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P4SGD: Programmable Switch Enhanced
Model-Parallel Training on Generalized Linear

Models on Distributed FPGAs
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Abstract—Generalized linear models (GLMs) are a widely utilized family of machine learning models in real-world applications. As
data size increases, it is essential to perform efficient distributed training for these models. However, existing systems for distributed
training have a high cost for communication and often use large batch sizes to balance computation and communication, which
negatively affects convergence. Therefore, we argue for an efficient distributed GLM training system that strives to achieve linear
scalability, while keeping batch size reasonably low. As a start, we propose P4SGD, a distributed heterogeneous training system that
efficiently trains GLMs through model parallelism between distributed FPGAs and through forward-communication-backward pipeline
parallelism within an FPGA. Moreover, we propose a light-weight, latency-centric in-switch aggregation protocol to minimize the latency
of the AllReduce operation between distributed FPGAs, powered by a programmable switch. As such, to our knowledge, P4SGD is the
first solution that achieves almost linear scalability between distributed accelerators through model parallelism. We implement P4SGD
on eight Xilinx U280 FPGAs and a Tofino P4 switch. Our experiments show P4SGD converges up to 6.5X faster than the
state-of-the-art GPU counterpart.

Index Terms—FPGA, P4, GLMs, distributed training system.
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1 INTRODUCTION

MACHINE learning (ML) is a popular approach to accu-
rately predict outcomes without needing to be explic-

itly programmed to do so. While most of the previous work
focuses on accelerating deep neural network model training,
generalized linear models (GLMs), such as linear regression,
classification, and support vector machine [1], remain one
of the most widely used models in the real world [2], [3].
Because the number of training samples has grown from the
previously tens of thousands to tens of millions today [4],
[5] and a single machine typically does not feature enough
computing power and memory capacity to allow efficient
GLM training on a large number of samples. Thus, people
resort to distributed GLM training. Data-parallel and model-
parallel are two of the prevailing parallel paradigms for
distributed training. Both approaches consist of three stages:
forward propagation, backward propagation, and communication,
as shown in Figure 1.
Data Parallelism. Data parallelism horizontally partitions
the input dataset across workers, i.e., accelerators. Within
each iteration, each worker uses its local copy of the entire
model ( #«w) to train on its subset of the dataset, as illustrated
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(a) Data parallel (b) Model parallel

Fig. 1: Comparison of data-parallel and model-parallel train-
ing, F: forward propagation, B: backward propagation, C:
communication, ~g: gradient, ~w: model, ~PA: partial activa-
tions. Data (or model) parallelism needs to collectively com-
municate the whole gradient (or a mini-batch of activations)
per iteration.

in Figure 1a. At end of each iteration, gradients of the model
( #«g ) are averaged across all workers through AllReduce [6],
[7] or parameter servers [8]–[10].
Model Parallelism. Model parallelism vertically partitions
both the model #«w and the input dataset, such that each
worker trains its model subset on its dataset subset, as
shown in Figure 1b. Model parallelism requires synchroniz-
ing “partial activations (

#    «

PA)” between workers.
Both forward and backward passes in GLM training

involve a low computation per weight ratio. Therefore,
both parallelisms need to frequently synchronize the model
(or partial activations), which significantly impacts perfor-
mance when more accelerators, e.g., GPUs, are involved.
When a model grows to millions of parameters, data paral-
lelism requires transmitting millions of gradients or models
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through the network, resulting in significant communication
overhead. In contrast, model parallelism avoids exchanging
gradients and models and transmits only activations. This
significantly reduces communication overhead and gives
model parallelism higher potential than data parallelism
when training a large GLM, such as a fully-connected layer,
on multiple accelerators. 1 However, it still faces one severe
issue.

Vanilla model-parallel training, i.e. basic model-parallel
training, as shown in Figure 1b, requires an AllReduce
operation to gather partial activations between forward and
backward propagation. This exchange of partial activations
creates a dependency that makes it impossible to overlap
the forward and backward propagation. Therefore, model
parallelism is more sensitive to both throughput and la-
tency [12]–[15], different from data parallelism which is
more sensitive to the aggregation throughput [16], [17]. It
has become widely accepted that model parallelism can
only achieve linear scalability between accelerators within
a node [12]–[15] that are connected with high-bandwidth,
low-latency NVLinks. Furthermore, due to limited network
bandwidth and high network latency between nodes, strong
scaling (linear speedup from using more accelerators to train
a model under the same whole mini-batch size) with mul-
tiple accelerators in model parallelism remains challenging.
In this paper, we ask:

Can we achieve strong scaling when training a large GLM
through model parallelism between distributed accelerators?

To answer this question, as a start, we propose P4SGD,
an efficient model-parallel training system that enables
strong scaling when training a GLM.2 P4SGD consists
of a server implemented on a programmable switch and
multiple workers implemented on FPGAs. P4SGD has
three key innovations to address the above issue: effi-
cient model-parallel training between distributed accelera-
tors (C1), forward-communication-backward pipeline par-
allelism within an accelerator (C2), and ultra-low-latency
aggregation between a P4 switch and FPGAs (C3).
C1: Efficient Model-parallel Training between Distributed
Accelerators. Model parallelism works only well between
accelerators, e.g., GPUs, within a node, which features high-
bandwidth and low-latency links, e.g., NVLink, to connect
these accelerators [12]–[14]. The key to scalability lies in
ultra-low AllReduce latency and the overlap between the
communication stage and forward/backward stages. To our
knowledge, we are the first to propose P4SGD to achieve lin-
ear scale-out training on a GLM model, e.g., fully-connected
layer, through model parallelism between distributed accel-
erators, e.g., FPGAs, which are connected via Ethernet.
C2: Forward-Communication-Backward. Pipeline paral-
lelism within an FPGA. P4SGD exploits a new parallelism
dimension, i.e., forward-communication-backward pipeline par-
allelism, to maximize compute efficiency. From a hardware

1. It is coincident with the observation from Krizhevsky [11], who
proposes to train convolutional layers through data parallelism due to
their high computation amount per weight, and to train fully-connected
layers through model parallelism due to low computation amount per
weight.

2. We will generalize P4SGD to Deep Learning (DL) model training
in future work. We believe P4SGD has great potential on DL model
training as well.

TABLE 1: Data parallelism (DP) vs. model parallelism (MP).
D: model dimension, M : number of workers, S: number of
samples, B: mini-batch size, BW : aggregation bandwidth
between workers, Tf D: forward propagation time of DP,
Tf M : forward propagation time of MP, Tl: aggregation
latency, Tb D : backward propagation time of DP, Tb M :
backward propagation time of MP, MB: micro-batch size.

Model
mem.

Dataset
mem.

