
1

FLUPS - a flexible and performant massively
parallel Fourier transform library

Pierre Balty, Philippe Chatelain, and Thomas Gillis

Note: published in IEEE Transactions on Parallel and
Distributed Systems. This version includes updated results
after the correction of a typo in [1], see section V and
section C.

Abstract—Massively parallel Fourier transforms are widely
used in computational sciences, and specifically in compu-
tational fluid dynamics which involves unbounded Poisson
problems. In practice the latter is usually the most time-
consuming operation due to its inescapable all-to-all communi-
cation pattern. The original flups library tackles that issue with
an implementation of the distributed Fourier transform tailor-
made for successive resolutions of unbounded Poisson prob-
lems. However the proposed implementation lacks of flexibility
as it only supports cell-centered data layout and features a plain
communication strategy. This work extends the library along
two directions. First, flups’ implementation is generalized to
support a node-centered data layout. Second, three distinct
approaches are provided to handle the communications: one
all-to-all, and two non-blocking implementations relying on
manual packing and MPI_Datatype to communicate over the
network. The proposed software is validated against analytical
solutions for unbounded, semi-unbounded, and periodic do-
mains. The performance of the approaches is then compared
against accFFT, another distributed FFT implementation, us-
ing a periodic case. Finally the performance metrics of each
implementation are analyzed and detailed on various top-tier
European facilities up to 49,152 cores. This work brings flups
up to a fully production-ready and performant distributed
FFT library, featuring all the possible types of FFTs and with
flexibility in the data-layout. The code is available under a BSD-3
license at github.com/vortexlab-uclouvain/flups.

Index Terms—Distributed Applications, Fast Fourier trans-
forms,

I. INTRODUCTION

The distributed implementation of the three-dimensional
(3D) Fourier transform, or equivalently the successive ap-
plication of three one-dimensional (1D) transforms, has
been a computational challenge over the past decades.
Encouraged by its very broad impact many works have
been proposed recently on the parallel implementation of
the Fourier transform, with a particular emphasis on GPU
support. Among them, accFFT[2] is the fastest on both
CPU-only and heterogeneous architectures[3]. Relying on a
hybrid MPI and CUDA parallelism, it optimizes the overlap
between communications and computations to hide the
communication overhead. It also provides support for real-
to-complex and complex-to-complex transforms. Similarly
heFFTe[4] reaches good performance while removing some
of the restrictions applied on the topology of the input data.
To hide the transpose of the local data in the communica-
tions, Dalcin et al.[5] proposed an approach based on MPI
datatypes and generalized all-to-all communications. All of
the mentioned libraries have been thoroughly benchmarked
and compared to other software, such as P3DFFT[6] or
SWFFT[7], more details can be found in [3].

The applications of the Fourier transform are numerous,
and in particular when solving PDEs in fields such as
fluids dynamics or gravitational problems. In the specific
field of computational fluid dynamics, incompressibility is
accounted for through a Poisson equation which is often
solved using an FFT-based Poisson solver [8–10]. Despite
its relevance, a software with enough flexibility to be used
in practice while retaining its parallel performance at large
scale is still missing, hence forcing the users to write their
own, usually not optimized implementations.

Based on our computational fluid dynamics expertise, we
identify three main requirements for a distributed imple-
mentation of the Fourier transform to be convenient:

1) the combination of various FFT types must be sup-
ported and efficient. We here refer to real-to-real, real-
to-complex, and complex-to-complex FFTs, as many
PDE simulations rely on real numbers;

2) the user-provided data should be given either in a cell-
centered or a node-centered data layout, as defined in
section II-A;

3) the required flexibility on the user side must not
compromise the parallel performance, both measured
by scalability metrics and the time-to-solution.

The original flups library[1] focuses on the first and
partially on the third requirement while omitting the second
one. The authors proposed a software for the resolution of
unbounded Poisson equations in 3D on uniform distributed
grids with various boundary conditions (BCs) and all their
combinations. They sort the different BCs into 4 categories:
(1) the even and odd BCs corresponding to DST/DCT, (2)
semi-unbounded BCs using extra padding and a DCT/DST,
(3) periodic BCs via the DFT, and (4) unbounded BCs
through DFT and extra padding. To reduce the compu-
tational cost, flups reorders the transforms according to
the cost entailed by the BC type, starting with the most
affordable ones. It thus follows the order: (1), (2), (3), and
finally (4). However the implementation does not support
the node-centered data layout and offers unsatisfying time-
to-solution, especially with unconventional distribution of
unknowns.

As most distributed FFT libraries, flups uses fftw[11]
as a 1D FFT transform library and implements the various
memory transfers and communications between distributed
resources[12]. The latter drives the overall performance and
is considered as the algorithm bottleneck, especially at large
scale [13]. Two approaches stand out for the distribution of
the 3D data among the resources [6], which consequently
impacts the application of the FFTs as well as the communi-
cation strategies: the slab or the pencil decomposition. Both
strategies distribute a 3D computational grid, for simplicity
assumed here of size N in each dimension (hence with a
total size of N 3), onto P computational resources. The slab

ar
X

iv
:2

21
1.

07
77

7v
3

 [
cs

.D
C

]
 2

1
M

ar
 2

02
3

https://doi.org/10.1109/TPDS.2023.3254302
https://doi.org/10.1109/TPDS.2023.3254302
github.com/vortexlab-uclouvain/flups

2

decomposition consists in dividing the grid into slices of
data and performing 2D FFTs in the first two dimensions.
It is followed by an all-to-all communication to reorder the
data in the third direction and perform the remaining 1D
FFT. The scalability of this method breaks down when the
number of processes P exceeds the data size in the third
direction N , as some of the processes do not own any data
hence reducing the load balancing. On the other side, the
pencil decomposition approach removes this partition-size
limitation. For each of the three dimensions, it divides the
data into 1D pencils, which leads to up to N 2 indepen-
dent data chunks to be distributed among the processes.
With that strategy 1D FFTs are performed in the pencil
direction, and communications are needed to switch from
one direction to another (and realign the data accordingly)
between successive FFTs. While the slab decomposition
requires each MPI rank to communicate once with all the
other ranks in the communicator, which makes it efficient
on small partitions, the pencil decomposition requires each
MPI rank to communicate twice with

p
P , which reduces

the communication cost on very large partitions.

To address the gap between the research efforts in
computational science and the end-user applications, we
propose a massively distributed FFT implementation that
checks the three requirements we have identified: (1) mixed
FFT types, (2) agnostic to the data layout, and (3) large scale
scalability and performance. This work builds upon the ex-
isting flups library which has been used in computational
fluid dynamics codes to solve unbounded Poisson prob-
lems. Therefore our motivation as well as our presentation
of the methodology and the obtained results is driven by
this specific application. However the performance results
are not specific to this configuration and we expect the
impact of our work to go beyond the application envisioned.

First we present in section II the generalization of the
implementation to be compatible with both node-centered
and cell-centered applications. Then in section III we detail
our communication strategies, as well as several optimiza-
tions to improve scalability and peformance. The resulting
codebase is validated against analytical solutions of the
Poisson problem in section IV. In section V, we demonstrate
the convergence of flups and its ease of use by solving the
Biot-Savart equation, a variation of the Poisson problems
already considered. Then, to ensure that the proposed
changes and generalizations do not affect the performance,
we compare our time-to-solution against accFFT in sec-
tion VI. Finally, we assess the parallel performance of
each communication strategy and benchmark the code on
three top-tier European clusters. To conclude this work, we
present a summary of the proposed innovations as well as
our results in section VII.

II. METHODOLOGY

As an FFT-based approach, both the original and the
proposed updated version of flups, solve the Poisson
equation ∇2u = f through a convolution between the right-
hand side f and a pre-computed Green’s function G ,

∇2u = f ⇒ u =G ∗ f . (1)

The latter being performed as a point-wise multiplication
in the spectral space: û = Ĝ · f̂ . The choice of the Green’s

function G as well as its spectral representation Ĝ de-
pends on the boundary conditions (BCs) and the chosen
regularization at the origin. The forward and backward
multidimensional Fourier transform is performed through
a succession of 1D FFTs, whose types are chosen to comply
with the required boundary conditions (BC), as described
in Section I. We refer the reader to [1, 14] for further details
on the algorithm as well as the combination of unbounded
and spectral directions.

As already mentioned flups has been designed for cell-
centered data layout exclusively. To accommodate node-
centered data layouts some parts of the algorithms have
been generalized and/or rewritten. In section II-A we first
detail the notation regarding the length of the domain in
order to handle the two proposed data layouts. Then in
section II-B we detail the choice of FFTs for the periodic,
even, and odd boundary conditions, and in section II-C we
finally detail the implementation of the (semi-)unbounded
boundary condition.

A. Point numbering conventions

The presented library relies on fftw to take care of the
FFT computations. For performance reasons, the authors of
fftw adapt the length of the provided data to avoid any
trivially null computations. As flups combines different
types of FFTs and supports different boundary conditions,
we have chosen to use the same convention for all the
different cases (regardless of the type of FFTs):

As commonly defined in PDE simulations, a multidimen-
sional grid with a physical size of Li contains Ni data in the
i th dimension (e.g. in 3D: Lx×Ly×Lz with Nx×Ny×Nz data).
The data might be organized either in a node-centered or
cell-centered data layout, defined for the i th dimension as:

• cell-centred layout: f j , f (x j) where x j = (
j +1/2

)
h

with j ∈ [0 ; N −1] and h = L/N .
• node-centred layout: f j , f (x j) where x j =

(
j
)

h with
j ∈ [0 ; N] and h = L/N .

