
1

Dap-FL: Federated Learning flourishes by adaptive
tuning and secure aggregation

Qian Chen*, Zilong Wang, Member, IEEE, Jiawei Chen*, Haonan yan, and Xiaodong Lin, Fellow, IEEE

Abstract—Federated learning (FL), an attractive and promis-
ing distributed machine learning paradigm, has sparked extensive
interest in exploiting tremendous data stored on ubiquitous
mobile devices. However, conventional FL suffers severely from
resource heterogeneity, as clients with weak computational and
communication capability may be unable to complete local
training using the same local training hyper-parameters. In this
paper, we propose Dap-FL, a deep deterministic policy gradient
(DDPG)-assisted adaptive FL system, in which local learning
rates and local training epochs are adaptively adjusted by all
resource-heterogeneous clients through locally deployed DDPG-
assisted adaptive hyper-parameter selection schemes. Particu-
larly, the rationality of the proposed hyper-parameter selection
scheme is confirmed through rigorous mathematical proof. Be-
sides, due to the thoughtlessness of security consideration of
adaptive FL systems in previous studies, we introduce the Paillier
cryptosystem to aggregate local models in a secure and privacy-
preserving manner. Rigorous analyses show that the proposed
Dap-FL system could guarantee the security of clients’ private
local models against chosen-plaintext attacks and chosen-message
attacks in a widely used honest-but-curious participants and
active adversaries security model. In addition, through ingenious
and extensive experiments, the proposed Dap-FL achieves higher
global model prediction accuracy and faster convergence rates
than conventional FL, and the comprehensiveness of the adjusted
local training hyper-parameters is validated. More importantly,
experimental results also show that the proposed Dap-FL achieves
higher model prediction accuracy than two state-of-the-art RL-
assisted FL methods, i.e., 6.03% higher than DDPG-based FL
and 7.85% higher than DQN-based FL.

Index Terms—federated learning, deep reinforcement learning,
deep deterministic policy gradient, adaptive training, privacy-
preservation.

I. INTRODUCTION

AS estimated by Cisco, nearly 850 zettabytes of data burst
out from all people, machines, and things by 2021, up

from 220 zettabytes generated in 2016 [1]. Coupled with the
rise of Machine Learning (ML) [2] and Deep learning (DL)
[3], these valuable data could unfold countless opportunities
for modern society, e.g., Internet of Things (IoT) [4], Internet
of Vehicle (IoV) [5], and Healthcare [6].

However, practical scenarios are somewhat disappointing:
utilizing such tremendous data for ML is more difficult than
we thought. On the one hand, collecting data for ML model

Qian Chen, Zilong Wang, Jiawei Chen, and haonan Yan are
with the State Key Laboratory of Integrated Service Networks,
School of Cyber Engineering, Xidian University, Xi’an, China (e-
mail: qchen 4@stu.xidian.edu.cn; zlwang@xidian.edu.cn; xidianjiawe-
ichen@gmail.com; yanhaonan.sec@gmail.com).

Xiaodong Lin is with the School of Computer Science, University of
Guelph, Guelph, Canada (e-mail: xlin08@uoguelph.ca).

*These authors contributed equally to this work.

training would eventually saturate WAN bandwidths, while
the WAN bandwidth is a scarce resource, whose growth has
been decelerating for many years [7]. On the other hand,
data security and privacy are strengthened by states across the
world, e.g., General Data Protection Regulation (GDPR) [8],
which significantly increases the difficulty of data collection.

Facing the above two enormous difficulties, Federated
Learning (FL) [9], [10], [11] has emerged as an attractive and
promising paradigm, which is in stark contrast to traditional
ML with a data center. In the typical FL, clients collab-
oratively train a global ML model under the orchestration
of a central server without collecting local data in a data
center. Specifically, clients locally train individual models
using their data in parallel, and the central server aggregates
local contributions to update the global model subsequently.
Such a process is executed periodically until the global model
converges. Therefore, FL is a direct application of the data
minimization principle [12], as it decouples model training
from the need for direct access to the raw data, which allevi-
ates the difficulties of communication overhead and privacy.
With the primary advantages of communication efficiency
and privacy preservation, FL has been deployed in a wide
range of applications, including the keyboard application for
smartphones [13], Healthcare [14], and Industrial Internet of
Things (IIoT) [29], [32].

Despite the promising benefits, FL is still caught in a
dilemma between model prediction performance and system
efficiency in practice. Such a dilemma is mainly caused
by resource heterogeneity [15], where clients have diverse
local resources for computation and communication. When
enforcing these resource-heterogeneous clients to train lo-
cal models using the same hyper-parameters, some clients
cannot complete the local training due to insufficient local
resources, thereby leading to a serious straggler problem [16].
Dropping straggler clients not only reduces the global model
convergence rate but also reduces the global model prediction
performance, although the system efficiency is guaranteed
in some ways [17]. On the contrary, waiting for straggler
clients blindly significantly wastes lots of time, although
the global model prediction accuracy may increase due to
the extra local contributions. To meet the requirements of
the model prediction performance and the system efficiency
simultaneously, the FL system should carefully manipulate the
local training, which is referred to as adaptive or self-tuning
algorithms [18], [19].

The adaptive hyper-parameter adjustment has a long history
[20], but it mainly focuses on model prediction accuracy [21],
[22] rather than communication and computational efficacy

ar
X

iv
:2

20
6.

03
62

3v
1

 [
cs

.C
R

]
 8

 J
un

 2
02

2

2

for heterogeneous clients or the system. In FL, more potential
hyper-parameters are adaptively adjusted, e.g., participating
clients or the amount of participating clients [23], [26], [28],
[32], [33], local training iterations [23], frequency of aggre-
gation [25], [29], and allocated resources [26], [27], [31]. In
a nutshell, current adaptive FL methods usually take one of
two routes (the details are shown in Section VII): (1) theoretic
methods [23]-[27], and (2) Reinforcement Leaning (RL)-based
methods [28]-[33]. Both the two routes formulate the hyper-
parameter adjusting process in FL as a constrained and non-
convex optimization problem, which is hard to solve directly.
The former route converts the prime optimization problem into
a convex optimization problem, which can be solved easier,
by making some prior hypotheses to practical environment
constraints. However, such transformations with prior hypothe-
ses may be less reasonable, as real-world environments, e.g.,
wireless communication ranges and battery power, are time-
varying and have no statistical regularity to follow. Recently,
the RL-based method is proposed as a slightly more sophis-
ticated but more effective and practical method to achieve
adaptive FL, which formulates the hyper-parameter adjusting
process as a Markov decision process (MDP) and searches
for appropriate hyper-parameters by introducing the Deep-Q
Network (DQN) [28]-[31] or the deep deterministic policy
gradient (DDPG) [32], [33] algorithm on the server side.
Among them, the aggregation frequency adjustment in Sun
et al.’s DQN-based method [29] and the client selection in
Zhang et al.’s DDPG-based method [32] are the state-of-the-
art RL-based adaptive FL methods.

However, even for [29], [32], existing RL-based adaptive FL
methods have five main shortages: (1) DQN is less effective
than DDPG when the state and action spaces are continuous
and high-dimensional. (2) Selecting clients is equivalent to
abandoning straggler clients, which may result in low global
model prediction accuracy. (3) Selecting hyper-parameters for
clients on the server side is less effective since the server
cannot capture clients’ fast-changing training conditions. (4)
Fixing the time-varying constraints as a constant is unreason-
able. (5) Ignoring security requirements is not conducive to the
development of adaptive FL. Therefore, an intuitive question
is: How to achieve adaptive FL better with the satisfaction
of global model performance, efficiency, and security require-
ments?

In response, we propose a DDPG-assisted adaptive
and privacy-preserving federated learning (Dap-FL) system.
Specifically, we introduce the DDPG algorithm to help clients
adaptively adjust local learning rates and local training epochs
for the purpose that all participating clients with heterogeneous
resources could collaboratively train a global model efficiently,
rather than abandoning straggler clients. In addition, Dap-FL
adopts the Paillier cryptosystem for privacy-preserving and
secure local model aggregation.

We stress the superiority of the proposed Dap-FL com-
pared to the RL-based FL designs, especially the state-of-
the-art [29], [32], in the following five aspects: (1) Different
from selecting clients’ local training hyper-parameters by a
server, Dap-FL adaptively adjusts clients’ local training hyper-
parameters through DDPG models maintained by the clients

themselves, which suits clients’ fast-changing training condi-
tions more. (2) Rather than abandoning straggler clients with
low local resources, Dap-FL aggregates all local contributions,
which helps FL out of the model prediction accuracy and
system efficiency dilemma. (3) Instead of leveraging the global
loss function, Dap-FL formulate clients’ local contributions
as the reward function, which is validated more effective in
our experiments. (4) Dap-FL considers time-varying constraint
conditions with respect to clients’ local resources, which is
more reasonable and practical than modeling the constraints
as a constant. (5) Compared to all RL-based adaptive FL
designs without any security concerns, Dap-FL aggregates
local models in a secure manner, which makes the proposed
Dap-FL competitive. To the best of our knowledge, Dap-FL
is the first adaptive FL system by locally adjusting hyper-
parameters through the DDPG algorithm, and is the first secure
and privacy-preserving adaptive FL system.

The main contributions of this paper are as follows:
DDPG-assisted adaptive federated learning system. We

propose a DDPG-assisted adaptive hyper-parameter selection
scheme, which formulates every client’s local training process
as a constrained MDP, and hence solves its Lagrangian dual
problem by the DDPG algorithm, where the rationality of
the Lagrangian-based problem transformation is confirmed
through rigorous mathematical proof. With the deployment of
the proposed scheme, we exploit an adaptive FL system, Dap-
FL, where the global model prediction accuracy and the global
model convergence rate are enhanced.

Secure and privacy-preserving federated learning sys-
tem. To satisfy general secure requirements in FL, Dap-FL
introduces the Paillier cryptosystem to aggregate local models
in a secure and private manner. Through rigorous analyses, the
proposed Dap-FL system could guarantee the privacy, source
authentication, and data integrity of local models in a widely
used honest-but-curious participants and active adversaries
security model [11], [13], [34]. In particular, clients’ private
local models are semantic secure against chosen-plaintext
attacks [37], and are secure against chosen-message attacks
[37] in the random oracle model [49].