Network
mem. Iteration time

DP D S×D
M D Tf D +

Tb D
B + D

BW + Tl

Vanilla MP D
M

S×D
M B Tf M + Tb M + B

BW + Tl

P4SGD MP D
M

S×D
M B MB

B ∗ Tf M + Tb M + MB
BW + Tl

perspective, P4SGD implements three distinct execution
stages (i.e., forward propagation, communication, and back-
ward propagation) with their own hardware resources, and
thus organizes GLM training into three execution stages to
allow pipelined execution between stages. From a software
perspective, P4SGD divides each mini-batch of samples
into multiple smaller micro-batches, which flow into three
execution stages without suffering from any dependency on
each other. As such, P4SGD can explore the overlap between
forward/backward propagation and communication from
different micro-batches, and also minimize communication
overhead from model-parallel training.
C3: Latency-centric In-switch Aggregation Protocol. We
design and implement a light-weight, fault-tolerant, latency-
centric in-switch aggregation mechanism that directly inter-
plays between a P4 switch and distributed FPGAs to min-
imize the latency of AllReduce needed by each training
iteration. Such an aggregation protocol needs a careful inter-
play between distributed FPGAs and a P4 switch to recover
from potential packet loss while achieving ultra low, stable
AllReduce latency due to pure hardware implementation.

We implement the workers of P4SGD on up to eight
Xilinx U280 FPGA boards [18] and the server on a Tofino P4
switch [19]. The experimental results show that 1) P4SGD
under model parallelism achieves strong scaling between
distributed FPGA-based accelerators; 2) P4SGD converges
faster than its corresponding data-parallel counterpart; and
3) P4SGD converges up to 9.3X faster than the state-of-the-
art distributed training systems on distributed GPUs that
are not able to achieve linear scale-out training mainly due
to its high inter-GPU communication overhead.

2 BACKGROUND: PARALLELING SGD HARDWARE

In this section, we briefly discuss the interesting properties
of the hardware implementation of data-parallel and model-
parallel training on GLMs. The stochastic gradient descent
(SGD) hardware through either model or data parallelism
consists of three stages: forward propagation, backward
propagation, and communication. All three stages, which
have their own hardware resources to implement, allow to
explore more parallelism. Table 1 illustrates the comparison
result between data parallelism (“DP”) and model paral-
lelism (“Vanilla MP”).

2.1 Data-Parallel Training
Data parallelism horizontally partitions the input dataset
across workers, as shown in Figure 1a. Each worker main-
tains a local copy of the model and trains on its own
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partition of the input dataset. During each iteration, each
worker goes through three steps, as shown in Figure 2a.
First, it computes the dot product of the updated model
and each sample in the current mini-batch (forward prop-
agation). Second, it uses the dot products from the mini-
batch to compute the gradient (backward propagation).
Third, it synchronizes its gradient with other workers and
computes the updated model via either collective primitive
AllReduce or parameter server [8]–[10]. The SGD hard-
ware has custom hardware resources for both forward and
backward passes, so after we perform a forward pass on
a sample, the backward pass can be started immediately
without waiting for the forward results of other samples
in the same mini-batch. Therefore, forward and backward
passes have no dependency between samples in the same
mini-batch.
Estimating Elapsed Time per Epoch. Since the three stages
have their own forward-communication-backward pipeline,
they can execute concurrently when there is no depen-
dence between them. In particular, each time the forward
propagation computes the loss of a sample, the backward
propagation of this sample can be started immediately, so
these two stages allow concurrent execution, but still have
a dependency on the third stage communication. Therefore,
time Tit per iteration is estimated to be forward propagation
time of DP Tf D plus backward propagation time of DP for
a sample Tb D

B plus communication time Tc, as shown in
Equation 1.

Tit = Tf D +
Tb D

B
+ Tc = Tf D +

Tb D

B
+

D

BW
+ Tl, (1)

where D is the model dimension, BW is the aggregation
bandwidth between workers, and Tl is the aggregation
latency.

2.2 Model-Parallel Training

Model parallelism (MP) vertically partitions the model
across workers, as shown in Figure 1b. Each worker main-
tains a partition of the model and trains on its own partition
of the input dataset. During each iteration, each worker
goes through three steps, as shown in Figure 2b. First,
it computes the partial dot product of the partial model
and each partial sample in the current mini-batch (forward
propagation). Second, it synchronizes its partial dot prod-
ucts from the mini-batch with other workers and computes
the full dot product via collective communication primitive
AllReduce. Therefore, the amount of data to be exchanged
is B, which is the batch size. Third, each worker uses the
full dot products to compute its gradient portion (backward
propagation).
Estimating Elapsed Time per Epoch. Since three stages
have the dependency regarding the model, their executions
are serialized. Therefore, Tit is estimated to be forward
propagation time of MP Tf M plus backward propagation
time of MP Tb M plus communication time Tc, as shown in
Equation 2.

Tit = Tf M + Tb M + Tc = Tf M + Tb M +
B

BW
+ Tl (2)

2.3 Data- vs. Model-Parallel Training

We compare the scale-out potential between data-parallel
training with model-parallel training on M workers. From
Equations 1 and 2, intuitively, we observe that data par-
allelism allows the overlap between forward propagation
and backward propagation, but needs to communicate the
whole gradient during each iteration. Model parallelism
only needs to communicate B elements per iteration, but
cannot overlap forward and backward propagation due to
the dependency. In the following, we discuss their potential
on scale-out training.
Potential of Data Parallelism on Scale-out Training. Data
parallelism spans a mini-batch of samples to M workers,
such that each worker only needs to work on B

M samples,
indicating that forward propagation time can be reduced
by M times. However, its communication time stays the
same, because the amount of data to be exchanged stays the
same. However, in practice, its communication time would
increase. A larger M could easily make data parallelism
communication-bound, especially on GLMs that have a
relatively low amount of computation per weight. Another
drawback is that data parallelism fails to support a large
model that exceeds the memory capacity of a worker.
Potential of Model Parallelism on Scale-out Training.
Model parallelism spans the model and the dataset to M
workers, such that each worker only has a partition of the
model and forward and backward propagation time can
be reduced by M times. Moreover, model parallelism only
needs to exchange B elements with other workers, incur-
ring negligible overhead.3 Therefore, model parallelism can
easily scale out to support M workers for training.

3 SYSTEM OVERVIEW OF P4SGD
3.1 Design Goals and Overall Architecture

When designing P4SGD, we keep three goals in mind.
G1: Allowing Efficient Scale-out Training. As the model
size of GLM is ever increasing, it is not appropriate to train
the model on a single worker that has limited memory and
compute capacities. Therefore, it is natural to employ multi-
ple workers to concurrently train the same model. However,
it is challenging to achieve linear scalability, since GLM has
low computation amount per weight, making communica-
tion overhead difficult to amortize on CPUs/GPUs.
G2: Maximizing the Overlap between Forward and
Backward Propagation Computation. The SGD hardware
through vanilla model parallelism allows no overlap be-
tween forward and backward propagation due to its inher-
ent dependency, resulting in low utilization of computing
resources. Therefore, maximizing the overlap between for-
ward and backward propagation could significantly reduce
computation time and then improve the efficiency of model-
parallel training.
G3: Minimizing Communication Latency. Even the net-
work traffic needed by model-parallel training isB elements
per iteration, network latency Tl could still impede linear
scalability, especially when M is large. This is because M
workers lead toM times less computation time per iteration,

