improve
the memory access efficiency of the coefficient matrix for
the first time. Specific design is shown in Section 3.2.

Phase 2: NTT is processed in multiple stages, in which
each thread performs Cooley-Tukey (CT) butterfly [38] of dif-
ferent coefficient pairs. There exist strict data dependency
between each stage. Conventional design [29], [39] employs
coarse-grained global synchronization to guarantee the cor-
rectness. In this case, a thread cannot be executed until all
threads in the previous stage are completed, causing long
synchronization delays. Fortunately, we find that the NTT
implementation exhibits regular locality. Specifically, stage-
to-stage global synchronization can be translated into local

dependencies of massive fine-grained thread pairs, that is, a
thread of the current stage depends only on another thread
of the previous stage in addition to itself. Moreover, this
regularity enables us to identify stable and ordered depen-
dencies between threads. Inspired by this observation, we
propose an efficient inter-thread local synchronization and
employ synchronization trigger to capture the dependence
precisely, allowing threads to be executed as early as possi-
ble. Details are shown in Section 3.3.

Phase 3: Operation performs dyadic computation on vectors
in the NTT domain. Specifically, each thread computes ele-
ment-wise modular addition and multiplication according to
specific computing logic. The computationally intensive key
switching process entails performing dyadic kernels many
times, resulting in dramatic launch overheads. As a widely
used technique to improve computing performance, kernel
fusion can fuse small-size kernels that are frequently launched
into large-size one that only need to be launched once. It can
significantly reduce launch overhead and improve memory
access efficiency. Section 3.4 demonstrates the details.

Phase 4: INTT uses the same synchronization mechanism
as NTT. It is slightly different from NTT in that each thread
computes Gentleman-Sander (GS) butterfly operations[40].

Phase 5: ICRT reconstructs multiple residue polynomials
(independent sub-spaces) into a single polynomial (cipher-
text space) with multi-word coefficients. In the ICRT kernel,
each thread will performs coefficient reconstruction operation
to recover a ciphertext polynomial coefficient.

3.2 CRT and ICRT Phases Acceleration With
Memory Access Optimizations

HE-Booster focuses on optimizing memory access effi-
ciency, and also optimizes the transformation efficiency and
calculation efficiency with classic approaches in the CRT
and ICRT phases. Specifically, In CRT phase, each coefficient
of a polynomial in ciphertext space (Q ¼QL

i¼1 qi) is per-
formed with a modulo operation. According to the repre-
sentation of x,

x ¼ x1ð264Þ0 þ x2ð264Þ1 þ � � � þ xdð264Þ

a residue vector {xmod q1, xmod q2, � � � , xmod qL} is gener-
ated. ICRT phase reconstructs multiple parallel sub-spaces
into original ciphertext space.

Introduce transpose to improve memory access efficiency of coeffi-
cients matrix for the first time. During the CRT phase, all source

Fig. 1. Working flow of HE-Booster on a single GPU.
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data locates in coefficients matrix, and each thread frequently
loads corresponding xk (1 � k � d) from coefficients matrix
and then xk is mod by CRTmoduli q ({q1; q2; � � � ; qL}). In a typi-
cal NVIDIAGPUdesign, 32 threads are grouped to awarp and
all their memory accesses share the same load port. Notably, 32
threads in a warp require to load 32 xk for parallel execution.
Unfortunately, the 32 xk in the coefficientmatrix is not contigu-
ous and they have to be loaded in the strided style, as shown in
Fig. 2. For instance, when d equals 8 and the cache line size is
64B, loading 32 double-word xk in a warp requires 32 memory
requests, inducing severe pipeline stalls. To address this issue,
when these xk are loaded from GMEM to low-latency SMEM
[41], [42], we transpose the coefficients matrix. After the trans-
pose operation, accesses to xk is changed from column to row.
For subsequent parallel execution, the xk in different threads of
the same warp belong to the same row, and their access effi-
ciency can be significantly improved since their addresses are
contiguous [43].

Employ classical algorithms to improve transformation effi-
ciency. As for transformation from ciphertext space to
sub-spaces in the CRT phase, we employ the Barrett Reduc-
tion [44] to replace costly modulo with lightweight multipli-
cation, shifting, and subtraction. During the transformation
from sub-spaces to the ciphertext in the ICRT phase, Gar-
ner’s algorithm [45] is utilized to decrease the number of
modulo operations through mixed-radix representation.
This implementation is similar to existing acceleration
mechanisms [25], [27].

Implement double-word arithmetic to improve calculation
efficiency. CRT moduli can be represented as 32-bit or 64-bit
integers in typical CPU-based FHE designs [32], [46],
[47]. However, in state-of-the-art GPU-based acceleration
schemes [24], [25], [27], [48], [49], only 32-bit (single-word)
representation is implemented. In our design, we utilize
carry operation instructions (e.g., addc, subc, and madc) in
CUDA PTX assembly language [50] to implement the fun-
damental arithmetic. With these instructions, multi-word
arithmetic can be processed as efficiently as computation
without emulation [48]. Specifically, through implementing
the performance-critical double-word shifting operation in
Barrett Reduction, more instruction-level parallelism and
high efficiency can be achieved. Furthermore, both mixed-
radix modulo operations and lightweight accumulation
methods are supported in the Garner’s algorithm.