Extensive experimental evaluation. We evaluate the per-
formance of the proposed Dap-FL by deploying three different
ML models on two datasets. Experimental results show that the
proposed Dap-FL achieves higher model prediction accuracy
and faster convergence rate, which could be regarded as
achieving higher communication efficiency, compared to con-
ventional FL. More importantly, through the comparison with
two state-of-the-art RL-assisted FL methods, the prediction
accuracy of the global model trained by Dap-FL is 6.03%
higher than the DDPG method [32] and 7.85% (2.65% with a
small learning rate) higher than the DQN-based method [29]
in our experimental settings.

The rest of the paper is organized as follows. Section
II formalizes the system model, security requirements, and
design goal. Section III introduces some primitive concepts.
In Section IV, we formulate the local training process as a
constrained MDP and solve its Lagrangian dual problem by
the DDPG algorithm. In Section V, we propose the Dap-FL
system, followed by the security analysis and experimental

3

evaluation in Section VI and Section VII. Section VIII sum-
marizes related works on adaptive FL. Finally, we draw our
conclusions in Section IX.

II. SYSTEM MODEL, SECURITY REQUIREMENT AND
DESIGN GOAL

In this section, we first formalize the FL system under our
consideration. Then, we analyze security requirements and
identify our design goal.

A. Federated Learning System

As shown in Fig. 1., the FL system under our considera-
tion consists of three participants: a key distribution center
(KDC), a central server (CS), and a group of N clients
{ci, i = 1, · · · , N}. The main job of the KDC is generating
and assigning public and private keys to each participant.
Each client ci has a local dataset Di with the size of |Di|
containing sensitive information. The goal of all clients is to
collaboratively train a global model under the orchestration of
the CS in a privacy-preserving manner. Formally, the training
process can be seen as solving an optimization problem
mathematically, defined as:

W ∗ = arg min
W

F (W ;D1, · · · , DN) , (1)

where F (·) is the global loss function, W represents the global
model, and W ∗ is the final converged global model. Note that
although the global model (as well as the local ML model
below) is parameterized by a vector or a matrix in practice,
we regard it as a scalar in this paper for convenience.

In general, such an optimization problem could be solved
by periodically performing the distributed gradient descent
algorithm. For clarity, we take the t-th period (also named
as training round in this paper) as an example to describe
the problem-solving process, where t = 0, 1, · · · , T . CS first
distributes the global model W (t) to all clients. After receiving
the global model, each ci initializes its local model wi(t) as
W (t) and its loss function fi(·) as F (·). Then, ci trains wi(t)
on Di locally for αi(t) epochs to update its local model, which
can be simply expressed as:

ŵi(t) = wi(t)− ηi(t) · ∇fi (wi(t);Di;αi(t)) , (2)

where ŵi(t) is the updated local model, ∇fi (·) is the gradient,
and ηi(t) is the learning rate. Subsequently, each client ci
uploads ŵi(t) and |Di| to the CS in parallel, and the CS
computes the weighted mean of ŵi(t)s as the updated global
model, denoted by W (t+ 1), and defined as:

W (t+ 1) =
1

|D|

N∑
i=1

|Di|ŵi(t), (3)

where |D| =
∑N
i=1 |Di|.

Time-varying resource consumption model. Different from
the conventional FL without considering clients’ local re-
sources, we take the communication and computational re-
sources of each client into account, which is time-varying and
has no statistical regularity to follow. Thus, the local resource
of ci in the t-th training round is donated by Ei(t). Particularly,

in the t-th training round, the resources that ci consumes for
one epoch of local training and single time of communication
with the CS are denoted by Ecpti (t) and Ecmui (t), which limit
the selection of local training hyper-parameters.

Communication model. In the FL system under our con-
sideration, the communication between a client ci and the
CS is through the relatively inexpensive WiFi technology. In
other words, each client can directly communicate with the CS
within the WiFi coverage range. However, the communication
within the WiFi coverage range is not private, which means all
participants could be eavesdropped by others. Besides, clients
might also communicate with others directly through WiFi
technology. On the other hand, the KDC assigns keys for
secure communication through expensive but secure communi-
cation channels. That is, the keys assigned by the KDC cannot
be eavesdropped, but such secure communication channels can
only be used for key assignment instead of the local model
aggregation due to the scarce bandwidth [34].

B. Security Requirements

Security and privacy draw wide attention since FL is pro-
posed. In particular, clients’ private local model is vulnerable
to model inversion attacks [35] by any participants with access
to a local model, which leads to severe privacy leakage.
Additionally, active adversaries could execute active attacks,
e.g., masquerade attacks [36] and replay attacks [37], to
threaten the source authentication and data integrity of the
FL system.

Therefore, in this paper, we consider an honest-but-curious
participants and active external adversary threat model, which
is widespread in FL [11], [13], [34]. Specifically, the KDC
is fully trustworthy and hence would never collude with
others, as the role of a KDC is always played by an official
institution with credibility in practice. In addition, the CS and
the clients are considered honest-but-curious, which means
all participants (except the KDC) would honestly train the
global model but may infer sensitive information contained
in clients’ local training data by executing model inversion
attacks. Besides, we further consider an external adversary
A who can eavesdrop the individual local models. More
seriously, A could execute active attacks to break down the FL
system, such as masquerading attacks, where A masquerades
as a legitimate client and uploads an incorrectly formatted
local model. In order to prevent A from breaking down the
FL system and guarantee the privacy of an individual local
model, the following security requirements should be achieved
in our FL system.
• Local model confidentiality. The content of an individual

local model should not be obtained by anyone but the
corresponding client itself. Confidentiality also requires
the FL system could resist eavesdropping attacks by the
adversary A .

• Source Authentication and Data Integrity. To prevent
the existing active attacks from A , each participant is
required to confirm the received contents that are sent by
a legitimate participant and have not been altered and/or
forged during the transmission.

4

2 2,

&

Clients with different local

datasets and resources

Deciding training

hyper-parameters
Local training

Key Distribution

Center (KDC):

Assigning private

and public keys to

participants

Central Server

(CS):

Aggregating local

contributions

Active

Adversary :

Active attacks to

threaten the system

1w

2w

1nw

nw

W

1 1,
1D

1c

2D

2c

1 1,n n
1nD

1nc

,n n
nD

nc

Eavesdropping,
altering and froging

local models

Fig. 1. Centralized Federated Learning System.

C. Design Goal

Under the aforementioned system model and security re-
quirements, our design goal mainly focuses on two aspects: lo-
cal training adaptiveness and secure aggregation. Specifically,
the following two objectives should be achieved.

The local training adaptiveness should be guaranteed in
our FL system. As mentioned in the system model, clients
expect to adaptively select the local learning rates and local
training epochs within the constraints of local resources for
higher global model prediction accuracy and communication
efficiency. Therefore, our FL system should achieve local
training hyper-parameter adaptive adjustment.

The security requirements should be guaranteed in our
FL system. Privacy preservation and security are of crucial
importance for the flourishing of FL. Thus, our FL system
should satisfy the privacy of individual local models and the
security of the whole system.

III. PRELIMINARIES

In this section, we provide a brief overview of the rein-
forcement learning (RL) [38] and the deep deterministic policy
gradient (DDPG) algorithm [41] which serves as the basis of
the proposed adaptive local training hyper-parameter selection
scheme. Besides, we introduce the Paillier cryptosystem for
the design of the privacy-preserving FL.

A. Deep Reinforcement Learning

RL is proposed to help a client make decisions sequentially
through trial-and-error interactions with environment. For-
mally, such a sequential decision-making process is modeled
as a Markov decision process (MDP) [39], denoted by a 3-
tuple {S,A, R}, where S is the state space, A is the action

space, and R is the reward function. In detail, the client selects
an action a(t) ∈ A according to its state s(t) ∈ S at time step
t, which can be expressed as:

µ : s(t)→ a(t), (4)

where the action-producing function µ represents a determin-
istic policy in practice. After performing the selected action
a(t), the client transits to the next state s(t+ 1) and receives
an immediate reward r(t) = R (s(t), a(t), s(t+ 1)) from the
environment. Thus, the state-action value function at time step
t, depicting the expected long-term reward from time t, can
be naturally denoted by Qµ and defined as:

Qµ (s(t), a(t)) = E

[
T∑
τ=t

γτ−1 · r(τ)

]
, (5)

where τ is the index of the time step, and γ ∈ (0, 1) is the
discount factor. Therefore, the purpose of the client can be seen
as maximizing the state-action value function with respect to
the policy µ, which is simply expressed as:

µ∗ = arg max
µ

Qµ (S,A) , (6)

where µ∗ is the best policy.
Deep Deterministic Policy Gradient Algorithm.

To search for the best policy of the above optimization
problem, deep reinforcement learning (DRL) [40] introduces
the deep neural network to approximate the state-action value
function. In particular, the DDPG algorithm serves as an
efficient DRL algorithm facing a high-dimensional and con-
tinuous state and/or action space. Specifically, the DDPG
algorithm sets up two Actor-Critic networks, namely MainNet
and TargetNet. In the MainNet, the deterministic policy and
the state-action value function are parameterized by θµ(t) and

5

θQ(t). And the TargetNet is a copy of the MainNet with
parameters θµ

′
(t) and θQ

′
(t). Through iteratively training the

two nets, the best policy µ∗ could be obtained.

B. Paillier Cryptosystem

The Paillier cryptosystem [42] consists of the encryption
scheme and the digital signature scheme. We first recall the
definition of n-th residues modulo n2 and the Decisional
Composite Residuosity (DCR) assumption as follows.

Definition 1 (n-th residues modulo n2 [42]): A number x is
said to be a n-th residue modulo n2, if there exists a number
z ∈ Z∗n2 such that

x = zn mod n2,

where n = p · q is the product of two large primes.
Assumption 1 (Decisional Composite Residuosity (DCR) As-

sumption [42]): There exists no polynomial time distinguisher
for n-th residues modulo n2.

Thus, a public-key encryption scheme and a digital signature
scheme work as follows.
Paillier Encryption scheme

Key Generation Algorithm. The key generation algorithm
first picks two large primes pEnc and qEnc randomly such
that gcd

(
pEnc · qEnc ,

(
pEnc − 1

)
·
(
qEnc − 1

))
= 1. Next, it

computes n = pEnc ·qEnc and % = lcm
(
pEnc − 1, qEnc − 1

)
.