3. Even though the latency regarding B elements is small, the basic
network latency Tl is still large.
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(a) Data-parallel training

(b) Vanilla mini-batch model-parallel training

(c) Micro-batch forward-communication-backward pipeline-parallel
training within a worker ‘

Fig. 2: Comparison of data and model parallelism for train-
ing GLMs implemented in hardware, motivating forward-
communication-backward pipeline parallelism. Fi,j : for-
ward propagation of the j-th micro-batch of the i-th mini-
batch, Bi,j : backward propagation of the j-th micro-batch
of the i-th mini-batch, C : communication, MB: micro-batch
size, BW: network bandwidth, Tl: fixed latency of network

Fig. 3: P4SGD consists of M workers and one server,
and each worker has N engines. P4SGD realizes model
parallelism between distributed workers, and forward-
communication-backward pipeline parallelism within an
engine in a worker. As such, P4SGD is the first to achieve
linear scalability between distributed accelerators.

indicating a larger proportion of time spent on communi-
cation. Therefore, minimizing the latency of communica-
tion primitive AllReduce among workers could significantly
benefit scale-out training.
Overall Architecture. To achieve the above three goals,
we present P4SGD, a P4-switch-enhanced hardware train-
ing system that allows efficient scale-out GLM training
through model parallelism on distributed FPGAs. In par-
ticular, P4SGD consists of M FPGA-based workers and one
P4 switch enhanced server, as shown in Figure 3. All the

Algorithm 1: MODEL PARALLEL TRAINING

Define : E: number of epochs,
M : number of workers,
# «
Ai[j]: the j-th sample’s partition in the i-th worker,
PAm: partial activation vector in the m-th worker,
bi: label value of the i-th sample,
#«xi: the partial model vector in the i-th worker,
γ: learning rate.

1 P4-Switch-based Server:
2 Issue start to all workers;
3 for e = 1 to E do
4 for (i = 0; i < S; i+ =MB) do
5 Pull

#       «
PA1, ...,

#         «
PAM from all the workers;

6
#    «
FA =

#       «
PA1 + ...+

#         «
PAM ;

7 Push
#    «
FA to all the workers;

8 end
9 end

10 FPGA-based worker m (1, ..., M):
11 Load the m-th partition #   «am of the training dataset #«a ;
12 Init the m-th partition #   «xm of the model #«x ;
13 for e = 1 to E do
14 for (i = 0; i < S; i+ = B) do
15 #  «gm = 0; /* Zero the partial gradient */
16 for (j = 0; j < B; j+ =MB) do

/* Stage 1: forward propagation */
17 #pragma parallel in hardware
18 for (k = 0; k < MB; k ++) do
19 int32 t = i+ j + k;
20 int32

#         «
PAm[k] =

#    «
Am[t] · #   «xm;

21 end
/* Stage 2: communication */

22 Push the partial activation vector
#         «
PAm to the

server;
23 Pull the full activation vector

#    «
FA from the server;

/* Stage 3: backward propagation */
24 #pragma parallel in hardware
25 for (k = 0; k < MB; k ++) do
26 int32 t = i+ j + k;
27 int32

#        «
scale[k] = γ × df( #    «

FA[k], bi+k);
28 #  «gm+ =

#        «
scale[k]× #    «

Am[t];
29 end
30 end
31 #   «xm = #   «xm − #  «gm/B;
32 end
33 end

M workers go through each iteration in a lock step, to
efficiently train on the same model #«x . Each worker trains on
a subset of the model over a subset of the dataset via model
parallelism. During each iteration, the m-th worker that
trains on the model subset #  «xm sends outs a network packet
containing its partial aggregation

#        «

PAm to the P4-switch-
based server, which aggregates them and then broadcasts a
network packet containing

#    «

FA to all the workers for further
backward propagation computing.

One key idea of P4SGD is to divide each mini-batch of
samples into multiple smaller micro-batches (G2), such that
the SGD hardware can explore inter-micro-batch (i.e., intra-
mini-batch) parallelism to maximize the overlap between
forward/backward propagation and communication, while
still preserving the precedence for synchronous SGD (Sub-
section 3.2), as shown in algorithm 1. Another key idea is
light- weight, fault-tolerant, latency-centric in-switch aggre-
gation (G3) that directly interplays between a P4 switch and
distributed FPGAs to minimize the latency of AllReduce
(Subsection 3.3). At the same time, the communication cost
reduces, which can greatly increase the scalability of P4SGD
(G1).
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3.2 Architecture of an FPGA-based Worker
Algorithm 1 illustrates the detailed flow of the m-th FPGA-
based worker under P4SGD. In the beginning, it loads its
partition of dataset #  «am (Line 11) and initiates its partition of
model #  «xm (Line 12). The algorithm is iterated in E epochs
(Line 13). In each epoch, its partition of the input dataset is
scanned, one mini-batch of B samples within an iteration
(Line 14). Within a mini-batch, we zero the partial gradient
#  «gm to 0 (Line 15). Then, it keeps accumulating the gradient
#  «gm from a micro-batch (MB) of samples, as illustrated in
the following three stages.

Stage 1: Forward Propagation. The m-th worker reads
MB partial samples and its partial model #  «xm, and computes
partial activations (

#        «

PAm) of MB elements (Lines 17-21).
Stage 2: Communication. The m-th worker sends

#        «

PAm

to the server for aggregation, with the payload of MB
elements. Then, it waits for the corresponding full activation
(

#    «

FA) for the future backward propagation (Lines 22-23).
Stage 3: Backward Propagation. The m-th worker com-

putes the partial gradient from the micro-batch of samples
and accumulated it to the partial model #  «xm (Lines 25-29).
Then, the partial model #  «xm is updated with the average
gradient #  «gm.

3.2.1 Parallelism Analysis
Figure 2c illustrates the dependency of three stages in the
micro-batch pipeline-parallel training within a worker. After
the first micro-batch F1,1 of the first mini-batch finishes
forward propagation computation, it directly enters the
communication stage by launching a network collective op-
eration within a micro-batch, without waiting for the other
micro-batches to finish. When the first batch B1,1 receives
the corresponding full activation vector from the server, it
can directly enter the third stage. We observe that there is
no dependency between micro-batches (e.g., F1,1 and F1,2)
within the same mini-batch, we can overlap communication
and forward/backward propagation computation within
the mini-batch.
Discussion. One potential limitation is that training on a
small micro-batch (e.g., 8) of samples at a time would re-
duce computing parallelism and then under-utilize compute
power and network bandwidth on modern CPUs/GPUs,
which rely on software implementations. However, P4SGD
that relies on pure hardware implementation, e.g., FPGA
and P4, can more tolerate small micro-batch training, with-
out sacrificing computing throughput.

3.2.2 Estimating Time per Iteration under P4SGD
P4SGD enables the overlap between forward and backward
propagation computation between micro-batches, as shown
in Figure 2c, so we estimate the elapsed time Tit per iteration
to be forward propagation time BW

B ×Tf M of a micro-batch
plus communication time Tc plus backward propagation
time Tb M of a mini-batch, as shown in Equation 3. Com-
pared with the mini-batch model-parallel training shown
in Figure 2b, the proposed micro-batch training is able
to maximize the overlap between forward and backward
propagation.