We note that when considering the node-centered config-
uration the data size is N + 1, instead of N for the cell-
centered layout. Specifically to the node-centered layout,
the last point fN is crucial in some configurations such as
the even boundary condition. However the information is
sometimes duplicated when considering periodic boundary
conditions. In the latter case, the boundary points (0 and N)
must match the imposed boundary conditions and might
be used (or not) by flups depending on the chosen FFT.
Nevertheless for an improved usability we ensure that those
duplicated points contain the correct information in the
end result. Finally, as the rest of this section relates to 1D
definitions, we simplify the notation by using N instead of
Ni and L for Li when appropriate.

B. Periodic, even, and odd boundary conditions

For both data layouts, the periodic boundary condition
relies on the 1-D real-to-complex DFT defined as

f̃k =
N−1∑
j=0

f (x j) exp

[
−i 2π

N
j k

]
=

N−1∑
j=0

f (x j) exp
[−iωk x j

]
,

(2)

3

with i = p−1, k ∈ [0 ; N /2] and ωk = k 2π
L the frequency

associated to the output k. Note that we use f̃ instead of
f̂ to distinguish the partially spectral result obtained after
a 1D DFT from the fully spectral output obtained through
the 3D FFT.

The real-to-complex DFT produces N /2 + 1 complex
modes where the mode 0 and π (constant and flip-flop
modes respectively) are purely real. As we use the standard
complex storage of fftw, we don’t explicitly take advantage
of the trivially null imaginary parts. In the case of node-
centered information, the last data provided by the user
(fN) is unused.

The choice of FFTs gets more diverse when consider-
ing real-to-real transforms used to impose even and odd
boundary conditions. The different combinations of the
forward transform are summarized in Table I for both cell-
centered and node-centered layouts. For the cell-centered
one we refer the reader to [1], and we detail hereunder the
node-centered layout.

node-centered cell-centered
odd-odd type-I DST type-II DST
odd-even type-III DST type-IV DST
even-odd type-III DCT type-IV DCT
even-even type-I DCT type-II DCT

Table I: Spectral boundary condition and the corresponding
forward Fourier transforms

1) Even-even boundary condition: The even-even condi-
tion is imposed using a type-I DCT, which contains the real
part of the DFT as given in Equation (2). This DCT is then
defined as

f̃k = f (x0)+ (−1)k f (xN)+2
N−1∑
j=1

f (x j) cos

[
2π

2N
j k

]
, (3)

with k ∈ [0 ; N]. We note that this transform produces N +1
real spectral information corresponding to the frequencies
ωk = 2π

2L k = 2π
L

k
2 = π

L k. The output of this transform is then
equivalent to the frequencies obtained by using the DFT
on a domain 2N . In order to improve consistency across
the definitions and in the implementation, we will use the
notation based on 2π

2L throughout this section. As illustrated
in Figure 1 where we highlight the needed information from
the user point of view, both the values in f0 and fN are
relevant in the even-even case.

2) Odd-odd boundary condition: To impose an odd-odd
boundary condition, also illustrated in Figure 1, we use the
type-I DST which contains the imaginary part of the DFT
as given in Equation (2):

f̃k = 2
N−1∑
j=1

f (x j) sin

[
2π

2N
j k

]
, (4)

with k ∈ [1 ; N −1], where f̃0 = 0 and f̃N = 0 since the input
data are real. To match this definition the first and last user-
provided data are assumed to be zero and fftw discards
both information to reduce the memory footprint and the
time-to-solution. To adapt to this convention in flups we
consider ui for i ∈ [1 ; N −1] only and the information
located in i = 0 and i = N are overwritten to be zero.

3) Odd-even boundary condition: In order to impose
mixed boundary conditions such as the odd-even one we

use a type-III DST as defined by

f̃k = (−1)k f (xN)+2
N−1∑
j=1

f (x j) sin

[
2π

2N
j

(
k + 1

2

)]
, (5)

with k ∈ [0 ; N −1]. Here, flups overwrites the first user-
provided information f0 as represented in Figure 1. Also,
we note that the half modes produced have an associated
frequency of ωk = 2π

2L

(
k + 1

2

) = 2π
4L (2k +1). Therefore they

correspond to the odd frequencies that would have been
obtained using a DFT on a domain of size 4N applying all
the symmetries explicitly.

4) Even-odd boundary condition: The final combination
is the even-odd case which is obtained using the type-III
DCT, defined as

f̃k = f (x0)+2
N−1∑
j=1

f (x j) cos

[
2π

2N
j

(
k + 1

2

)]
, (6)

with k ∈ [0 ; N −1] and where flups overwrites the last user-
provided information as illustrated in Figure 1. Similarly
to the odd-even case, we note that the corresponding
frequencies are the odd frequencies that would have been
obtained using a DFT on a domain of size 4N applying
explicitly all the boundary conditions.

0 L

Figure 1: Examples of odd-odd (), odd-even (),
even-odd (), and even-even () boundary conditions.
The shaded area represents the symmetry imposed by the
boundary conditions. Data located there are fictitious. Filled
shapes represent the points given to fftw, while the empty
shapes are the data assumed by the BCs.

C. Semi-unbounded and unbounded boundary conditions

1) Unbounded directions: The unbounded boundary con-
dition is imposed using the domain doubling technique
of Hockney and Eastwood [15]. The algorithm extends
the right-hand side to a domain of size 2L and fills the
extension with zeros. The Green’s function is also extended
and symmetrized around L. The spectral representation of
both extended fields G̃ext and f̃ext is then obtained with a
DFT on the extended domain, and the periodic convolution
is performed as a multiplication in the spectral space. We
refer the reader to [1] for more details on the unbounded
boundary condition treatment and various expressions for
the Green’s function.

Compared to the already mentioned approach, the gen-
eralization to node-centered data layout only affects the
padding sizes, and the expressions for the Green’s function
remain unchanged. As illustrated in Figure 2 the right-hand
side is extended by N−2 points, all set to 0, and we perform

4

the DFT on a domain from 0 to 2L. On the Green’s function
side, the symmetry happens around j = N , and the domain
is extended with N −2 information.

f

0 L 2L

DFT

Gδ

0 L 2L

DFT

(a) unbounded

f

0 L 2L

DCT, DST

Gδ

0 L 2L

DCT

(b) even/odd - unbounded

Figure 2: Extension of the right-hand side () and of
the Green function() for the unbounded and semi-
unbounded boundary condition. The values of the extended
fields are shaded. For the semi-unbounded case, the do-
main’s extension can be done on both sides of the domain
and is here represented on the right end of the domain.

2) Semi unbounded directions: flups also supports semi-
unbounded boundary conditions as a combination of an
unbounded boundary condition at one end of the domain
and a symmetry condition at the other end. As explained in
[1], it relies on the domain doubling technique to impose
the infinite boundary condition and on DSTs and DCTs
to prescribe the correct symmetry while reducing memory
usage. In this configuration, the right-hand side is first
extended and padded on the unbounded side, unlike the
fully unbounded case where we always extend it from L
to 2L. Then, a DST or DCT is executed on the extended
domain to impose the proper symmetry condition. The
Green’s function is evaluated on the extended domain, and
a DCT transform imposes the proper symmetry conditions
required by the domain doubling technique.

As highlighted in Section II-B fftw does not consider
the same amount of data when computing a DST or a
DCT. Specifically when considering an even-unbounded
boundary condition the right-hand side undergoes a DST
while the Green’s function a DCT. Therefore the spectral
information obtained as a result of fftw has different
wave-numbers and different sizes due to the use of fftw’s
convention. We solve this issue by allocating extra space
for the DST and using a common indexing for both the
right-hand side and the Green’s function.

III. IMPLEMENTATION

The implementation challenges of unbounded Poisson
solvers as proposed in flups are almost equivalent to
the one of a parallel distributed FFT transform. However
a few key differences exist and are worth noting as they
have motivated the authors of flups toward their own
implementation.

• ability to mix different types of FFTs together (DFTs,
DCTs, and DSTs) to support the different boundary
conditions;

• the transform should happen in-place;

• the order of the transforms should be determined
from the boundary conditions and not be imposed by
the framework, to reduce the memory footprint and
increase the solver performance;

• the unbounded boundary conditions should be sup-
ported, i.e. the FFT sizes might vary to accommodate
zero-padding;

The original flups library satisfies those requirements
but suffers from a plain approach and is not generalizable
to node-centered data layout. The main problem is that the
latter leads to an odd number of data to be distributed
on a usually even number of processes, which results in
a load in-balance very poorly managed by the original
implementation. To offer flexibility and performance to the
user we have significantly improved the communication
strategies for both the existing implementations (all-to-all
and non-blocking), and we have introduced a third one
based on MPI_Datatype.

In this section, we detail the generalization and im-
provement of the communication strategies overarching
flups, equivalent to the distributed FFT algorithm. For a
pencil-based decomposition, the commonly used approach
computes the forward or backward transform successively
in the 3 dimensions. For each dimension, we first de-
compose the domain into pencils and send the data over
to their respective process. The data transfers are either
performed from the domain decomposition chosen by the
user to the first pencil decomposition or from one pencil
decomposition to another. Then we re-order the data (this
operation is also known as the shuffle) and compute the
FFT using fftw on the resulting continuous array. Finally,
we repeat the whole process for the next dimension. In the
rest of this section, we assume that the reader is familiar
with the implementation of pencil-based distributed FFT
and we refer to [1] for further details.

A. Communication strategies

The communications widely dominate the time-to-
solution in a distributed FFT solver as already reported in
several implementations [1, 2, 4]. To achieve the highest
level of performance, we propose three strategies based
on different MPI functionalities: an implementation using
the all-to-all function MPI_Ialltoallv (noted a2a), an
implementation relying on persistent requests and man-
ual (un)packing of the data (noted nb), and an im-
plementation based on non-blocking send and receives
where MPI_Datatype is used to avoid the manual pack-
ing/unpacking (noted isr). Similar to the original im-
plementation, all the MPI calls are performed in sub-
communicators to reduce the memory footprint at large
scale [16].

