
1432 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

FOLD3D: Rethinking and Parallelizing Computational
and Communicational Tasks in the Training

of Large DNN Models
Fanxin Li , Shixiong Zhao , Student Member, IEEE, Yuhao Qing, Xusheng Chen , Xiuxian Guan , Sen Wang,

Gong Zhang , and Heming Cui , Member, IEEE

Abstract—Training a large DNN (e.g., GPT3) efficiently on
commodity clouds is challenging even with the latest 3D parallel
training systems (e.g., Megatron v3.0). In particular, along the
pipeline parallelism dimension, computational tasks that produce
a whole DNN’s gradients with multiple input batches should be
concurrently activated; along the data parallelism dimension, a set
of heavy-weight communications (for aggregating the accumulated
outputs of computational tasks) is inevitably serialized after the
pipelined tasks, undermining the training performance (e.g., in
Megatron, data parallelism caused all GPUs idle for over 44% of the
training time) over commodity cloud networks. To deserialize these
communicational and computational tasks, we propose the AIAO
scheduling (for 3D parallelism) which slices a DNN into multiple
segments, so that the computational tasks processing the same DNN
segment can be scheduled together, and the communicational tasks
that synchronize this segment can be launched and overlapped
(deserialized) with other segments’ computational tasks. We real-
ized this idea in our FOLD3D training system. Extensive evaluation
shows FOLD3D eliminated most of the all-GPU 44% idle time in
Megatron (caused by data parallelism), leading to 25.2%–42.1%
training throughput improvement compared to four notable base-
lines over various settings; FOLD3D’s high performance scaled to
many GPUs.

Index Terms—3D parallelism, DNN, deep learning, distributed
training, GPU, machine learning, pipeline parallelism.

I. INTRODUCTION

THE high modeling capacities of a large DNN (e.g.,
GPT3 [1] with 175 billion parameters) have made training

Manuscript received 13 July 2022; revised 29 January 2023; accepted 14
February 2023. Date of publication 22 February 2023; date of current version 20
March 2023. This work was supported in part by the Huawei Flagship Research
Grant in 2021, in part by the HKU-SCF FinTech Academy R&D Funding
Scheme in 2021 and 2022, in part by the National Key R&D Program of China
under Grant 2022ZD0160200, in part by the HK RIF under Grant R7030-22,
in part by the HK ITF under Grant GHP/169/20SZ, and the Shanghai AI Lab
(Heming Cui is a courtesy researcher in this lab). Recommended for acceptance
by S. Wang. (Corresponding author: Shixiong Zhao.)

Fanxin Li, Shixiong Zhao, Yuhao Qing, Xusheng Chen, and Xiuxian Guan
are with the Department of Computer Science, The University of Hong
Kong, Hong Kong, SAR, China (e-mail: fxli@cs.hku.hk; sxzhao@cs.hku.hk;
yhqing@cs.hku.hk; xschen@cs.hku.hk; guanxiux@mail.ustc.edu.cn).

Sen Wang and Gong Zhang are with the Theory Lab, 2012 Labs, Huawei Tech-
noloies, Co. Ltd, Hong Kong, SAR, China (e-mail: wangsen31@huawei.com;
nicholas.zhang@huawei.com).

Heming Cui is with the Department of Computer Science, The University
of Hong Kong, Hong Kong, SAR, China, and also with the Shanghai AI Lab,
Shanghai 200232, China (e-mail: heming@cs.hku.hk).

Digital Object Identifier 10.1109/TPDS.2023.3247883

or fine-tuning (essentially, training) such a model prevalent and
frequent on commodity clouds. Various cloud tenants, includ-
ing small enterprises, research labs, and individual researchers,
frequently train or fine-tune such a large DNN for broad ap-
plications [2], [3], [4], [5], [6], [7] with their own private
datasets and application needs. The working-set memory (i.e.,
in-GPU memory, without further specified) needed for training
the model far exceeds the capacities of individual accelerators
(e.g., GPUs), flourishing parallel techniques that split a DNN
model across devices. 3D parallelism [8], [9] (Fig. 1(a)) is a
crucial DNN training technique that combines and orchestrates
three parallelism dimensions. Tensor parallelism (TP) splits a
single DNN operator (often too large to fit in one device) over
devices. Pipeline parallelism (PP) [10], [11] places different
operator sets (i.e., pipeline stages) of a DNN model over devices
and pipelines the execution of multiple micro-batches (i.e.,
splits of a single SGD batch which is a set of training inputs
for each SGD [12] iteration) to reduce devices’ idling time,
as Fig. 4 shows. Data parallelism (DP) replicates the model
across devices, lets each replica handle one micro-batch, and
synchronizes the gradients produced by all micro-batches after
finishing one SGD batch [13].

Overall, the end-to-end performance of 3D parallel training
can be divided into two runtime phases: a configuration phase
and a scheduling phase. First, given a DNN model and an AI
cluster of N GPU devices connected by hierarchical inter-links
(e.g., NVLink [14] within a host and RDMA [15] across hosts),
the configuration phase determines the number of splits in TP t,
the number of splits in PP p, and the number of DP replicas d,
where t ∗ p ∗ d = N . Second, given the above 3D configuration,
the scheduling phase determines the order in which the devices
actually execute the computation tasks of each micro-batch and
communication tasks between devices (TP.sync, PP.sync, and
DP.sync in Fig. 1(a)). The two phases collectively decide the
effective total GPU ALU utilization, under the bounds of per-
GPU memory and the heterogenous inter-links.

Many recent works [8], [16], [17] focus on finding an optimal
3D configuration. For example, to place DNN models that are
too large to fit in one device, while TP and PP both fit for splitting
a model, Megatron-PTD [8] and Piper [16] prefer TP over PP
with the existence of fast inter-links such as NVLink (often avail-
able within a host), as TP often achieves higher computational

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2268-3036
https://orcid.org/0000-0002-1643-2583
https://orcid.org/0000-0002-2807-9780
https://orcid.org/0000-0001-6133-8388
https://orcid.org/0000-0003-0283-7050
https://orcid.org/0000-0001-7746-440X
mailto:fxli@cs.hku.hk
mailto:sxzhao@cs.hku.hk
mailto:yhqing@cs.hku.hk
mailto:xschen@cs.hku.hk
mailto:guanxiux@mail.ustc.edu.cn
mailto:wangsen31@huawei.com
mailto:nicholas.zhang@huawei.com
mailto:heming@cs.hku.hk

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1433

Fig. 1. a) 3D Parallelism. Each gray box is a GPU device. Sync stands for the communications that synchronize each parallelism dimension. b) A conceptual
illustration of the serialization problem and our idea. The gradient computational tasks are represented by backward passes of DNN training (with forward passes
omitted and full scheduling being shown in Fig. 4). In AIAO scheduling, a copy of DNN gradients produced by micro-batch i is sliced into four segments (with
distinct colors), and the same segments (i.e., the same colored ones) are grouped together during pipelining. Compared with the FIFO-based scheduling, our AIAO
scheduling moves the DP.sync tasks off the performance critical path by introducing larger total lifecycles of activation checkpoints and resulting in a larger peak
GPU memory.

efficiency [8] in such cases. Inversely, for inter-links such as
RDMA and Ethernet, PP is favored [8], [16]. Specifically, the
RDMA or Ethernet in the most high-end commodity cloud (e.g.,
AWS) is up to 400 Gbps for the entire cluster. Moreover, the
networks in the same commodity cloud are shared by many
tenants. Even for the top-of-the-line AWS cloud, the network
bandwidth for a single tenant is often merely up to 70 or 80 Gbps
(confirmed in Section VI).

Unfortunately, despite much effort in optimizing the con-
figuration phase, in the scheduling phase, existing 3D training
systems are inevitably trapped in a serialization problem, where
heavy communication blocks the computation and causes de-
vices idling. Specifically, as shown in Fig. 1(b), the gradients of
a whole DNN in 3D parallel training are computed as follows:
(1) along the PP dimension, on each device (i.e., pipeline stage),
a DNN’s gradient copies are computed by pipelining multiple
micro-batches (six micro-batches in Fig. 1(b)) and accumulated
locally on each device; (2) along the DP dimension, the accu-
mulated gradients of the whole DNN produced by different DP
replicas (two replicas in Fig. 1(b)) are synchronized across de-
vices by a heavyweight all-reduce [18] communication (DP.sync
tasks).

However, in existing 3D parallel systems [8], [16], [17], [19],
the micro-batches along the pipeline dimension are usually
scheduled with a First-In-First-Out (FIFO) order in terms of
micro-batch ID: a later enqueued task (with larger micro-batch
ID) should not start until an earlier enqueued task (with smaller
micro-batch ID) finish. Meantime, the launch of the DP.sync
communicational tasks which synchronize the gradients pro-
duced by the pipelined micro-batches across DP replicas must
be serialized after the accomplishment of the last pipelined
computational task (i.e., micro-batch 5 in Fig. 1(b)).

Theoretically, most conventional (pure) pipeline parallel
training systems [10], [11], [20], [21], [22] adopt the FIFO
scheduling principle so as to minimize the average lifecycles
of the computational tasks’ working-set memory residing in the

limited and expensive GPU memory [23]. 3D parallel training
systems inherit this principle (e.g., Megatron [8] and Alpa [17]
all select a FIFO-based scheduling, named 1F1B), since even
with a bunch of memory squeezing techniques (e.g., activation
checkpointing [8], [22]), GPU memory is still a major bound
for 3D parallel training scaling large [16], [19], [20], [24],
[25]. Nevertheless, because of the serialization problem, the
performance of these 3D parallel training systems is inevitably
capped by the sum of computational and communicational costs
(see Section III-C).

Empirically, in the four most notable baseline systems we
extensively evaluated (e.g., Megatron v3.0 [26], the latest 3D
parallel training system released by Nvidia in May 2022), the
serialization problem makes the DP.sync communicational tasks
heavily block the computational tasks of the next training step
and causes GPUs to idle for up to 44% of the total training
time, over a 256 A100 cluster with 200 Gbps inter-host links (an
extremely private cluster setting that the entire cluster is used
by us only, see Section VI). When using Megatron to train a
GPT3-18B model over a 200 Gbps cloud network, the per-GPU
hardware utilization is merely 67.4 TFLOPs (FOLD3D achieved
95.8 TFLOPS).

In this article, we argue that inheriting the best scheduling
of each individual parallelism dimension does not necessarily
result in the best holistic scheduling for 3D parallelism on com-
modity clouds. Instead, by relaxing the optimality of scheduling
in the PP dimension, we can achieve a better scheduling for
3D parallelism that greatly alleviates the serialization problem,
leveraging two subtle observations (depicted in Fig. 1b).

The first observation is that, although there inevitably exists a
serialized dependency between the PP computational tasks (with
each processing the whole DNN’s gradients from a micro-batch)
and the DP communicational tasks (which synchronize the
whole DNN’s gradients with other DP replicas), we can slice
a DNN model into segments (conceptually, sub-DNNs) with
each containing distinct consecutive DNN layers, so that both

1434 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

the PP computational and DP communicational tasks can be
divided into sub-tasks (per sub-DNN/segment). By doing so, al-
though within each sub-task, the serialization dependencies still
exist, we can schedule (group) subtasks that process the same
segment’s gradients (e.g., the gradients in green in Fig. 1(b))
from all micro-batches together, so that the DP.sync tasks for
this part’s gradients (e.g., DP.sync for green gradients) can be
immediately launched and overlapped with the computational
tasks of the other segments (e.g., yellow computations).