3.3 NTT and INTT Phases Acceleration With Inter-
Thread Local Synchronization

An NTT operation is processed in multiple stages. Specifi-
cally, an N-point NTT operation has logN stages, and these

stages proceed successively due to the data dependencies.
Then, stage-to-stage synchronization is necessary.

In the conventional implementations, each thread can be exe-
cuted only when all threads in the previous stage are completed,
noted as inter-block global synchronization . Fig. 3 shows an
example of an 8-point NTT with this method, which exe-
cutes with four GPU threads, and each thread processes
two elements at each stage. There are several representative
methods in the literature: On the CPU side, the synchroniza-
tion can be achieved through launching kernel logN times,
which induces substantial launch overheads [29]. Alterna-
tively, on the GPU side, the synchronization can be
achieved through a global synchronization function inside
the kernel [39]. However, coarse-grained global synchroni-
zation causes a long waiting delay and hurts performance.

Fortunately, we find that NTT and INTT implementations have
regular locality, and the coarse-grained global synchronization can
be translated into local synchronization of massive fine-grained
thread pairs. In this way, a thread in the current stage only depends
on another thread in the previous stage in addition to itself. More-
over, this regularitymakes the dependencies between threads
quite stable and orderly. As shown in Fig. 4, the true inter-
thread dependencies are extracted from Fig. 3. For instance,
thread 0/2 in stage 1 only depends on thread 0 and thread 2
in stage 0. Thread 0/1 in stage 2 only depends on thread 0 and
thread 1 in stage 1. A similar dependence relationship can be
observed for other threads. In conclusion, a thread can be exe-
cuted when corresponding interdependent threads (noted as
thread pair) are finished. As long as the interdependent thread
pair can be identified precisely for each thread, a thread can be
executed as early as possible. Fig. 5 illustrates the inter-block
global synchronization and inter-thread local synchronization
in principle. Local synchronization decreases thewaiting time
for global synchronization, leading to a remarkable perfor-
mance gain.

Fig. 2. Coefficient matrix transpose in CRT.

Fig. 3. 8-point NTTwith inter-block global synchronization.

Fig. 4. True inter-thread dependency in 8-point NTT. Threads connected
with lines in same color form a thread pair.
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To support the local synchronization, it is necessary to
precisely identify thread pairs that change dynamically in
different stages. We allocate a synchronization trigger vector
along with the intermediate data, such as the array x’ and
x” in Fig. 3. Each bit in this vector indicates whether the cor-
responding data is ready for usage in the subsequent stage.
For instance, when thread 0 in stage 0 finishes, trigger bits
corresponding to x’[0] and x’[4] are set. Then, thread pairs
can be identified according to the data required for a thread
in subsequent stages. As for thread 0 in stage 1, it can be
executed when x’[0] and x’[2] are ready. Then, as long as
threads 0 and 2 in stage 0 finish and trigger bits related to x’
[0] and x’[2] are set, thread 0 in stage 1 can be executed.
Algorithm 1 presents the inter-thread local synchroniza-
tion-based NTT implementation. The conventional global
method synchronizes all threads after executing the CT but-
terfly operation. The local method reverses the two proce-
dures in execution order. Specifically, it identifies and
synchronizes the thread pairs by checking the synchroniza-
tion trigger vector (i.e., tribit) before computation.

Algorithm 1. Inter-tHread Local Synchronization-Based
NTT

Input:
A vector x in a natural order, Crev stores the powers of c in a

bit-reversal order, where c is called the 2N-th root of unity sat-
isfing the condition c2N = (1 mod q).
Output:
A vector x NTTðxÞ in a bit-reversal order.
1: thread_id = Global index of thread in GPU;
2: for (length = 1; length < N ; length *= 2) do
3: step =N / length / 2;
4: psi_step = thread_id / step;
5: arr_idx = 2 � psi_step � step + thread_id % step;
6: psi_idx = length + psi_step;
7: Psi =Crev[psi_idx];
8: // Wait the trigger bits of corresponding thread pairs

in prior stage to be set.
9: Local_sync(tribit[arr_idx], tribit[arr_idx+step]);
10: // Perform Cooley-Tukey butterfly operation.
11: U = x[arr_idx];
12: V = x[arr_idx+step] � Psi (mod q);
13: x[arr_idx] = U + V (mod q);
14: x[arr_idx+step] = U - V (mod q);
15: end for
16: return x

3.4 Operation Phase Acceleration With Kernel
Fusion

Homomorphic operations in FHE usually involves massive
small-size kernel execution, causing dramatic launch over-
heads, and each kernel processes a small amount of data,
causing huge launch overhead and low GPU resource utili-
zation. Fortunately, enabled with kernel fusion technique [51],
these kernels can be merged into a single large-size kernel
for performance improvement. Fig. 6 shows an example of
utilization improvement. For an inner-product of two
32768�50 matrices, launching 100 kernels without kernel
fusion (Non-KF) has 2.57% and 10.72% utilization for SM
and Memory respectively. After employing kernel fusion,
the utilization rates are improved to 18.47% and 73.8%
respectively.