Tit =
MB

B
× Tf M + Tb M +

MB

BW
+ Tl (3)

Fig. 4: P4SGD Packet Format

3.3 P4-Switch-FPGA Collective Operation
According to the above analysis, communication latency Tc
is critical for the overall training time. Furthermore, P4SGD
needs to perform an AllReduce operation on MB elements
per iteration, where MB is typically small during our train-
ing. Therefore, P4SGD requires extremely low latency of an
AllReduce operation on a small payload.

Aggregating partial activations in network switches of-
fers two major latency benefits. First, as the switch locates
inside the network, our approach avoids the additional
network hops to and from the aggregation server, essentially
reducing activation aggregation to “sub-RTT (Round Trip
Time)” latency. Second, the switch data plane is designed
specifically for fast and predictable packet processing.
Commercial network switches, including new generation
programmable switches [20]–[23], can consistently process
packets under a few hundred nanoseconds – significantly
lower even compared to servers with RDMA or kernel-
bypassed networking.

However, traditional in-switch aggregation
approaches [16], [17], need end-host servers to prepare
packets before in-network aggregation, and thus,
unfortunately, incur high communication latency due
to unstable software processing overhead and long PCIe
latency. Moreover, these approaches introduce a shadow
copy mechanism to optimize for high throughput when
performing AllReduce on a large message, so these
approaches are not friendly to latency due to their late
acknowledgement. To this end, we design and implement
a light-weight, fault-tolerant, latency-centric in-switch
aggregation that directly interplays between a P4 switch
and distributed FPGAs to minimize the latency of
AllReduce needed by each training iteration.

In P4SGD, we handle packet drops by an FPGA-centric
retransmission mechanism. Compared to the approach
taken by SwitchML [16]4, our solution eliminates the need
for shadow copies of the aggregation results on the switch,
and significantly reduces switch resource usage. SwitchML
can support half as many outstanding aggregation opera-
tions as our approach under the same resource budget.

To address the issue of losing aggregation results due
to dropped packets (which contain

#    «

FA), our key idea is to
use a second round of communication – initiated and re-
transmitted by the workers – to acknowledge the reception
of the full activation vector. Only when the switch receives
acknowledgements from all workers for an operation, it can
safely clear the aggregation result.

Specifically, as shown in algorithm 2, the switch only
maintains one copy of the aggregated activations, agg. To

4. SwitchML is a widely-used in-switch aggregation method for
distributed training. It adopts the shadow copy mechanism to optimize
for throughput.
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separately track the number of received activations and
acknowledgement, the switch stores two sets of counters,
agg count and ack count. Since the workers retransmit
packets in the event of packet drops, two sets of bitmaps,
agg bm and ack bm, are maintained to detect duplicates.
We also augment the P4SGD packet header with additional
fields as shown in Figure 4: bm is a bitmap with the source
worker’s index set to one; seq is the aggregation slot index
in the P4 switch; is agg indicates whether the packet is for
aggregation or acknowledgement; acked is a placeholder for
the switch to signal that it has received all acknowledgement
for the operation.

Algorithm 2: SWITCH AGGREGATION LOGIC WITH
UNRELIABLE TRANSMISSION HANDLING

Initialize : N : number of aggregation slots
W : number of workers
#    «agg[N ] := { #«

0 }
agg count[N ], agg bm[N ] := {0}
ack count[N ], ack bm[N ] := {0}

1 receive pkt(is agg, seq, bm,
#    «
PA,

#    «
FA):

2 if is agg then
3 if agg bm[seq]&bm = 0 then
4 agg count[seq]← agg count[seq] + 1;
5 agg bm[seq]← agg bm[seq]|bm;
6 #    «agg[seq]← #    «agg[seq] + pkt.

#    «
PA;

7 if agg count[seq] =W then
8 ack count[seq]← 0;
9 ack bm[seq]← 0;

10 end
11 end
12 if agg count[seq] =W then
13 pkt.

#    «
FA← #    «agg[seq];

14 forward pkt to all workers;
15 end
16 end
17 else
18 if ack bm[seq]&bm = 0 then
19 ack count[seq]← ack count[seq] + 1;
20 ack bm[seq]← ack bm[seq]|bm;
21 if ack count[seq] =W then
22 agg count[seq]← 0;
23 agg bm[seq]← 0;
24 #    «agg[seq]← #«

0 ;
25 end
26 end
27 if ack count[seq] =W then
28 forward pkt to all workers;
29 end
30 end
31 end

We augment the worker protocol accordingly (algo-
rithm 3). When sending partial activation to the switch,
the worker adds its node bitmap to the packet, and in-
dicates that the packet is intended for aggregation (Line
5). Once the worker receives a full activation, it sends an
acknowledgement to the switch (Line 22-23). However, it
only re-enables the slot for aggregation after it receives an
acknowledgement confirmation from the switch (Line 26-
29). To handle packet drops, the worker starts a timer after
sending each packet (Line 11, 24), and retransmits the packet
after the timer expires (Line 31-34). A timer is canceled once
the worker receives the corresponding full activation (Line
20) or acknowledgement confirmation (Line 28).

Algorithm 3: WORKER-SIDE AGGREGATION LOGIC
WITH UNRELIABLE TRANSMISSION HANDLING

Initialize : N : number of aggregation slots
unused[N ] := {true}
seq := 0, bm := WORKER INDEX

1 send pa pkt(
#    «
PA):

2 if unused[seq] then
3 unused[seq]← false;
4 pkt.seq ← seq; pkt.

#    «
PA← #    «

PA;
5 pkt.bm← bm; pkt.is agg ← true;
6 seq ← seq + 1;
7 if seq = N then
8 seq ← 0;
9 end

10 forward pkt to switch;
11 start timer(pkt);
12 return true;
13 end
14 else
15 return false;
16 end
17 end
18 recvive pkt(is agg, seq, bm,

#    «
PA,

#    «
FA):

19 if pkt.is agg then
20 cancel timer(pkt);
21 forward pkt.

#    «
FA to backward propagation;

22 pkt.is agg ← false; pkt.bm← bm;
23 forward pkt to switch;
24 start timer(pkt);
25 end
26 else
27 unused[pkt.seq]← true;
28 cancel timer(pkt);
29 end
30 end
31 upon timeout (pkt):
32 forward pkt to switch;
33 start timer(pkt);
34 end

4 IMPLEMENTATION OF P4SGD

We implement P4SGD with one P4-switch-based server and
M FPGA-based workers. In the following, we present the
implementation details of an FPGA-based worker and P4-
switch-based server, as shown in Figure 5.