We realized this observation in the All-In-All-Out (AIAO)
scheduling (Fig. 1(b)), a holistic 3D parallel scheduling, where
the scheduling of computational tasks does not depend on input
(micro-batch) IDs but is based on the segment (sub-DNN)
dependencies. Thus, from the view of input micro-batches,
our AIAO essentially needs all input micro-batches (all-in)
enqueued, so as to allow the grouped scheduling of segment sub-
tasks corresponding to these micro-batches. The full scheduling
depicted in Fig. 4 and Section III-B shows that within each
segment of the model, our AIAO separately groups the forward
pass and backward pass of the pipelined computational tasks
on this segment and schedules the grouped tasks according to
segments’ forward-backward dependencies. To alleviate serial-
ization, a segment’s DP.sync task is scheduled to be overlapped
with both the backward and forward pass computational tasks
in a mirrored way.

However, one challenge for the above AIAO scheduling is
that, altering the FIFO principle would inevitably introduce
longer activation lifecycles in total and increase the peak mem-
ory usage of GPUs (Section III-C).

The second observation to address this challenge is that, there
exists an invariant architectural opportunity for any pipeline
schedule, where all micro-batches share the same size of com-
putation window (the sum of one micro-batch’s forward pass
and backward pass) which allows offloading [27] critical ac-
tivation checkpoints to the host memory, despite the order of
micro-batches enqueueing and dequeueing. By doing so, the
increased memory burden is shifted from GPUs to hosts, as
the CPU memory on a host is orders of magnitude larger than the
memory capacity of each GPU (Section II-A). Leveraging this
observation, the AIAO scheduling is accompanied with two key
memory squeezing mechanisms (Section IV): an intra-segment
offloading mechanism and an inter-segment lazy communica-
tion mechanism, making the AIAO scheduling incur negligible
extra GPU memory burden when training large DNNs (Table II).

We implemented the AIAO scheduling in FOLD3D based on
Megatron [26], a well-engineered and open source 3D training
system, by adding 5371 LoC. We compared FOLD3D against
Megatron-SP [28] (v3.0.2, the latest release), Megatron-PTD [8]
(v2.5.0), DeepSpeed Zero3 [29] (DSpeedZ3), and DeepSpeed
3D [19] (DSpeed3D), covering three notable and open source
3D training systems and one state-of-the-art data parallel train-
ing system (DSpeedZ3). Both FOLD3D and Megatron-SP are
enabled with sequence parallelism (Section V), one of the latest
memory squeezing techniques [28] complementary to 3D paral-
lelism. Our evaluation was done both over a high-profile cluster
(256 A100 GPUs) and a middle-profile cluster (64 V100 GPUs).
The numbers of GPUs evaluated are comparable to the latest

Fig. 2. Weak Scaling of FOLD3D on different amounts of GPUs. FOLD3D
consistently achieves high TFLOPs per GPU under various GPU numbers. We
used GPT-3 18B, GP-3 39B, GPT-3 81B for each amount of GPUs.

works [16], [17] that study 3D training. We evaluated all five
notable large Transformer [30] based models [1], [29], [31], [32],
[33] evaluated by recent systems [8], [16], [29]. The extensive
evaluation shows that:
� FOLD3D is high-performance on commodity cloud net-

works. FOLD3D achieved 25.2%-42.1% higher throughput
than the baselines with all systems being deployed on both
the A100 cluster and the V100 cluster.

� FOLD3D’s high performance is robust. By setting various
stringent model shapes (e.g., a slip model with a large
layer number and a small layer size), FOLD3D’s high
performance was consistently observed.

� FOLD3D is scalable. Our scalability evaluation over 256
A100 GPUs shows that FOLD3D’s performance gain over
Megatron was stable (∼31%) from 64 GPUs to 256 GPUs
with the model’s scale increased correspondingly (i.e.,
weak scaling, see Fig. 2). When each tenant trains a GPT-3
instance, FOLD3D can save the tenant’s electricity for about
100,000 KWh over 256 A100 GPUs, which is roughly
equal to the electricity used by 100 families per year or
tens of electric cars’ lifetime (Section VI-E).

� The increase (relaxing) of FOLD3D’s memory consumption
is moderate. Table II shows that for each host with eight
A100 GPUs, FOLD3D consumed in total 8.1GB-17.3 GB
extra CPU memory, while FOLD3D’s GPU memory usage
was comparable to baselines’.

Our contributions are as follows. We take the first step to
systematically summarize (Fig. 1(b)) and quantitatively model
(Section III-C) the serialization problem in existing 3D training
systems. We propose the idea of folding, design the AIAO
scheduling, and practically realize it in FOLD3D. Leveraging
these contributions, we maximally overlap computation and
communication tasks in 3D parallel training. FOLD3D can
greatly promote many more researchers and enterprises to enjoy
the benefit of training and fine-tuning large DNN models on
commodity clouds. We believe FOLD3D can benefit various
emerging large DNN paradigms such as Mixture-Of-Experts
(MoE) [34], [35], Pathways Language Model (PaLM) [36]
and Multi-Modal Learning [37], because 3D parallelism is the
foundation for these paradigms to scale large; meantime, we
envision that it would be challenging to fuse the AIAO schedul-
ing with these new paradigms (Section VII), and we leave this
in future work. Our code and evaluation results are released at
github.com/hku-systems/fold3d.

github.com/hku-systems/fold3d

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1435

II. BACKGROUND AND MOTIVATION

Existing large models with billions of parameters trained on
3D parallel training systems are mainly stacked up with homo-
geneous blocks (e.g., transformer block). The repeated structure
of these models is their fundamental advantage to obtain better
model capacity (and thus higher accuracy) by simply scaling up
the model size [30], [31]. In this article, same as Megatron [8], we
assume all models are repeatedly stacked transformer models.

A. Parallelism Dimensions

ML model training proceeds with iterations of forward and
backward pass computations on micro-batches of a dataset.
However, fitting existing large models into a single GPU for
training is unrealistic [25], which expedites the development
of parallel training systems that cope with two crucial re-
quirements. First, a system should fit the model’s parameters
and intermediate results (e.g., activation maps) into a GPU’s
memory. Even on the top-of-the-line AWS AI clusters, each
GPU’s memory is limited (e.g., an A100 GPU has 40 GB or
80 GB memory), while the CPU memory on a host is orders
of magnitude larger (e.g., Terabytes) and much cheaper than a
GPU’s memory. Second, a system should be capable to scale up
the training to more GPUs. Certainly, all these two requirements
should be met as efficiently (more effective FLOPS per GPU)
as possible.

Data Parallelism (DP). In data parallelism [38], each worker
has a copy of the model, and the dataset is split across workers.
The workers synchronize their gradients periodically via an
all-reduce [18] communication (i.e., DP.sync) to maintain a
consistent version of the parameters. For a large model which
does not fit in a single worker, although pure DP practice [19],
[39], [40] can be used to train a large model with various
optimizations, it takes excessive extra critical path costs for
offloading activations and optimizer states to CPU memory [27]
and NVMe storage [41], or sharding them across GPUs [29].
Moreover, its scalability [8] is bounded by communication on
low-end networks and the size of a total batch (a set of data for
producing each parameter update).

Tensor Parallelism (TP). Tensor (Model) parallelism [25]
partitions input and parameter tensors of a layer (e.g., trans-
former multi-head self-attention layer [30]) across GPUs. Within
each repeated (transformer) block (a set of layers), during both
forward pass and backward pass, TP requires an all-reduce
communication (i.e., TP.sync) to aggregate the tensors between
repeated blocks, which typically lies on the critical path and is
network-intense. Therefore, TP is usually deployed across GPUs
within the same server to use fast intra-server GPU-to-GPU links
(e.g., NVLink [42]). TP is mainly adopted as a complementary
technique to help existing parallel training systems [8], [19],
[25], [41] to support larger transformer layers.

Pipeline Parallelism (PP). Pipeline (model) parallelism [10],
[11], [20], [22], [43] shards the layers of a model across multiple
GPUs; each shard is called a pipeline stage; activation tensors are
propagated between stages via a point-to-point communication
(i.e., PP.sync). A total batch is split into micro-batches (a micro-
batch is the minimum unit for each GPU’s forward and backward

pass computations); execution is then pipelined across micro-
batches. When used on symmetric models, each stage (GPU)
can be assigned an equal number of layers to maximize pipeline
efficiency [8].

To retain the convergence guarantee of Stochastic Gradient
Descent [44] training, existing PP-enabled systems [19], [22],
[45] need to insert a pipeline flush between each two parameter
updates, where the systems wait until all current micro-batches
in the pipeline finish computing and perform a parameter up-
date, and then restart the upcoming pipelined training iteration.
Inserting such a pipeline flush inevitably causes pipeline bubbles
(i.e., work idling), as shown in Fig. 4. Existing PP schedul-
ing schemes are in the following two categories, in terms of
how forward passes are interleaved with backward passes in a
pipeline.

AFAB Scheduling. GPipe [22] proposes the all forward all
backward (AFAB) scheduling where on each pipeline stage, the
forward passes for all micro-batches of a total batch are first ex-
ecuted, followed by backward passes for all micro-batches. For
its simplicity and easy-to-integrate nature, AFAB scheduling is
widely adopted by systems such as HetPipe [45] and DeepSpeed
3D [19].

1F1B Scheduling. Pipedream [10] proposes the 1F1B schedul-
ing where one backward pass immediately preempts the ex-
ecution as soon as its required forward pass is finished (for
the last stage) or its depending backward passes are finished
(for other stages). 1F1B scheduling is adopted by Megatron [8]
and recent pure pipeline parallel training systems [22] (e.g.,
Out-of-Order [21]) with a flush inserted. Compared with AFAB
scheduling, 1F1B scheduling costs less GPU memory footprint.
Nevertheless, we embrace a CPU offloading scheme (Section
IV) of activation checkpoints to make the AIAO scheduling of
FOLD3D not abuse GPU memory.

Overall, despite the differences between the above scheduling
algorithms in terms of how forward passes and backward passes
are interleaved, all existing pipeline scheduling algorithms are
FIFO-based scheduling, as shown in Fig. 1(b). Specifically, from
the view of forward pass computational tasks and backward
pass computational tasks separately, micro-batches are executed
in the order of they being fed into the execution queue; and
later enqueued micro-batches need to wait for the dequeueing
of the previous micro-batches’ tasks. In this article, instead
of following this FIFO principle, FOLD3D enqueues all the
micro-batches to conduct its subtle scheduling (Section III-B)
of computational tasks that alleviates the serialization problem
in existing 3D parallel training systems.

B. 3D Parallelism

Despite many efforts made towards all the three aforemen-
tioned scaling dimensions of parallel training, none of a single
scaling dimension could scale infinitely. The reason is that a
single scaling dimension may be bounded by various scaling
efficiency bounds [8]: TP incurs frequent and high-volume
intra-server communication tasks and thus is only suitable within
a server (host); DP is bounded by cross-server DP.sync com-
munication tasks and the total batch size [8]; PP is bounded

1436 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 3. FOLD3D’s Architecture. L(A) and L(B) mean layer A and layer B
respectively. The gray boxes are FOLD3D’s runtime components.

by bubbles and the total number of layers [10]. 3-Dimensional
Parallelism (3D) combines all these three dimensions so that
when one dimension reaches its scaling efficiency bounds, a 3D
parallel system can scale along other dimensions.