1) Implementation using an all-to-all: The most simple
approach is to rely on MPI_Ialltoallv to perform the
communications. This approach is summarized in Figure 3
and detailed in Algorithm 1. Each rank has a list of other
ranks to send data to. The intersection of the data from
the origin rank in the previous pencil decomposition with
the destination rank in the new pencil decomposition leads
to the definition of a block of memory that has to be
transferred, noted b. For each rank we can pre-compute
the list of blocks to send, bsend, and the ones to receive,

5

brecv. Finally each block b corresponds to a location in the
communication buffers (send and receive) and the user-
data, noted bufsend[b], bufrecv[b], and data[b] respectively.

With those definitions, the a2a approach consists in the
following steps:

1) pack the non-regular data into the contiguous commu-
nication buffer in pack();

2) use MPI_Ialltoallv to send the needed data to each
of the corresponding ranks;

3) reset the data field to 0 in reset(), which is required
to properly account for the unbounded boundary con-
ditions and the use of in-place transforms;

4) wait for the communication to complete;
5) shuffling the data to realign them in memory in

shuffle() and unpacking of the communication
buffer to the data in unpack().

pack

MPI_Ialltoallv

shuffle

unpack

Figure 3: Implementation of the a2a version. Data are
packed from the user-provided buffer () to the send
buffer (). The communication is performed using
MPI_Ialltoallv. The data are then shuffled in the receive
buffer () and copied back to the user buffer.

Algorithm 1: All-to-all implementation

foreach b ∈ bsend do
bufsend[b] ← pack(data[b])

end

MPI_Ialltoallv(bufsend, bufrecv)
reset(data)
MPI_Wait ()

foreach b ∈ brecv do
shuffle(bufrecv[b])
data[b] ← unpack(bufrecv[b])

end

Although this approach is straightforward to implement,
it suffers from a main issue: it does not expose the par-
allelization structure of the algorithm to MPI. It results in
an implicit communicator-wide synchronization inherent to
the MPI_Ialltoallv call and there is only limited room
for optimization such as overlapping the different tasks.
Therefore we expect the performance to be mitigated and
driven by the MPI implementation.

2) Implementation using non-blocking persistent requests:
To avoid the implicit barrier from the collective call and to
expose more of the parallel structure of the algorithm to

MPI, we have implemented a version based on persistent
non-blocking MPI_Send and MPI_Recv, referred to as nb.
Although similar to the approach proposed in [1], our
implementation contains several improvements designed to
increase the parallel performance.

As for a2a we still have to perform the same pack(),
unpack(), and shuffle() tasks. However we can over-
lap the computations, i.e. packing and unpacking, reset-
ting the data field to 0, and shuffling the data, with the
communication itself. This implementation is detailed in
Algorithm 2 and summarized in Figure 4. Here b is still
used to refer to a block of memory, and bsend and brecv cor-
responds to the list of blocks to be sent and to be received
respectively. We use the notation bunpack to designate the
list of blocks to unpack, i.e. copied from the receive buffer
to the user-data.

This approach relies on two phases: a first one pre-
computes and stores different MPI_Requests, which are
used in the second one to communicate when needed.
During the initialization phase, each block to be sent or
received is associated with one of these MPI_Requests:
rqstsend or rqstrecv respectively. The communication phase
is made of four distinct steps:

1) for the requests in rqstsend, we manually pack the data
into the continuous communication buffer and then
start the corresponding request. This is done in the
function SendRqst which takes as an argument B , an
arbitrary list of blocks to be prepared and sent. For the
requests in rqstrecv, no particular operation is needed
except activating the requests using MPI_Start;

2) reset the buffer if all the send requests have completed;
3) test the completion of some of the requests in rqstrecv

and shuffle the one that have just completed;
4) unpack the shuffled requests if the buffer has been

reset already.

As described in Algorithm 2, the four tasks are organized
as a for loop relying on two compile-time variables nbatch

and nmax-pending to control the granularity of the different
steps. The first one, nbatch, controls the number of requests
gathered inside a batch and therefore treated one after an-
other. The second one, nmax-pending, limits the total number
of uncompleted send requests. The function SendRqst will
therefore activate the minimum number of requests to not
overtake any of those two thresholds.

In summary, the nb approaches offer a control on the
asynchronous granularity. First, it starts all the receive re-
quests, rqstrecv, and a first batch of send requests. Then, as
long as there are ongoing send or receive requests, or block
to unpack, the following steps are performed:

• if some bsend have to be sent, we compute the number
of blocks to send with respect to nbatch and nmax-pending

and we send them;
• if all the bsend has been treated and if the user-provided

data has not been reset yet, we reset the data field;
• if some brecv has not been received, we force progress

by calling MPI_Testsome, and we shuffle receive re-
quests already completed;

• if the data field has been reset and if some blocks have
been shuffled and are ready to be unpacked, we unpack
them.

6

MPI_Start

pack

MPI_Testsome

shuffle

unpack

Figure 4: Implementation of the nb version. Data are copied
from the user-provided buffer () to the send buffer (
). The communication is performed using persistent non-
blocking communications. The data are then shuffled in the
receive buffer () and copied back to the user buffer.

In practice, we have observed the best performance with
nbatch = 1. We attribute this behavior to the size of our com-
munications which exceeds the eager / rendez-vous thresh-
old. The messages can therefore not be sent right away
and require a hand-shake to happen beforehand. There is
then no gain in grouping the send-requests together. On
the other side, requesting progress more frequently on the
receive requests via a call to MPI_Testsome improves the
performance.

3) Implementation using datatypes: From the previous
non-blocking implementation we have observed that a sig-
nificant time is spent packing and unpacking the data. Also
we need to allocate the communication buffer to send the
data which increases the memory footprint. To tackle that
issue we propose a third possible implementation where
we take advantage of MPI_Datatype to bypass the send-
buffer allocation and packing on the send side. However,
we still expect the latter to lead to additional overhead
from the MPI implementation. On the receive side we still
manually unpack the receive buffer to avoid waiting for
the completion of all the send operations before starting
the receive ones. As the send requests are non-blocking,
waiting for their completion could lead to an overflow on
the network with too many send requests started and no
receive requests ready. This choice further allows us to
overlap the shuffling of the received data with the overall
communication scheme.

Compared to the nb implementation, the approach re-
mains unchanged as illustrated in Figure 5. There are still
four main steps: (1) the treatment of the send request,
(2) the reset of the user-data, (3) the completion of the
receive request and the shuffle of the associated buffer,
and finally (4) the unpacking of the receive buffer in the
user-data. The implementation differs in the treatment of
the send request in the SendRqst function and with
the use of non-blocking send (MPI_Isend) and receive
(MPI_Irecv) instead of persistent requests. We also note
that in SendRqst the packing is not needed anymore, as
detailed in Algorithm 2.

Algorithm 2: Non-blocking implementations
nbatch, nmax-pending // User defined variables

RecvRqst(brecv)
SendRqst(bsend)

while (bsend 6= ; or brecv 6= ; or bunpack 6= ;) do
if (bsend 6= ;) then

nongoing ← MPI_Testsome(rqstsend)
nto-send = min(nmax-pending−nongoing, nbatch)
SendRqst(bsend[nto-send])

end

if (bsend =; and data buffer is not reset) then
reset(data)

end

if (brecv 6= ;) then
MPI_Testsome(rqstrecv)
foreach b ∈ brecv do

shuffle(bufrecv[b])
end

end

if (data buffer is reset and bunpack 6= ;) then
foreach b ∈ bunpack do

data[b] ← unpack(bufrecv[b])
end

end
end

————————————————————————
———

—– non-blocking persistent requests
Function SendRqst(B):

foreach b ∈ B do
bufsend[b] ← pack(data[b])
MPI_Start(rqstsend[b])

end

Function RecvRqst(B):
MPI_Startall(rqstrecv[b ∈ B])

————————————————————————
———

—– non-blocking datatypes
Function SendRqst(B):

MPI_Isend(rqstsend[b ∈ B])

Function RecvRqst(B):
MPI_Irecv(rqstsend[b ∈ B])

IV. VALIDATION

The parameter space used in flups is very large due to
its flexibility as it now supports 2 data layouts, 1000 bound-
ary conditions, 8 Green’s functions, and 3 communication
strategies. All the potential combinations (more than 48,000)
have been validated thoroughly as part of our continuous
integration framework. Here for the sake of clarity, we
present the validation of 3 different cases using the node-
centered data layout. They address the standard use of
flups when solving the Poisson equation with either fully
spectral, fully unbounded, or semi-unbounded boundary

7

MPI_Isend
MPI_Datatype

MPI_Testsome

shuffle

unpack

Figure 5: Implementation of the isr version. Data are
sent and directly copied from the user-provided buffer (

) to the receive buffer () thanks to non-blocking
communication and MPI_Datatype. The data are then
shuffled in the receive buffer and copied back to the user
buffer.

conditions (BCs). All the possible Green’s functions are
tested. Since all the implementations produce the same
results, we only present the order of convergence obtained
with the a2a version of the framework.

As previously proposed in [1] the test case is the Pois-
son Equation (1) with various boundary conditions. The
infinite norm of the error computed as

E∞ = sup
x,y,z

{|φ(x, y, z)−φr e f (x, y, z)|} , (7)

where φr e f is an analytical solution constructed as a prod-
uct of 1-D functions:

φr e f (x, y, z) = X (x) Y (y) Z (z) . (8)

The functions X , Y , Z are chosen to match each set of
boundary conditions. For example, sine and cosine with
the proper wavelength are used with symmetric and pe-
riodic BCs while unbounded and semi-unbounded BCs are
validated using Gaussian functions. Given the analytical
solution, we then compute the corresponding right-hand
side as the Laplacian of the reference solution:

f (x, y, z) = d 2X

d x2 Y (y) Z (z)+X (x)
d 2Y

d y2 Z (z)+X (x) Y (y)
d 2Z

d z2 ,

(9)
where the appropriate functions for each considered case
is given in Appendix B.