Kernel Fusion in Inner Product. Key switching process com-
putes the inner products of decomposed polynomial c

ðkÞ
2 and

the key-switching matrix (ksm[k][0], ksm[k][1]) in the BV
implementation. Under the NTT representation, the inner
product takes the form of l0 =

Plv;Q�1
k¼0 ksm[k][0]
 c

ðkÞ
2 and l1 =Plv;Q�1

k¼0 ksm[k][1] 
 c
ðkÞ
2 . In conventional implementation, 2

(lv;Q-1) DyadAdd and 2lv;Q DyadMul kernels are launched to
perform element-wise addition and multiplication. In each
DyadAdd or DyadMul kernel, NL times computations are exe-
cuted and 4NLlv;Q times memory accesses are issued. With
kernel fusion, all the DyadAdd and DyadMul kernels can be
merged into a single kernel, introducing three benefits: (i)
Only one kernel launch time is required instead of 4lv;Q-2 ker-
nels. (ii) For the repeated access to the same decomposed pol-
ynomials c

ðkÞ
2 , half of the memory accesses can be avoided.

(iii) Each thread performs 2Llv;Q modular multiplications
and 2Lðlv;Q-1) modular additions instead of only L opera-
tions. Then, thismethodmakes full use of GPU resources.

Fig. 7 demonstrates the process to implement the inner
product l0 with and without kernel fusion. In this figure,
two L� lv;Q matrices, ksm[k][0] and c

ðkÞ
2 , are denoted as

KSM0 and DP respectively. Fig. 7a shows the traditional
method, in which lv;Q column-level multiplication and later
lv;Q-1 column-level addition are implemented with inde-
pendent DyadMul and DyadAdd kernels. We call this method
a simple multiplicative accumulator (SMAC). In contrast,
fusing all column-level multiplications and accumulations
into only one kernel launch is employed in the Fig. 7b, noted
as a fused multiplicative accumulator (FMAC).

Kernel Fusion in Basic Operations. Besides the inner product
computation, the kernel fusion technique can also be employed
to accelerate basic homomorphic addition and multiplication.
Homomorphic multiplication usually requires four DyadMul

kernel launches and a DyadAdd kernel launch. With kernel
fusion, a single large-size kernel can be launched to reduce the
number of memory accesses from 8N to 4N. In addition, kernel
fusion can fuse two DyadAdd kernel launches in homomorphic
addition into one launch.

Fig. 5. Execution time comparison between inter-block global synchroni-
zation and inter-thread local synchronization.

Fig. 6. Hardware utilization evaluation for kernel fusion.
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4 HE-BOOSTER ON MULTIPLE GPUS

In supercomputing and cloud scenarios, multiple GPUs are
usually integrated with the same high-performance server
node. Thus, it is worth investigating the FHE acceleration
on multi-GPU systems. A straightforward method is assign-
ing different FHE operations to different GPUs in a opera-
tion-level granularity. Essentially, this is a task scheduling
mechanism. Instead, this paper focuses on accelerating a
single FHE operation on multiple GPUs because such fine-
grained parallelization is critical for a scalable design.

Among the homomorphic operations, homomorphic
multiplication (HEMUL) and homomorphic rotation
(HEROT) suffer from significantly higher computation
overhead than homomorphic addition (HEADD). Both
HEMUL and HEROT require computationally expensive
key switching operations to maintain the ciphertext, which
dominates the cost of the entire workflow. In contrast,
HEADD only involves simple polynomial-wise addition
with negligible computation cost. Therefore, it is critical to
figure out how to execute key switching operations in parallel
on multiple GPUs for overall performance gain. Further,
due to the commonality, this paper primarily takes HEMUL
as an example to present our design.

As we can see from the typical workflow of HEMUL in
Fig. 8, HEMUL mainly involves the calculation of several
polynomials in different representations (e.g., CRT and
NTT representations). Actually, these polynomials are
transformed from original coefficient matrices. And the size
of each matrix is large and can thus be partitioned for paral-
lel execution. Therefore, in the case of the acceleration on
multiple GPUs, the opportunities come from the tremen-
dous data-level parallelism provided by those large coefficient
matrices, which can be exploited to map the same task on
multiple GPUs to process different data partitions. Note
that HE-Booster on a single GPU primarily exploits the
thread-level parallelism, such as the local synchronization in
the NTT phase. And the task running on each GPU still
applies the single-GPU acceleration design.

Since the polynomials represented by coefficient matrices
are usually accessed with different patterns or granularity,

three typical partitions on data-level parallelism are accord-
ingly adopted in HE-Booster for different stages:

� Partition at the sub-space granularity for transformation
between NTT and CRT representation.The CRT-to-NTT
or NTT-to-CRT transformation of each sub-space can
be processed independently. Thus, each polynomial
can be partitioned into several sub-spaces, and one
or multiple sub-spaces can be assigned to a GPU
(Fig. 9a).

� Partition at the segment granularity for calculation in
NTT representation.Each element is calculated (e.g.,
addition and multiplication) without any depen-
dence on any other element. Therefore, each sub-
space can be further divided into multiple sets
consisting of several elements, and each set is named
as one segment in this paper. Naturally, one or mul-
tiple segments can be mapped on a GPU (Fig. 9b).

� Partition at the column(s) granularity for calculation in
CRT representation.Data in one or multiple columns
can be independently calculated (e.g., modulus up
(ModUp) and modulus down (ModDown)). Then, the set
of several columns from all sub-spaces can be
mapped to a single GPU (Fig. 9c).

Given those partition strategies, two important decisions
need to be made. First, how many HEMUL operations can
be partitioned uniformly on a single GPU. Second, how
many GPUs can be employed for the acceleration of specific
FHE parameters to get the balance between performance
speedup and cost. They are highly dependent on the work-
load and the GPU hardware configurations, which are eval-
uated in Section 5.3.