The Serialization Problem Existing 3D parallel training sys-
tems all suffer from the serialization problem: most of the com-
municational tasks are serialized after the computational tasks
and scattered along the performance critical path. When these
systems are deployed on commodity clouds with a few hundred
of Gbps networks, the serialization problem is getting much
more pronounced. Compared to the reported experiments from
Megatron [8] over a cluster of 256 A100 GPUs with 1.6Tbps
dedicated inter-host links, the per-GPU hardware utilization
sharply dropped from around 140 TFLOPs to 67.4 TFLOPs,
when training a GPT3-18B model over a 200 Gbps cloud net-
work. Note that in the commodity cloud, each tenant can only
get 70 to 80 Gbps bandwidth (Section VI).

III. FOLD3D SYSTEM

A. Architecture Overview

Fig. 3 shows the architecture of FOLD3D. To deploy a model
for training, a user needs to feed the model and the 3D parallelism
configuration (generated by Megatron-PTD [8] or Piper [16])
into FOLD3D (Section IV), and FOLD3D will automatically
select a proper segment number (Section IV) and generate an
AIAO schedule for the model. Empirically, we find that the 3D
parallelism configuration generated by Piper is also optimal for
FOLD3D (see Section VI-B). For each GPU device, FOLD3D
launches one runtime containing an executor, a communicator,
and an offloader. On each GPU, FOLD3D’s executor runs a
partition of the AIAO scheduling as shown in Fig. 4 and assigns
the communication (sync) tasks to FOLD3D’s communicator.
The communicator schedules the communication tasks. The
offloader manages activation checkpoints (Section IV).

Executor. Each executor is a dedicated main process which
manages one GPU device, controls the computation scheduling,
and interacts with FOLD3D’s communicator and offloader. In
particular, the executor runs a static AIAO scheduling, performs

the training computation tasks (including both forward pass
and backward pass computations), and assigns three types of
communication (sync) tasks (including DP.sync, TP.sync, and
PP.sync) to the communicator. Meanwhile, the executor informs
the offloader of the execution status before each computation
task starts, so that the offloader can manage the checkpoint
offloading/prefetching without hurting training performance on
the critical path.

Communicator. Each communicator is the executor’s child
thread, which receives communication tasks and schedules the
tasks to the underlying communication library (Algorithm 2).
We implemented a preemptive communication scheduling
mechanism in the communication library. Specifically, the
latency-sensitive communication tasks (PP.sync) can preempt
the all-reduce communication tasks (DP.sync, TP.sync) to avoid
being blocked by the all-reduce tasks (Section V).

Offloader. Each offloader is the executor’s child thread, which
coordinates with the executor and offloads the activation check-
points to the CPU memory after they are generated in forward
passes and prefetches them back to GPU memory before they
are required in backward passes.

B. AIAO Scheduling

We propose AIAO (Fig. 4), a new 3D parallel scheduling
algorithm that co-schedules and parallelizes the computation
and communication tasks to fully (but not overly) utilize both
the GPU devices’ computation capacity and the networks’
communication bandwidth. AIAO works in three steps: first,
it folds a model into segments (step 1); second, it pipelines each
segment across all pipeline stages (step 2); third, it schedules
the communication tasks to maximally parallelize them with
the computation tasks (step 3). Same as Megatron, AIAO is
bulk synchronous [46], where a pipeline flush is inserted for pa-
rameter update to retain the convergence guarantee of Stochastic
Gradient Descent [47] training.

Step 1. As shown in Fig. 4, the first step is the folding of
all layers: given a 3D parallelism configuration with PP stage
number denoted as p, each model is divided (folded) into a
number (denoted as ns, inferred in Section IV) of segments, and
each segment is further divided into p stages. For example, if one
model has 12 layers (from A to L, alphabetically), ns = 2, and
p= 3, FOLD3D assigns GPU 0 with layers (A,B), (G,H); GPU
1 with layers (C,D), (I, J); GPU 2 with layers (E,F), (K,L).
Although Megatron [8] already has a segmenting scheme, Mega-
tron’s scheme differs from FOLD3D’s in purpose: Megatron’s
scheme is designed to reduce bubbles in its 1F1B pipeline,
and the segmenting scheme in FOLD3D’s AIAO scheduling is
designed to unleash the potential of DP.sync overlapping with
computation tasks. Moreover, FOLD3D’s segmenting scheme is
used to balance the deducted DP.sync tasks (by overlapping) and
the increased PP.sync tasks (by folding).

Step 2. The fundamental idea of step 2 is that the pipeline
scheduling should be performed in a way that a model layer’s
gradient should be attained first (thus the layer’s computation
tasks should be scheduled in a bundle) for decoupling the
dependency of this layer’s DP.sync communication task with

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1437

Fig. 4. Comparison between Megatron’s serialized 1F1B scheduling and FOLD3D’s AIAO scheduling.

its computation task, so that this DP.sync communication task
can be scheduled to overlap other layers’ computation tasks.
Therefore, in the second step, AIAO schedules the attained com-
putation tasks in a bundled and spiral way, where each segment
is further split and pipelined across all stages during the default
injection of multiple micro-batches in any PP-enabled training
schedules (Section II-B). For example, in Fig. 4, during the for-
ward passes of AIAO, the first segment is further partitioned into
p (three) stages, and the first segment ((A,B), (C,D), (E,F))
is injected with nine micro-batches (defined by the user) in a
pipelined way in their forward passes. The following segments
are then executed subsequently.

During AIAO’s backward passes, reversely, the last segment
is first executed ((L,K), (J, I), (H,G)) in the pipeline. The
reason is that a backward pass must always start from the
last layer of a DNN model [48]. Meanwhile, in each stage,
after finishing the second segment’s backward pass computation
tasks (which take roughly twice the time of their corresponding
forward passes due to activation checkpointing to save GPU
memory in all PP-enabled training systems’ schedules [22]),
the DP.sync tasks (e.g., DP.sync(H,G)) of all layers in this
segment can immediately be launched, and the first segment’s
computation tasks can start in parallel. When ns = 1, AIAO
essentially becomes GPipe’s AFAB schedule. When ns = x,
the DP.sync tasks of x− 1 segments can be overlapped with
computations, and only the DP.sync of 1 (the first) segment
cannot be overlapped with other tasks.

Step 3. An ideal case of overlapping DP.sync tasks with
computation is that DP.sync tasks of a segment’s layers are
faster than another segment’s backward pass computation tasks.
For instance, the DP.sync(H,G) finishes no later than the

backward pass of (B,A). In this case, only the first segment’s
DP.sync tasks lie on AIAO’s performance critical path, because
the first segment’s next forward pass should wait until these
DP.sync tasks finish, which is the optimal case as discussed in
Section II-B.

However, in a commodity cloud’s network, the finish time of
a segment’s DP.sync tasks (e.g., DP.sync(H,G)) can be longer
than the overlapped backward pass (e.g., the backward pass
of (B,A)). Therefore, FOLD3D truncates the longer part of
the DP.sync tasks and overlaps this part with a corresponding
forward pass (e.g., the forward pass of (A,B)) in the next
iteration (details are in Section IV). For instance, in Table II, for
FOLD3D, the time spent in the “DP.sync” column of all segments
mostly overlapped with the time spent in the “Bwd” column
of all (other) segments; for Megatron, these two columns were
serialized in its training performance critical path.

C. Performance Modeling

Critical Path Analysis. In conventional 3D parallel training
systems [8], [16], [19], the execution time (i.e., defined as the
critical path) of one iteration processing a whole data batch can
be divided into computation time T comp, communication time
T comm, and bubble time T bubble. Generally, the performance
model used for evaluating 3D configurations in Megatron, Alpa
and Piper can be unified as:

T comp + T comm + T bubble. (1)

FOLD3D overlaps communication with computation, and the
communication time in FOLD3D can be further divided into
overlapping timeT comm

ol and non-overlapping timeT comm
nol . The

1438 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

critical path of FOLD3D is thus defined as:

max (T comp, T comm
ol) + T comm

nol + T bubble (2)

As formulated in recent work [8], [16], the computation time
T comp is orthogonal to the scheduling strategy and relates only
to the given 3D configuration. Therefore, given the same DNN
model and 3D configuration, the T comp of FOLD3D should
perform the same as that of Megatron and any other 3D parallel
training systems.
T bubble is the bubble time in the pipeline, and is calculated

as the sum of startup times of all pipeline stages. The startup
time of a pipeline stage is defined as the sum of forward and
backward times of its first micro-batch.

We denote the pipeline stage number as p. According to the
segment-based scheduling, the bubble in FOLD3D consists of
p− 1 forward passes and p− 1 backward passes of a segment’s
micro-batch. Given the segment number ns and the micro-batch
number ms, T bubble is:

(p− 1) ∗ T comp

ns ∗ms
(3)

Data parallelism can be performed inside a host and across
hosts. Thus, we define intra-host data parallel size dintra as the
number of GPUs in the same data parallel group on a host and
inter-host data parallel sizedinter as the number of hosts in a data
parallel group. Assume w is the total model parameter size that
all GPUs in a host contain, the data parallel communication time
T comm
dp is 2(dinter−1)w

dinterr
, where r is the network bandwidth of a

host. We assume the traditional all-reduce [18] communication
for the DP.sync here. The data parallel communication of that all
ns segments except for the first segment in a stage can overlap
with the computation.

In FOLD3D , a tensor is transmitted in both the forward and
backward passes of a micro-batch. The tensor size equals the
activation size a of a single layer in the model. Assume there are
total bs tensors transmitted in a stage, the pipeline parallel com-
munication time T comm

pp is bs∗a
dinter∗r . The pipeline parallel com-

munication between stages can be transmitted asynchronously.
The pipeline parallel communication of all ms micro-batches
except for the first micro-batch of the first segment in a stage can
overlap with the computation. The overlapping communication
T comm
ol is :

ms− 1

ms
T comm
pp +

s− 1

s
T comm
dp − T comp (4)

Thus, the non-overlapping communication time T comm
nol is:

T comm
pp

ms
+

T comm
dp

s
+ T comm

tp (5)

Memory Analysis. The major difference between AIAO schedul-
ing and FIFO-based scheduling is that an activation checkpoint
on average incurs a longer lifecycle in AIAO, making the peak
working-set memory of FOLD3D larger than the other FIFO-
based 3D training systems. We take Megatron’s interleaved
1F1B scheduling [8], [16] as an example. The peak memory
consumption for activation checkpoints of Megatron is:

(p ∗ (ns+ 1)− 1) ∗ SizeOf(checkpoints) (6)

The peak memory consumption for activation checkpoints of
FOLD3D is:

ms ∗ ns ∗ SizeOf(checkpoints) (7)

Overall, the Megatron’s memory consumption for stashing ac-
tivation checkpoints is only related to the pipeline stage number
p and segment number ns, while FOLD3D’s total memory con-
sumption for stashing the activation checkpoints is proportional
to the number of micro-batches (ms), which makes FOLD3D’s
memory consumption larger than Megatron’s in most cases.
Nevertheless, FOLD3D’s offloading mechanism shifts this extra
memory burden to the CPU memory, making FOLD3D incur
negligible extra GPU memory usage (see Table II).

IV. FOLD3D RUNTIME

FOLD3D takes a model’s shape setting and training hyperpa-
rameter as inputs and trains the model with 3D parallelism on
a GPU cluster. The model shape setting includes hidden size,
number of attention heads, number of layers, etc. The training
hyperparameter contains learning rate, weight decay, etc. The 3D
parallelism setting includes pipeline parallelism size p, tensor
parallelism size t and data parallelism size d.