In the following sections, the Poisson equation is solved
on a cubic domain of spatial extent [0,L] in all directions.
We use the Green’s function as defined in [1]. More specif-
ically, the one described in [14] hereafter referenced as
CHAT2 has a spectral accuracy for periodic or symmetric
BCs and is of second order with unbounded conditions. The
regularized kernels [17] are implemented from the order
m = 2 to the order m = 10 together with the spectral-like
regularization [18]. They are all named as a combination of
the prefix HEJ followed by the respective order (spectral is
labeled as order 0). Finally the Lattice Green’s function [19]
has a convergence order of two and is labeled as LGF2.

A. Domain with symmetric and periodic BCs

The chosen boundary conditions for this case are an
even-even symmetry condition in the x-direction, an odd-

even symmetry condition in the y-direction, and a periodic
condition in the z-direction. The associated reference solu-
tion can be found in Appendix B-A. The convergence results
are shown in Figure 6 and match the expected convergence
order. As the present case does not involve unbounded
conditions the singular Green’s function CHAT2 provides the
exact solution regardless of the resolution.

323 643 1283 2563 5123 10243 20483

10−15

10−12

10−9

10−6

10−3

100

p = 2
p = 4

p = 6p = 8
p = 10

Npoi nt s

E
∞

Figure 6: Convergence with symmetric and periodic BCs
CHAT2 (), LGF2(), HEJ2(), HEJ4(), HEJ6(

), HEJ8(), HEJ10()

B. Fully unbounded boundary conditions

The reference solution for the fully unbounded case is
given in Appendix B-B. As depicted in Figure 7, we observe
a convergence corresponding to the theoretical order with
all the Green’s function. We want to highlight that here we
have added the spectrally truncated kernel HEJ0 achieving
a spectral-like convergence.

323 643 1283 2563 5123 10243 20483

10−15

10−12

10−9

10−6

10−3

100

p = 2

p = 4

p = 6p = 8

p = 10

Npoi nt s

E
∞

Figure 7: Convergence with fully unbounded BCs CHAT2 (
), LGF2(), HEJ2(), HEJ4(), HEJ6(),

HEJ8(), HEJ10(, HEJ0()

C. Domain with two semi-infinite and one fully unbounded
BCs

For the semi-unbounded BCs an even symmetry is im-
posed on the right side in the x-direction while an odd

8

symmetry is applied on the left side in the z-direction. All
the remaining boundaries are unbounded. The reference
solution is then computed as indicated in Appendix B-C.
As shown in Figure 8 all the Green’s function reach the
expected convergence orders.

323 643 1283 2563 5123 10243 20483

10−15

10−12

10−9

10−6

10−3

100

p = 2

p = 4

p = 6p = 8
p = 10

Npoi nt s

E
∞

Figure 8: Convergence with semi unbounded BCs CHAT2 (
), LGF2(), HEJ2(), HEJ4(), HEJ6(),

HEJ8(), HEJ10(), HEJ0()

V. APPLICATION: THE BIOT-SAVART SOLVER

To demonstrate the flexibility of flups and its use in
practice we now consider the Bio-Savart equation, a varia-
tion on the standard Poisson equation, given by

∇2u =∇× f . (10)

This relation is particularly useful in application such as
computational fluid dynamics, when one needs to recover
the velocity from the vorticity field. While the equation
has its own Green’s functions [17], one could take another
approach that extends the work done previously and relies
on the flexibility of flups. First compute the forward FFT
of the rhs f̂ , then compute the curl in the spectral space,
compute the convolution with Ĝ , and finally compute the
FFT backward.

To evaluate the curl in spectral space we have to properly
apply a spectral derivative on the result of the forward FFT.
With periodic or unbounded boundary conditions the result
of the forward FFT is complex, and therefore the evaluation
of a derivative becomes

∂

∂x
f → (iωk) f̃ . (11)

where the differential operator (iωk) is a purely imaginary
number, and the derivation is then spectrally accurate.
Depending on the targeted application it can also be useful
to consider a finite difference approximation instead of the
actual derivative. Then the following expressions are used
for the order 2:

∂

∂x
f +O

(
h2) → i

h
sin(ωk h) f̃ , (12)

the order 4:

∂

∂x
f +O

(
h4) → i

h

(
4

3
sin(ωk h)− 1

6
sin(ωk 2h)

)
f̃ , (13)

and the order 6:

∂

∂x
f +O

(
h6)

→ i

h

(
3

2
sin(ωk h)− 3

10
sin(ωk 2h)+ 1

30
sin(ωk 3h)

)
f̃ .

(14)

For the even or odd BCs, applying a derivative will inverse
the original condition: an even condition will become odd,
and an odd one will become even. Therefore, the type of the
backward FFT used must be adapted in order to reflect that
change. However, changing a DST for a DCT (and the oppo-
site) should be done with care, as already discussed earlier.
If the input of a DCT is f then the output f̃ corresponds
to the complex number

(
f̃ +0i

)
. On the other hand, if the

input of a DST is f , then its output f̃ corresponds to the
complex number

(
0− i f̃

)
. Consequently, if a DST is used as

the forward transform, taking the derivative of the output
leads to (iωk)

(
0− i f̃

)= f̃ ωk which can be used directly as
the input of the backward DCT. On the other hand, if a
DCT is used as the forward transform, the output is

(
f̃ +0i

)
and the first derivative is (iωk) f̃ = iωk f̃ whose sign must be
changed to be used as the input of the DST leading to − f̃ ωk .
The same approach applies to the derivatives computed
using the finite differences, where ωk is replaced by the
appropriate formula.

The obtained Biot-Savart solver is validated with the case
of a vortex tube aligned in the z-direction. The tube is
centered within a cubic domain of size [0,L]3 and fully
unbounded boundary conditions are imposed in the x- and
y-direction while symmetry conditions are used in the z-
axis: ωx and ωy undergo odd symmetry conditions while
ωz satisfies an even symmetry on the domain boundaries.

The tube is compact and has the following expression:

ω(x, y, z) =
{

0,0,−ωz (r)
}

, (15)

where r is defined as r =
√

(x −0.5L)2 + (y −0.5L)2 and
ωz (r) is computed as

ωz (r) =

1

2π
2

R2
1

E2(1) exp

(
− 1(

1−(r
R

)2
)
)

if r <= R

0 otherwise,

(16)

using R as the radius of the vortex tube, and E2 is the
generalized exponential integral function.

The corresponding analytical velocity can be retrieved
through [20]:

u(x, y, z) =
{
−sin(θ)uθ(r), cos(θ)uθ(r), 0

}
, (17)

where uθ(r) is given by

uθ(r) =
 1

2πr

[
1− 1

E2(1)

(
1− (r

R

)2
)

E2

(
1

1−(r
R

)2

)]
if r <= R

1
2πr otherwise.

(18)

Figure 9 shows the convergence of the error computed
as the infinite norm of the velocity field when using the
spectral differentiation of the curl1. One can also replace the
differentiation by an approximation using finite differences

1We have corrected a typo from [1, B.10], which should be
1

8π

(
π−6+2log

(
π
2 r 2

eq

))
when kz = 0.

9

of order 6, whose convergence is given in Figure 10. For
further details, the convergence of the finite difference of
order 2 and 4 are given in Section C (Figure A and Figure B
respectively). As expected the measured convergence orders
correspond to the minimum between the differentiation
order and the kernel order.

323 643 1283 2563 5123 10243 20483

10−15

10−12

10−9

10−6

10−3

100

p = 2

p = 4

p = 6

p = 8
p = 10

Npoi nt s

E
∞

Figure 9: Convergence of the Biot-Savart solver using spec-
tral differentiation CHAT2 (), HEJ2(), HEJ4(),
HEJ6(), HEJ8(), HEJ10(), HEJ0()

We also note that HEJ0 kernel is the only one not achiev-
ing the expected convergence. We attribute this behavior to
the truncated infinite sum taking place when computing
this non-singular Green’s function [18] in the case of only
two unbounded directions. The truncation entails an ap-
proximation of the kernel and affects its accuracy. In this
case, the kernel is consequently bounded to the second
order.

323 643 1283 2563 5123 10243 20483

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101

p = 2

p = 4

p = 6

p = 6

Npoi nt s

E
∞

Figure 10: Convergence of the Biot-Savart solver using 6th
order differentiation CHAT2 (), HEJ2(), HEJ4(
), HEJ6(), HEJ8(), HEJ10(), HEJ0()

VI. PARALLEL PERFORMANCE ANALYSIS

This section presents the results of performance tests
carried out on different massively parallel architectures.
To obtain the results presented in this section we have

set nbatch to 1 and nmax-pending to INT_MAX for both the
isr and the nb implementations. From a technical per-
spective, flups has been compiled with the -DNDEBUG

-O3 flags. We have used mpich 4.1a1 compiled with
-enable-fast=03,ndebug,alwaysinline as the MPI im-
plementation. On Infiniband (IB)-based networks the com-
munication library is ucx 1.13.1, while libfabric 15.0.0
from the vendor has been used for the slingshot-based
infrastructure. Still for IB networks the simulations were run
with the DC transport layer.

First, we compare our nb and isr implementation
against the accFFT library. Then we study our scalability for
the three proposed implementations. Finally, we provide a
comparison of the performance on three different systems.

A. Comparison with accFFT

They are many other implementations of the distributed
FFT algorithm, but only a handful of them provide the real-
to-complex FFT computation. Among them, accFFT [2], an
implementation for both CPU and GPU partitions, is usually
considered as one of the fastest [3].