5 EVALUATION

5.1 Methodology

Software and Hardware Configuration. Our GPU server has
dual-socket CPUs (Intel 10-core 3.7GHz i9-10900K CPU)
and 128GB memory. For single GPU acceleration, a main-
stream GPU card, NVIDIA GeForce RTX3070 GPU (5888
cores, 1.5 GHz) is selected. And for multiple GPUs accelera-
tion, we select a high-performance server node equipped
with 8 NVIDIA Tesla V100s (each GPU has 5120 cores and
the frequency is 1.53 GHz). In addition, the operating sys-
tem is Ubuntu 18.04.5. Our implementation is developed on
CUDA Toolkit 11.2. The compiler tools include GCC 9.0.0
and CMake 3.19.3. We use the NTL library (version 11.5.3)
as the arithmetic interface between CPU and GPU. NVIDIA

Fig. 7. The inner product implementation of the key switching process
with and without kernel fusion.

Fig. 8. A typical workflow of HEMUL.
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Nsight Compute tools [52] are used for profiling. We denote
FHE parameter sets as (logN, logQ, L) (e.g., (13,224,4))
throughout this paper. Note that the FHE parameters in our
BGV implementation provide at least 80-bit security level,
which guarantees security [53].

Benchmarks. First, we evaluate the fine-grained optimiza-
tions involved in each phase of HE-Booster. Second, we con-
duct a breakdown of polynomial multiplication to analyze
the performance gains compared to the GPU-accelerated
library cuHE [24]. Third, to evaluate BGV primitives, we
compare HE-Booster with three widely used CPU-based
FHE libraries: HElib (version 2.2.1) [46], SEAL (version
4.0.0) [54] and PALISADE (version 1.11.2) [55]. Further-
more, we evaluate the CKKS primitives to demonstrate the
scalability of HE-Booster. Besides, a detailed performance
analysis of HEMUL acceleration on multiple GPUs is con-
ducted. Finally, to further demonstrates the generalization
of HE-Booster, we evaluate the performance of a typical
encrypted inference implementation on both single-GPU and
multi-GPU system.

5.2 Performance Analysis of Single-GPU
Acceleration

(1) CRT/ICRT Phase Acceleration. Fig. 10 shows the perfor-
mance of CRT and ICRT kernel in single-word and double-
word settings. It can be observed that in both CRT and ICRT
phases, using double-word CRT moduli achieves a remark-
able performance improvement than single-word moduli.
First, in our case, the double-word setting reduces the compu-
tation by half compared to the single-word. Second, while
double-word arithmetic requires more transformation over-
head, CUDA PTX assembly language is employed to reduce
these transformations, achieving the performance benefits

close to single-word arithmetic. Based on the above two
points, double-word implementation can achieve a good bal-
ance between transformation overhead and computational
efficiency. Therefore, it brings significant performance gains.
Besides the double-word support for ICRT in cuHE,we evalu-
ate the implementation based on Garner’s algorithm. Experi-
ments demonstrate that Garner’s algorithm performs much
better than cuHE, especially for large parameters.

(2) NTT/INTT Phase Acceleration. The performance of
inter-thread local synchronization (Local sync), typical inter-
block global synchronization, and implementations in cuHE
are evaluated. We set the polynomial length, ranging from
211 to 216. Corresponding performance is evaluated when
the bit width of q is set to 28 and 56. Seven methods are
listed below except our method:

� CPU_sync [29] launches kernels repeatedly;
� Lock-based [39] employs a global mutex;
� Tree-based [39] uses multiple mutexes in tree

topology;
� Lock-free sync [39] utilizes two arrays to coordinate

the synchronization requests;
� Cooperative groups introduced in CUDA 9 [56];
� Hybrid method [29] combines CPU_sync with block-

level synchronization function __syncthreads().
� cuHE uses four-step FFT based on cyclic convolution

and only only supports three lengths: 213, 214, and 215.
Fig. 11 shows the execution time of an NTT/INTT with

all kinds of synchronization methods. It can be observed
that our local synchronization method (Local sync) has the
best performance. For each synchronization method, the
NTT performance is similar to INTT. Thus, considering
the page limits, we take NTT as an example. Compared to
cuHE, Local sync can achieves 1.4�, 1.5�, 1.7� speedup
respectively under the cases of logN=13, 14, 15. When
logN=15, Local sync achieves 1.2� and 1.7� performance
speedup than Lock-based and Hybrid method respectively
under the single-word setting. Under the double-word set-
ting, 1.3� and 1.9� speedup can be introduced. A similar
performance improvement is obtained for other polynomial
lengths. We remark that when logN=16, our GPU fails to
execute 32768 threads in parallel due to resource limitations.
Instead, launch 16384 threads, each of which operates with
four elements instead of two, decreasing the processing effi-
ciency. However, even in this case, our method still achieves
1.2� speedup over the Lock-based implementation.

Fig. 9. Three data partition strategies on multi-GPU acceleration.

Fig. 10. Performance (microsecond) of CRTand ICRT.
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To better understand the waiting delay induced by GPU-
based synchronization, we measure the average stalling
cycles for instructions through kernel profiling with Nsight
Compute tools [52]. Results shown in Fig. 12 demonstrate
that Lock-based performs the best compared to other global
synchronization. Our local synchronization (Local sync)
induces the least latency compared to all GPU-based global
synchronization.