After picking a random g from Z∗n2 , the algorithm computes
δ =

(
L
(
g% mod n2

))−1
mod n, where L (x) = x−1

n . Thus,
the public key is PKEnc = (n, g), and the private key
is SKEnc = (%, δ). We simply express the key generation
algorithm as:(

PKEnc ,SKEnc
)
← KeyGen

(
pEnc , qEnc

)
. (7)

Encryption Algorithm. Given a plaintext M ∈ Zn and the
public key PKEnc , the encryption algorithm selects a random
ζ ∈ Z∗n, and further computes the ciphertext ε (M) = gM ·
ζn mod n2. The encryption algorithm is simply shown as:

ε (M)← Enc
(
M,PKEnc

)
. (8)

Decryption Algorithm. Given a ciphertext ε (M) ∈ Z∗n2 and
the private key SKEnc , the decryption algorithm computes
the plaintext by M = L

(
ε(M)

%
mod n2

)
· δ mod n, which is

expressed as:

M ← Dec
(
ε (M) ,SKEnc

)
. (9)

Evaluation Algorithm. The evaluation algorithm is used to
verify the addition homomorphism of the Paillier encryption
scheme, i.e.,

ε(M1) · ε(M2)modn2=Enc
(
(M1+M2 modn),PKEnc

)
, (10)

where M1 and M2 are two plaintexts, and ε (M1) and ε (M2)
are corresponding ciphertexts.
Paillier Digital Signature Scheme

Key Generation Algorithm. The key generation algorithm
has the same steps as that in the Paillier encryption scheme,
shown as:(

PK Sign ,SK Sign
)
← KeyGen

(
pSign , qSign

)
, (11)

where pSign and qSign are two large primes, and PK Sign and
SK Sign are the public key and private key.

Signing Algorithm. Given a hash function H : {0, 1}∗ →
Z∗n2 , a private key SK Sign , and a message M ∈ Zn,
the signing algorithm first computes h ← H(M). Next,
it computes the signature σ = L(h% mod n2)

L(g% mod n2) mod n and

σ̃ = (h · g−σ)(
1
n mod %) mod n, where L (x) = x−1

n . Thus
the signing algorithm is simply expressed as:

M || (σ, σ̃)← Sign(M,H,SK Sign), (12)

where || is the string concatenation operator.
Verification Algorithm. Given a hash function H , a public

key PK Sign , and a message M with a signature (σ, σ̃), the
verification algorithm first computes h ← H(M). Next, it
checks whether the equation h = gσ · σ̃n mod n2 holds. Thus,
the verification algorithm is expressed as:

{0, 1} ← Verify
(
M || (σ, σ̃) , H,PK Sign

)
. (13)

IV. DDPG-ASSISTED ADAPTIVE HYPER-PARAMETER
SELECTION

In this section, we analyze hyper-parameters affecting local
training, and hence formulate the client’s local training process
as an optimization problem. Further, we convert the opti-
mization problem as a constrained MDP and obtain the best
policy by solving its Lagrangian dual problem with the usage
of the DDPG algorithm. The entire problem formalization,
transformation, and solving processes constitute the proposed
DDPG-assisted adaptive hyper-parameter selection scheme.

A. Problem Formulation

To achieve the goal of adaptively adjusting local training
hyper-parameters during the FL process, we must model it
mathematically. In the FL under our consideration, every client
has heterogeneous and time-varying resource constraints re-
garding computation and communication, which means clients
may adopt totally different hyper-parameters for local training
according to diverse resource constraints, thereby making
different contributions to the global model. Therefore, it is
essential to model the local training process with resource
constraints for each client separately.

But the first question is how the client’s local training hyper-
parameters affect the global model convergence. Empirical
results show that the convergence of the global model is
strongly impacted by local contributions which are dependent
on the local training hyper-parameters significantly, i.e., local
training epoch [43] and the local learning rate [44]. In detail,
a small local training epoch is more helpful for the precise
approximation to the converged global model, but clients
would suffer from more aggregations, which decelerates the
global model convergence rate and improves clients’ commu-
nication consumption. Conversely, a large local training epoch
helps the global model converge to an approximate result of
the converged global model rapidly, but it makes the final
convergence of the global model extremely difficult, since the
variance of local models increases sharply. Besides, the local
learning rate has a similar impact on the global model to the

6

local training epoch. Although the decaying learning rate [44]
is utilized to adaptively tune models in the ML community,
it may prevent the global model from convergence, as the
learning rate becomes too small after too many training rounds.
As a result, we plan to adaptively adjust the local training
epoch and the local learning rate in each training round.

However, in the t-th training round, the influence of ci’s lo-
cal contribution on the global model is not intuitive. Naturally,
we consider measuring the influence by defining the following
three metrics.

Definition 2 (Training loss value difference): The difference
between the training loss values of wi(t) and wi(t−1) on Di

is denoted by ψ1 and defined as:

ψ1 = lossi(t− 1)− lossi(t), (14)

where lossi(t − 1) and lossi(t) are the training loss values
of the initialized local models at (t−1)-th and t-th training
rounds on Di.

Definition 3 (Training accuracy difference): The difference
between the training accuracy of wi(t) and wi(t − 1) on Di

is denoted by ψ2 and defined as:

ψ2 = acci(t)− acci(t− 1), (15)

where acci(t) and acci(t−1) are the training accuracy of the
initialized local models at t-th and (t−1)-th training rounds
on Di.

Definition 4 (Training F-1 score difference): The difference
between the training F-1 scores of wi(t) and wi(t− 1) on Di

is denoted by ψ3 and defined as:

ψ3 = fsi(t)− fsi(t− 1), (16)

where fsi(t) and fsi(t− 1) are the training F-1 scores of the
initialized local models at t-th and (t−1)-th training rounds
on Di.

Intuitively, an effective local contribution can reduce the
global model loss value and/or increase the global model
accuracy and F-1 score. In other words, a local contribution
could be measured by the linear combination of ψ1, ψ2, and
ψ3, shown as:

ξ1 · ψ1 + ξ2 · ψ2 + ξ3 · ψ3, (17)

where ξ1, ξ2, ξ3 ∈ (0,+∞). Thus, the purpose of ci’s local
training at t-th training round can be simply formulated as
maximizing the local contribution by selecting proper αi(t)
and ηi(t), defined as:

max
αi(t),ηi(t)

[ξ1 ·ψ1 + ξ2 ·ψ2 + ξ3 ·ψ3] . (18)

Nevertheless, the above maximization problem is not com-
prehensive to formulate the local training process at t-th
training round, since the client might tend to select an oversize
αi(t) to maximize the local contribution, while the local
resource Ei(t) limits the selection of local training epochs.
Therefore, to prevent ci from selecting local training hyper-
parameters exceeding Ei(t), we restrain the size of αi(t) in
the t-th training round by a constraint condition, defined as:

αi(t) · Ecpt
i (t) + 2 · Ecmu

i (t) ≤ Ei(t). (19)

As a result, the selection of ci’s local training hyper-
parameters during the whole FL process can be formulated
as a constrained optimization problem, denoted by P0 and
defined as:

P0 : max
αi,ηi

T∑
t=1

[ξ1 · ψ1 + ξ2 · ψ2 + ξ3 · ψ3] ,

s.t. αi(t) · Ecpt
i (t) + 2 · Ecmu

i (t) ≤ Ei(t),

where αi = (αi(t), t = 1, 2, · · · , T) is the sequence of
selected αi(t), and ηi = (ηi(t), t = 1, 2, · · · , T) is the
sequence of selected ηi(t). Note that we model the whole FL
process instead of a single training round like Equation 18,
since ci’s overall contribution to a converged global model is
a continuing pursuit, rather than an occasional rest on some
peak that ci has reached, however large. Besides, the local
contributions are accumulated from the 1-st training round
instead of the 0-th training round, as ci cannot measure the
local contribution without a prior local model in the initial
training round.

B. Problem transformation using MDP

Obviously, P0 cannot be solved directly, as the selection of
αi(t) and ηi(t) impacts the convergence of the global model
over time, and the convergence of the global model impacts
the selection of αi(t + 1) and ηi(t + 1) in turn. Thus, there
is an intuition that P0 could be converted to a constrained
MDP [45]. In detail, we first define the MDP 3-tuple of ci’s
hyper-parameter selection process as follows:
State

A direct indicator evaluating ci’s local model is its predic-
tion performance over Di. Thus, ci’s state si(t) is defined as:

si(t) = [lossi(t), acci(t), fsi(t)] . (20)

Action
Once a state is observed, an action is selected and performed

by ci. Intuitively, the selected αi(t) and ηi(t) constitute the
action ai(t), defined as:

ai(t) = [ηi(t), αi(t)] . (21)

Reward Function
The reward function in FL under our consideration specifies

ci’s contribution of the local model trained by selecting hyper-
parameters (action ai(t)) in a state, which could be defined as:

ri(t) = R (si(t), ai(t), si(t+ 1))

= ξ1 · ψ1 + ξ2 · ψ2 + ξ3 · ψ3.
(22)

Based on the above 3-tuple, we can convert P0 to a
constrained MDP, denoted by P1, and defined as:

P1 : max
µi

G(µi),

s.t. bi(t) ≤ 0, t = 1, 2, · · · , T,

where µi : si(t) → ai(t) is ci’s action-producing function,
G(µi) =

∑T
t=1 γ

(t−1)ri(t), γ ∈ (0, 1) is the discount factor,
and bi(t) = αi(t) · Ecpt

i (t) + 2 · Ecmu
i (t) − Ei(t). Note that

P1 is approximately equivalent to P0, since γ is usually set
as 0.99 in practice.

7

However, such a constrained MDP is still intractable, since
the complexity is exacerbated in domains where the optimiza-
tion objective G(µi) and the constraints must be controlled
jointly [46]. We therefore convert P1 into a Lagrangian dual
problem [45] by adding the constraint conditions to the objec-
tive function as follows:

J(µi) =

T∑
t=1

γ(t−1)ri(t)−
T∑
t=1

λi(t)bi(t), (23)

where λi(t) ≥ 0 is the Lagrangian multiplier.
Then, the Lagrangian dual problem P2 is formulated as:

P2 : min
λi(t)

max
µi

J(µi), t = 1, 2, · · · , T.

The rationality of such a Lagrangian-based transformation
from P1 to P2 is given in Theorem 1.

Theorem 1: For the prime constrained optimization problem
P1 and its Lagrangian dual problem P2, there exists the
optimal values G∗ and J∗, such that G∗ ≤ J∗, and the equality
sign holds if and only if P1 is convex.

Proof We first recall the Slater condition in Definition 5.
Definition 5 (Slater condition [47]): For the problems P1

and P2, there exists a µi ∈ relint

(
T⋂
t=1

dom (bi(t))

)
, such that

bi(t)<0, t = 1, 2, · · · , T .
Then, to explore the equivalence of P1 and P2, we recall

the Strong Duality in Lemma 1.
Lemma 1 (Strong Duality [48]): Suppose that Slater condi-

tion holds and P1 is convex. Then, G∗ = J∗.
Thus, according to lemma 1, if P1 is convex, P2 is totally

equivalent to P1.
However, since the objective function in P1 is defined based

on the combination of Training loss value difference, Training
accuracy difference, and Training F-1 score difference, we
cannot figure out the convexity of P1. In other words, the
Strong Duality of P1 and P2 does not always hold.