FOLD3D automatically determines AIAO’s segment number
for the given model and parallelism setting in order to reach a
high training performance. Specifically, an ideal segment num-
ber should balance the DP.sync (network bandwidth-hungry)
and PP.sync (latency-sensitive) tasks, and should overlap the
communication and computation tasks as much as possible
(Section III-B), as shown in Fig. 4. If the number of segments
(ns) is larger, FOLD3D can move more DP.sync tasks off the
critical path, and AIAO’s pipeline bubble ratio can decrease.
However, these benefits do not come for free: increasing the
segment number to nswill invoke ns− 1more times of PP.sync
tasks (Fig. 4(b)). Although FOLD3D overlaps PP.sync tasks with
computation tasks through asynchronous transfer (Section V),
the PP.sync tasks may still block the DP.sync tasks, because both
these two communication tasks contend for the same network.
Therefore, FOLD3D determines a near-optimal segment number
(ns) heuristically. FOLD3D increases ns until the combination
of PP.sync and DP.sync tasks exceed the computation time being
overlapped.

The executor realizes the AIAO scheduling, given the 3D
parallelism strategy (p, t, d) and the segment number ns. Al-
gorithm 1 describes the executor’s logic: it invokes all sync
tasks based on the current injected micro-batch ID and the
current GPU’s segment ID to determine its upcoming commu-
nication and computation tasks’ interleaving. It first executes all
micro-batches’ (in this training iteration) forward passes (line 7)
and then executes all micro-batches’ backward passes (line 13).
After that, the pipeline flush (line 4) is performed to synchronize
all the gradients along the DP dimension and update the model
parameters. During the computation tasks, the executor assigns
the generated communication tasks to the communicator with
each communicated object reference and its current execution
status.

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1439

Algorithm 1: FOLD3D Executor.

Algorithm 2 describes FOLD3D’s communicator logic. It
splits the DP.sync task of each segment into two subsets. The
first subset is launched after it is generated, and this subset
will be overlapped with the upcoming segment’s backward pass
(line 10). The second subset will be overlapped with the corre-
sponding forward pass computation (line 13). The scheduling
outcome is depicted in Fig. 4. FOLD3D communicator automat-
ically decides the split ratio of the two subsets based on the
runtime-collected computation time of backward pass and for-
ward pass tasks correspondingly. FOLD3D communicator issues
pipeline parallel send() and recv() operations per forward or
backward pass (lines 21, 24). At the beginning of each computa-
tion task, FOLD3D communicator issues the recv() operation for
the next computation task’s input tensors. The recv() operation
should finish before the next computation task starts. At the end
of each computation task, FOLD3D communicator calls send()
with the output tensors to transfer them to the next pipeline stage.
FOLD3D communicator issues TP.sync tasks during the forward
and backward passes. FOLD3D executor waits until the TP.sync
tasks finish and then continues the computation.

Intra-Segment Offloading. The offloader incorporates both
activation checkpointing and cpu offloading. Activation check-
pointing [49] is essential for greatly reducing GPU memory
footprint (i.e., the activation tensors) in existing PP-enabled
training systems by paying extra re-computation time of GPU
ALUs. Activation checkpointing only stashes output activations
(i.e., checkpoints) of selective layers, and the rest activations are
recomputed in the backward pass by running the forward pass
again.

The offloader decides on a proper set of activation check-
points, which does not defer the progress of backward pass, but

Algorithm 2: FOLD3D Communicator.

achieves the minimum peak memory footprint [49]. Compared
to Megatron’s 1F1B scheduling, FOLD3D ’s AIAO scheduling
inevitably incurs larger GPU memory (Section II-B). This is
because AIAO requires all the forward passes of all segments
to be finished before any backward pass starts (see Fig. 4).
The activation size may still exceed the GPU memory even
with activation checkpointing enabled in FOLD3D. Therefore,
the offloader offloads activation checkpoints to CPU memory,
a common trick adopted from existing systems (e.g., Deep-
Speed [19]). All checkpoints generated by a micro-batch are
offloaded during the next micro-batch’s forward pass. Then the
offloader pre-fetches the checkpoints of each micro-batch from
CPU memory during the previous micro-batch’s backward pass.
Evaluation shows that FOLD3D’s pre-fecthings/offloadings were
overlapped by computation tasks and caused negligible training
slowdown (Table IV).

Inter-Segment Lazy Communication. For all micro-batches of
segment i (e.g., segment 0 in red in Fig. 4(b)), the last pipeline
stage of this segment (stage 2) has to send the output tensors
(of layer F) to segment i+ 1’s first stage (stage 0). However, the
execution of segment i+ 1 on stage 0 will not start until segment
i finishes. If using a naive GPU-to-GPU direct communication,
the stashed output tensors will cause extra GPU memory con-
sumption (e.g., the output tensors of micro-batch 0-8 will be

1440 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

stashed in stage 0’s GPUs in Fig. 4(b)). We shift this part of extra
GPU memory to CPU hosts by FOLD3D ’s inter-segment lazy
communication mechanism, in which the output tensors from
the last stage’s GPUs (e.g., stage 2’s GPUs in Fig. 4(b)) will
be directly sent to the remote CPU memory of the first pipeline
stage (stage 0), and these tensors on the remote CPU memory
will be lazily loaded into GPU memory when the tensors are
used in related computational tasks.

Overall, these runtime algorithms do not affect the bulk
synchronous training convergence for three reasons. First, each
segment collects the gradients along the DP dimension through
DP.sync tasks (see lines 10, 13 in Algorithm 2) and each segment
has gradients with respect to all samples in an iteration. Second,
FOLD3D ensures that the gradients of each segment are updated
to the model parameters before the next iteration of this segment
begins (see line 4 in Algorithm 1). Third, FOLD3D does not alter
tensors transmitted between GPUs or tensors fed into the model.

V. IMPLEMENTATION

A. Preemptive Communication Scheduling

In FOLD3D ’s scheduling, DP.sync tasks are not only over-
lapped with computation but are also overlapped with PP.sync
tasks. Concurrent DP.sync and PP.sync tasks may contend for
network bandwidth, and both tasks slow down. Although most of
the DP.sync and PP.sync tasks are overlapped with computation
in FOLD3D , the PP.sync tasks during the pipeline warmup period
still stay in the performance critical path.

FOLD3D incorporates preemptive communication scheduling
to ensure that the PP.sync time does not increase when over-
lapping with DP.sync tasks. Specifically, when a PP.sync task
arrives, FOLD3D pauses the DP.sync tasks in the same node. For
a PP.sync send task, only the DP.sync tasks currently sending
data are stopped. For a PP.sync receive task, the DP.sync tasks
only stop receiving data when the PP.sync task starts to receive
data. When a DP.sync task stops receiving data, it first saves the
data already received in its buffer, and then sends an interruption
signal to the corresponding sender.

B. CPU Offloading

FOLD3D incorporates CPU offloading to mitigate the in-
creased GPU memory burden caused by FOLD3D ’s scheduling.
The activation tensors are continuously moved from GPU mem-
ory to CPU memory during the forward pass and moved back
to GPU memory in the backward pass. When transferring data
from the CPU memory to GPU, GPU requires the CPU memory
page to be pinned (page-locked). Otherwise, a temporary pinned
page is created and data is first copied to the pinned page and
then transferred to the GPU. This is because the OS would swap
an unpinned page to the disk if the page is inactive. For efficient
data transfer, FOLD3D preallocates a pinned CPU memory buffer
at the start of training to store the activation tensors. The buffer
size is determined by profiling the total activation tensor size in
an iteration.

We assign an individual CUDA stream for CPU offloading so
that the CPU offloading does block the computation and commu-
nication tasks. In the backward pass, the activations are moved
back to the GPU according to the order they are used. FOLD3D
synchronizes the computation stream with the offloading stream
before each activation is used for recomputation to ensure data
correctness.

When sequence parallelism is enabled alongside tensor par-
allelism, the activations are partitioned across the tensor parallel
ranks. As a result, each GPU only offloads its own activation
partitions to the CPU memory.

The kernel launch overhead becomes significant when we
invoke a GPU kernel for each activation tensor to be transferred.
FOLD3D introduces a technique named batched CPU offloading
to reduce the kernel launch overhead. Specifically, in the forward
pass, a layer’s output tensor saved as the checkpoint is not moved
out of GPU memory immediately after it is used by the next
layer. Instead, we batch multiple activation tensors together and
transfer them between GPU memory and CPU memory in a
single kernel. Tensors are also moved back to GPU in batches.
By doing so, we can achieve higher PCIe utilization and reduce
the CPU offloading time.

VI. EVALUATION

Testbeds. We performed the experiments on two clusters. The
first cluster is a public commodity cloud consisting of 8 nodes
with in total 64 NVIDIA V100 GPUs. Each node is an AWS EC2
p3dn.24xlarge instance which has 96 vCPUs, 1.2 TB memory
and 8 Nvidia Tesla V100 GPUs (each has 32 GB memory and
125 FP16 TFLOPs). GPUs in a node are connected by NVLink,
and nodes are connected over a 100 Gbps network. The second
cluster is a private laboratory cloud containing 32 nodes with
a total of 256 NVIDIA A100 GPUs. Each node has 128 Intel
6248R CPUs, 2.0 TB memory and 8 Nvidia A100 GPUs (each
has 40 GB memory and 312 FP16 TFLOPs). GPUs in a node are
connected by NVLink, and nodes are connected over 200 Gbps
Infiniband. Unless otherwise specified, we used 16 nodes with
a total of 128 A100 GPUs as our default testbed.

Baselines. We took Megatron v3.0 (Megatron-SP) [28],
Megatron v2.5 (Megatron-PTD) [8], DeepSpeed 3D
(DSpeed3D) [19], and DeepSpeed ZeRO3 (DSpeedZ3) [29] as
our baselines. Megatron-SP is the latest 3D parallel training
system that was reported to achieve almost linear scaling
efficiency. Megatron-PTD is the system used in Megatron’s
earlier article [8]. DSpeedZ3 is a powerful data parallel
training system that incorporates a set of memory optimization
techniques. Microsoft’s DSpeed3D is a well-engineered system
which extends data parallelism optimized by DeepSpeed ZeRO
with tensor parallelism [25] and pipeline parallelism [10], [24]
to break the scaling efficiency bounds of data parallelism.
We ran these two DeepSpeed systems in DeepSpeed v0.5.5
environment. Sequence parallelism [28] was integrated into
Megatron, DSpeed3D and FOLD3D to reduce the activation size
and support larger models.

Baseline Settings. We used two 3D parallel configurations for
the experiments. The first configuration was chosen following

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1441

TABLE I
DIFFERENT MODELS WE USED DURING THE EVALUATION. HID. SIZE STANDS

FOR THE HIDDEN SIZE OF A LAYER

the instructions provided in Megatron-PTD. Specifically, given a
DNN model, we first scaled along the tensor parallel dimension
within hosts and then the pipeline parallel dimension until the
model’s parameters and activations can be fit into GPU memory.
Then, we scaled along the data parallel dimension to use up all
GPUs. The second configuration was selected by Piper, which
proposed an efficient optimization algorithm to find the best
3D parallel configuration for its corresponding 3D parallel per-
formance modeling. For both Megatron-PTD and Megatron-SP,
we adopted the interleaved schedule introduced in its article to
reduce the pipeline bubble. The best interleaved schedule was se-
lected by trials and chosen with the highest throughput produced,
as no determined selection instruction is provided by Megatron.
Megatron-PTD/Megatron-SP can overlap most of the PP.sync
tasks with computation when enabling its interleaved schedule,
but the PP.sync tasks during the pipeline warmup period have
to be in the performance critical path. DSpeed3D has to left all
the PP.sync tasks in the performance critical path since it adopts
the 1F1B scheduling. This is because when overlapping PP.sync
tasks with computation in 1F1B scheduling, two simultaneous
send/recv operations between a pair of GPUs may potentially
cause deadlock [50].