To fit in the framework proposed by accFFT we had to
use a very specific test-case, here again highlighting the
flexibility of flups. We use a cell-centered data-layout and
perform a forward 3D FFT followed by a backward 3D FFT.
The first topology is aligned in the direction of the first FFT
so that only two topology switches are performed and three
1D FFTs. In our case we then start with pencils in the X
direction while accFFT starts with pencils in the Z direction
by default. The number of unknowns per rank is fixed to
2563, and the process distribution over the domain is given
in Section E-A. To have the fairest comparison possible, a
single executable calling both libraries is created, with both
libraries compiled using the same binaries of FFTW and MPI.
Both libraries call FFTW with the FFTW_MEASURE flag so that
the differences in timings are only due to differences in the
implementation. The tests have been done with exclusive
node allocations on MeluXina, detailed in Table D.

The obtained time-to-solution and weak efficiency for
accFFT and the isr and nb implementation is presented
in Figure 11 using up to 16,384 cores (128 nodes). For refer-
ence, we also convert those times-to-solution into through-
put per rank [MB/sec], provided in Table II. This metric
is particularly useful to compare time-to-solution results
across infrastructure and testcases. In Figure 11 we first note
that the isr implementation and the accFFT one are very
similar for a small number of nodes. For a larger count,
the isr implementation is slightly slower yet remains very
competitive compared to accFFT. The nb implementation
follows another path where the penalty of manual packing
and unpacking vanishes as the node count increases. From
Table II, at 128 nodes the nb implementation runs 27.7%
faster than accFFT. We attribute this difference to the
overhead coming from the use of MPI_Datatype, which
can also be observed in the scalability of the nb and
isr approaches presented in Section VI-C. We conclude
from this comparison that flups offers more flexibility
compared to accFFT, but it does not come with significant
performance degradations.

10

1 2 8 32 128
0

2

4

6

8

Number of nodes

ti
m

e/
tr

an
sf

o
rm

-
[s

ec
]

Figure 11: Comparison with accFFT: weak scaling time-to-
solution for accFFT (), the isr (), and the nb ()
versions of flups. A forward and a backward 3D FFTs are
performed with 2563 per rank on MeluXina. The hashed
part of the bar corresponds to the forward transform, the
plain part represents the backward transform.

N nodes 1 2 8 32 128
accFFT 36.23 33.10 30.57 25.25 18.51
isr 36.13 34.02 28.80 23.34 18.62
nb 27.80 27.09 25.98 26.34 25.62

Table II: Comparison with accFFT: throughput per rank
[MB/sec] for a forward and backward FFT.

B. General comments on weak and strong scalability

Ahead of our weak and strong scalability analysis, we
would like to refer the reader to Section D for details on
the performance metrics used in this section. In particular
we will use the sequential percentage of a program, β, as
a measure of the quality of our implementation, together
with the speedup sP (strong scalability) and the efficiency
ηP (weak scalability).

In this section, we present both weak and strong scal-
ability tests. The tests were performed on the CPU nodes
of MeluXina (LuxConnect’s Data Center DC2, Luxembourg).
The CPU partition is made of 573 nodes, each of them
composed of 2 AMD EPYC 7H12 CPUs with 64 cores per
CPU, which make a total of 128 cores per node. The nodes
are connected with InfiniBand HDR200 Gb/s and organized
in a Dragonfly+ topology. In both cases, we considered a
3D gaussian function in a fully unbounded domain (see
Section IV-B for details on the test cases). All the times-to-
solution are presented as the average execution times over
the ranks.

C. Weak Scalability

We start our weak scalability test on a single node and run
it up to 384 nodes, i.e. 49,152 cores, where we have used
963 points per core in the user domain with the process
distribution given in Section E-B.

a) Time-to-solution: Figure 12 presents the evolution
of the time-to-solution needed for a solve for each com-

munication strategy, while Figure 13 shows the associ-
ated weak efficiency. On a single node, the nb strategy
is close to the a2a one, yet slightly faster. The timing
difference between both implementations remains constant
when increasing the number of nodes, achieving there-
fore a similar weak efficiency. On the other side, the isr

method is the fastest one up to 16 nodes. Afterwards, the
communication timings reach those of the a2a approach.
The difference in scalability between the implementation
relying on the MPI_Datatype (isr) and those using manual
packing and unpacking (a2a and nb) is significant. Even
if the time-to-solution is lower at small count, the gain
of the MPI_Datatype appears to vanish when increasing
the partition count. This behavior varies with the different
MPI versions as the treatment of MPI_Datatypes is specific
to each implementation. Finally, we attribute the peaks
happening on large partitions to the congestion on the
network at the time of the testing (Dragonfly topology).

To have a meaningful comparison with a periodic case
such as the one used in the previous section, the throughput
per rank obtained for a fully unbounded domain in Table III
must be normalized by a factor of 14/3. This factor comes
from the doubling technique in which the first transform is
performed on 2N data, the second on 4N , and the last on
8N , which makes an average of 14/3N data per transform
for the whole 3D FFT. Compared to the results presented in
Table II we here apply three topology switches instead of 2.

1 2 4 8 16 32 64 128 256 384
0

1

2

3

Number of nodes

ti
m

e/
so

lv
e

-
[s

ec
]

Figure 12: Weak scaling: time-to-solution for a2a(), isr(
), and nb() versions. Tests on MeluXina with 963

unknowns per rank and a fully unbounded testcase.

b) Step-by-step analysis: For further details we distin-
guish the different steps from within a call to flups inside
the bar plots, see fig. 12. The crossed section represents the
time spent performing computations only: 1D FFTs, spectral
multiplication, and copy of the data provided by the user
to the work buffer. The lined section shows the time spent
in computations overlapping communication: copying back
and forth data from the work buffer to the communication
buffers, shuffling the data, and resetting the work buffer
to 0. The remaining non-hatched regions correspond to the
time spent only communicating. The different colors shades
further differentiate the topology switches, the darker color
corresponds to the first topology switch, and the lighter
color to the last one.

11

1 2 4 8 16 32 64 128 256 384

0.2

0.4

0.6

0.8

1

r = Number of nodes

η
P,

w
β= 0%

β= 0.2%

β= 0.5%

β= 1%

Figure 13: Weak scaling: efficiency ηP,w for a2a(), isr(
), and nb() versions. Tests on MeluXina with 963

unknowns per rank and a fully unbounded testcase.

As expected in the case of a weak scalability the
computation-only part of the code scales perfectly and
represents a fixed cost regardless of the communication
strategy. The isr timings for the computation (hatched
colored region, overlapping with communication in the case
of isr and nb) are the fastest, as the isr implementation
removes the manual packing. However, the benefits are
lessened as the time spent in the communication-only part
of the algorithm increases. As explained in Section III, the
a2a strategy only resets the user buffer to zero while wait-
ing for the all-to-all communication to complete and the
other operations are done sequentially. This translates into
timings associated with the computation-communication
overlap section of the code slightly behind the timings of
the other strategies. Finally, in a fully unbounded case,
the domain is expanded between the topology switches. It
increases the number of points to be exchanged between
the MPI processes and raises the communication cost of
the topology switches. Also, due to rank distribution among
the nodes, the first topology switch is mostly happening
intra-node, while the second and third ones are inter-node
mostly. Those two factors together explain the increasing
time from one topology switch to another.

c) Weak efficiency: The associated weak efficiency of
the software is presented in Figure 13. In our cases, in-
creasing the number of resources leads to an increase of
the number of communications and congestion on the
network. As expected from the previous results, the isr

approach shows the poorest scalability, and we can estimate
its theoretical sequential percentage to β = 0.5%. We also
note that the nb and the a2a version have very similar
weak scaling efficiency. Their serial percentage is estimated
at βnb ≈ 0.2%. At the light of those results we anticipate
the nb version, having both smaller timings and higher
efficiency, to be the version the most suited for very large-
scale simulations.

D. Strong scalability

Similarly to the weak scalability testing, the strong anal-
ysis covers a range from one to 384 nodes, where the total

N nodes 1 2 8 64 128
a2a 30.34 29.85 27.21 25.94 24.33
nb 32.14 31.54 29.59 29.19 26.57
isr 40.94 38.39 32.49 26.92 23.82

Table III: Weak scaling: throughput per rank [MB/sec] for
a solve with the three different code versions. To account
for the domain-doubling technique for unbounded BCs a
normalization factor of 14/3 has been applied.

problem size is fixed to 12803 unknowns and the process
distribution is given in Section E-C.

Figure 14 shows the strong scalability time-to-solution. As
in the weak scalability, the isr approach has the shortest
resolution timings for a small number of MPI ranks. It is
followed by the nb and finally the a2a version. The timings
gap between the isr and the other methods steadily de-
creased when increasing the nodes number. In agreement
with those results, the computation-only part of the code
shows a linear speed-up: the computation time is inversely
proportional to the number of resources.

1 2 4 8 16 32 64 128 256 384
0

5

10

15

20

25

Number of nodes

ti
m

e/
so

lv
e

-
[s

ec
]

Figure 14: Strong scaling: time-to-solution for a2a(), isr(
), and nb() versions. Tests on MeluXina with 12803

unknowns in total on a fully unbounded testcase.

In Figure 15 we estimate the percentage of the software
running in parallel, β, now based on the effective speed-
up sP . The values found using the speedup are similar to
those of the weak scaling tests, stating that approximately
99.5−99.8% of our implementation is parallelized, while the
remaining is sequential. We also observe that the scalability
gap between the implementations illustrates the associated
software latency: the nb approach is expected to involve
more software operations than the a2a, and the isr has
a higher latency than the nb due to the allocation of extra
buffers in the MPI implementation to pack and unpack the
data.