Therefore, we loose the convexity constraint of P1, and
recall the Weak Duality in lemma 2.

Lemma 2 (Weak Duality [48]): G∗ is upper bounded by J∗,
i.e., G∗ ≤ J∗.

Weak Duality discloses that the optimal value of P2 is
approximate to the optimal value of P1, no matter P1 is convex
or not, which completes the proof.

�
Theorem 1 states that P2 is equivalent or approximately

equivalent to P1, and converting P1 to P2 for tractably solving
the optimal policy of the prime constrained MDP is rational.

C. Problem solving by DDPG

To solve the problem P2, it is intuitive to consider the
DDPG as an effective method, since the state and action space
in P2 are high-dimensional and continuous. Thus, we design a
specific Actor-Critic structure for the DDPG in Fig. 2. to solve
the problem P2. Specifically, the Actor in the MainNet, which
represents the parameterized deterministic policy µi (·; θµi (t)),
takes the state si(t) = [lossi(t), acci(t), fsi(t)] as the input
and outputs the action ai(t) = [ηi(t), αi(t)] through two
hidden layers. In addition, the Critic in the MainNet, which

Actor

Critic

MainNet TargetNet

iJ iLoss

Actor

Critic

Environment Replay buffer

Fig. 2. The structure of the DDPG model.

has an input layer, two hidden layers, and an output layer,
inputs 3 state items and 2 action items and outputs the value
of ci’s parameterized state-action function Qµi

(
·; θQi (t)

)
. As

mentioned in Section III, since the TargetNet is a copy of the
MainNet, the TargetNet can be parameterized by µ′i

(
·; θµ

′

i (t)
)

and Qµ
′

i

(
·; θQ

′

i (t)
)

.
As a result, the problem P2 can be solved by it-

eratively update parameters θµi (t), θQi (t), θµ
′

i (t), θQ
′

i (t),
and the Lagrangian multiplier λi(t) in the specific Actor-
Critic-structured DDPG over its replay buffer Bi =
{(si(t), ai(t), ri(t), si(t+ 1)), t = 1, · · · , T − 1}. In detail,
at the beginning of the t-th training round, DDPG
first randomly samples a batch B of experience tu-
ples {(si(k), ai(k), ri(k), si(k + 1)) , k = 1, · · · , |B|} from
Bi, where |B| is the batch size. Then, the TargetNet com-
putes the target value yi(k) using θµ

′

i (t) and θQ
′

i (t) for each
experience sample, shown as:

yi(k) =γ ·Qµ
′

i

(
si(k+1), µ′i

(
si(k+1); θµ

′

i (t−1)
)

;θQ
′

i (t−1)
)

+ ri(k). (24)

Next, DDPG updates the Critic of the MainNet by minimizing
the mean squared error (MSE) loss across all sampled expe-
rience tuples:

Lossi(t− 1)

=
1

|B|

|B|∑
k=1

(
yi(k)−Qµi

(
si(k), ai(k); θQi (t− 1)

))2

. (25)

Then, DDPG updates the Critic of the MainNet by the gradient
descent method, shown as:

θQi (t) = θQi (t− 1)− lCi · ∇θQi Lossi(t− 1), (26)

where lCi is the learning rate, and ∇θQi Lossi(t − 1) is the
gradient. Afterwards, DDPG updates the Actor of the MainNet
by the policy gradient ascent method, which is expressed as:

θµi (t) = θµi (t− 1) + lAi · ∇θµi Ji(t− 1), (27)

8

where lAi is the learning rate, and ∇θµi Ji(t− 1) is the policy
gradient. Next, DDPG updates the TargetNet with a tiny
updating rate βi, which is shown as:{

θµ
′

i (t) = βi · θµi (t− 1) + (1− βi) · θµ
′

i (t− 1)

θQ
′

i (t) = βi · θQi (t− 1) + (1− βi) · θQ
′

i (t− 1).
(28)

Finally, DDPG updates the Lagrangian multiplier λi(t) by the
gradient descent method, shown as:

λ′i(t) = λi(t)− lLi · ∇λiJi(t− 1), (29)

where lLi is the learning rate, ∇λiJi(t−1) is the gradient, and
λ′i(t) is the updated Lagrangian multiplier.

By iteratively performing the above operations, DDPG
outputs ci’s best policy µ∗i , which is the optimal result of
P2. The output of µ∗i is the sequences of the selected local
training hyper-parameters, i.e., the optimal results α∗i and η∗i
of the prime optimization problem P0.

V. DDPG-ASSISTED FL SYSTEM

In this section, we proposed our DDPG-assisted adaptive
and privacy-preserving federated learning (Dap-FL) system,
which consists of the four parts: system initialization, local
DDPG model update, local ML model training and uploading,
and local ML model aggregation. For clarity, we illustrate a
high-level view of the proposed Dap-FL in Fig. 3.

A. System Initialization

Since there is a large number of interactions during the
whole FL process, it is of vital importance to ensure the
security of communication initially. Therefore, the KDC dis-
tributes a series of keys for all participants before collabo-
rative training the global model. Specifically, the KDC first
generates a series of Paillier-based private and public keys
{(SKEnc

cs ,PKEnc
cs) and {(SKEnc

i ,PKEnc
i), i = 1, · · · , N}.

Then, the KDC sends
{
SKEnc

i , i = 1, · · · , N
}

to the CS ,
and sends PKEnc

CS , SKEnc
CS , and PKEnc

i to each client ci.
Besides, the KDC generates Paillier-based (SK Sign

cs ,PK Sign
cs)

and {(SK Sign
i ,PK Sign

i), i = 1, · · · , N} for the CS and all
clients to sign and verify messages.

After receiving the above keys, the CS distributes the orig-
inal global ML model W (0) in a secure manner. Specifically,
the CS first signs on W (0) using its private key SK Sign

cs based
on the Paillier digital signature scheme, shown as:

W (0)|| (ς(0), ς̃(0))← Sign(W (0), H,SK Sign
cs), (30)

where (ς(0), ς̃(0)) is the digital signature. Then, the CS
distributes W (0)|| (ς(0), ς̃(0)) to all clients. Next, all clients
verify the signature, shown as:

{0, 1} ← Verify
(
W (0)|| (ς(0), ς̃(0)) , H,PK Sign

cs

)
. (31)

Thus, every ci could initialize the local model wi(0) as W (0).
So far, the whole system is ready to collaboratively train the

global ML model. Note that we include the distribution of the
original global model into the system initialization, because the
original global model is distributed in the form of plaintext,
which is different from other FL training rounds.

System
Initialization

Central Server CS client ci

Initialize <SKEnc
i ,SK

Sign
CS

,PK
Sign
i

> and W (0).

Initialize <PKEnc
CS ,SK

Enc
CS ,PK

Sign
CS

,PKEnc
i ,SK

Sign
i

>.
Generate signature (ς(0), ς̃(0)) for W (0).

Send W (0)||(ς(0), ς̃(0)).

Verify the signature and initialize the local model wi(0).

DDPG Model
Update

Initialize the local model wi(t);

Update the local DDPG model mi(t);

Output learning rate ηi(t) and local epoch αi(t).

Local Model
Training and
Uploading

Update the local model to ŵi(t);

Encrypt the local contributions to generate ε1(|Di|·ŵi(t)) and ε1(|Di|);

Generate a string Ωi(t);

Sign on the string to generate Ωi(t)||(σi(t), σ̃i(t));

Encrypt the signed string to generate ε2(Ωi(t)||(σi(t), σ̃i(t))).

Send ε2(Ωi(t)||(σi(t), σ̃i(t))).

Aggregation
and Update

Decrypt ε2(Ωi(t)||(σi(t), σ̃i(t))) to Ωi(t)||(σi(t), σ̃i(t));

Verify the signature;
Aggregate local contributions as

∏
ci∈C(t)

ε1(|Di|·ŵi(t)) and
∏

ci∈C(t)
ε1(|Di|);

Generate a string ΩCS(t);

Sign on the string to generate ΩCS(t)||(ς(t), ς̃(t)).

Send ΩCS(t)||(ς(t), ς̃(t)).

Verify the signature;
Decrypt the aggregated results to

∑
ci∈C(t)

|Di|·ŵi(t) and
∑

ci∈C(t)
|Di|;

Update the global model to W (t + 1).

Fig. 3. High-view of Dap-FL system.

B. Local DDPG Model Update

For the FL system under our consideration, clients need to
select their local learning rates and local training epochs to
train the local ML models. Therefore, the proposed DDPG-
assisted adaptive hyper-parameter selection scheme is intro-
duced to assist clients selecting proper ηi(t) and αi(t). Without
loss of generality, we take the t-th training round as an
example to demonstrate how does the proposed scheme works.

In the t-th training round, every client ci initializes the
local model wi(t) as the the received global model W (t).
By testing wi(t) on the local dataset Di, the state si(t) =
[lossi(t), acci(t), fsi(t)] can be observed. Then, ci calculates
a reward ri(t − 1) of the (t− 1)-th training round accord-
ing to Equation (22). Next, ci stores the experience tuple
(si(t − 1), ai(t − 1), ri(t − 1), si(t)) in the reply buffer Bi.
Thus, ci could update the local DDPG model on Bi, which
can be simply expressed as:

mi(t)← DDPG.train (mi(t− 1),Bi) , (32)

where mi(t) and mi(t− 1) are the DDPG models before and
after updating in the t-th training round. Consequently, the
DDPG model mi(t) outputs an action ai(t) = [ηi(t), αi(t)].
It is worth mentioning that the DDPG model cannot update in
the 0-th training round because of the lack of prior experience.
Hence, the client ci will select ηi(0) and αi(0) randomly in
the initial training round.

C. Local ML Model Training and Uploading

Based on the obtained action ai(t), every client ci updates
wi(t) to ŵi(t) according to Equation (2). Thus, ci could upload
ŵi(t) as a local contribution to the global model.