Models and Datasets. We evaluated five giant transformer
models which cover all the large transformer models evaluated
by recent large model training systems [8]. Specifically, we cov-
ered major pretraining transformer models (GPT [1], BERT [31],
CPM [32], Turing-NLG [29] and T5 [33]) and their respective
datasets. GPT and Turing-NLG use OpenWebText [51] dataset,
BERT uses Wikipedia [52] dataset, CPM uses WuDao Cor-
pus [53] dataset, and T5 uses c4/realnewslike [54] dataset.

Metrics. We measured FOLD3D’s training performance by
per-GPU throughput. The throughput is calculated by the
TFLOPs metric, whose approximation formulas (for transformer
blocks) are from Megatron [8] for fair comparisons, and further
specifications can be found in their article.

Model Configurations. Table I shows all model settings used
in this article. Each model’s configuration is the same as the
official specifications or settings evaluated by previous works.
Moreover, to better understand FOLD3D, we evaluated GPT-3
models with various model shapes and parameter sizes. We will
specify how these settings are selected when they are used.
Without further specifications, the micro-batch size used in
our experiments was 4, which was large enough to saturate a
GPU’s computation while leaving enough GPU memory space
for memory footprints during training.

We focus on four questions. Section VI-A: How does FOLD3D
perform compared to the baselines? Section VI-B: How does
FOLD3D perform with different parallel configurations? Section
VI-C: How robust is FOLD3D’s high performance under differ-
ent batch sizes and network bandwidths? Section VI-D: How
effective are FOLD3D and its components?

A. End-to-End Performance

Table II shows five training systems’ per-GPU throughput
when training GPT-3 models on 64 V100 GPUs and 128 A100
GPUs. We present the detailed settings (e.g., model, batch size
and parallel configuration), as well as various breakdown results,
in Table II. Column “ExCMem.” stands for the extra CPU
memory brought by the novel AIAO scheduling of FOLD3D. The
extra CPU memory is the peak CPU memory occupied by the
offloaded checkpoint activations in a host, and excludes the CPU
memory used by Python program and PyTorch library. Column
“ExCMem.” is not applicable to Megatron and DSpeed3D since
these systems only store the activation tensors in GPU memory.
Column “ExCMem.” is not applicable to the pure data parallel
training system DSpeedZ3 because Column “ExCMem.” eval-
uates the CPU memory usage caused by pipeline parallelism.
Besides the extra CPU memory, we have also evaluated the
total CPU memory usage of all systems, and we report the
results in Section VI-A. Columns “Bubble” and “PP.sync” are
not applicable to DSpeedZ3 because DSpeedZ3 is a pure data
parallel training system.

All models’ shape configurations used in this evaluation fol-
lowed the models’ original articles. To compare with Megatron-
PTD, we evaluated GPT-3 18B, which is the model Megatron-
PTD used in its article on 256 GPUs. We then used GPT-3
39B to evaluate FOLD3D ’s performance on larger models, and
compared the results with Megatron-SP. We selected the batch
size that achieved the shortest training time making the model
converged. Details of the batch size selection are elaborated in
Section VI-C. Overall, FOLD3D achieved the highest through-
put (116.1 TFLOPS and 51.1 TFLOPS) on both A100 and
V100 clusters; to the best of our knowledge, this throughput is
higher than the highest per-GPU throughput publicly reported
on 64 V100 GPUs with similar models. Specifically, Deep-
Speed reported a publicly highest per-GPU throughput of 41.4
TFLOPS [29] on training the model of the same size, but with
a much faster cross-server link of 800Gbps (Nvidia DGX-2)
than the 100 Gbps network in our evaluation. FOLD3D achieved
31.5%-42.1% speedup over Megatron-SP on 128 A100 GPUs
and 25.2%-33.0% over Megatron-SP on 64 V100 GPUs.

Table II reveals FOLD3D’s high performance came from both
the reduced (overlapped) DP.sync and PP.sync communications
on the performance critical path. We observed that the net-
work was saturated by “DP.sync” for all five training systems.
On the training performance critical path of both Megatron
and FOLD3D, both their throughput mainly depends on the
sum of “Fwd.,” “Bwd.,” “DP.sync,” and “PP.sync”. However,
FOLD3D’s “Fwd.” and “Bwd.” are overlapped with most of
the DP.sync and PP.sync tasks (see Fig. 4(b)). For example,
on the V100 cluster, FOLD3D reduced the DP.sync time on the

1442 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

TABLE II
BREAKDOWN OF PERFORMANCE CRITICAL PATH FOR EACH SYSTEM TRAINING GPT-3. TUPLES IN (3D), (SEG.) COLUMN STANDS FOR (DP, PP, TP), (SEGMENT

NUMBERS); FWD. STANDS FOR FORWARD COMPUTING TIME, BWD. STANDS FOR BACKWARD COMPUTING TIME. THRP. STANDS FOR PER-GPU THROUGHPUT IN

TFLOPS AND UTIL% STANDS FOR RATIO OF THE MEASURED THROUGHPUT TO THE THEORETICAL PEAK THROUGHPUT PROVIDED BY NVIDIA. GMEM. STANDS

FOR THE PEAK GPU MEMORY USAGE (IN GB) OF A GPU. EXCMEM. STANDS FOR THE EXTRA CPU MEMORY BROUGHT BY THE NOVEL AIAO SCHEDULING OF

FOLD3D AND REPRESENTS THE PEAK CPU MEMORY (IN GB) OCCUPIED BY THE OFFLOADED CHECKPOINT ACTIVATIONS IN A HOST. BOTH PP.SYNC AND

DP.SYNC CONTAIN ONLY NON-OVERLAPPED COMMUNICATION TIME. N/A MEANS THE COLUMN IS NOT APPLICABLE TO THE SYSTEM AS EXPLAINED IN SECTION

VI-A

performance critical (non-overlapped) path from 2.50 s to 0.67 s
and the PP.sync time on the performance critical path from 0.95 s
to 0.41 s, respectively.

FOLD3D outperformed the baselines under both the parallel
configurations derived by Megatron-PTD and Piper. This is
because that DP.sync took a large portion of the iteration time
for these parallel configurations. Megatron-PTD increases PP
and TP sizes until the model split can be fit into GPU memory,
and then enlarges DP to use all GPUs. In such a case, the PP
size and TP size are minimized while the DP size is maximized.
Meanwhile, Megatron-PTD used most of the GPU memory to
accommodate the model parameters and their corresponding
gradients. This leads to the extremely large gradients to be
synchronized in each GPU. The large per-GPU gradient vol-
ume and the large DP size lead to the substantial DP.sync of
Megatron-PTD.

Even though Piper automatically finds the best parallel con-
figuration that maximizes the training throughput, DP.sync still
accounted for 28.6% of the training time in our evaluation. This
is because the decrease of DP.sync time always comes with
the increase of PP.sync time and pipeline bubble time, which
inevitably increases the overall iteration time. In 3D parallel
training, the way to mitigate the DP.sync time is to increase the
PP size. By doing so, both the DP size and the gradients needed to
be synchronized per GPU decrease. However, both the PP.sync
time and the pipeline bubble increase as well.

We have collected both GPU and CPU memory usages during
evaluation. The memory usage (i.e., the sum of GPU memory
and CPU memory usages) of FOLD3D is larger than the base-
lines, and the extra memory overhead comes from the novel
AIAO scheduling of FOLD3D . The AIAO scheduling requires
FOLD3D to store the checkpoint activations generated during the
forward pass of all the micro-batches. Since the checkpoints are
further offloaded to CPU memory by FOLD3D ’s offloader, the
extra memory used by FOLD3D resides in CPU memory instead
of GPU memory. We evaluated extra CPU memory, which is

defined as the CPU memory occupied by offloaded checkpoint
activations, specifically for FOLD3D . Table II shows the GPU
memory usages of all systems and the extra CPU memory usage
of FOLD3D . The GPU memory used by FOLD3D is comparable
to the GPU memory used by Megatron-SP, Megatron-PTD and
DSpeed3D. The GPU memory usage of FOLD3D validates the
effectiveness of FOLD3D ’s offloader. When excluding the extra
CPU memory used by FOLD3D ’s offloader, the CPU memory
for Python training scripts, dataset loaders, and PyTorch run-
time used by FOLD3D also equals that used by Megatron-SP,
Megatron-PTD and DSpeed3D. For instance, for the setting
that trains a GPT-3 39B model on 128 A100 GPUs in Table II,
when excluding the 12.9 GB CPU memory used by FOLD3D ’s
offloader, the remaining CPU memory usage of FOLD3D is
203.4 GB, and the total CPU memory usages of Megatron-SP,
Megatron-PTD and DSpeed3D are 202.9 GB, 200.2 GB and
201.7 GB.

DSpeedZ3 consumed the smallest GPU memory because it
partitions the model parameters, gradients and optimizer states
across the data parallel GPUs. Gradient partition combined
with parameter partition also makes DSpeedZ3 able to use a
scatter-reduce operation for gradient synchronization instead of
an all-reduce operation. The DP.sync time is reduced by half
compared to the data parallel approach using all-reduce for
gradient synchronization. The drawback of DSpeedZ3 is that
each GPU has to collect parameters from the other GPUs during
both the forward and backward passes. Although DSpeedZ3
overlaps the parameter collection with computation, the param-
eter collection time is larger than the computation time and
dominates the forward and backward passes in our evaluation.

We further draw the breakdown results of FOLD3D and
Megatron-SP for GPT-3 18B and GPT-3 39B in Fig. 5. The
results generally matched our performance modeling in Sec-
tion III-C. For the two models, the DP.sync time of FOLD3D was
reduced by 68.9% and 72.6% compared to Megatron-SP. In our
performance modeling, the DP.sync time will be reduced by 75%

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1443

TABLE III
BREAKDOWN OF PERFORMANCE CRITICAL PATH FOR EACH SYSTEM TRAINING FIVE MODELS. COLUMN NAME MEANINGS ARE THE SAME AS TABLE II. N/A

MEANS THE COLUMN IS NOT APPLICABLE TO THE SYSTEM

Fig. 5. Breakdown comparison between Megatron-PTD and FOLD3D . The
iteration time reduced by FOLD3D matches the performance modeling in
Section III-C.

when the segment number is 4. We attribute this discrepancy
to the fact that not all GPUs start the DP.sync tasks at exactly
the same time. The computation time of FOLD3D is also slightly
larger than Megatron-SP for both models. We attribute the slow-
down to the overlapping of DP.sync task with computation. As
revealed by a recent study [55], when overlapping the all-reduce
operation in DP.sync with DNN computation, the all-reduce
operation contends for GPU resources with DNN computation.
However, these facts only cause the real iteration time less than
5% larger than the performance modeling in our evaluation, and
performance modeling is useful to estimate the real performance
of FOLD3D .

In Table III, we show four systems’ per-GPU throughput
for another four models. We only demonstrate the results for
each model under the Piper setting. FOLD3D achieved 1.25x to
1.33x speedup over Megatron-SP, which further confirms that
FOLD3D ’s gain holds for different models. The four models only
differ from GPT-3 models in the pre-process and post-process
layers. Same as GPT-3 models, majority of the four models
are composed of Transform blocks. The models mainly differ
in the hidden sizes of the transformer blocks. The hidden size
determines the ratio between computation, DP.sync and PP.sync.
We further show the results for each model on 64 V100 GPUs in
Fig. 6. We conducted a weak scaling study to evaluate FOLD3D’s
performance on large-scale clusters. In particular, following the
common practice of baselines [8], weak scaling is to test a
system’s throughput on scaling to train a larger model with more
GPUs. Fig. 7 shows that FOLD3D’s throughput was consistently
∼31% higher than both Megatron-SP and DSpeedZ3. FOLD3D

Fig. 6. Per-GPU throughput of different models on 64 V100 GPUs.