4.1 Hardware Design of a Worker

The goal of the FPGA-based worker is three-fold. First,
it maximizes the processing parallelism (E1), which needs
not only high processing ability but also high memory
bandwidth required by GLM training. Second, it enables
micro-batch pipeline-parallel training to overlap forward
and backward propagation computation to increase com-
puting pipeline utilization (E2). Third, it needs to overlap
communication and forward/backward propagation com-
putation to amortize the negative effect of inter-FPGA com-
munication (E3).

We implement each worker with verilog language on
an HBM-equipped FPGA board Xilinx Alveo U280 [18]. In
order to achieve E1, we adopt a multi-engine design to parti-
tion a subset of the model assigned to this worker uniformly
to N engines, where N is parameterized at compile time. As
such, all the engines train in a lock step and each engine only
needs to train a small portion of the subset. For example,
#    «x1,2 corresponds to the model portion associated with the
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(a) Detailed design of the n-th engine in the m-th worker (b) Detailed design of the k-th bank in the n-
th engine in the m-th worker, allowing forward-
communication-backward pipeline parallelism

Fig. 5: Each worker of P4SGD has N engines. Each engine has 8 banks to populate a micro-batch of 8 samples.

Fig. 6: Relationship between 16 HBM channels and 8 en-
gines, each engine occupies 4 HBM pseudo channels.

second engine of the first worker.5 Each model portion,
accommodating up to 256K weights,6 is implemented with
on-chip memory, so each worker supports 2M weights.
Therefore, each worker consists of an HBM subsystem (sub-
section 4.1.1), N engines (subsection 4.1.2, 4.1.3), as shown
in Figure 3.

4.1.1 Hardware Design of Memory Subsystem

The memory subsystem employs the HBM subsystem that
has 32 memory channels to support 32 independent 256-
bit memory accesses. Due to FPGA resource limitations,
an FPGA board can only afford to instantiate up to N=8
engines, each engine can occupy four consecutive HBM
channels to provide sufficient memory bandwidth and ca-
pacity (8Gb) for its subset of the dataset. Figure 6 illustrates
the relationship between 32 HBM channels and 8 engines.
Since each engine is designed to process 512-bit data stream
per cycle, each engine combines two 256-bit AXI interfaces
to access the data in the HBM.

4.1.2 Hardware Design of an Engine

Built on the state-of-the-art GLM accelerator MLWeav-
ing [24] that supports efficient low-precision training, each
engine extends to enable GLM training on distributed FP-
GAs in a lock step. To achieve E2 in section 4.1, we adopt a

5. We also vertically partition the dataset
#«
A in the same way.

6. This number is parameterizable at compile time, under the con-
straint of FPGA resource limitation. However, we can easily generalize
P4SGD to support a large model that is stored in external memory, e.g.,
HBM, without affecting performance.

multi-bank design to allow each engine to train on a micro-
batch of MB=8 samples concurrently, one bank to populate
a sample. As such, MB samples flow into the computing
pipeline concurrently.

The hardware design of each engine consists of three
stages: “multi-bank dividing”, “gradient accumulation”,
and “model update”. In the “multi-bank dividing” stage, the
512-bit input data stream flows into 8 banks, each of which
consumes 64-bit data from the same sample, one bit from
one feature of a sample. We leave the detailed design of each
in Subsection 4.1.3. The output of each bank is a 2048-bit
gradient (i.e., 64 32-bit gradient elements from 64 features).
In the “gradient accumulation” stage, we instantiate 64 8-
element-wise adder trees to aggregate gradients from all 8
banks. Unlike MLWeaving, we use DSP instead of LUT to
construct the adder tree. Each level of the adder tree can add
three numbers, which saves resources and reduces calculat-
ing time. In the “model update” stage, the aggregated gradi-
ent from the above MB=8 samples is accumulated into the
“updated model”. When accumulating the gradient from
the last micro-batch of each mini-batch into the “updated
model”, we also update the architectural model ( #«x ) with
the same value written into the “updated model”.

4.1.3 Hardware Design of a Bank
Figure 5b shows the details of each bank. According to
the distributed SGD algorithm, each bank consists of three
stages. To achieve E3 in section 4.1, we send “partial acti-
vations” of MB samples each time to support micro-batch
model-parallel training on GLM in the ”communication”
stage.

The hardware design of each bank consists of three
stages: “forward propagation”, “communication”, and
“backward propagation”. In the “forward propagation”
stage, we instantiate 64 bit-serial multipliers [25], [26] to con-
sume 64-bit data stream, a bit from each feature. At the same
time, the 64-bit data stream is also fed into the 64-bit “FIFO”.
Each bit-serial multiplier outputs a 32-bit calculation result,
which is directly fed into the full-pipelined adder tree. The
output of the adder tree feeds to an accumulator, which
aggregates the corresponding “partial activation”. In the
“communication” stage, together with “partial activations”
from the other banks in the same engine, the n-th engine
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Fig. 7: Interaction between P4 switch and FPGA
TABLE 2: Evaluated datasets

Dataset Samples Features Classes
gisette [27] 6,000 5,000 2
real sim7 72,309 20,958 2

rcv17 20,242 47,236 2
amazon fashion8 200,000 332,710 5

avazu7 40,428,967 1,000,000 2

prepares
#             «

PAm,n for the current micro-batch of MB sam-
ples. The m-th worker then aggregates “partial activations”
from all its N engines to produce

#        «

PAm, which is sent to
the P4-switch-based server for in-network aggregation in
Figure 3. In the “backward propagation” stage, we also
instantiate 64 bit-serial multipliers, each of which reads a 1-
bit feature from the 64-bit “FIFO” and multiplies it with the
corresponding 32-bit element

#        «

scale[k] per cycle. Therefore,
64 bit-serial multipliers is able to produce 2048-bit gradient
computation results per cycle for further processing in the
corresponding engine (Subsection 4.1.2).

4.2 Implementation of P4-switch-based Server

Figure 7 briefly describes the hardware implementation of
reliable transport between P4 switch and an FPGA.

Our switch data plane is implemented in the P4 lan-
guage. Each of the agg, agg count, agg bm, ack count, and
ack bm in algorithm 2 is mapped directly to a Tofino regis-
ter array, as shown in Figure 7. In our current configuration,
the size of the register arrays is set to 64K (16 bits indices),
permitting a maximum of 64K outstanding aggregation
operations. The register arrays are distributed over 4 stages
of a switch pipeline – out of the 12 total stages available.
Resource consumption in any of the 4 stages is capped at
70.83% of the available SRAM. This leaves ample resources
for the other bread-and-butter switching functionalities. We
leverage the Tofino packet replication engine to implement
multicasting to workers.