9

However, under the honest-but-curious assumption of the
CS and clients, the precise individual local model should keep
private to anyone but the client itself. Besides, owing to the
existence of the active adversary A , the security of the local
ML model must be under consideration during transmission.
Therefore, we introduce the Paillier cryptosystem to mask the
local model and verify the identity when transmitting the local
ML models. In detail, ci first encrypts the product of |Di| and
ŵi(t) using PKEnc

cs , which is expressed as:

ε1 (|Di| · ŵi(t))← Enc
(
|Di| · ŵi(t);PKEnc

cs

)
. (33)

Similarly, the size of the dataset |Di| is encrypted by:

ε1(|Di|)← Enc
(
|Di|;PKEnc

cs

)
. (34)

Subsequently, ci combines ε1(|Di| · ŵi(t)) and ε1(|Di|) as a
string Ωi(t) = ε1(|Di|·ŵi(t))||ε1(|Di|) and signs on it, which
is expressed as:

Ωi(t)||(σi(t),σ̃i(t))←Sign(Ωi(t),H,SK
Sign
i). (35)

Further, ci masks Ωi(t)|| (σi(t), σ̃i(t)) by PKEnc
i , shown as:

ε2 (Ωi(t)||(σi(t), σ̃i(t)))←Enc(Ωi(t)||(σi(t),σ̃i(t)),PKEnc
i).

(36)
As a result, ci could upload the double masked and signed

local contribution ε2(Ωi(t)|| (σi(t), σ̃i(t))) to the CS .

D. Local model aggregation and global model update

When receiving the local contributions, the CS first un-
masks them by their private keys, shown as:

Ωi(t)||(σi(t), σ̃i(t))←Dec
(
ε2(Ωi(t)||(σi(t), σ̃i(t))),SKEnc

i

)
.

(37)
Next, the CS verifies the signature, expressed as:

{0, 1} ← Verify
(

Ωi(t)|| (σi(t), σ̃i(t)) , H,PK Sign
i

)
. (38)

The clients passing the authentication are flagged as legitimate
clients and are incorporated into a set C(t). Then, every local
contribution Ωi(t) belonging to a legitimate client is divided
back into ε1(|Di| · ŵi(t)) and ε1(|Di|). Afterwards, the CS
calculates the products of all legitimate clients’ weighted
local models and local dataset sizes respectively, which are
expressed as:∏

ci∈C(t)

ε1(|Di| · ŵi(t)) and
∏

ci∈C(t)

ε1(|Di|).

Then, the CS combines the two products as a string:

ΩCS(t) =
∏

ci∈C(t)

ε1(|Di| · ŵi(t))||
∏
ci∈Ct

ε1(|Di|). (39)

Subsequently, the CS signs on ΩCS(t), shown as:

ΩCS(t)|| (ς(t), ς̃(t))← Sign(ΩCS(t), H,SK Sign
CS). (40)

Finally, the CS distributes the signed result to all clients.
After receiving ΩCS(t)|| (ς(t), ς̃(t)), each client could up-

date the global model locally. Specifically, all clients first
verify the digital signature, shown as:

{0, 1} ← Verify
(

ΩCS(t)|| (ς(t), ς̃(t)) , H,PK Sign
CS

)
. (41)

Then, every client divides ΩCS(t) back to the two products
and decrypts them to obtain the aggregated results, shown as:

∑
ci∈C(t)

|Di|·ŵi(t)←Dec

 ∏
ci∈C(t)

ε1(|Di|·ŵi(t)),SKEnc
CS

, (42)

and ∑
ci∈C(t)

|Di| ← Dec

 ∏
ci∈C(t)

ε1(|Di|),SKEnc
CS

 . (43)

As a result, ci could calculate the updated global model, which
is expressed as:

W (t+ 1) =

∑
ci∈C(t) |Di| · ŵi(t)∑

ci∈C(t) |Di|
. (44)

Note that the CS would request the global model to any clients
if necessary.

A complete and detailed description of the proposed Dap-
FL system workflow is provided in Fig. 4. We stress that, in
the figure, the first training round is different from subsequent
training rounds, as the local DDPG model cannot be updated
without prior experience. By executing the proposed scheme,
all clients could collaboratively train an optimal global model
W ∗ in an efficient and privacy-preserving manner.

VI. SECURITY ANALYSIS

In this section, we analyze the security properties of the
proposed Dap-FL system. Particularly, following the security
requirements discussed in Section II, our analysis mainly
focuses on two aspects. On the one hand, the privacy of
clients’ individual local contributions is guaranteed under the
assumption that clients and the CS are honest-but-curious. On
the other hand, the source authentication and data integrity of
local contributions and aggregation results is achieved under
the assumption that an external active adversary A exists.

A. Privacy of local models is guaranteed

Following the security requirements, any individual local
model is considered private. Therefore, we analyze the con-
fidentiality of ci’s updated local model ŵi(t) against the CS
and other clients.
• Local model is confidential to the CS in the proposed

Dap-FL. When a client ci uploads the updated local model
to the CS , it masks the plaintext twice based on the Pail-
lier cryptosystem. Particularly, Theorem 2 proves how the
first mask guarantees the semantic security of the ciphertext
ε1(|Di| · ŵi(t)) against chosen-plaintext attacks (CPA) [37]
from the CS .

Theorem 2: ε1(|Di|·ŵi(t)) is semantic secure against CPA
from the CS under the DCR assumption.
Proof For the sake of discussion, we regard |Di| · ŵi(t)
as a constant. According to the Paillier Encryption scheme,
the public key PKEnc

CS is composed of n and g. Thus, the
ciphertext ε1(|Di|·ŵi(t)) can be calculated by:

ε1(|Di| · ŵi(t)) = g|Di|·ŵi(t) · ζn mod n2, (45)

10

DDPG-assisted Adaptive and Privacy-preserving Federated Learning (Dap-FL) System

• Phase 0: Syetem Initialization
- KDC generates (SKEnc

CS ,PK
Enc
CS) and {(SKEnc

i ,PKEnc
i), i = 1, · · · , N} for encryption and decryption.

- KDC generates (SK Sign
CS ,PK Sign

CS) and {(SK Sign
i ,PK Sign

i), i = 1, · · · , N} for digital signature.
- KDC sends SKEnc

i , i = 1, · · · , N to the CS .
- KDC sends PKEnc

CS , SKEnc
CS , PKEnc

i to each client ci.
- KDC sends SK Sign

CS to the CS and SK Sign
i to each ci, and publishes PK Sign

CS and PK Sign
i , i = 1, · · · , N to all participants.

- CS signs on the original global model W (0), shown as W (0)||(ς(0), ς̃(0))← Sign(W (0), H,SK Sign
CS).

- CS distributes the signed original global model W (0)||(ς(0), ς̃(0)) to all clients.
- ci initializes the local model wi(0) as W (0) after verifying the signature: {0, 1} ← Verify(W (0)||(ς(0), ς̃(0)), H,PK Sign

CS).
• Phase 1: Local DDPG Model Update

- ci initializes the local model wi(t) as W (t), and observes the state si(t) = [lossi(t), acci(t), fsi(t)] by testing wi(t) on Di.
- ci calculates the reward ri(t− 1) for the (t−1)-th training round, shown as ri(t− 1) = R(si(t− 1), ai(t− 1), si(t)).
- ci generates an experience tuple (si(t− 1), ai(t− 1), ri(t− 1), si(t)), and stores it in the reply buffer Bi.
- ci randomly samples a batch of B of experience tuples from Bi.
- ci calculates yi(k) for each experience sample by the TargetNet according to Equation (24).
- ci calculates Lossi(t− 1) across all sampled experience tuples according to Equation (25).
- ci updates the Critic of the MainNet, shown as θQi (t) = θQi (t− 1)− lCi · ∇θQi Lossi(t− 1).
- ci updates the Actor of the MainNet, shown as θµi (t) = θµi (t− 1) + lAi · ∇θµi Ji(t− 1).
- ci updates the TargetNet, shown as:
θµ
′

i (t)=βi · θµi (t−1)+(1−βi) · θµ
′

i (t−1) and θQ
′

i (t)=βi · θQi (t−1)+(1−βi) · θQ
′

i (t−1).
- ci updates the Lagrangian multiplier, shown as λ′i(t) = λi(t)− lLi · ∇λiJi(t− 1).
- mi(t) outputs an action ai(t) = [ηi(t), αi(t)] as the hyper-parameters for the local training of wi(t).

︸
︷︷

︸

Simply expressed as updating
local DDPG model on Bi:
mi(t)←DDPG.train (mi(t−1),Bi)

• Phase 2: Local ML Model Training and Uploading
- ci update the local model to ŵi(t), shown as ŵi(t) = wi(t)− ηi(t) · ∇fi (wi(t);Di;αi(t)).
- ci encrypts |Di|·ŵi(t) and |Di|, shown as ε1(|Di|·ŵi(t))← Enc(|Di|·ŵi(t),PKEnc

CS) and ε1(|Di|)← Enc(|Di|,PKEnc
CS).

- ci combines ε1(|Di| · ŵi(t)) and ε1(|Di|) as a string Ωi(t) = ε1(|Di| · ŵi(t))||ε1(|Di|).
- ci signs on Ωi(t), shown as Ωi(t)|| (σi(t), σ̃i(t))← Sign(Ωi(t), H,SK

Sign
i).

- ci encrypts the signed string by PKEnc
i , shown as ε2(Ωi(t)|| (σi(t), σ̃i(t)))← Enc(Ωi(t)|| (σi(t), σ̃i(t)) ,PKEnc

i).
- ci uploads ε2(Ωi(t)||(σi(t), σ̃i(t))) to the CS .
• Phase 3: Local ML Model Aggregation and Global Model Update

- CS decrypts ε2(Ωi(t)||(σi(t), σ̃i(t))) by SKEnc
i , shown as Ωi(t)||(σi(t), σ̃i(t))← Dec(ε2(Ωi(t)||(σi(t), σ̃i(t))),SKEnc

i).
- CS verifies the signature for every Ωi(t)||(σi(t), σ̃i(t)), shown as {0, 1} ← Verify(Ωi(t)|| (σi(t), σ̃i(t)) , H,PK Sign

i).
(The clients passing the signature verification are flagged as legitimate clients, and are incorporated into a set C(t).)

- CS divides legitimate client ci’s Ωi(t) back into ε1(|Di| · ŵi(t)) and ε1(|Di|).
- CS calculates the products of ε1(|Di|·ŵi(t))s of all legitimate clients to obtain

∏
ci∈C(t) ε1(|Di|·ŵi(t)).

- CS calculates the products of ε1(|Di|)s of all legitimate clients to obtain
∏
ci∈C(t) ε1(|Di|).

- CS combines the above two products as a string ΩCS(t) =
∏
ci∈C(t) ε1(|Di| · ŵi(t))||

∏
ci∈C(t) ε1(|Di|).