Fig. 7. Weak Scaling of FOLD3D on different amounts of GPUs. FOLD3D
consistently achieves higher TFLOPs per GPU under various GPU numbers.
We used GPT-3 18B, GP-3 39B, GPT-3 81B for each amount of GPUs.

still consistently outperformed baselines in all the scales we
evaluated. The reason is when the model size and the number of
GPUs grow, both computation and communication time increase
accordingly. We believe FOLD3D will be able to overlap most
of the communication tasks with the computation tasks even
in larger scales, e.g., 512 or thousands of GPUs; in contrast,
baselines again left all tasks being serialized on the performance
critical path.

In sum, through the end-to-end experiments, FOLD3D was
both high-performance and scalable. FOLD3D was reported with
speedups over baselines on various commodity cloud settings
and various parallel configurations.

B. Evaluation of Parallel Configurations

In this section, we evaluated the performance of FOLD3D on
different parallel configurations. In particular, we fixed the size

1444 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 8. Throughput per GPU under different (PP size, DP size) combinations.
DP and PP should be balanced to reach the peak throughput.

Fig. 9. Throughput per GPU of FOLD3D under different (PP size, TP size)
combinations. TP is more preferred than PP within a host.

of one parallel dimension and changed the combination of the
other two. We conducted the experiments for model GPT-3 39B
on both 64 V100 GPUs and 128 A100 GPUs. For each cluster,
the batch size used is the same as the one in Table II.

1) PP versus DP: In Fig. 8, we evaluated the impact of PP
and DP sizes on FOLD3D ’s performance. We set the TP size to
8 (the number of GPUs in a host), which is a common setting
for large model training (see Table III). The Megatron article’s
lesson on these two degrees of parallelism is that DP should
always be more favorable than PP on their 1.6 Tbps network.
However, we found DP and PP should be balanced to reach the
peak throughput in our evaluation. This is because a large PP
size will incur longer PP.sync time and longer bubble time, while
a large DP size will increase the DP.sync time (even when most
of the DP.sync is overlapped with computation in FOLD3D).

2) PP versus TP: In Fig. 9, we evaluated the impact of PP
and TP sizes on FOLD3D ’s performance. We set the DP size to
2 for 64 V100 GPUs and to 4 for 128 A100 GPUs. Overall, our
evaluation shows that within a host (TP size less than or equal
to 8), on both the V100 GPU cluster and the A100 GPU cluster,
TP is more preferred than PP. This is because within a host, the
GPU-to-GPU links are fast enough so that the scaling efficiency
of TP (mainly bounded by TP.sync communications) can surpass
the efficiency of PP (mainly bounded by flush bubbles). TP size
greater than 8 means cross-server TP (because there are 8 GPUs
in a node), which is much slower than TP within a server. The
same conclusion is reported in Megatron [8].

3) DP versus TP: In Fig. 10, we evaluated the impact of DP
and TP sizes on the training throughput of FOLD3D. We set
the PP size to 4. The figure shows that within both V100 and
A100 clusters, TP is more preferred than DP. This is because the

Fig. 10. Throughput per GPU under different (DP size, TP size) combinations.
TP is more preferred than DP within a host.

Fig. 11. How the number of segments affects the final throughput. Given a
model and its 3D parallelization configuration, FOLD3D’s runtime is able to find
the optimal segment.

TP.sync time was faster than the DP.sync time. When a model’s
size increases (e.g., increasing the number of DNN layers), the
DP.sync time increases faster than the TP.sync time, and TP
would still be more preferred.

4) Impact of Segments: We evaluated the impact of segment
number selection on FOLD3D ’s performance for models GPT-3
39B and GPT-3 14B. For both models, we used the 3D parallel
configurations derived by Piper. Since DP and PP should be both
preferred and balanced on commodity cloud networks, selecting
a proper segment number in FOLD3D is crucial. Although an
extremely large segment number will bring a larger overlapping
ratio of DP.sync communication tasks with computation tasks
(Section IV), it will also increase the PP.sync costs, as each
segment needs to be pipelined across all pipeline stages. We
found that in most of our experiments, the best segment number
was 2 to 4 for various models, which matched the conclusions we
drew from Section IV, as segment number in this range retains
speedup from a highly overlapped portion of communication
tasks (50-75%) without incurring too much PP.sync cost.

C. Ablation Study

The selection of batch size when training large models
involves the trade-off between system training throughput and
convergence efficiency [56]. When enlarging the batch size,
GPUs can achieve higher ALU utilization, but the convergence
efficiency becomes lower due to the decrease of gradient noise
scale [57]. To demonstrate the relationship between the conver-
gence efficiency and batch size, we trained GPT-3 39B model
under different batch sizes. For each batch size we evaluated,
we selected the best learning rate and other hyperparameters

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1445

Fig. 12. (a) Training loss curves under different batch sizes. (b) Throughput
per GPU under different batch sizes. (c) Training time required for the training
loss to reach 3.3 (the minimum training loss achieved by the model).

following approaches from existing works [1]. Fig. 12(a) plots
the training loss curves under different batch sizes. When in-
creasing the batch size, the model has to be trained with more
epochs although the training throughout increases. Thus, the
higher throughput brought by a larger batch size does not
necessarily shorten training time. The result of the relationship
between convergence efficiency and batch size also matches
recent study [58].

We first evaluated the performance of FOLD3D and baselines
under different batch sizes. The result is shown in Fig. 12(b).
When increasing the batch size from 256 to 1024, FOLD3D ’s
throughput improvement over Megatron decreased from 31.5%
to 10.7%, and improvement over DSpeedZ3 decreased from
48.2% to 27.2%. This is because the computation time and the
overall iteration time increase with the batch size, while the
DP.sync time is orthogonal to the batch size and stays roughly
the same across various batch sizes. The ratio of the DP.sync time
thus decreased and so did FOLD3D ’s improvement. Although
the improvement of FOLD3D over the baselines decreased when
enlarging the batch size, we found that the relatively smaller
batch size (256) achieved the shortest training time for the
model to attain the desired training loss even for Megatron and
DSpeedZ3. Fig. 12(c) shows the total training time used for the
training loss to achieve 3.3 (the minimum training loss that can
be achieved by the given GPT-3 model) under each batch size
for all systems.

Our evaluation on AWS cloud shows that the network band-
width for a single node ranges from 70 to 80 Gbps. We thus
evaluated the throughput of FOLD3D and baselines under 25,
40, 100 and 200 Gbps networks on 128 A100 GPUs. Similar to
the approach stated above, we chose the best batch size for these
systems under each network bandwidth. The best batch sizes

Fig. 13. Throughput under different network bandwidths.

TABLE IV
COST OF CPU ACTIVATION OFFLOADING IN DIFFERENT MODELS AND

RUNTIME CONFIGURATIONS. MI. BATCH STANDS FOR MICRO-BATCH SIZE AND

O/F. STANDS FOR TIME COST OF OFFLOADING OPEARTIONS

for 25, 40, 100 and 200 Gbps networks are 1024, 1024, 512
and 256 respectively. With the decrease of bandwidth, batch
size has to be enlarged to achieve higher system throughput and
shorten the overall training time. The result is shown in Fig. 13.
FOLD3D outperformed Megatron-SP by 30.4% to 36.7%, and
outperformed DSpeed3D by 38.2% to 45.6%. This is because
the ratio of DP.sync to the computation time stayed in the range
between 22.3% to 29.6% under all the bandwidths we evaluated.
The bandwidth decrement came with batch size enlargement,
and thus led to both longer computation time and DP.sync time.

D. Effectiveness Analysis

Activation Checkpointing. The activation checkpointing tech-
nique [49] in both FOLD3D and Megatron was necessary for
conducting all our experiments, because all the baseline systems
were with activation checkpointing to support training of large
models. We tried to disable activation checkpoiting in our ex-
periments, and all default configurations went to out-of-memory
exceptions, indicating that activation checkpointing was neces-
sary.

Checkpoint CPU Offloading. The data transfer rate between
the accelerator and the CPU memory, which is bounded by the
PCIe bandwidth, always grows proportionally to the accelera-
tor’s throughput. In our test environments, the total GPU-to-CPU
data transfer rate is 29.6 GB/s for 8 A100 GPUs and 13.6 GB/s
for 8 V100 GPUs, while A100 GPU’s peak throughput is
312TFLOPs and V100 GPU’s peak throughput is 125TFLOPs.

We evaluated the effectiveness of our CPU Offloading of acti-
vation checkpoints (Section IV). Table IV shows the microevents
when training three models on the V100 setting. In particular,
given the micro-batch size and hidden size, we collected the
activation checkpoint offloading/prefetching time and collected
the forward and backward pass time between two activation
checkpoints. Overall, the total time of offloading checkpoints to
CPUs and fetching them from CPUs was lower than the forward
and backward pass time between two activation checkpoints in
FOLD3D. Therefore, the activation checkpoint offloading costs

1446 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 14. Training loss curve of GPT-3 39B using Fold3D and Megatron on
128 A100 GPUs over (a) physical time and (b) logical training steps.

were overlapped with computation and caused negligible impact
on FOLD3D’s performance.

In the evaluation, we already evaluated both typical large
batch size (i.e., 2048) and small batch size (i.e., 256) as shown
in Fig. 12(b). On the level of principle, both the activation
checkpoint size and the number of FLOPs per iteration in
FOLD3D are proportional to the batch size. Overall, both our
and common practices [29] match the principle. In particular,
the ratio between the computation time and the checkpoint
offloading time remains roughly the same for all the batch sizes
we evaluated. Therefore, the checkpoint offloading time remains
smaller than the computation time under various batch sizes;
FOLD3D ’s offloader causes negligible performance penalty.

Training Convergence. FOLD3D is designed to maintain the
same training convergence with the baselines and to remain
transparent (Section III) to the training workload. Still, in Fig. 14,
to verify the training convergence of FOLD3D, we trained GPT-3
39B using both FOLD3D and Megatron-SP on 128 A100 GPUs.
We kept the same training parameters (learning rate, batch size,
and random seeds) for both systems. The results show that
FOLD3D achieved the same convergence curve with Megatron,
although FOLD3D achieved an obviously better loss reduction,
because FOLD3D finishes each training iteration faster.