5 EVALUATION

5.1 Experimental Setting

Workloads. We conduct our experiments on five datasets
with the various number of features, as shown in Table 2.
All datasets used are publicly accessible.
Experimental Platform. We run our experiments on a clus-
ter with two network switches and eight machines. One
network switch is Mellanox SN2700 with 32 x QSFP28 ports,
and the other one is the Wedge100BF-32X P4 reconfigurable
switch which provides 32 x QSFP28 ports and a 20 MB
packet buffer. Each machine configured with a 12-core/24-
thread Intel Xeon(R) Silver 4214 CPU (2.2GHz), a Xilinx

7. https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
8. This is part of the indian news dataset, and the dataset can be

downloaded from https://jmcauley.ucsd.edu/data/amazon/

TABLE 3: Resource consumption of a worker with 8 engines

Hardware modules LUTs REGs RAMs DSPs Freq.
PCI-Express 63K 98K 4.3Mb 0 250MHz

Network transport 10K 27K 3.5Mb 0 250MHz
HBM subsystem 7K 42K 3.26Mb 0 450MHz

8 engines 188K 904K 152Mb 4096 250MHz

Total utilization 304K
(23%)

1.1M
(42%)

165Mb
(47.5%)

4096
(45%)

Alveo U280 FPGA [18], a 100Gb/s (RDMA-enabled) Mel-
lanox MT27800 NIC and a NVIDIA A100 GPU (40 GB HBM2
memory, 6912 CUDA cores). We use this platform for all the
experiments.
P4SGD Implementations. We implement P4SGD with a
P4-switch-based server and FPGA-based workers. Table 3
shows the resource consumption of P4SGD with 8 engines
on Xilinx Alveo U280. The total resource utilization is about
50%. P4SGD allows instantiating a flexible number of en-
gines from 1 to 8. Furthermore, we also implement the
data-parallel training system that also leverages a P4 switch
to do in-network aggregation between distributed FPGAs.
The data-parallel system aggregates gradients of length D,
rather than B, after forward and backward propagation
within an iteration. The adopted precision is 4 bits because
1) the execution time will decrease linearly as the precision
decreases, and 2) MLWeaving [24] demonstrates that low-
precision (above 3 bits) training takes a similar number of
epochs to converge as that of full-precision CPU approaches.
So we choose 4-bits precision to decrease the training time
without affecting convergence rate.
GPU Baseline. The GPU baseline, labeled “GPUSync”, is
implemented on the GPUs in the cluster adopting a syn-
chronous distributed linear model SGD. “GPUSync” lever-
ages the state-of-the-art cuBLAS library [28] to efficiently
implement forward and backward propagation. In particu-
lar, “GPUSync” uses the function cublasSgemm, which does
auto parallelization within a single GPU. From the NVIDIA
Nsight Systems, we observe that cublasSgemm uses at least
512 thread blocks, 128 threads per thread block, to compute
on a mini-batch of samples in our experiment, indicating
that “GPUSync” has already fully utilized GPU computing
power within a CUDA call. Moreover, we leverage a few
optimization methods on GPU to accelerate the training:
CUDA Graphs [29] to reduce kernel invocation overhead,
and RDMA+GPUDirect-enabled NCCL [30], [31] to reduce
inter-node communication overhead. “GPUSync” adopts
model-parallel training, which is obviously faster than data-
parallel training (Subsection 5.3). However, “GPUSync” can-
not efficiently scale out due to its CUDA kernel invoca-
tion overhead, in particular, each training iteration needs
to launch three CUDA kernels: two cublasSgemm for for-
ward/backward passes and one AllReduce for communica-
tion. When employing more GPUs, the GPU compute cycles
per kernel are reduced and kernel invocation overhead can
dominates the overall time.
Two CPU Baselines. We implement the synchronous SGD
algorithm on distributed CPUs, labeled “CPUSync”. We
employ the following optimization methods on distributed
CPUs: multi-core (12 cores), AVX2 instruction (512-bit) and
RDMA-based openMPI (version 3.4.1) library. “CPUSync”
adopts model-parallel training, which is obviously faster
than data-parallel training in our experiment. The other
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CPU baseline is “SwitchML” that adopts the same com-
putation method as “CPUSync”, but uses the communica-
tion method from SwitchML [16], rather than RDMA-based
OpenMPI.
Comparison Methodology. Our evaluations mainly val-
idate three hypotheses. First, P4-switch-FPGA in-network
aggregation can significantly reduce the aggregation latency,
benefiting model-parallel training on GLMs. Second, P4SGD
is able to achieve an almost linear scale-out on distributed
FPGAs, with the help of the P4 switch. Third, P4SGD
converges faster and consumes lower than its counterparts
on distributed GPUs/CPUs.

5.2 Comparison of Aggregation Latency
We measure the latency of P4-switch-FPGA in-network ag-
gregation that serves distributed GLM training on FPGAs
(Subsection 3.3). Figure 8 illustrates the latency comparison
of AllReduce that performs an array

#    «

PA of 8 32-bit ele-
ments in each of 8 workers. We have three observations.

First, P4SGD is able to reach average latency of 1.2µs,
which is an order of magnitude smaller than that of
“CPUSync” and “GPUSync”, because in-switch aggregation
reduces the additional network hops, and our hardware
implementation reduces software launching and synchro-
nization overhead.

Second, the latency fluctuation of P4SGD is significantly
smaller than that of “CPUSync” and “GPUSync”, demon-
strating one of the advantages of P4SGD in terms of offer-
ing deterministic latency. Third, SwitchML [16] introduces
longer latency even than “CPUSync” and “GPUSync”, be-
cause 1) SwitchML leverages the shadow copy mechanism
to delay the acknowledgment of received aggregation pack-
ets for higher throughput, and 2) SwitchML uses data pack-
ets with a minimum size of 256B, while other methods adopt
64B network packets.

P4SGD SwitchML GPUSync CPUSync
0

10

20

30

La
te

nc
y

[µ
s]

Fig. 8: Aggregation latency comparison. Whiskers show the
1st and 99th percentile.

5.3 Comparison of Data Parallelism and Model Paral-
lelism
In this section, we compare the time per epoch of data-
parallel and model-parallel approaches with other two base-
lines: “CPUSync” and “GPUSync”. The number of work-
ers in all experiments is 4. The number of engines of
P4SGD is 8. Figure 9 illustrates the comparison results
under different mini-batch sizes on the dataset rcv1 and
amazon fasion. We have three observations. First, model
parallelism has significantly smaller elapsed time per epoch
than its corresponding data parallelism in most cases on

(a) rcv1 (47K) (b) amazon fasion (333K)

Fig. 9: Hardware efficiency comparison between data-
parallel and model-parallel, the number of workers is 4.

the same platform, because model parallelism introduces
less network traffic especially when the mini-batch size is
small. Although data parallelism requires larger epoch time
when the mini-batch size is large, significantly more epochs
are required to reach the same convergence rate, resulting
in a smaller overall convergence speedup. Second, model
parallelism has a higher speedup over data parallelism on
the same platform when B is smaller, because P4SGD intro-
duces hardware pipeline parallelism and P4-switch-FPGA
in-switch aggregation with ultra-low latency. For example,
when B is 16, model parallelism is 4.8× faster than data
parallelism on FPGAs under amazon fasion, while model
and data parallelism has roughly the same elapsed time
when B is 1024. Third, model parallelism has a higher
speedup over data parallelism on the same platform when
the number of features is larger. For example, when B is 16,
P4SGD is 2× and 4.8× faster than the corresponding data-
parallel implementation on FPGAs under datasets rcv1 and
amazon fasion, respectively. In the following experiments,
we always use model parallelism.