- CS signs on ΩCS(t), shown as ΩCS(t)|| (ς(t), ς̃(t))← Sign(ΩCS(t), H,SK Sign
CS).

- CS distributes ΩCS(t)||(ς(t), ς̃(t)) to all clinets.
- ci verifies the signature, shown as {0, 1} ← Verify(ΩCS(t)||(ς(t), ς̃(t)), H,PK Sign

CS).
- ci divides ΩCS(t)||(ς(t), ς̃(t)) back into

∏
ci∈C(t) ε1(|Di|·ŵi(t)) and

∏
ci∈C(t) ε1(|Di|).

- ci decrypts
∏
ci∈C(t) ε1(|Di|·ŵi(t)), shown as

∑
ci∈C(t) |Di| · ŵi(t)← Dec(

∏
ci∈C(t) ε1(|Di| · ŵi(t)),SKEnc

i).
- ci decrypts

∏
ci∈C(t) ε1(|Di|), shown as

∑
ci∈C(t) |Di| ← Dec(

∏
ci∈C(t) ε1(|Di|),SKEnc

CS).
- ci calculates the updated global model W (t+ 1), shown as W (t+ 1) = (

∑
ci∈C(t) |Di| · ŵi(t))/

∑
ci∈C(t) |Di|.

Periodic Training:
All clients and the CS execute phase 1 to phase 3 periodically until the global model converges to W ∗.

NOTE:
• Little Difference in the Initial Training Round

- Due to the lack of prior experience, DDPG model cannot be updated and output actions.
- Consequently, ci randomly selects ηi(0) and αi(0) to update the local ML model.
• Global Model in the CS

- CS would request the gobal model to any clients.
- ci would upload the global model to CS after verifying the legality of the request.

Fig. 4. Detailed description of the proposed Dap-FL system.

11

where ζ ∈ Z∗n is a random selected element.
If the CS aims to recover the plaintext from ε1(|Di|·ŵi(t)),

it has to calculate the result of n-the residues modulo n2.
However, the CS cannot find a polynomial time distinguisher
for n-th residues modulo n2, according to the DCR assump-
tion, i,e., Assumption 1. As a result, ε1(|Di|·ŵi(t)) is semantic
secure against CPA from the CS under the DCR assumption.
�
• Local model is confidential to other clients in the

proposed Dap-FL. Although the confidentiality against the
CS is achieved, ε1(|Di| · ŵi(t)) could be decrypted by
other clients. Thus, ci further encrypts Ωi(t)|| (σi(t), σ̃i(t)) to
ε2(Ωi(t)|| (σi(t), σ̃i(t))) using PKEnc

i based on the Paillier
Encryption scheme, and the ciphertext can be only decrypted
by the CS . Similarly, we give the Theorem 3 to demonstrate
the semantic security of ε2(Ωi(t)|| (σi(t), σ̃i(t))) against CPA
from other clients. Note that we omit the proof of Theorem 3,
as it is similar to Theorem 2.

Theorem 3: ε2(Ωi(t)|| (σi(t), σ̃i(t))) is semantic secure
against CPA from other clients under the DCR assumption.

B. Source authentication and data integrity is achieved

As mentioned in the security requirements, the active ad-
versary A may threaten the source authentication and data
integrity by forging local contributions or aggregated results,
thereby breaking down the whole FL system. Therefore, we
analyze the security of the proposed Dap-FL against A .
• The source authentication and data integrity of the indi-

vidual client’s local contributions and the aggregated results
are guaranteed in the proposed Dap-FL. In Dap-FL, each
client’s local contributions and the aggregated results are
signed by Paillier signature. Since the Paillier signature is
provably secure against chosen-message attacks (CMA) [37]
under the DCR assumption in the random oracle model [49],
the source authentication and data integrity can be guaranteed,
which is shown in Theorem 4.

Theorem 4: Local contributions and aggregated results are
secure against CMA from the active adversary A under the
DCR assumption.
Proof Without loss of generality, we express the local
contribution or the aggregated result as a message M ,
and the Paillier signature scheme is expressed as Ξ =
(KeyGen, Sign,Verify).

Given a message M , a legitimate signature (σ, σ̃)

is computed as σ =
L(h% mod n2)
L(g% mod n2) mod n and σ̃ =

(h · g−σ)
1
n mod %

mod n. According to the DCR assumption,
the adversary A cannot distinguish for n-th residues modulo
n2 in polynomial time. In other words, in the random oracle
model, there exists no negligible function negl such that:

Pr
[
Sig-forgeCMA

A ,Ξ (ι) = 1
]
≤ negl (ι) , (46)

where ι is the length of the public key, and Sig-forgeCMA
A ,Ξ (ι)

represents the CMA executed by the polynomial-time adver-
sary A . Therefore, the source authentication and data integrity
of local contributions and aggregated results are guaranteed.
�

VII. EXPERIMENTS AND EVALUATION

In this section, we conduct simulation experiments to vali-
date that the proposed Dap-FL outperforms the basic FL and
the state-of-the-art RL-based adaptive FL schemes in terms
of global model prediction performance and communication
efficiency. All simulations are implemented on the same com-
puting environment (Windows 10, Intel (R) Core (TM) i5-
8400 CPU @ 2.80GHz, NVIDIA GeForce RTX 3070, 16GB
of RAM and 4T of memory) with Tensorflow, Keras, and
PyCryptodome.

A. Experimental Settings

Dataset
The datasets used in our experiments include two widely

used datasets, i.e., MNIST and Fashion-MNIST. Both of them
have a training set of 60000 samples and a testing set of 10000
samples. Every sample has been size-normalized and centered
in a fixed-size (28 × 28) gray-level image depicting an item
from one of ten different labels.
Machine Learning Tasks

The ML models used in our experiments include three
types, i.e., multi-class logistic regression model, Convolutional
Neural Network (CNN), and ResNet-18. In detail, the logistic
regression model has 784 input nodes and outputs a 1 × 10
vector indicating the prediction label of a given sample.
The leveraged CNN contains 2 convolution layers, 2 pooling
layers, and 2 fully connected layers. The ResNet-18 has 17
convolution layers, 1 fully connected layer, and corresponding
pooling and batch normalization layers.

To explore the generality of the proposed Dap-FL system,
we conduct simulation experiments on 4 different ML tasks:
(1) Logistic regression on MNIST, (2) CNN on MNIST, (3)
ResNet-18 on MNIST, and (4) CNN on Fashion-MNIST.
Adaptive FL Settings

With regard to the effectiveness of the proposed Dap-
FL system, we conduct comparison experiments which are
implemented as 7 different FL settings. All the considered
FL settings share the same basic setting, where 20 clients
with local training data and heterogeneous local resources aim
to finish the corresponding ML task. Specifically, following
a normal distribution with a mean of 600 and a standard
deviation of 200, we divided the two leveraged datasets into 20
parts respectively as clients’ local data. Besides, every 4 clients
are assigned to one type of computational capability of 100%
GPU, 80% GPU, 60% GPU, 40% GPU, and 20% GPU to sim-
ulate the heterogeneous computational resources. The specific
local training hyper-parameters combining corresponding ML
tasks and the considered FL settings are illustrated in TABLE
I, and the detailed description of each setting is as follows:
• Dap-FL. Clients collaboratively finish ML tasks through
the proposed Dap-FL system, which means each client’s local
learning rates and local training epochs are adjusted adaptively
by a locally maintained DDPG model.
• Large. Clients collaboratively finish ML tasks with fixed and
large local learning rates and local training epochs.
• Small. Clients collaboratively finish ML tasks with fixed and
small local learning rates and local training epochs.

12

TABLE I
LOCAL TRAINING HYPER-PARAMETERS FOR DIFFERENT ML TASKS AND EXPERIMENTAL SETTINGS

Task Dap-FL Large Small DDPG-η DDPG-α DDPG-client[32] DQN[29]

Logistic
MNIST DDPG / DDPG 10−2 / 20 10−4 / 1 DDPG / 16 10−3 / DDPG \ \

CNN
MNIST DDPG / DDPG 10−2 / 30 10−4 / 1 DDPG / 15 10−3 / DDPG \ \

ResNet-18
MNIST DDPG / DDPG 10−2 / 20 10−4 / 1 DDPG / 11 10−3 / DDPG \ \

CNN
Fashion-MNIST DDPG / DDPG 0.5× 10−3 / 25 10−4 / 1 DDPG / 18 10−3 / DDPG 10−3 / 18 10−4or10−3/DQN

1 Each cell shows the local training hyper-parameters. The left of the Forward Slash is the local learning rate, and the right is the local training epoch. The
Back Slash means we omit the experiments.

• DDPG-η. Clients collaboratively finish ML tasks with fixed
local training epochs and adaptive local learning rates adjusted
by locally maintained DDPG models.
• DDPG-α. Clients collaboratively finish ML tasks with fixed
local learning rates and adaptive local training epochs adjusted
by locally maintained DDPG models.
• DDPG-client. The aggregator selects clients’ local contribu-
tions according to Zhang et al.’s DDPG-based scheme [32],
and the clients’ local training epochs and local learning rates
are fixed to appropriate values.
• DQN. Clients’ local training strategies follow the state-of-
the-art DQN-based adaptive FL system proposed by Sun et
al. [29]. That is, clients’ local learning rates are fixed to
appropriate values, and the local training epochs are adjusted
by a DQN model.

B. Experimental results and evaluation

In the Dap-FL setting, all client adaptively adjust their local
training hyper-parameters by training their DDPG models. Fig.
5. illustrates the loss value curves of the Actor and Critic of
the DDPG model deployed on a client with 100% GPU, from
which we can see that the client’s loss values of the Actor and
Critic converge. It means that DDPG models could output the
best policies to guide the local training of the client. Moreover,
we illustrate the actions of the client given by the best policy in
each training round in Fig. 6. Taking the task CNN on MNIST
in Fig. 6.(b) as an example, the local learning rate and local
training epoch decline slightly and flatten off ultimately along
with the training round, which means the client can adopt
larger local training hyper-parameters to find an approximately
optimal global model rapidly and fine-tune the global model to
a more precise optimal solution by adaptively adjusting local
training hyper-parameters. Such a downswing is a little bit
similar to an exponential decay of learning rate in the ML
community but obviously better, since the local learning rate
and local training epoch converge to appropriate values, i.e.,
3.9× 10−4 and 2, rather than decline without limits, thereby
preventing the global model from convergence.