E. Lessons Learned

FOLD3D has two limitations. First, same as Megatron [8],
[28], our system is mainly designed for large DNN models
with a repeated, stacked structure. Nevertheless, compared to
baselines’ articles (with one or two large models evaluated),
we have evaluated all the five notable and typical large models
with repeated blocks. FOLD3D and all existing 3D parallel
training systems (Megatron [8], [28] and DSpeed3D [19]) are
currently not designed to support DNN models with heteroge-
neous layers (i.e., layers which do not have the same structure
or input tensor shape). For instance, all 3D parallel systems
including FOLD3D are not suitable for ResNet models, because
the layers in a ResNet model differ in structures and input
tensor shapes. A typical ResNet model reduces the input tensor
shape and increases the number of convolution filters layer by
layer. FOLD3D is not suitable for DNNs with heterogeneous

layers due to two reasons. The first reason, which also applies
to Megatron and DSpeed3D, is that the heterogeneity easily
leads to unbalanced computation across pipeline stages. When
splitting models like ResNet to pipeline stages, the last stage
with a linear layer will have extremely heavyweight computation
compared to other stages. The unbalance makes 3D parallelism
fundamentally unsuitable for DNNs with heterogeneous layers.
Researchers may need to use the other two parallel dimensions or
invent a new parallel dimension to replace the pipeline parallel
dimension. We leave this open problem for future work. The
second reason specifically for FOLD3D is that the segment
slicing of FOLD3D requires the segments to be homogeneous
so that a segment’s computational and communicational tasks
can align with those of other segments to maximize FOLD3D’s
effectiveness. The second limitation is that the CPU offload-
ing mechanism in FOLD3D can consume extra CPU memory
than Megatron. Fortunately, on commodity clouds, compared
with GPU memory, CPU memory is cheap and extensible.
We believe FOLD3D and Megatron are complementary to each
other. Megatron is optimized for training on dedicated ultra
network clusters [59]. On such dedicated clusters, we envision
that FOLD3D’s gain over Megatron will decrease, because these
clusters’ Tbps network seems not to be a bottleneck. After
all, FOLD3D is designed for high-performance training of large
models on commodity clouds for a wide range of users, labs, and
enterprises (who do not have access to these dedicated clusters).
FOLD3D’s much-improved throughput on commodity clouds (on
many GPUs and sub-100 Gbps networks) has shown its value
on saving these folks’ massive financial resources and natural
energy. Moreover, the available network on commodity clouds
is often not as large as claimed by the cloud provider. When
we ran our experiments on V100-100 G in a dedicated, quiet
AWS cluster, by network monitoring, we found that the peak
network bandwidth for each AWS tenant (us) could be only
70 to 80 Gbps (see Section VI-C), making FOLD3D especially
desirable.

VII. RELATED WORK

There are tremendous systems that study the parallel tech-
niques for DNN training, along data parallelism [19], [29], [60],
[61], [62], pipeline parallelism [10], [11], [13], [20], [21], [22],
[43], [63], [64], and tensor parallelism [25], [65], [66], [67],
until the emergence of 3D parallel training systems [8], [9],
[17]. Based on the above three foundational dimensions, there
are various emerging parallelism techniques including optimizer
parallelism (e.g., DeepSpeed Zero [29]), token parallelism (e.g.,
TeraPipe [64]), sequence parallelism [28], etc. All these various
techniques are complementary to 3D parallelism with each
targeting at extreme cases of large DNN training (e.g., token
parallelism is for extremely long sequence training). In this
article, we focus on optimizing the 3D parallel dimensions,
which serve as the foundation for today’s large DNNs to scale
efficiently to billions of parameters.

Systems for Data Parallel Training. Data parallelism [19],
[29], [60], [61], [62], [68] is widely adopted for distributed DNN
training. Some data parallel training systems like P3 [69] and

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1447

TicTac [40] adopt priority scheduling in data parallel training to
overlap the data parallel communication with both forward and
backward computation. Gradients of front layers are scheduled
ahead of rear layers to maximize overlapping. BytePS [70]
unifies all-reduce and parameter servers to utilize heterogeneous
resources in a cluster. ZeRO [29] reduces the memory usage
of data parallelism by sharding model parameters and gradi-
ents across GPUs. Compared with P3 and TicTac which only
work for pure data parallel training, Fold3D further tackles the
challenges to overlap communication with computation in 3D
parallel training, which are non-trivial as we discussed in Section
I. Fold3D can incorporate techniques like BytePS.

Systems for Pipeline Parallel training. Pipeline paral-
lelism [10], [11], [13], [20], [21], [22], [43], [63], [64], [71], [72],
[73], [74] is commonly used for training large DNN models.
TeraPipe [64] performs fine-grained pipeline parallelism across
tokens in a single training sequence for Transformer-based
models. vPipe [22] balances the memory usage and computation
across pipeline stages. HetPipe [10] supports training on a set of
heterogeneous GPUs with pipeline parallelism. These optimiza-
tions sorely in the pipeline parallelism dimension are orthogonal
to Fold3D. When combining existing pipeline parallel systems
with data parallelism, none of them can overlap data parallel
communication with computation, and the data parallel com-
munication of these systems is serialized after pipeline parallel
computation.

Automatic Partitioning. FlexFlow [75], Placeto [76], RE-
GAL [77], Alpa [17] and Piper [16] automatically partition a
model over multiple devices through transforming the paral-
lelization optimization problem into a cost minimization prob-
lem. Among these works, Piper efficiently finds a near-optimal
strategy for 3D parallelization combined with memory-saving
techniques. However, these works focus on finding an optimal
parallelization configuration, while Fold3D proposes a new 3D
parallel scheduling. Note that both FOLD3D and Megatron used
the 3D configuration strategy produced by Piper (Section VI).
We believe FOLD3D and Piper are orthogonal.

OOO [21] proposes a new training task splitting paradigm
that splits the gradient computations of output and weights in
the backward propagation, so that a smaller bubble size during
pipelining can be achieved. However, OOO achieves this at a
cost of larger memory overhead because it requires a longer
duration of all layers’ gradient outputs (ΣO) stashing in the
GPU memory. OOO is not designed for 3D parallelism, because
when OOO is combined with TP, the ΣO will be explosive as
each layer’s gradient output is gathered from all GPUs of the TP
dimension. OOO has to keep this heavy ΣO in GPU memory
until all tasks of a layer’s backward pass finish. Therefore,
OOO is orthogonal to all 3D parallel training systems including
FOLD3D.

There are also various pioneer works that target at new train-
ing paradigms based on Transformer-like models, introducing
sparsely activated DNN training. Pathways [78] is a recent Multi
Program Multiple Data (MPMD) training framework (proposed
by Google) that runs multiple training tasks/programs (i.e., each
task/program is a single SGD procedure; tasks may share param-
eters with each other) to fully exploit a cluster’s heterogeneous

GPU resources. Still, Pathways is complementary to Single Pro-
gram Multiple Data systems including Megatron, DeepSpeed,
and FOLD3D, because within each training task (program), the
3D parallelism technique is still essential for scaling to a large
number of GPUs/TPUs with heterogeneous inter-links between
devices.

Besides, Mixture-of-Expert [34], [67] extends Transformer
models with many sparsely activated experts. Many emerging
training systems such as FasterMoE [35] and Tutel [79] to accel-
erate MoE workloads. These systems are orthogonal to FOLD3D.
We believe our AIAO scheduling has potentials to benefit MoE
models, as the MoE training paradigms also requires the DP, PP,
and TP parallel dimensions [17]. Certainly, new challenges will
be encountered as MoE models introduced many asymmetric,
sparsely activated computational tasks to the traditional DNN
training, bring complexities to find the optimal 3D parallel
scheduling. We leave this in future work.

VIII. CONCLUSION

We present the FOLD3D system, which maximally overlaps
communication and computation tasks in 3D parallel training of
large DNN models on commodity clouds. By folding a model
into segments, FOLD3D conducts AIAO to achieve the an all-
parallel scheduling between communication and computation
tasks. FOLD3D can benefit most people who demand training
and fine-tuning large DNN models.

ACKNOWLEDGMENTS

We thank all reviewers for their valuable comments.

REFERENCES

[1] T. B. Brown et al., “Language models are few-shot learners,”
2020, arXiv:2005.14165.

[2] Z. Yang et al., “XLNet: Generalized autoregressive pretraining for lan-
guage understanding,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlche Buc, E.
Fox, and R. Garnett Eds., Red Hook, NY, USA: Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

[3] L. Dong et al., “Unified language model pre-training for natural language
understanding and generation,” in Advances in Neural Information Pro-
cessing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. deBuc, E.
Fox, and R. Garnett Eds., Red Hook, NY, USA: Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper/2019/file/
c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf

[4] S. Gururangan et al., “Don’t stop pretraining: Adapt language models to
domains and tasks,” in Proc. 58th Annu. Meeting Assoc. Comput. Linguis-
tics, 2020, pp. 8342–8360. [Online]. Available: https://aclanthology.org/
2020.acl-main.740

[5] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2021, pp. 1–21. [Online]. Available: https://openreview.net/forum?id=
YicbFdNTTy

[6] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” 2021, arXiv:2103.14030.

[7] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah,
“Transformers in vision: A survey,” 2021, arXiv:2101.01169.

[8] D. Narayanan et al., “Efficient large-scale language model training on GPU
clusters using megatron-LM,” in Proc. Int. Conf. High Perform. Comput.
Netw. Storage Anal., New York, NY, USA: Association for Computing
Machinery, 2021. [Online]. Available: https://doi.org/10.1145/3458817.
3476209

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://aclanthology.org/2020.acl-main.740
https://aclanthology.org/2020.acl-main.740
https://openreview.net/forum{?}id=YicbFdNTTy
https://openreview.net/forum{?}id=YicbFdNTTy
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3458817.3476209

1448 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

[9] “microsoft/deepspeed,” 2020. [Online]. Available: https://github.com/
microsoft/DeepSpeed

[10] D. Narayanan et al., “Pipedream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 1–15.

[11] B. Yang, J. Zhang, J. Li, C. Ré, C. Aberger, and C. De Sa, “PipeMare:
Asynchronous pipeline parallel DNN training,” in Proc. Mach. Learn.
Syst. Conf., 2021, pp. 269–296.

[12] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized stochastic
gradient descent,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2010,
Art. no. 4.

[13] S. Fan et al., “DAPPLE: A pipelined data parallel approach for training
large models,” in Proc. 26th ACM SIGPLAN Symp. Princ. Pract. Parallel
Program., 2021, pp. 431–445.

[14] “NVLink,” 2014. [Online]. Available: https://www.nvidia.com/en-us/
data-center/nvlink/

[15] “Infiniband and remote DMA (RDMA) interfaces,” 2021. [Online]. Avail-
able: https://www.kernel.org/doc/html/v5.11/driver-api/infiniband.html

[16] J. M. Tarnawski, D. Narayanan, and A. Phanishayee, “Piper: Multidimen-
sional planner for DNN parallelization,” in Proc. Adv. Neural Inf. Process.
Syst., 2021, pp. 24829–24840.

[17] L. Zheng et al., “Alpa: Automating inter-and intra-operator parallelism for
distributed deep learning,” 2022, arXiv:2201.12023.

[18] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” J. Parallel Distrib. Comput., vol. 69, no. 2,
pp. 117–124, 2009.

[19] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “DeepSpeed: System
optimizations enable training deep learning models with over 100 billion
parameters,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2020, pp. 3505–3506.

[20] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel DNN training,” in Proc. Int. Conf.
Mach. Learn., 2021, pp. 7937–7947.

[21] H. Oh, J. Lee, H. Kim, and J. Seo, “Out-of-order backprop: An effective
scheduling technique for deep learning,” in Proc. 17th Eur. Conf. Comput.
Syst., 2022, pp. 435–452.

[22] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” 2018, arXiv:1811.06965.

[23] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, “Performance evaluation
and optimization of HBM-enabled GPU for data-intensive applications,”
IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 26, no. 5,
pp. 831–840, May 2018.

[24] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 103–112.

[25] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-LM: Training multi-billion parameter language models using
model parallelism,” 2019, arXiv:1909.08053.

[26] “NVIDIA/Megatron-LM,” 2022. [Online]. Available: https://github.com/
NVIDIA/Megatron-LM/tree/main/megatron

[27] J. Ren et al., “ZeRO-Offload: Democratizing billion-scale model train-
ing,” in Proc. USENIX Annu. Tech. Conf., 2021, pp. 551–564. [Online].
Available: https://www.usenix.org/conference/atc21/presentation/ren-jie

[28] V. Korthikanti et al., “Reducing activation recomputation in large trans-
former models,” 2022, arXiv:2205.05198.