E. Comparison of main European systems

We present in this section the results of the same weak
scalability test on three main European systems: Lumi, Vega,
and MeluXina, summarized in Table D. Vega (Slovenia) is
equipped with similar nodes as MeluXina (AMD 7H12, 128

12

1 2 4 8 16 32 64 128 256 384

1

2

4

8

16

32

64

128

256

512

r = Number of nodes

S
p

β= 0%

β= 0.2%
β= 0.5%
β= 1%

Figure 15: Strong scaling: speedup sP for a2a(), isr(
), and nb() versions. Tests on MeluXina with 12803

unknowns in total on a fully unbounded testcase.

cores/node) but with slower interconnect: IB-HDR 100Gb/s
instead of 200Gb/s for MeluXina . Lumi (Finland) and
specifically on the Lumi-C partition each node has two AMD
EPYC 7763 CPUs with a total of 128 cores per node, which
are connected with a 200 Gb/s slingshot-11 network. Vega
has then the slowest bandwidth and Lumi CPUs have a
slightly faster CPUs clock speed.

Figure 16 and Figure 17 show the results of the weak
scalability tests for the nb approach. For the interested
reader, the throughput per rank as well as the results for
the isr and a2a versions are presented in Section F. On
a few nodes, the time-to-solutions are almost similar for
all the architectures. However, the timings diverge with the
increasing number of nodes. The Vega timings increase
steeply than for Lumi and MeluXina. Lumi results are close
to Meluxina ones, and the latter shows the best weak effi-
ciency with a time increase of only 20% when multiplying
the resources by 128. As discussed in Section VI-C, a weak
scalability test raises the number of resources together with
the number of unknowns hence increasing the number
of communications and the network congestion. The Vega
result is therefore explained by a lower bandwidth which
saturates with the growing resources. On the other hand, we
attribute the smaller times of MeluXina compared to Lumi
to the hardware differences, the first being equipped with
IB interconnect while the second uses slingshot technology.
As in Section VI-C, we note that the computation time
remains constant regardless of the number of nodes. Lumi
spends slightly less time on computations while MeluXina
and Vega have precisely the same computations timings.
We attribute those differences to the CPUs properties as
Vega and MeluXina have identical CPUs whereas Lumi has
a slightly higher clock speed.

VII. CONCLUSIONS

Massively distributed FFT transforms have numerous
applications and in particular in the PDE resolution realm.
However, the contributions usually proposed in the com-
puter science field fail to address important requirements to

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

N nodes

ti
m

e/
so

lv
e

-
[s

ec
]

Figure 16: Implementation nb: time-to-solution on Vega (
), MeluXina (), and Lumi (). Weak scalability

tests performed with 963 unknowns per rank on a fully
unbounded test case.

1 2 4 8 16 32 64 128

0.2

0.4

0.6

0.8

1

r = Number of nodes

η
P,

w
β= 0%

β= 0.2%

β= 0.5%

β= 1%

Figure 17: Implementation nb: Weak efficiency ηP,w on Vega
(), MeluXina (), and Lumi (). Weak scalability
tests performed with 963 unknowns per rank on a fully
unbounded test case.

provide the user with a flexible, yet performant and scalable
library. Relying on our expertise in computational fluid dy-
namics, we propose improvements to the flups software [1]
to bridge this gap: the treatment of both node-centered and
cell-centered data layouts as well as faster communication
strategies exploring several possible implementations. The
resulting interface is built such that the user only provides
the number of points in the 3D Cartesian grid, the desired
boundary conditions (even, odd, periodic or unbounded)
and the library automatically orders the sequence of FFTs,
extends the domain to handle unbounded directions, and
performs the forward and backward transforms.

At a methodological level, we first modify the number-
ing conventions to accommodate the different types of
FFTs provided by fftw and required for the cell- and
node-centered data layouts. Then, we present three im-
plementation strategies for a distributed FFT. First, the
well-known a2a implementation relies on the commonly

13

used MPI_Ialltoallv function which implies a very
strong synchronization and exposes very few paralleliza-
tions to the MPI library. Then, the nb approach, which
relies on non-blocking persistent requests and manual
packing/unpacking, exploits the possibility of a very fine-
grained parallelization. This method makes the synchro-
nization more explicit, through the parameters nbatch and
nmax-pending and hence reduces the overhead of the imple-
mentation. Finally, we explore the use of MPI_Datatypes
to reduce the memory footprint of the solver, an ap-
proach named isr. This optimization removes the need
for manual packing and is implemented through non-
blocking send and receives. Both the nb and the isr

implementations share a very similar structure which allows
us to attribute the difference in performance to the use of
MPI_Datatypes, a currently active subject for the different
MPI implementations. To prove the flexibility of the pro-
posed library, we demonstrate the use of flups to solve
the Biot-Savart equation in Section V. This requires a special
operation in spectral space, as well as different real-to-real
FFTs in the backward and the forward transform. To our
knowledge, no other library offers this level of convenience
for the user.

The non-blocking approaches (isr and nb) are first com-
pared to the accFFT library[2] in Section VI-A. The nb strat-
egy demonstrates 27% faster time-to-solution over a large
range of core count, while the isr implementation is as fast
as accFFT. We conclude that our implementation is as fast,
if not faster than one of the fastest implementation of the
distributed FFT on CPU. Moreover, the flexibility introduced
for the user does not reduce the achieved performance.
Then in Section VI-C and in Section VI-D we focus on the
scalability of our implementation both from a weak and a
strong perspective. The a2a is observed to be significantly
slower yet to achieve a good scalability, which is expected
due to the implicit barrier on the sub-communicator. Re-
garding the non-blocking implementation, the isr is the
fastest on a small count of nodes, but the advantage
vanishes over a larger partition as the nb approach has a
better scalability. Both the nb and the a2a implementation
achieve an impressive weak and strong scalability with a
sequential part of the implementation β below 0.5%. The
strong scalability results follow the trends observed in the
weak scalability, with slightly better estimates for β. Finally
we apply our test case to three different leading European
clusters: Lumi, Vega, and MeluXina in Section VI-E. The
time-to-solution are compared between the clusters and
as expected the better bandwidth available on MeluXina
provides a faster time-to-solution on large partitions.

With the proposed improvements and changes, flups

is now a highly flexible and performant distributed FFT
framework, tailor-made for scientists and in particular com-
putational fluid dynamics applications. We ambition here to
bridge the gap between the numerous contributions in the
computer science field, focusing mainly on performance,
and the actual need of the user, which is a highly efficient
and versatile framework to be used with lots of different
configurations. Our contribution in this work also aims
to provide a reference in terms of performance metrics
with scalability tests on large partitions and on different
architectures.

In the future we will further develop flups to exploit

heterogeneous architectures with a particular focus on the
MPI+X approach as proposed in the latest MPI standard. The
newest additions indeed provide opportunities to reduce the
rank count, one identified bottleneck with large partitions,
as well as to exploit the concept of streams with threads and
GPUs. This future direction aims at addressing the missing
GPU implementation of this work.

ACKNOWLEDGMENTS

We would like to acknowledge the insightful discus-
sions with Wim van Rees (MIT) and Matthieu Duponcheel
(UCLouvain), as well as the help received from Ken Raf-
fenetti (ANL), Hui Zhou (ANL), Barbara Krasovec (Vega), and
Wahid Mainassara (MeluXina) to compile and run on dif-
ferent supercomputers. Further we wish to acknowledge the
financial support from the Wallonie-Bruxelles International
(WBI) excellence fellowship (TG), the F.R.S.-FNRS postdoc-
toral fellowship (TG), and the Université catholique de
Louvain (PB and PC). Computational resources have been
provided by the Consortium des Équipements de Calcul
Intensif (CÉCI) funded by the Fonds de la Recherche Scien-
tifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11
and by the Walloon Region. Additional resources include the
Tier-1 supercomputer of the Fédération Wallonie-Bruxelles,
infrastructure funded by the Walloon Region under the
grant agreement n°1117545. Additional computational re-
sources have been provided by EuroHPC for the access
to MeluXina and Vega (EHPC-BEN-2022B01, EHPC-BEN-
2022B06), as well as LUMI-C (EHPC-DEV-2022D01).

REFERENCES

[1] D.-G. Caprace, T. Gillis, and P. Chatelain, “Flups: A fourier-based
library of unbounded poisson solvers,” SIAM Journal on Scientific
Computing, vol. 43, no. 1, pp. C31–C60, January 2021. [Online].
Available: https://doi.org/10.1137/19M1303848

[2] A. Gholami, J. Hill, D. Malhotra, and G. Biros, “Accfft: A library for
distributed-memory FFT on CPU and GPU architectures,” CoRR, vol.
abs/1506.07933, 2015. [Online]. Available: http://arxiv.org/abs/1506.
07933

[3] A. Ayala, S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and J. Don-
garra, “Fft benchmark performance experiments on systems targeting
exascale,” Tech. Rep. ICL-UT-22-02, 2022-03 2022.

[4] A. Ayala, S. Tomov, A. Haidar, and J. Dongarra, heFFTe: Highly Efficient
FFT for Exascale, 06 2020, pp. 262–275.

[5] L. Dalcin, M. Mortensen, and D. E. Keyes, “Fast parallel
multidimensional fft using advanced mpi,” Journal of Parallel
and Distributed Computing, vol. 128, pp. 137 – 150, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S074373151830306X

[6] D. Pekurovsky, “P3dfft: A framework for parallel computations of
fourier transforms in three dimensions,” SIAM Journal on Scientific
Computing, vol. 34, no. 4, pp. C.192–C.209, 2012, copyright - © 2012,
Society for Industrial and Applied Mathematics; Dernière mise à jour
- 2012-09-17. [Online]. Available: https://search-proquest-com.proxy.
bib.ucl.ac.be:2443/docview/1033558975?accountid=12156

[7] A. Pope, D. Daniel, and N. Frontiere, “A stand-alone version of hacc’s
distributed-memory, pencil-decomposed, parallel 3d fft.” 2017.

[8] D.-G. Caprace, P. Chatelain, and G. Winckelmans, “Wakes of rotorcraft
in advancing flight: A large eddy simulation study,” Physics of Fluids,
vol. 32, no. 8, p. 087107, 2020.