To validate how effective the proposed Dap-FL system
achieves, we further illustrate the accuracy and loss values
of the global models on the corresponding testing sets in
the Dap-FL, Large, and Small settings in Fig. 7., where the
black, yellow and green lines represent the Dap-FL, Large

(a) Logistic regression on MNIST. (b) CNN on MNIST.

(c) ResNet-18 on MNIST. (d) CNN on Fashion-MNIST.

Fig. 5. Loss value of the DDPG model maintained by a 100% GPU client.

(a) Logistic regression on MNIST. (b) CNN on MNIST.

(c) ResNet-18 on MNIST. (d) CNN on Fashion-MNIST.

Fig. 6. Hyper-parameters adjusted by a 100% GPU client.

13

and Small settings, respectively. In a nutshell, the global
models trained through the proposed Dap-FL system converge
faster than those in conventional hyper-parameter-fixed FL,
and have better prediction accuracy. Specifically, taking the
models of the CNN on MNIST task shown in Fig. 7.(b) as
an example, the converged loss values of the global models
in the Large and Small are 0.1169 at 110-th training round
and 0.0704 at 6704-th training round, while the global model
trained through Dap-FL system has a converged loss value
of 0.0898 at about 1340-th training round. Meanwhile, as
shown in Fig. 7.(f), the accuracy of the final global models
in the Large, Small and Dap-FL are 97.55%, 98.02%, and
97.82%, respectively. Obviously, the proposed Dap-FL could
accelerate the convergence rate of the global model compared
to the global model in the Small setting, while achieving an
accuracy close to the latter one. On the contrary, the final
global model in the Dap-FL achieves a higher prediction
accuracy than the global model in the Large setting, although
the convergence rate is slightly slower. Note that the final
global models even achieve the best prediction accuracy
without losing convergence rate in the ML tasks of Logistic
on MNIST and CNN on Fashion-MNIST, as shown in Fig.
7.(e) and (h). To summarize, compared to conventional hyper-
parameter-fixed FL, the proposed Dap-FL not only achieves a
higher global model prediction accuracy, but also a more rapid
global model convergence rate, which significantly reduces the
communication overhead of all clients.

Furthermore, we evaluate the comprehensiveness of the
selected hyper-parameters in the proposed Dap-FL system by
fixing one type of hyper-parameter and adaptively adjusting
the other one, i.e., the DDPG-η and DDPG-α settings. As
shown in Fig. 8., the prediction accuracy of the global models
trained by adaptively adjusting two training hyper-parameters
are higher than that trained by adjusting one type of training
hyper-parameters for all considered ML tasks except for
ResNet-18 on MNIST, and the convergence rates of the global
models in the Dap-FL setting are higher than that in the
DDPG-η and DDPG-α settings for all considered ML tasks
except for ResNet-18 on MNIST. Such experimental results
illustrate that adaptively adjusting two selected training hyper-
parameters in the proposed Dap-FL system is comprehensive
in most instances, since merely adjusting one type of local
training hyper-parameters cannot obtain global models with
high performance. A possible reason behind the abnormal
performance in the ResNet-18 on MNIST task is that the
powerful training ability of ResNet-18 benefiting from the
residual structure obscures the tuning effect of the proposed
Dap-FL system to the global model on such a simple dataset.
If changing the dataset to a complex one, such as CIFAR-100,
a more significant effect might be present, which remains in
future works.

More importantly, to better understand how the proposed
adaptive FL system outperforms other state-of-the-art RL-
based adaptive FL schemes, we plot the loss and accuracy
curves of the global models of the CNN on Fashion-MNIST
task in the Dap-FL, and DDPG-client, and DQN settings
in Fig. 9. First of all, on account that Sun et al.[29] only
adaptively adjust local training epoch and do not give the

learning rate in their experiments, we divide the DQN setting
into two sub-settings by fixing the local learning rate as a
large value and a small value, i.e., 10−3 and 10−4. As can
be observed in Fig. 9.(a), the convergence rate of the global
model in the Dap-FL setting is faster than that with a small
learning rate and slower than that with a large learning rate in
the DQN setting, while the final converged loss value of the
global model in the Dap-FL setting is smaller than that in the
DQN setting no matter what the learning rate is. Meanwhile,
as shown in Fig. 9.(b), the accuracy of the final global model
in the Dap-FL setting is 80.25%, which is 7.85% higher than
that (72.40%) in the DQN setting with a large learning rate
and 2.65% higher than that (77.60%) in the DQN setting with
a small learning rate. In other words, the proposed Dap-FL is
better than Sun et al.’ DQN-based adaptive FL method[29] in
terms of global model convergence rate and accuracy.

In addition, we can observe in Fig. 9.(a) that the loss value
curve of the global model in the Dap-FL setting converges
faster to a lower value than that in the DDPG-client setting,
and the oscillations of the former one are smaller than the latter
one. Besides, the accuracy of final global model in the Dap-
FL setting is 6.03% higher than that (74.22%) in the DDPG-
client setting. The reason behind such performance gaps is
that the global model cannot learn scattered features across
local data faster and better through only a fraction of clients’
local contributions in each aggregation. In summary, compared
to the DDPG client selection scheme proposed by Zhang et
al. [32], i.e., the DDPG-FL setting in our experiments, the
proposed Dap-FL system has better performance in terms of
smaller oscillations of loss value curve, faster convergence
rate, and higher final global model prediction accuracy.

VIII. RELATED WORK

Conventional FL
FL is proposed by Mcmahan et al. [10] aiming to train a

global model from decentralized data distributed in different
clients. Then, Google’s researchers further develop the FL
system to improve communication efficiency [9], system scala-
bility [13], and privacy [11]. Recently, other works build on top
of FL by researching different paradigms [?] and applications
[14], [29], [32].
Adaptive FL

Since the foundation of FL is ML (or DL), adaptively
selecting training hyper-parameters, i.e., adaptive FL, is of
crucial importance to the flourish of FL. Existing designs for
adaptive FL mainly rely on two major categories: theoretic
methods and RL-based methods.

Adaptive FL based on the theoretic method. Theoretic
methods always achieve adaptive FL by formulating the FL
process as an optimization problem. For example, Luo et
al. [23] analyze the relationship between the convergence
of the global model and the total cost, based on which a
biconvex optimization problem with respect to the numbers
of local training iterations and client selection is established.
The proposed adaptive FL minimize the total cost of learning
time and energy consumption while ensuring convergence. Wu
et al. [24] propose an adaptive weighting algorithm, FedAdp,

14

(a) Loss of Logtistic on MNIST. (b) Loss of CNN on MNIST. (c) Loss of ResNet-18 on MNIST. (d) Loss of CNN on Fashion-MNIST.

(e) Accuracy of Logtistic on MNIST. (f) Accuracy of CNN on MNIST. (g) Accuracy of ResNet-18 on MNIST. (h)Accuracy of CNN on Fashion-MNIST.

Fig. 7. Performance of global models in the Large, Small, and Dap-FL settings.

(a) Loss of Logistic on MNIST. (b) Loss of CNN on MNIST. (c) Loss of ResNet-18 on MNIST. (d) Loss of CNN on Fashion-MNIST.

(e) Accuracy of Logistic on MNIST. (f) Accuracy of CNN on MNIST. (g) Accuracy of ResNet-18 on MNIST. (h)Accuracy of CNN on Fashion-MNIST.

Fig. 8. Performance of global models in the DDPG-η, DDPG-α, and Dap-FL settings.

(a) CNN on Fashion-MNIST/Loss. (b) CNN on Fashion-MNIST/Accuracy.

Fig. 9. Model performance in the Dap-FL, DQN, and DDPG-client settings.

to accelerate the global model convergence by quantifying
participants’ aggregation weights adaptively and jointly. Wang
et al. [25] solve the problem that efficiently utilizing the
limited computation and communication resources by dy-
namically adapting the frequency of aggregation. Shi et al.

[26] design an efficient binary search algorithm to obtain the
scheduling policy in terms of the highest achievable global
model accuracy under a given training time budget. Tran et al.
[27] formulate the FL problem as a non-convex optimization
problem FEDL that captures the trade-off among computation
and communication latencies, clients’ energy consumptions,
and FL time. By transforming it into three convex sub-
problems, they obtain qualitative insights about optimal model
accuracy, energy consumption, and learning time.

However, theoretically optimizing the global model accu-
racy and convergence rate within time-vary constraints, e.g.,
variable local computational consumption caused by battery
power, is less efficiency. Although they make some prior
hypotheses to constraints, it seems not that reasonable, as the
practical time-varying constraints usually have no statistical
regularity to follow.

Adaptive FL based on the RL method. An alternative

15

method to achieve adaptive FL points to RL, as the FL process
could be formulated as an MDP. Wang et al. [28] propose
an experience-driven FL framework FAVOR, which speeds
up convergence by intelligence selecting clients. Particularly,
Deep Q-Network (DQN) is introduced to maximize a reward
that encourages the increase of validation accuracy and pe-
nalizes the use of more communication rounds. Sun et al.
[29] adaptively adjust the aggregation frequency of FL based
on DQN in IIoT, which is characterized by improved learning
accuracy, convergence, and energy saving. Su et al. [30] deploy
DQN on clients to derive their optimal training strategies of
local models. Nguyen et al. [31] propose a double DQN-
based scheme to select the optimal communication channel
to reduce energy cost during model transmission. It seems
that DQN is an effective method to adaptively adjust local
training strategies. However, DQN is more proper for solving
decision-making problems with discrete states and actions,
while the state and action space of FL under our consideration
are continuous, e.g., the local learning rate.

Two very recent works introduce DDPG, another DRL
method suitable for continuous problems, to achieve adaptive
FL. On the one hand, Zhang et al. [32] adopt DDPG to
select clients with low training costs and high model accuracy
to improve the rate of model aggregation and reduce the
communication cost for IIoT. On the other hand, Lu et al. [33]
leverage DDPG to improve the efficiency of FL, which can
select clients with a larger amount of resources of computing
and communication capacity. Nevertheless, selecting a sub-set
of participant clients for faster convergence time runs counter
to the fact that more clients increase the convergence rate. In
addition, rejecting straggler clients all the time may raise a
fairness issue.

Different from all existing work on adaptive FL, our scheme
deploys the DDPG-assisted hyper-parameter selection scheme
on every client to adaptively adjust training hyper-parameters
locally for the purpose of involving more clients rather than
abandoning straggler clients. In this way, all participants could
adaptively execute local training according to their time-
varying training state by themselves, and the convergence
rate of the global model is accelerated. Furthermore, the
employment of the Paillier cryptosystem makes the adaptive
FL system more privacy-preserving and secure.