[29] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory opti-
mizations toward training trillion parameter models,” in Proc. IEEE Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2020, pp. 1–16.

[30] A. Vaswani et al., “Attention is all you need,” 2017, arXiv:1706.03762.
[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-

training of deep bidirectional transformers for language understanding,”
2018, arXiv:1810.04805.

[32] Z. Zhang et al., “CPM: A large-scale generative chinese pre-trained
language model,” AI Open, vol. 2, pp. 93–99, 2021.

[33] C. Raffel et al., “Exploring the limits of transfer learning with a uni-
fied text-to-text transformer,” J. Mach. Learn. Res., vol. 21, pp. 1–67,
2020.

[34] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to
trillion parameter models with simple and efficient sparsity,” J. Mach.
Learn. Res., vol. 23, pp. 1–39, 2021.

[35] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “FastMoE: A fast
mixture-of-expert training system,” 2021, arXiv:2103.13262.

[36] A. Chowdhery et al., “PaLM: Scaling language modeling with pathways,”
2022, arXiv:2204.02311.

[37] V. Gabeur, C. Sun, K. Alahari, and C. Schmid, “Multi-modal transformer
for video retrieval,” in Proc. Eur. Conf. Comput. Vis., 2020, pp. 214–229.

[38] M. Li et al., “Parameter server for distributed machine learning,” in Proc.
Big Learn. NIPS Workshop, 2013, Art. no. 2.

[39] Y. Peng et al., “A generic communication scheduler for distributed DNN
training acceleration,” in Proc. 27th ACM Symp. Operating Syst. Princ.,
2019, pp. 16–29.

[40] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Accelerating
distributed deep learning with communication scheduling,” in Proc. 2nd
SysML Conf., 2019, pp. 418–430.

[41] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “ZeRO-infinity:
Breaking the GPU memory wall for extreme scale deep learning,” in Proc.
Int. Conf. High Perform. Comput. Netw. Storage Anal., New York, NY,
USA, 2021, doi: 10.1145/3458817.3476205.

[42] D. Foley and J. Danskin, “Ultra-performance pascal GPU and NVLink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, Mar./Apr. 2017.

[43] S. Zhao et al., “vPipe: A virtualized acceleration system for achieving
efficient and scalable pipeline parallel DNN training,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 3, pp. 489–506, Mar. 2021.

[44] S. Ruder, “An overview of gradient descent optimization algorithms,”
2016, arXiv:1609.04747.

[45] J. H. Park et al., “HetPipe: Enabling large {DNN } training on (whimpy)
heterogeneous { GPU} clusters through integration of pipelined model
parallelism and data parallelism,” in Proc. USENIX Annu. Tech. Conf.,
2020, pp. 307–321.

[46] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[47] W. A. Gardner, “Learning characteristics of stochastic-gradient-descent
algorithms: A general study, analysis, and critique,” Signal Process., vol. 6,
no. 2, pp. 113–133, 1984.

[48] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical
framework for back-propagation,” in Proceedings of Connectionist Mod-
els Summer School. Burlington, MA, USA: Morgan Kaufmann, 1988,
pp. 21–28.

[49] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” 2016, arXiv:1604.06174.

[50] Nvidia, “NCCL hangs during ncclSend and ncclRecv,” 2021. [Online].
Available: https://github.com/NVIDIA/nccl/issues/584

[51] “jcpeterson/openwebtext,” 2019. [Online]. Available: https://github.com/
jcpeterson/openwebtext

[52] “huggingface/wikipedia,” 2022. [Online]. Available: https://huggingface.
co/datasets/wikipedia

[53] “Wudaocorpora 2.0,” 2021. [Online]. Available: https://resource.wudaoai.
cn/home

[54] “allenai/c4,” 2021. [Online]. Available: https://huggingface.co/datasets/
allenai/c4

[55] S. Rashidi et al., “Enabling compute-communication overlap in distributed
deep learning training platforms,” in Proc. ACM/IEEE 48th Annu. Int.
Symp. Comput. Architecture, 2021, pp. 540–553.

[56] A. Qiao et al., “Pollux: Co-adaptive cluster scheduling for goodput-
optimized deep learning,” in Proc. 15th USENIX Symp. Operating Syst.
Des. Implementation, 2021, pp. 1–18.

[57] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team, “An empirical
model of large-batch training,” 2018, arXiv:1812.06162.

[58] C. Li, M. Zhang, and Y. He, “Curriculum learning: A regularization
method for efficient and stable billion-scale GPT model pre-training,”
2021, arXiv:2108.06084.

[59] “NVIDIA selene: Leadership-class supercomputing infrastructure,” 2020.
[Online]. Available: https://www.nvidia.com/en-us/on-demand/session/
supercomputing2020-sc2019/

[60] S. Li et al., “Pytorch distributed: Experiences on accelerating data parallel
training,” 2020, arXiv:2006.15704.

[61] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep
learning in tensorflow,” 2018, arXiv:1802.05799.

[62] Y. Xu, H. Lee, D. Chen, H. Choi, B. Hechtman, and S. Wang, “Auto-
matic cross-replica sharding of weight update in data-parallel training,”
2020, arXiv:2004.13336.

[63] L. Guan, W. Yin, D. Li, and X. Lu, “XPipe: Efficient pipeline model
parallelism for multi-GPU DNN training,” 2019, arXiv:1911.04610.

[64] Z. Li et al., “TeraPipe: Token-level pipeline parallelism for training
large-scale language models,” in Proc. Int. Conf. Mach. Learn., 2021,
pp. 6543–6552.

[65] Y. Xu et al., “GSPMD: General and scalable parallelization for ML
computation graphs,” 2021, arXiv:2105.04663.

https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.kernel.org/doc/html/v5.11/driver-api/infiniband.html
https://github.com/NVIDIA/Megatron-LM/tree/main/megatron
https://github.com/NVIDIA/Megatron-LM/tree/main/megatron
https://www.usenix.org/conference/atc21/presentation/ren-jie
https://dx.doi.org/10.1145/3458817.3476205
https://github.com/NVIDIA/nccl/issues/584
https://github.com/jcpeterson/openwebtext
https://github.com/jcpeterson/openwebtext
https://huggingface.co/datasets/wikipedia
https://huggingface.co/datasets/wikipedia
https://resource.wudaoai.cn/home
https://resource.wudaoai.cn/home
https://huggingface.co/datasets/allenai/c4
https://huggingface.co/datasets/allenai/c4
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/
https://www.nvidia.com/en-us/on-demand/session/supercomputing2020-sc2019/

LI et al.: FOLD3D: RETHINKING AND PARALLELIZING COMPUTATIONAL AND COMMUNICATIONAL TASKS IN THE TRAINING 1449

[66] N. Shazeer et al., “Mesh-TensorFlow: Deep learning for supercomputers,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 10435–10444.

[67] D. Lepikhin et al., “GShard: Scaling giant models with conditional com-
putation and automatic sharding,” 2020, arXiv:2006.16668.

[68] P. Mattson et al., “MLPerf training benchmark,” in Proc. Mach. Learn.
Syst. Conf., 2020, pp. 336–349.

[69] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN training,” in
Proc. Mach. Learn. Syst. Conf., 2019, pp. 132–145.

[70] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified ar-
chitecture for accelerating distributed {DNN} training in heterogeneous
{GPU/CPU} clusters,” in Proc. 14th USENIX Symp. Operating Syst. Des.
Implementation, 2020, pp. 463–479.

[71] S. Li and T. Hoefler, “Chimera: Efficiently training large-scale neural
networks with bidirectional pipelines,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2021, pp. 1–14.

[72] W. Zeng et al., “PanGu-: Large-scale autoregressive pretrained chinese lan-
guage models with auto-parallel computation,” 2021, arXiv:2104.12369.

[73] C. He, S. Li, M. Soltanolkotabi, and S. Avestimehr, “PipeTransformer:
Automated elastic pipelining for distributed training of transformers,”
2021, arXiv:2102.03161.

[74] J. M. Tarnawski, A. Phanishayee, N. Devanur, D. Mahajan, and F.
Nina Paravecino, “Efficient algorithms for device placement of DNN
graph operators,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 15 451–15 463.

[75] Z. Jia, M. Zaharia, and A. Aiken, “Beyond data and model parallelism for
deep neural networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 1–13.

[76] S. Bojja Venkatakrishnan et al., “Learning generalizable device placement
algorithms for distributed machine learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2019, pp. 3981–3991.

[77] A. Paliwal et al., “Reinforced genetic algorithm learning for optimizing
computation graphs,” 2019, arXiv:1905.02494.

[78] P. Barham et al., “Pathways: Asynchronous distributed dataflow for ML,”
in Proc. Mach. Learn. Syst. Conf, 2022, pp. 430–449.

[79] C. Hwang et al., “Tutel: Adaptive mixture-of-experts at scale,”
2022, arXiv:2206.03382.

Fanxin Li received the BE degree from Xi’an Jiao-
tong University, in 2019. He is currently working
toward the PhD degree with the University of Hong
Kong. His research interests include distributed ma-
chine learning and cloud computing.

Shixiong Zhao (Student Member, IEEE) received
the bachelor’s degree from the University of Hong
Kong (HKU), and the master’s degree from the Hong
Kong University of Science and Technology. He is
currently working toward the PhD degree in computer
science of University of Hong Kong. He is under the
supervision of Prof. Heming Cui. His research inter-
ests include distributed systems for high performance
computing, distributed systems, and system security.

Yuhao Qing received the bachelor’s degree from the
City University of Hong Kong. He is currently work-
ing toward the PhD degree in computer science with
the University of Hong Kong, under the supervision
of Prof. Heming Cui. His research interests includes
machine learning systems and cloud computing.

Xusheng Chen received the bachelor’s degree from
the University of Hong Kong. He is currently working
toward the PhD degree in computer science with the
University of Hong Kong. He is under the supervision
of Prof. Heming Cui. His research interests include
distributed consensus protocols, distributed systems,
and system security.

Xiuxian Guan received the bachelor’s degree from
the University of Science and Technology of China.
He is currently working toward the PhD degree with
the Department of Computer Science, University of
Hong Kong, co-supervised by Prof. Heming Cui from
University of Hong Kong and Prof. Rui Wang from
SusTech. His research interest includes distributed
systems, wireless networks, machine learning, and
more.

Sen Wang received the BS degree in computer sci-
ence from the University of Science and Technology
of China (USTC), Hefei, China, in 2005, the MS de-
gree in computer science from the Chinese Academy
of Sciences (CAS), Beijing, China, in 2008, and the
PhD degree in computer science from Tsinghua Uni-
versity, Beijing, China, in 2014. From 2014 to 2019,
he was a lecturer and then an associate professor with
Chongqing University, Chongqing, China. Currently,
he is a senior researcher with Huawei, Hongkong. His
research interests include information-centric net-

working, federated learning, and AI for system.

Gong Zhang is a chief architect researcher scien-
tist, director of the Huawei Future Network Theory
Lab. His major research directions are network ar-
chitecture and large-scale distributed systems. He has
abundant experience on system architect in networks,
distributed system and communication system for
more than 20 years. He has more than 90 global
patents.

Heming Cui (Member, IEEE) is an Associate Profes-
sor in computer science with the University of Hong
Kong. His research interests include operating sys-
tems, programming languages, distributed systems,
and cloud computing, with a particular focus on
building software infrastructures and tools to improve
reliability and security of real-world software.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