5.4 Hardware Efficiency: Throughput

We examine the hardware efficiency of P4SGD, in terms of
achievable throughput. First, we examine the effect of differ-
ent characteristics on P4SGD. Second, we compare P4SGD
with the baselines on GPUs and CPUs. In the following
experiment, by default, we instantiate 8 engines within a
worker for best performance.

5.4.1 Hardware Characteristics of P4SGD
We typically run 200 epochs and get the average throughput
to analyze the effect of each hardware characteristic.
Effect of Mini-Batch Size. We examine the effect of mini-
batch size on P4SGD. We use the implementation of P4SGD-
8-8. Figure 10 illustrates the P4SGD-8-8’s speedup of various
mini-batch sizes over the case with “B=16”, in terms of
throughput, on the different datasets. We have two obser-
vations. First, a larger mini-batch size leads to a higher
speedup, since a large mini-batch size allows to overlap for-
ward/backward propagation and communication between
micro-batches that belongs to the same mini-batch. Second,
a larger number of features leads to a smaller speedup when
increasing the mini-batch size, because P4SGD is able to
overlap communication time with computation time that
occupies a higher proportion of the total computation time
due to a larger number of features, even when B is small.
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Fig. 10: Effect of mini-batch size, in term of epoch time, on
different datasets under the case with 8 workers, each with
8 engines, B: mini-batch size

Fig. 11: Scale-up ability, in term of epoch time, under the
case with 1 worker, E: number of engines, mini-batch size =
64, and precision = 4 bits

Scale-up Ability. We examine the scale-up ability of P4SGD
that instantiates multiple engines for model-parallel training
on GLMs. Figure 11 shows the throughput ratio of the cases
with a various number of engines over the case with one
engine on the datasets gisette, real sim, and rcv1. We
have two observations. First, a larger number of engines
leads to higher throughput due to fewer training tasks
per engine within a worker. Second, a larger number of
features leads to a higher throughput improvement when
increasing the number of engines, because a larger number
of features leads to a higher proportion of computation time
to overall training time, where computation time can be
linearly reduced by introducing more engines.
Scale-out Ability. We examine the scale-out ability of
P4SGD that employs multiple workers for model-parallel
training on GLMs. Figure 12 shows the throughput ratio of
the cases with a various number of workers over the case
with one worker. We have three observations. First, a larger
number of workers leads to a higher throughput due to
fewer training tasks per worker. Second, a larger number
of features leads to a higher throughput improvement when
increasing the number of workers, because a larger number
of features leads to a higher proportion of computation time
to overall training time, which can more easily amortize
the negative effect of communication time. Third, when the
number of features reaches 1 million, the throughput closely
increases linearly with an increasing number of machines.
It indicates that P4SGD achieves a strong scale-out ability
when the number of features is large enough ( > 1M ).

5.4.2 Scalability Comparison with CPU/GPU Baselines
We compare scalability, in terms of time per epoch,
of P4SGD with other three baselines: “SwitchML“,
“CPUSync”, and “GPUSync”. Figure 13 illustrates the av-
erage epoch time with the various number of workers and
mini-batch size. We have four observations.

First, “P4SGD” is significantly faster than the other three
counterparts and has the highest scalability. This is due to

Fig. 12: Scale-out ability of P4SGD in term of epoch time
with 8 engines, W: number of workers, mini-batch size = 16,
and precision = 4 bits

its latency-centric in-switch aggregation protocol and hard-
ware pipeline parallelism to maximize the overlap between
communication and forward/backward propagation.

Second, “GPUSync” fails to scale out when B is rel-
atively small, because 1) it cannot fully utilize the GPU
computing power due to severe kernel invocation over-
head (innovating three kernels per iteration), and 2) more
distributed GPUs exacerbate kernel invocation overhead
and thus amortize the benefit of reduced computation
time of the CUDA kernel cublasSgemm, especially when
the dimension is relatively small, as shown in Figure 13a.
High-performance intra-node NVLink slightly relieves the
communication overhead, as the communication stage only
accounts for roughly 20% of the total training time when
using RDMA-GPUDirect-powered NCCL.

Third, “CPUSync” can relatively easily scale out, because
computation time dominates the overall training time on
distributed CPUs, and communication time is negligible.
Therefore, when the number of workers increases, the over-
all training time can drop quickly.

Forth, “SwitchML” is slower than “CPUSync”, and its
scale out ability is also worse than that of “CPUSync”. The
mainly reason for this is that “SwitchML” has the highest
aggregation latency due to its shadow copy mechanism that
delays the acknowledgement of received aggregation pack-
ets, as shown in Figure 8. Actually, “SwitchML” adopts the
shadow copy mechanism to greatly increase the throughput
of in-network aggregation, rather than decreasing latency.

5.5 Statistical Efficiency: Loss vs. Epochs

We compare the statistical efficiency of P4SGD with
“CPUSync”, and “GPUSync” on the datasets rcv1 and
avazu. Figure 14 shows the convergence trend under an
increasing number of epochs. The batch sizes for all ap-
proaches are 64. We observe that all the methods require the
same number of epochs to converge to roughly the same
loss, because they are all synchronous.

5.6 End-to-End Comparison: Loss vs. Time
We compare the end-to-end performance of P4SGD with
“CPUSync” and “GPUSync”, which use the configurations
with the shortest convergence time. Figure 15 shows the
end-to-end convergence comparison, in terms of loss vs.
time, on the datasets rcv1 and avazu. We have two obser-
vations. First, P4SGD is able to converge up to 6.5X faster
than “GPUSync”, indicating great potential on in-network
aggregation and micro-batch model-parallel training that
enable efficient model-parallel training on distributed FP-
GAs. “GPUSync” converges relatively slowly, due to 1) long
communication overhead per iteration, and 2) no overlap
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(a) rcv1 (47K), B=16 (b) amazon fashion (333K),
B=16

(c) rcv1 (47K), B=256 (d) amazon fashion (333K),
B=256

Fig. 13: Hardware efficiency comparison between P4SGD
and other baselines

(a) rcv1 (47K) (b) avazu (1M)

Fig. 14: Statistical efficiency: training loss vs. epoch, γ:
learning rate, precision = 4 bits

between forward/backward propagation and communica-
tion. Second, P4SGD can converge up to 67X faster than
“CPUSync”, because “CPUSync” suffers from low compute
power and long collective operation latency.

5.7 Energy Consumption
In addition to hardware efficiency and performance, energy
consumption has become a significant consideration in re-
cent years. P4SGD has a significant advantage in terms of
energy consumption.

To measure the power consumption of the Xilinx Alveo
U280, we use the Alveo Card Management Solution Subsys-
tem (CMS Subsystem). The CMS firmware is responsible for
gathering the U280’s voltage, current, power consumption,
and other related information from the satellite controller
device. [32] The power consumption of the “CPUSync” is
measured using lm sensors [33], an open-source application
that provides tools and drivers for monitoring tempera-
tures, voltage, and power. The power consumption of the
“GPUSync” is measured using the NVIDIA System Man-
agement Interface (nvidia-smi) [34], which can manage and
monitor NVIDIA GPU devices.