(3) Operation Phase Acceleration. This paper conducts fine-
grained experiments to evaluate the execution time of
SMAC and FMAC in the key switching process. Table 1
shows the performance speedup achieved by FMAC over
SMAC under different radixes. When setting radix v to 2,
SMAC incurs huge performance overheads due to massive
kernel launches. With the same configuration, FMAC pro-
duces a maximum speedup of 4.3�. As the radix increases,
FMAC still has more than 2.1� performance speedup.
Therefore, the kernel fusion technique can greatly boost
computation efficiency for key switching.

(4) Evaluation of Polynomial Multiplication in BGV scheme.
Taking the representative polynomial multiplication in FHE
as an example, we can better understand the acceleration

effect produced by each phase of HE-Booster through fine-
grained breakdown. Current state-of-the-art GPU-based

cuHE is selected as the baseline. Note that cuHE (denoted
as CH) only supports single-word implementation. Mean-

while, we implement single-word and double-word

polynomial multiplication based on HE-Booster, denoted as

SW and DW respectively. In addition, we use the batch tech-

nique, for both two settings (denoted as SWB and DWB

respectively), to process polynomial vectors in NTT/INTT

phase through launching only one kernel. Three kinds of

parameter configurations are evaluated for each method.

For instance, DWB1 runs the first configuration with dou-

ble-word batchNTT.
Fig. 13 demonstrates the performance profiling results.

Three observations can be concluded: (i) Under the single-
word setting without batch NTT (SW), our work achieves a
3.9��4.3� performance speedup compared to cuHE (CH). It is
worth noting that in cuHE, the reduction operation occupies
more than 58.1% execution time. In our implementation, nega-
tive wrapped convolution is employed to eliminate reduction
and the performance is improved significantly. (ii) With dou-
ble-word settings without batch NTT (DW), 1.4��1.7�
speedup is achieved than the single-word settings without
batch NTT (SW). The reason is that the time to perform a single
NTT transform is similar for SW and DW settings, but SW
requires almost twice NTT transforms than DW under the
same parameters. (iii)Using batchNTT reduces the proportion
of NTT/INTT in the total execution time and provides better
performance. For instance, employing batch NTT can reduce
the proportion of NTT from 84.1% to 56.7% in single-word set-
tings. Combining all optimizations proposed in this paper, the
double-word setting with batch NTT (DWB) achieves
9.3��13.3� performance speedup compared to cuHE.

Fig. 11. Performance (microsecond) of NTTand INTTunder different synchronization methods.

Fig. 12. Pipeline stall during kernel execution under different synchroni-
zation methods.

TABLE 1
Performance (Microsecond) of Inner Product of the Key Switch-

ing and Speedup S (SMAC Versus FMAC)

logv (13,224,4) (14,448,8) (15,896,16)

SMACFMAC S SMAC FMAC S SMAC FMAC S
1 2408.4 558.5 4.3�10268.1 3462.1 3.0�75609.329601.72.6�
5 483.7 130.1 3.7� 2125.8 732.2 2.9�12643.2 5549.7 2.3�
10 247.3 78.3 3.2� 1076.4 391.1 2.8� 6321.8 2829.7 2.2�
20 129.4 48.9 2.6� 550.2 217.5 2.5� 3160.5 1459.5 2.2�
30 86.2 37.8 2.3� 358.8 151.7 2.4� 2107.2 1009.3 2.1�
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(5) Evaluation of BGV primitives. Homomorphic opera-
tions, including homomorphic addition (HEADD), homo-
morphic multiplication (HEMUL) and homomorphic
rotation (HEROT) are fundamental primitives for com-
puting on packed ciphertext, and their performance
reflects the practicality of the implementation of FHE
schemes. Built on the HE-Booster, we implement the
BGV scheme on the GPU (denoted as BGVGPU) and
make a comparison with three widely used CPU-based
libraries HElib, SEAL, and PALISADE. We also imple-
ment the BGV scheme based on cuHE (single-word set-
ting). Note that since the execution time of encryption
and decryption is less, it is not considered for accelera-
tion by default. Furthermore, both HEMUL and HEROT
implementations involves the key switching operation.
The performance results are shown in Table 2.

First, for performance-critical HEMUL, HE-Booster
achieves the performance speedup of up to 251.7�, 78.5�
and 164.9� compared to HElib, SEAL, and PALISADE,
respectively. Second, for HEADD with low-performance
requirements, HE-Booster can bring up to 9.2�, 50.6� and
91.2� speedup compared to HElib, SEAL, and PALISADE.
Third, our implementation achieves 27.5�, 101.3�, and
170.5� speedup for HEMUL and 4.0�, 6.0� and 4.4�
speedup for HEADD over cuHE. It is worth noting that the
cuHE-based BGV implementation does not show significant
performance boosts, and is even slower than the CPU
implementations. It is mainly because the NTT implementa-
tion in cuHE needs to perform a polynomial reduction oper-
ation, causing a serious performance bottleneck (see Section
5.2(4)). Also, the cuHE does not employ the batch NTT
method to maximize parallelism. Furthermore, we evaluate
the performance of HEROT. Note that PALISADE does not
provide HEROT benchmark for the BGV scheme, thus we
do not consider it here. Table 3 shows that HE-Booster

produces up to 869.7�, 63.9� and 177.5� performance gains
compared to HElib, SEAL, and cuHE.