[9] T. Gillis, Y. Marichal, G. Winckelmans, and P. Chatelain, “A
2d immersed interface vortex particle-mesh method,” Journal
of Computational Physics, vol. 394, pp. 700–718, 2019.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0021999119303717

[10] J. Gabbard, T. Gillis, P. Chatelain, and W. M. van Rees, “An immersed
interface method for the 2d vorticity-velocity navier-stokes equations
with multiple bodies,” Journal of Computational Physics, vol. 464, p.
111339, 2022.

[11] M. Frigo and S. G. Johnson, “The Design and Implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005,

https://doi.org/10.1137/19M1303848
http://arxiv.org/abs/1506.07933
http://arxiv.org/abs/1506.07933
http://www.sciencedirect.com/science/article/pii/S074373151830306X
http://www.sciencedirect.com/science/article/pii/S074373151830306X
https://search-proquest-com.proxy.bib.ucl.ac.be:2443/docview/1033558975?accountid=12156
https://search-proquest-com.proxy.bib.ucl.ac.be:2443/docview/1033558975?accountid=12156
http://www.sciencedirect.com/science/article/pii/S0021999119303717
http://www.sciencedirect.com/science/article/pii/S0021999119303717

14

special issue on Program Generation, Optimization, and Platform
Adaptation.

[12] A. Ayala, S. Tomov, P. Luszczek, S. Cayrols, G. Ragghianti, and
J. Dongarra, “Interim report on benchmarking fft libraries on high
performance systems,” University of Tennessee, Tech. Rep., 2021.

[13] K. Czechowski, C. Battaglino, C. McClanahan, K. Iyer, P.-K. Yeung,
and R. Vuduc, “On the communication complexity of 3d ffts and
its implications for exascale,” in Proceedings of the 26th ACM
International Conference on Supercomputing, ser. ICS ’12. New York,
NY, USA: Association for Computing Machinery, 2012, pp. 205–214.
[Online]. Available: https://doi.org/10.1145/2304576.2304604

[14] P. Chatelain and P. Koumoutsakos, “A Fourier-based elliptic solver for
vortical flows with periodic and unbounded directions,” Journal of
Computational Physics, vol. 229, no. 7, pp. 2425–2431, 4 2010.

[15] R. Hockney and J. Eastwood, Computer Simulation using Particles.
Taylor & Francis, Inc. Bristol, PA, USA, 1988.

[16] Memory Compression Techniques for Network Address Management in
MPI, 2017.

[17] M. Hejlesen, J. Rasmussen, P. Chatelain, and J. Walther, “A high order
solver for the unbounded Poisson equation,” Journal of Computa-
tional Physics, vol. 252, pp. 458–467, 2013.

[18] M. M. Hejlesen, G. Winckelmans, and J. H. Walther, “Non-singular
green’s functions for the unbounded poisson equation in one,
two and three dimensions,” Applied Mathematics Letters, vol. 89,
pp. 28–34, 2019. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0893965918303264

[19] P.-G. Martinsson and G. J. Rodin, “Asymptotic expansion of lattice
Green’s function,” Proceedings: Mathematical, Physical and Engineer-
ing Sciences, vol. 458, no. 2027, pp. 2609–2622, 2002.

[20] G. S. Winckelmans, “Vortex Methods,” in Encyclopedia of Computa-
tional Mechanics, 2nd ed. John Wiley & Sons, Ltd, 2004, vol. 3, pp.
129–153.

[21] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma, K. Kandalla,
K. Kumaran, G. Lockwood, S. Parker, S. Warren, N. Wichmann,
and N. Wright, “Gpcnet: Designing a benchmark suite for inducing
and measuring contention in hpc networks,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3295500.3356215

[22] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, ser. AFIPS ’67 (Spring).
New York, NY, USA: Association for Computing Machinery, 1967, pp.
483–485. [Online]. Available: https://doi.org/10.1145/1465482.1465560

[23] J. L. Gustafson, “Reevaluating amdahl’s law,” Commun. ACM,
vol. 31, no. 5, pp. 532–533, may 1988. [Online]. Available:
https://doi.org/10.1145/42411.42415

Pierre Balty obtained his Master degree from
UCLouvain in 2019 and is currently a PhD student
and teaching assistant in the institute for Mechan-
ics, Material, and Civil engineering at UCLouvain.
His research focuses on Lagrangian numerical
methods, their deployment on distributed systems,
and their applications to wind energy.

Philippe Chatelain obtained his Ph.D. from Cal-
tech in 2005 and held a research associate position
at ETH Zurich till 2009. He is currently full Profes-
sor at UCLouvain, leading the Vortex and Turbu-
lence research group. His research interests cover
fluid mechanics, Lagrangian numerical methods,
their deployment in HPC environment, and their
application to fundamental and applied problems
in bio-propulsion, aeronautics, and wind energy.

Thomas Gillis obtained his Ph.D. from UCLou-
vain in 2019. At the time of this work he was
postdoctoral researcher at UCLouvain and visiting
scientists at MIT. His research focuses on dis-
tributed systems, lossless compression for PDEs,
and scalable and performant framework for com-
putational fluid dynamics. Thomas is now part of
the Argonne National Lab working on distributed
systems.

https://doi.org/10.1145/2304576.2304604
http://www.sciencedirect.com/science/article/pii/S0893965918303264
http://www.sciencedirect.com/science/article/pii/S0893965918303264
https://doi.org/10.1145/3295500.3356215
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/42411.42415

15

APPENDIX A
IMPLEMENTATION: PERFORMANCE STRATEGIES

Throughout the development of the library we have
established different strategies to improve the performance.
The first one is to proceed first with the intra-node com-
munications with a special communicator before the inter-
node ones. As this optimization is usually also done in the
MPI implementation, we have not measured a significant
difference in terms of time-to-solution. In this section we
describe two other strategies we have used. First a new
way of distributing the data through the MPI ranks to
avoid imbalance between the nodes and a specific order
to proceed to the inter-node communications.

A. Load balancing - distribution of unknowns

To simplify the notation in this section we note the inte-
ger division by /. Different approaches exist to distributed
N unknowns on P ranks:

• ranks from 0 to N %P have N /P + 1 data and ranks
> N %P have N /P data as originally implemented in
flups;

• a rank r gets its first data index from (r N)/P .

In flups, the computation of the communications requires
such a formula to be invertible, i.e. we have to compute
the corresponding rank for a data index and the data
that is attributed to a specific rank index. While the first
approach can be easily inverted (getting the rank index r for
a specific data), the unknowns are poorly distributed over
the ranks as the first N %P ranks will get more data. When
considering multiple ranks per node it results in a subset
of nodes having more data than the others and therefore in
a significant imbalance between nodes.

This issue is solved with the second approach which
spreads the excess data over the whole rank range. However,
getting the rank from a data index has been impossible for
us, or at least in an efficient way. To combine the benefit of
the two approaches, we propose another distribution that
both distributes the excess data over the whole rank range
and can be easily inverted.

As with the other methods, all ranks will get at least
B = N /P unknowns, also referred to as the baseline. To
distribute the remaining R = N %P ones, we create R groups
of ranks. Each group has S = P/R ranks (where S stands for
stride), except the last one which might be a special case.
The last rank of each group will get 1 excess data, then each
group has a total of (S B+1) data. Here again the last group
might be special and not get any +1 as highlighted in the
example below. The first index for data attributed to a rank
r is then obtained as

r

(
N

P

)
+min

{ r

S
; R

}
. (a)

To inverse the relation and obtain the rank corresponding
to a given data index i , we first identify the group index and
then add the rank index within the group:

1) the group index where the data i is located is given by

gi = min{i /(S B +1) , R} , (b)

where the min ensures that edge cases do not over-
estimate the group id;

2) within the group, the local data index is now given by
iL = (

i − gi (S B +1)
)
;

3) then the local rank attributed to the local index iL is
rL = iL/B , where we have to bound rL to S − 1 to if
gi < R with rL = min{iL/B ,S −1}.

The rank attributed to the data index i is finally obtained
as r = gi S + rL .

To illustrate our approach we consider an edge case with
N = 32, P = 7. Then following the formula we obtain B =
4, R = 32%4 = 4, and S = 1. The distribution is then given
by [5 , 5 , 5 , 5 , 4 , 4 , 4]. If we want to get the rank for the
data id of i = 14, then we obtain gi = 14/5 = 2, iL = 4, and
rL = min{1,0} = 0. The final rank is then r = 2. Similarly if
we want to get the rank for the data id i = 27, then gi =
27/5 = min{5 , 4} = 4, iL = 7, and rL = 1. The final rank is then
r = 4+1 = 5. We note here that with this specific example
the distribution is not better than the one already used in
flups. However for more regular configurations we obtain
a more homogeneous distribution (e.g. N = 32, P = 6).

1) Order of the send requests based on the destination
rank: As the communication is done in an all-to-all manner,
each rank in a sub-communicator interacts with all the
other ranks belonging to the same sub-communicator. An
intuitive way to implement such a scheme is to have all
the ranks start their request following the rank indexing of
the sub-communicator. For example, all the send requests
from all the ranks inside the sub-communicator will first be
addressed to rank 0, then to rank 1, and so on. As stated
in [21], this may lead to endpoint congestion and lower the
code performance. To reduce the network congestion, the
ranks communicate with others in ascending order, starting
with their neighbor in the indexes list. In that case, the rank
r first sends its request to the rank having the index r +1,
then to the rank indexed r +2, etc. The repartition of the
active send requests across the different receivers is hence
improved and it reduces the communication overheads.

APPENDIX B
ANALYTICAL EXPRESSIONS USED FOR THE VALIDATION

This section contains the details analytical expressions
used for the validation of flups in Section IV. The Poisson
equation is solved on a cubic domain of spatial extent [0,L]
in all directions.