IX. CONCLUSION AND FUTURE WORK

Dap-FL is a DDPG-assisted adaptive and privacy-preserving
FL system, which guarantees clients with poor resources could
participate in FL by adaptively adjusting local training hyper-
parameters, and preserves model privacy through a secure
aggregation method based on the Paillier cryptosystem.

An interesting experimental result is that the global model
prediction accuracy of ResNet-18 on MNIST is not improved
with the deployment of the proposed Dap-FL. We guess the
possible reason is that the powerful model training capability
of the ResNet-18 overshadows the hyper-parameter tuning
effect of the proposed Dap-FL, which should be further
confirmed in the future. Besides, we plan to explore more
types of hyper-parameters in FL, and generalize them into
Dap-FL, which also remains in future works.

REFERENCES

[1] Cisco global cloud index: Forecast and methodology 2016–2021,
[Online], Available: https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.html.

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255-260, Jul.
2015.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, May 2015.

[4] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. Ind. Inform., vol. 10, no. 4, pp. 2233-2243, Nov. 2014.

[5] O. Kaiwartya et al., “Internet of vehicles: Motivation, layered architec-
ture, network model, challenges, and future aspects,” IEEE Access, vol.
4, pp. 5356-5373, Sep. 2016.

[6] A. L. Beam and I. S. Kohane, “Big data and machine learning in health
care,” JAMA, vol. 319, no. 13, pp. 1317–1318, Apr. 2018.

[7] A. Vulimiri, C. Curino, P. B. Godfrey, T. Jungblut, J. Padhye, and
G. Varghese, “Global analytics in the face of bandwidth and regula-
tory constraints,” in Proc. 12th USENIX Symp. Networked Syst. Des.
Implementation, pp. 323-336, Oakland, CA, USA, May 4-6, 2015.

[8] P. Voigt and A. Von dem Bussche, “The eu general data protection
regulation (gdpr),” A Practical Guide (1st Ed.), Springer, 2017.

[9] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Mach. Learn.,
Barcelona, Spain, Dec. 9-10, 2016.

[10] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, pp. 1273-
1282, Ft. Lauderdale, FL, USA, Apr. 20-22, 2017.

[11] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. 24th ACM SIGSAC Conf. Comput. Commun.
Secur., pp. 1175-1191, Dallas, TX, USA, Oct. 30-Nov. 3, 2017.

[12] White House Report, “Consumer data privacy in a networked world: A
framework for protecting privacy and promoting innovation in the global
digital economy,” Journal of Privacy and Confidentiality, vol. 4, no. 2,
pp. 95-142, Mar. 2013.

[13] K. Bonawitz et al., “Towards federated learning at scale: System design,”
in Proc. 2nd SysML Conf., vol. 1, pp. 374-388, Palo Alto, CA, USA,
Mar. 31-Apr. 2, 2019.

[14] T. S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I. C. Paschalidis,
and W. Shi, “Federated learning of predictive models from federated
electronic health records,” Int. J. Med. Inform., vol. 112, pp. 59-67,
Apr. 2018.

[15] Z. Chai et al., “TiFL: A tier-based federated learning system,” in Proc.
29th Int. Symp. High-Perform. Parallel Distrib. Comput., pp. 125-136,
Stockholm, Sweden, Jun. 23-26, 2020.

[16] J. Dean et al., “Large scale distributed deep networks,” in Proc. 26th Int.
Conf. Neural Inf. Process. Syst., vol. 25, pp. 1223-1231, Lake Tahoe,
NV, USA, Dec. 3-8, 2012.

[17] A. Imteaj, U. Thakker, S. Wang, J. Li and M. H. Amini, “A survey on
federated learning for resource-constrained IoT devices,” IEEE Internet
of Things J., vol. 9, no. 1, pp. 1-24, Jan. 2022.

[18] G. Andrew, O. Thakkar, H. B. McMahan, and S. Ramaswamy, “Differ-
entially private learning with adaptive clipping,” in Proc. 35th Int. Conf.
Neural Inf. Process. Syst., virtual, Dec. 6-14, 2021.

[19] K. Bonawitz, F. Salehi, J. Konečný, H. B. McMahan, and M. Gruteser,
“Federated learning with autotuned communication-efficient secure ag-
gregation,” in Proc. 53rd Asilomar Conf. Signals Syst. Comput., pp.
1222-1226, Pacific Grove, CA, USA, Nov. 3-6, 2019.

[20] R. Kohavi and G. H. John, “Automatic parameter selection by minimiz-
ing estimated error,” in Proc. 12th Int. Conf. Mach. Learn., pp. 304–312,
Tahoe City, CA, USA, Jul. 9-12, 1995.

[21] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” in Proc. 25th Int. Conf. Neural Inf. Process.
Syst., vol. 24, pp. 2546-2554, Granada, Spain, Dec. 12-15, 2011.

[22] J. Snoek et al., “Scalable Bayesian optimization using deep neural net-
works,” in Proc. 32nd Int. Conf. Mach. Learn., vol. 37, pp. 2171–2180,
Lille, France, Jul. 7-9, 2015.

[23] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective
federated learning design,” in Proc. IEEE Conf. Comput. Commun., pp.
1-10, virtual, May 10-13, 2021.

[24] H. Wu and P. Wang, “Fast-convergent federated learning with adaptive
weighting,” IEEE Trans. Cogn. Commun. Netw., vol. 7, no. 4, pp. 1078-
1088, Dec. 2021.

16

[25] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205-1221, Jun. 2019.

[26] W. Shi, S. Zhou, and Z. Niu, “Device scheduling with fast convergence
for wireless federated learning,” in Proc. IEEE Int. Conf. Commun., pp.
1-6, virtual, Jun. 7-11, 2020.

[27] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE Conf. Comput. Commun., pp. 1387-1395,
Apr. 29-May 2, Paris, France, 2019.

[28] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning
on non-IID data with reinforcement learning,” in Proc. IEEE Conf.
Comput. Commun., pp. 1698-1707, Jul. 6-9, virtual, 2020.

[29] W. Sun, S. Lei, L. Wang, Z. Liu, and Y. Zhang, “Adaptive federated
learning and digital twin for industrial internet of things,” IEEE Trans.
Ind. Inform., vol. 17, no. 8, pp. 5605-5614, Aug. 2021.

[30] Z. Su et al., “Secure and efficient federated learning for smart grid with
edge-cloud collaboration,” IEEE Trans. Ind. Inform., vol. 18, no. 2, pp.
1333-1344, Feb. 2022.

[31] H. T. Nguyen, N. C. Luong, J. Zhao, C. Yuen, and D. Niyato, “Resource
allocation in mobility-aware federated learning networks: A deep rein-
forcement learning approach,” in IEEE 6th World Forum Internet of
Things, pp. 1-6, virtual, Jul. 15, 2020.

[32] P. Zhang, C. Wang, C. Jiang, and Z. Han, “Deep reinforcement learning
assisted federated learning algorithm for data management of IIoT,”
IEEE Trans. Ind. Inform., vol. 17, no. 12, pp. 8475-8484, Dec. 2021.

[33] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data sharing in
internet of vehicles,” IEEE Tran. Veh. Technol., vol. 69, no. 4, pp. 4298-
4311, Apr. 2020.

[34] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu, “Efficient and
privacy-enhanced federated learning for industrial artificial intelligence,”
IEEE Trans. Ind. Inform., vol. 16, no. 10, pp. 6532-6542, Oct. 2020.

[35] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc.
22nd ACM SIGSAC Conf. Comput. Commun. Secur., pp. 1322–1333,
Denver, CO, USA, Oct. 12-16, 2015.

[36] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and
Y. Vardi “Computer Intrusion: Detecting Masquerades,” Statistical Sci.,
vol. 16, no. 1, pp. 58–74, Feb. 2001.

[37] O. Goldreich, “Foundations of cryptography: Basic applications,” vol.
2, Cambridge Univ. Press, Cambridge, UK, 2004.

[38] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237–285, May 1996.

[39] R. Bellman, “A Markovian decision process,” J. Math. Mech., vol. 6,
no. 5, pp. 679–684, 1957.

[40] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process.
Mag., vol. 34, no. 6, pp. 26-38, Nov. 2017.

[41] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. 4th Int. Conf. Learn. Representations, San Juan,
Puerto Rico, May 2-4, 2016.

[42] P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in Proc. Eurocrypt, pp. 223–238, Prague, Czech Republic,
May 2-6, 1999.

[43] S. Wang et al., “When edge meets learning: Adaptive control for
resource-constrained distributed machine learning,” in Proc. IEEE Conf.
Comput. Commun., pp. 63-71, Honolulu, HI, USA, Apr. 15-19, 2018.

[44] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the con-
vergence of FedAvg on non-IID data,” in Proc. 8th Int. Conf. Learn.
Representations, pp. 1-26, virtual, Apr. 26-May 1, 2020.

[45] E. Altman, “Constrained markov decision processes,” Chapman &
Hall/CRC, London, U.K., 1999.

[46] N. Meuleau et al., “Solving very large weakly coupled markov decision
processes,” in Proc. 15th Nat. Conf. Artif. Intell., pp. 165-172, Madison,
WI, USA, Jul. 26–30, 1998.

[47] M. Slater, “Lagrange Multipliers Revisited,” Traces and Emergence of
Nonlinear Programming, pp. 293-306, Birkhäuser, Basel, Swiss, 2014.

[48] S. Boyd and L. Vandenberghe, “Convex optimization,” Cambridge Univ.
Press, Cambridge, U.K., 2004.

[49] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols” in Proc. 1st ACM SIGSAC Conf.
Comput. and Commun. Secur., pp. 62-73, Fairfax, VA, USA, Nov. 3-
5, 1993.

	I Introduction
	II System Model, Security Requirement and Design Goal
	II-A Federated Learning System
	II-B Security Requirements
	II-C Design Goal

	III Preliminaries
	III-A Deep Reinforcement Learning
	III-B Paillier Cryptosystem

	IV DDPG-assisted Adaptive Hyper-parameter Selection
	IV-A Problem Formulation
	IV-B Problem transformation using MDP
	IV-C Problem solving by DDPG

	V DDPG-assisted FL System
	V-A System Initialization
	V-B Local DDPG Model Update
	V-C Local ML Model Training and Uploading
	V-D Local model aggregation and global model update

	VI Security Analysis
	VI-A Privacy of local models is guaranteed
	VI-B Source authentication and data integrity is achieved

	VII Experiments and Evaluation
	VII-A Experimental Settings
	VII-B Experimental results and evaluation

	VIII Related Work
	IX Conclusion and Future Work
	References