(6) Evaluation of CKKS primitives.We further extend to the
CKKS scheme (denoted as CKKSGPU) to demonstrate the
performance gains built on the HE-Booster. For comparison,
we use three CPU-based libraries (i.e., SEAL, HElib, and
PALISADE) as the baseline. cuHE is not considered due to
its poor performance in HEMUL and HEROT. Note that we
extend PALISADE’s benchmark to support the performance
evaluation of CKKS. Three homomorphic operations,
including HEADD, HEMUL, and HEROT are evaluated.
The performance results are shown in Table 4.

� The speedup of HEADD. HE-Booster produces similar
performance gains (e.g., 9.0� over HElib, 54.0� over
SEAL, and 91.8� over PALISADE) for accelerating
HEADD of BGV and CKKS. This is because theoreti-
cally BGV and CKKS have the same ciphertext size
and execution time under the same parameters
(polynomial length N, ciphertext modulo Q).

� The speedup of HEMUL. Although CKKS scheme
implemented by all three CPU software libraries per-
forms much better than the BGV scheme, our imple-
mentation brings 42.5�, 67.3� and 47.5� speedup
for HElib, SEAL, and PALISADE, respectively.

� The Speedup of HEROT. HE-Booster produces up to
45.3�, 66.7�, and 51.9� performance improvements
over HElib, SEAL, and PALISADE, which also
involve key switching operation and have compara-
ble performance to HEMUL.

Besides, we evaluate the ReScale operation, which can
divide a plaintext by an integer to remove some inaccurate
LSBs as a rounding step in usual approximate computa-
tions. We remark that HElib does not provide ReScale evalu-
ation in the CKKS benchmark, so it is not considered here.
Table 5 shows that HE-Booster produces 40.6� and 29.5�
performance boosts for SEAL and PALISADE, respectively.

5.3 Performance Analysis of Accelerating HEMUL
on Multiple GPUs

As shown in Fig. 14, we evaluate the execution time of per-
forming 1, 2, 4, and 8 BGVHEMULswith three configurations

(FHE parameters) on different numbers of GPUs (NVIDIA

Telsa V100). Overall, HE-Booster exhibits good scalability on

multiple GPUs. For example, under the FHE parameter of

(N=32768,L=16), mapping 8 HEMULs to 8 GPUs can achieve

more than 7.66� performance speedup compared to a single

GPU. Specific analysis is detailed as follows.

Fig. 13. Performance breakdown of polynomial multiplication in BGV
under different parameter sets.

TABLE 2
Performance (Millisecond) of BGV Homomorphic Addition and Homomorphic Multiplication and Speedup S1 (HElib Versus

BGVGPU), S2 (SEALVersus BGVGPU), S3 (PALISADE Versus BGVGPU) and S4 (cuHE Versus BGVGPU)
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� Because a single HEMUL with small FHE parame-
ters has less computation workload, partitioning
multiple HEMULs together can improve GPU utili-
zation. For instance, under the FHE parameter of
(N=8192,L=4), executing 2 HEMULs sequentially on
a single GPU takes 424us (2�212us). When divided
uniformly, most of the polynomials from the two
HEMULs can be computed in parallel and consume
only 334us.

� Since GPU computation resources are limited, proc-
essing too much data in a kernel results in worse per-
formance. Table 6 shows the execution time of the
most computation-intensive CRT-to-NTT transform
for executing 4 HEMULs while partitioning the dif-
ferent numbers of HEMULs uniformly. Under the
FHE parameter of (N=16384,L=8), partitioning 4
HEMULs requires 413us, which is much longer than
partitioning 2 HEMULs uniformly (250us).

� When the computation becomes intensive (e.g.,
increasing the number of HEMULs or using larger
FHE parameters), mapping them into multiple GPUs
can achieve significant speedup. Take the case of the
parameter (N=16384,L=8) as an example, 5.07�
speedup is observed when accelerating 1 MULs on 8
GPU. Accordingly, 7.19� speedup can be achieved
while mapping 8 HEMULs. Similar results can be
observed under other FHE parameters as well.

� Under the configuration of (N=8192,L=4), execut-
ing 8 HEMULs on 8 GPUs only introduces 1.57�
performance improvement compared to execution
on 4 GPUs. The reason is that the most time-con-
suming NTT and INTT can only be partitioned at
the granularity of sub-spaces. That is to say, NTT
and INTT can only be assigned to 4 GPUs, and
the performance improvement will be less if more
GPUs are used. In a real-life application, the com-
putation workloads can be profiled to determine
the number of GPUs to use for a better balance
between performance and cost.

5.4 Performance Analysis of an End-to-End
Application

With HE-Booster, we present a BGV-based encrypted infer-
ence implementation as an end-to-end application, which
generally takes server’s plaintext models (e.g., unencrypted
weights) and client’s ciphertext data. Specifically, a typical
five-layer CNN structure is used in many studies[7], [8], [9],
[10], which consists of:

� Convolution layer: This layer has five 5�5 filter ker-
nels and stride size of 2. A zero padding is added to
the original image. Therefore, the output size is
5�13�13.

� Activation layer: The square function is utilized to
approximate the nonlinear ReLU function.

� Dense (fully connected) layer: This layer is fully con-
nected with 845 input nodes and 100 output nodes,
which means multiplying by a matrix of size
845�100.

� Activation layer: This layer still squares the value of
each node, like step 2).