A. Domain with symmetric and periodic BCs.

φr e f (x, y, z) = cos
(
π

x

L

)
sin

(
5π

2

y

L

)
sin

(
8π

z

L

)
. (c)

B. Fully unbounded boundary conditions

φr e f (x, y, z) =

exp

10

3− 1

1− (2x
L −1

)2 − 1

1−
(

2y
L −1

)2 − 1

1− (2z
L −1

)2

 .

(d)

16

C. Domain with two semi-infinite directions and one fully
unbounded BC.

φr e f (x, y, z) =[
exp

(
10

(
1− 1

1− (2x−1.4L
L

)2

))
+exp

(
10

(
1− 1

1− (2x−2.6L
L

)2

))]

exp

10

1− 1

1−
(

2y
L −1

)2

[
exp

(
10

(
1− 1

1− (2z−0.6L
L

)2

))
−exp

(
10

(
1− 1

1− (2z+0.6L
L

)2

))]
.

APPENDIX C
CONVERGENCE FOR THE BIO-SAVART SOLVER

This section provides the convergence results for the
finite difference approximation of order 2 and 6 in the case
of the Bio-Savart solver presented in Section V.

323 643 1283 2563 5123 10243 20483

10−6

10−5

10−4

10−3

10−2

10−1

100

p = 2

p = 2

Npoi nt s

E
∞

Figure A: Convergence of the Biot-Savart solver using 2nd
order differentiation CHAT2 (), HEJ2(), HEJ4(
), HEJ6(), HEJ8(), HEJ10(), HEJ0()

APPENDIX D
PERFORMANCE METRICS FOR WEAK AND STRONG SCALABILITY

A software running for T seconds on P resources in
parallel can be characterized by the percentage of the time
spent in parallel regions, α, and the percentage spent in
serial regions, β= 1−α such that T =α T + (1−α)T . When
going from P0 resources to P1 with r = P1/P0 the ratio
between resources, only the parallel regions will benefit
from the gain and the execution time becomes

T1 = α T0

r
+ (1−α)T0 . (e)

Amdahl’s law [22] defines the speedup as the ratio of both
measured times:

sP = T0

T1
= 1
α

r
+ (1−α)

, (f)

and uses sp as a performance metric. This approach is
usually referred to as strong scaling.

323 643 1283 2563 5123 10243 20483

10−9

10−7

10−5

10−3

10−1

101

p = 2

p = 4

p = 4

Npoi nt s

E
∞

Figure B: Convergence of the Biot-Savart solver using 4th
order differentiation CHAT2 (), HEJ2(), HEJ4(
), HEJ6(), HEJ8(), HEJ10(), HEJ0()

However, most practical applications scale the problem
size with the available resources. In such a context, the time
spent on P1 resources scales with r (as the problem size
scales with r) while only the parallel region benefits from
the additional resources:

T1 = r

[
α T0

r
+ (1−α)T0

]
=α T0 + r (1−α) T0 . (g)

Therefore serial regions will lead to a longer execution time,
while time spent in parallel regions will remain constant.
This line of thought, usually called the weak scalability, leads
to Gustafson’s law [23] which defines the efficiency as the
ratio of both times

ηP,w = T0

T1
= 1

α+ r (1−α)
. (h)

We note that an equivalent efficiency can also be ob-
tained from Amdahl’s law as the ratio between the speedup
sP and theoretical gain that should have been obtained
during the strong scalability, r :

ηP,s = sP

r
= 1

α+ r (1−α)
. (i)

Finally similar expressions can be obtained for β = 1−
α, the serial percentage of the software. We also highlight
that both the strong and the weak scalability are driven
by quality of implementation which can be measured by
β. A perfect scalability would lead to β = 0 and a perfect
parallelization of the software.

APPENDIX E
DETAILS ON THE TESTCASES

A. Comparison with accFFT

Table A details the layout used for the comparison with
accFFT described in Section VI-A.

B. Weak scalability

Table B details the layout used for the weak scaling
analysis described in Section VI-C. The numbers in the table

17

nodes Px Py Pz

1 1 8 16
2 1 16 16
8 1 32 32

32 1 64 64
128 1 128 128

Table A: Process distribution for the comparison with
accFFT in Section VI-A

represents the process distribution in the three dimensions,
the number of unknowns per process is kept constant to
963.

nodes Px Py Pz

1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Table B: Process distribution for the weak scaling analysis
of Section VI-C

C. Strong scalability

Table C details the layout used for the strong scaling
analysis described in Section VI-D. The numbers in the table
represents the process distribution in the three dimensions,
the total number of unknowns is kept constant to 12803.

nodes Px Py Pz

1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Table C: Process distribution for the strong scaling analysis
of Section VI-D

APPENDIX F
COMPARISON OF MAIN EUROPEAN SYSTEMS

This section includes additional time-to-solution and
weak efficiencies for the isr and the a2a version of flups
on different European systems, summarized in Table D. The
results as presented in Figure C and Figure D for the isr

version and Figure E and Figure F for the a2a implemen-
tation. For reference, we also provide the throughput per
rank in Table E, Table F and Table G. The numbers have
been multiplied by the factor 3/14 for better comparison
with the other results.

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

N nodes

ti
m

e/
so

lv
e

-
[s

ec
]

Figure C: isr: Comparison of three different architectures,
Vega (), MeluXina () and Lumi (). Timings of weak
scalability tests, performed with 963 unknowns per rank on
a fully unbounded domain.

1 2 4 8 16 32 64 128

0.2

0.4

0.6

0.8

1

r = Number of nodes

η
P,

w

β= 0%

β= 0.2%

β= 0.5%

β= 1%

Figure D: Implementation isr: Weak efficiency ηP,w on Vega
(), MeluXina (), and Lumi (). Weak scalability
tests performed with 963 unknowns per rank on a fully
unbounded test case.

18

Name Location CPU Interconnect Transport Layer OSU latency

Lumi Finland AMD EPYC 7763 200 Gb/s Slingshot-11 libfabric 15.0.0 - CXI 2.05 µs
MeluXina Luxembourg AMD EPYC 7H12 200 Gb/s Infiniband HDR ucx 1.13.1 1.45 µs

Vega Slovenia AMD EPYC 7H12 100 Gb/s Infiniband HDR ucx 1.13.1 1.99 µs

Table D: List of systems used for scalability testing

N nodes 1 2 8 64 128
Vega 33.82 31.62 25.50 23.09 17.11
MeluXina 32.14 31.54 29.59 29.19 26.57
Lumi 34.43 33.13 28.40 24.15 21.12

Table E: Implementation nb: throughput per rank [MB/sec]
for a solve on the three parallel architectures. To account
for the domain-doubling technique for unbounded BCs a
normalization factor of 14/3 has been applied.

N nodes 1 2 8 64 128
Vega 42.16 38.88 28.55 21.13 16.29
MeluXina 40.94 38.39 32.49 26.92 23.82
Lumi 38.57 34.79 28.90 24.09 20.73

Table F: Implementation isr: throughput per rank [MB/sec]
for a solve on the three parallel architectures. To account
for the domain-doubling technique for unbounded BCs a
normalization factor of 14/3 has been applied.

1 2 4 8 16 32 64 128
0

0.5

1

1.5

2

2.5

N nodes

ti
m

e/
so

lv
e

-
[s

ec
]

Figure E: a2a: Comparison of three different architectures,
Vega (), MeluXina () and Lumi (). Timings of weak
scalability tests, performed with 963 unknowns per rank on
a fully unbounded domain.

N nodes 1 2 8 64 128
Vega 31.58 29.28 22.46 18.11 14.35
MeluXina 30.34 29.85 27.21 25.94 24.33
Lumi 34.19 33.96 28.41 22.93 16.05

Table G: Implementation a2a: throughput per rank [MB/sec]
for a solve on the three parallel architectures. To account
for the domain-doubling technique for unbounded BCs a
normalization factor of 14/3 has been applied.

1 2 4 8 16 32 64 128

0.2

0.4

0.6

0.8

1

r = Number of nodes

η
P,

w

β= 0%

β= 0.2%

β= 0.5%

β= 1%

Figure F: Implementation a2a: Weak efficiency ηP,w on Vega
(), MeluXina (), and Lumi (). Weak scalability
tests performed with 963 unknowns per rank on a fully
unbounded test case.

	I Introduction
	II Methodology
	II-A Point numbering conventions
	II-B Periodic, even, and odd boundary conditions
	II-B1 Even-even boundary condition
	II-B2 Odd-odd boundary condition
	II-B3 Odd-even boundary condition
	II-B4 Even-odd boundary condition

	II-C Semi-unbounded and unbounded boundary conditions
	II-C1 Unbounded directions
	II-C2 Semi unbounded directions

	III Implementation
	III-A Communication strategies
	III-A1 Implementation using an all-to-all
	III-A2 Implementation using non-blocking persistent requests
	III-A3 Implementation using datatypes

	IV Validation
	IV-A Domain with symmetric and periodic BCs
	IV-B Fully unbounded boundary conditions
	IV-C Domain with two semi-infinite and one fully unbounded BCs

	V Application: the Biot-Savart solver
	VI Parallel performance analysis
	VI-A Comparison with accFFT
	VI-B General comments on weak and strong scalability
	VI-C Weak Scalability
	VI-D Strong scalability
	VI-E Comparison of main European systems

	VII Conclusions
	Biographies
	Pierre Balty
	Philippe Chatelain
	Thomas Gillis

	Appendix A: Implementation: performance strategies
	A-A Load balancing - distribution of unknowns
	A-A1 Order of the send requests based on the destination rank

	Appendix B: Analytical expressions used for the validation
	B-A Domain with symmetric and periodic BCs.
	B-B Fully unbounded boundary conditions
	B-C Domain with two semi-infinite directions and one fully unbounded BC.

	Appendix C: Convergence for the Bio-Savart solver
	Appendix D: Performance metrics for weak and strong scalability
	Appendix E: Details on the testcases
	E-A Comparison with accFFT
	E-B Weak scalability
	E-C Strong scalability

	Appendix F: Comparison of main European systems