� Dense (fully connected) layer: This layer is fully con-
nected with 100 input nodes and 10 output nodes,
which means multiplying by a matrix of size 100�10.

Besides, we train the approximated model using PyTorch
library[57] on the MNIST dataset [58], which consists of
60,000 images (50,000 images for train and 10,000 images for
test) of hand written digits. Each image consists of 28�28
pixels, which is represented by its gray value between 0 and
255. Note that ciphertext batching usually brings a decent
amortized per instance time, but it makes no difference if 1
or 8192 instances are being processed (e.g., same number of
ciphertext). Therefore, in this case, we directly encrypt a sin-
gle MNIST image, resulting in 28�28 = 784 ciphertexts. The
encryption scheme is initialized on the client-side. Like
HCNN[10], we set the plaintext modulus to a 43-bit prime
number and the ciphertext modulus to a 330-bit prime num-
ber. In this way, the message size transferred from client to
server is 505.3 MB. The output of the network transferred
from server to client consists of 10 outputs of the final fully
connected layer, which has a size of 6.4 MB.

Table 7 lists the number of the homomorphic operations
(HOPs) of encrypted inference over a single encrypted image.
In particular, CT-CT Adds and CT-CT Mults denote
HEADD and HEMUL operation in BGV evaluation (as
shown in Table 2), respectively. (i) For single-GPU accelera-
tion: Table 8 lists five typical encrypted inference implementa-
tions. In particular, we use CryptoDL as the baseline due to
the same BGV scheme adopted. Meanwhile, we also list
recent implementations based on other FHE schemes. Spe-
cifically, HE-Booster achieves 61.0�, 76.2�, 9.3� and 2.21�

TABLE 4
Performance (Millisecond) of CKKS Homomorphic Addition, Homomorphic Multiplication, Homomorphic Rotation and Speedup S1

(HElib Versus CKKSGPU), S2 (SEALVersus CKKSGPU) and S3 (PALISADE (Denoted as PALI.) Versus CKKSGPU)

TABLE 3
Performance (Millisecond) of BGV Homomorphic Rotation and

Speedup S1 (HElib Versus BGVGPU), S2 (SEALVersus
BGVGPU) and S3 (cuHE Versus BGVGPU)

logN logQ Homomorphic Rotation

HElib SEAL cuHE BGVGPU S1 S2 S3
13 218 89.10 4.22 6.65 0.23 387.4� 18.4� 28.9�
14 438 307.00 24.21 64.89 0.61 503.3 � 39.7� 106.4�
15 881 2009.00 147.58 409.97 2.31 869.7 � 63.9� 177.5�
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speedup compared to CryptoNets[7], CryptoDL[8], Faster
CryptoNets (FCryptoNets)[9] and SHE [11]. It should be
noted that the speedup achieved on NN inference is slightly
smaller than HEADD and HEMUL of the BGV evaluation.
We conclude the following reasons.

� Different FHE parameter setting. The CPU-based
implementations employ smaller parameters (e.g.,
smaller ciphertext modulus) and thus have much
less ciphertext, involving less time-consuming
homomorphic operations (e.g., HEMults).

� FHE scheme they rely on. SHE[11] uses the bit-wise
TFHE scheme and quantifies the input data and
model weights to 0-1 bits. Similarly, CryptoNets[7]
uses the YASHE scheme[59], whose ciphertext con-
tains only one polynomial instead of a polynomial
pair. Thus, they significantly reduce the ciphertext
size and the computational complexity.

� Specialized model optimizations. Faster CryptoNets[9]
utilizes pruning strategy to reduce the number of
model weights and the number of homomorphic
operations (e.g., almost 1/10 of the original model).

Compared to the state-of-the-art GPU implementation
HCNN[10], HE-Booster also achieves a 1.23� performance
boost. The performance improvement over HCNN derives
from two major aspects. First, the BGV scheme used in HE-
Booster provides a faster homomorphic multiplication (e.g.,
CT-CT Mults here) than the BFV scheme adopted in HCNN
[32]. Second, our implementation involves fewer time-con-
sumingCT-CTMults thanHCNN. (ii) Formulti-GPU acceler-
ation: We further evaluate the performance of the multi-GPU
system. When using 2, 4, and 8 GPU cards, the time of one
encrypted inference is 2.8s, 2.1s, 1.2s, and the corresponding
speedup is 1.54�, 2.04�, and 3.58�.

6 RELATED WORK

Recently, utilizing hardware accelerators to improve FHE
performance has become of interest for researchers. In the

following, we review FHE acceleration implementation for
different hardware platforms.

GPU-Based FHE Acceleration. Wang et al. [60] propose the
first GPU acceleration method that targets Gentry-Halevi
[61] scheme. They present another work [62] later to acceler-
ate the learning-with-error (LWE) version of the BGV
scheme. However, they only provide optimization with the
CRT algorithm, instead of the complete procedure. Dong
et al. [63] utilize cuFFT library [64] to accelerate the BGV
encryption primitive in HElib library. Badawi et al. [25][49]
successively accelerate the BEHZ[65] and HPS[66] variants
of the original BFV scheme. We remark that their works
also adopt single-word CRT moduli. The difference is that
NTT is replaced by Discrete Galois Transform (DGT), which
requires additional pre-process and post-process on vectors.
Moreover, Badawi et al. [10] propose HCNN that imple-
ments BFV-based encrypted inference on a single GPU. Our
experiments demonstrate that HE-Booster has better perfor-
mance than HCNN. Furthermore, they present a multi-GPU
design[67] that implements the HPS variant of the BFV
scheme, in which complicated homomorphic multiplication
process demands more computation overhead. Compared
to their work, we propose three fine-grained data partition-
ing strategies for different stages in typical HEMUL work-
flow to achieve better scalability. For the CKKS scheme,
Jung et al. [26] utilize two kernels to accelerate NTT/INTT.
In the other work [68], they extend the acceleration to Resi-
due Number System (RNS) CKKS scheme[34], [69] with
large parameters. cuHE [24] is the current state-of-the-art
GPU-based implementation to accelerate polynomial arith-
metic. But its single-word CRT/ICRT is not adaptive, and
cyclic convolution-based NTT/INTT introduces perfor-
mance overheads. In our work, these issues are addressed,
and the experiments demonstrate that 8.0��12.1� perfor-
mance speedup is achieved compared to cuHE. Besides,
Shen et al. [70] propose CARM, targeting for accelerating the
BGV, BFV and CKKS schemes using GPU. However, they
fail to evaluate the complete homomorphic multiplication

Fig. 14. Performance evaluation of homomorphic multiplication on multiple GPUs.

TABLE 5
Performance (Millisecond) of CKKS ReScale Operations and

Speedup S1 (SEALVersus CKKSGPU) and S2 (PALISADE Ver-
sus CKKSGPU)

logN logQ
ReScale

SEAL PALISADE CKKSGPU S1 S2
13 218 1.02 1.18 0.06 17.0� 19.7�
14 438 4.51 2.78 0.13 34.7� 21.4�
15 881 18.29 13.26 0.45 40.6� 29.5�

TABLE 6
Execution Time (Microsecond) of CRT-to-NTT Transforms on a
Single GPUWhile Performing 4 HEMULs Through Uniform Par-

tition in Different Numbers of HEMULs

logN logQ

# HEMULs partitioned
uniformly

1 2 4

13 218 108 82 73
14 438 288 250 413
15 881 882 958 956
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primitive, especially the performance-dominant key-switch-
ing operation involved. Finally, targeting on Fully Homo-
morphic Encryption over Torus (TFHE) [71], two GPU FHE
libraries, cuFHE [72] andNuFHE [73], are released.Morshed
et al. [74] proposed new optimizations to achieve further
speedup, and the code has been open source.

FPGA-Based FHE Acceleration. Cousins et al. [75] propose
the first FPGA-based acceleration architecture without real
implementation. Roy et al. [17] implement the BFV scheme
with a polynomial degree of 215. But there is not a signifi-
cant performance speedup because of the off-chip data
transfer limitation. In other work [76], they optimize the
BFV scheme by reducing the degree of the polynomial to
212. HEAX [77] proposes a more optimized architecture tar-
geted at CKKS schemes. Su et al. [78] and Paul et al. [79]
present FPGA-based RLWE accelerators targeted on BGV
scheme. FAB [80] presents a multi-FPGA FHE acceleration
system to boost performance, especially to accelerate boot-
strapping in CKKS. HEAWS [81] presents the implementa-
tion on the Amazon AWS FPGA, which can perform 613
homomorphic multiplications per second for a parameter
set. Existing schemes use fixed-size parameter sets [16],
[17], [18] that limit the adaptive FHE configurations in
diverse application scenarios. Moreover, such FPGA-based
solutions face the challenge of productivity.

ASIC-Based FHE Acceleration. Recently, F1 [19], Crater-
Lake[20], BTS[21], ARK[22], and BASALISC[23] respectively
design hardware accelerator architectures that target differ-
ent optimizations (e.g., programmability for flexible param-
eter settings, bootstrapping for unbounded multiplicative
depth or memory access for low-overhead data movement),
but they have only been implemented on simulators so
far. Although these accelerators demonstrate promising
speedup according to the simulation results, it is still impor-
tant to study the design of GPU-based FHE acceleration.
First, one fact is that GPUs have been widely deployed in
commercial data centers, it is also known that ASIC devel-
opment is very expensive and deploying a new ASIC chip
also has an additional purchase cost. Second, the major

innovations of HE-Booster can also be employed in the
hardware accelerator architectures. Specifically, the local-
synchronization method can be used to accelerate NTT/
INTT in hardware architectures.

7 CONCLUSION

This paper presents an efficient GPU-based polynomial
arithmetic acceleration called HE-Booster. Focusing on the
five common phases in typical FHE schemes, HE-Booster
presents a systematic acceleration. In the case of single GPU
acceleration, we observe the regularity of stage-to-stage
processing for NTT and INTT phases and propose the local
synchronization to allow threads to be executed as early as
possible. Furthermore, exploiting the tremendous data-level
parallelism, we propose a scalable partition strategy for mul-
tiple GPUs. Experiments on a single NVIDIA GPU platform
demonstrate that HE-Booster outperforms 251.7�, 78.5�
and 164.9� than three mainstream CPU-based libraries
HElib, SEAL, and PALISADE, and 27.5��170.5� speedup
is obtained compared to the GPU-accelerated cuHE. Experi-
ments on Tesla V100s show that HE-Booster exhibits good
scalability on multiple GPUs. Mapping 8 HEMULs to 8
GPUs can achieve more than 7.66� performance speedup
compared to a single GPU.
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