We evaluate the power consumption of P4SGD against
”CPUSync” and ”GPUSync” in the end-to-end experiments

(a) rcv1 (47K) (b) avazu (1M)

Fig. 15: End-to-end convergence comparison: training loss
vs. time, B: mini-batch size, γ: learning rate, precision = 4
bits
TABLE 4: Energe consumption, the number of workers for
all methods is 8.

Method Dataset Time(s) Total Power(W) Energy(J)
P4SGD rcv1 0.27 528 143

avazu 4.12 528 2175
GPUSync rcv1 1.76 920 1619

avazu 10.9 920 10028
CPUSync rcv1 14.4 496 7142

avazu 128.25 496 63612

in Section 5.6. Table 4 presents the energy consumption com-
parison, which does not include the power consumption
of the host system. The results show that P4SGD is up to
11X more energy-efficient than “GPUSync” and 50X more
energy-efficient than “CPUSync”, demonstrating the signif-
icant advantage of P4SGD in terms of energy consumption.

6 RELATED WORK

Parallelism in Distributed ML. ColumnSGD [35] proposes
the distributed SGD training system using model paral-
lelism on multiple CPUs. Its iteration time remains almost
unchanged as the number of machines increases. Even
worse, ColumnSGD increases the per-iteration time by 1.3
times, when the number of machines increases from 10 to 40.
MegatronLM [12] efficiently trains multi-billion language
models with model parallelism between GPUs within a
node and with data parallelism between nodes. Alpa [36]
automates inter- and intra-operator parallelism for training
a large DL model that cannot fit in a GPU. Alpa recommends
intra-operator parallelism, due to its high communication
overhead, to accelerators that are connected with high-
bandwidth communication link like NVLink, and recom-
mends inter-operator parallelism to distributed accelerators
that are connected by relatively low-bandwidth network.
GSPMD [37] auto-completes the sharding on every tensor
based on user annotations, the user can combine data-,
model-, and pipeline- parallelism, etc. However, GSPMD
does not partition individual operators or tensors in pipeline
parallelism, but partitions the training graph into multi-
ple stages that run on different devices. However, P4SGD
strives to efficiently, e.g., in strong scaling, leverage intra-
operator parallelism (model parallelism in our paper) to
train a fully-connected layer (i.e., GLM model) between
distributed accelerators such as FPGA with the help of a
programmable switch.
Pipeline Parallelism in Distributed ML. Previous pipeline
parallelism, e.g., GPipe [38], HetPipe [39], TeraPipe [14]
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assigns different layers of a model to different GPUs to
train a large model, and thus is orthogonal to P4SGD, which
targets model parallelism.
FPGA-accelerated ML systems. P4SGD is closest to ML-
Weaving [24], which is a one-size-fits-all system for any-
precision learning. The hardware efficiency of MLWeaving
is comparable to that of P4SGD using 1 engine and 1 worker.
Prior works [40]–[53] exploit FPGAs to achieve high perfor-
mance, but not for model-parallel training. Brainwave [45]
accelerates DNN inference via model parallelism on multi-
ple FPGAs. Previous work [53] presents a multiple-FPGA
system for accelerating distributed SVM training, but all the
FPGAs are on one host, where they communicate with each
other through PCIe. Therefore, its scalability is limited in a
single host.
In-network Aggregation. Current research ATP [17],
SwitchML [16] and [54] leverages programmable network
switch to perform gradient aggregation in data parallel
training. Also, they adopt shadow copy mechanism to opti-
mize for throughput. In contrast, P4SGD optimizes for ultra
low in-network aggregation latency to benefit our model-
parallel training between distributed FPGAs. SHARP [55]
offloads collective operation processing to the InfiniBand
network. SHARP approaches a hierarchical aggregation tree
architecture to enable general aggregation operations on
hundreds of hosts. Herring [56] is a scalable distributed
data-parallel training library-based parameter server that
adopts a balanced fusion buffer to solve the problem of un-
balanced data sent and received by servers. Herring targets
data-parallel distributed training mainly via increasing the
throughput of aggregation operations, while P4SGD targets
model-parallel distributed training mainly via reducing the
latency of aggregation operations.

7 CONCLUSION

We propose P4SGD, a model-parallel distributed training
system that allows strong scaling when training GLMs.
P4SGD adopts micro-batch hardware pipeline-parallel train-
ing to overlap forward/backward propagation and commu-
nication within a worker. At the same time, we propose
a latency-centric in-switch aggregation protocol to lower
communication overhead between distributed FPGAs. We
prototype P4SGD on multiple FPGAs and a P4 switch. The
experimental result shows that P4SGD is able to converge
up to 9.3x faster than its GPU counterpart. We will make
P4SGD open-sourced to benefit the community.
Limitation and Future Work. The main limitation is that
P4SGD implements the model on FPGA’s on-chip mem-
ory, so the model size is limited due to the limited on-
chip memory size. Our current implementation supports
parameterizable model size, but up to 2M. However, we can
easily generalize P4SGD to support a large model size by
storing the model in external memory, e.g., HBM. As such,
the implementation for a large model needs more memory
bandwidth to achieve line-rate hardware processing. Fortu-
nately, the current P4SGD only uses 25% HBM’s memory
bandwidth, leaving the majority of memory bandwidth for
engines to access a large model in external memory. We
believe P4SGD would not lose any processing speed. We
leave the related implementation in future work.

Another future work is to generalize P4SGD to DNN
training using an FPGA-GPU co-processing approach. In
particular, we train compute-intensive layers, e.g., convo-
lutional, on GPUs via data parallelism, since these layers
have a high computation amount per weight, while we train
the fully-connected layers on P4SGD via model parallelism
since these layers may have a big model size but have a low
computation amount per weight.

The third future work is to run the P4SGD at a frequency
of 225MHz, enabling it to process 512-bit data from a single
HBM channel, thereby doubling the number of engines
supported by the current design.
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[46] C. De Sa, M. Feldman, C. Ré, and K. Olukotun, “Understanding
and Optimizing Asynchronous Low-Precision Stochastic Gradient
Descent,” in ISCA, 2017.

[47] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi et al., “A
Configurable Cloud-Scale DNN Processor for Real-Time AI,” in
ISCA, 2018.

[48] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang,
“FPGA-Accelerated Dense Linear Machine Learning: A Precision-
Convergence Trade-off,” in FCCM, 2017.

[49] Z. Li, C. Ding, S. Wang, W. Wen, Y. Zhuo, C. Liu, Q. Qiu, W. Xu,
X. Lin, X. Qian et al., “E-RNN: Design Optimization for Efficient
Recurrent Neural Networks in FPGAs,” in HPCA, 2019.

[50] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and H. Es-
maeilzadeh, “In-RDBMS Hardware Acceleration of Advanced An-
alytics,” arXiv preprint arXiv:1801.06027, 2018.

[51] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. K. Kim, and H. Esmaeilzadeh, “Tabla: A Unified Template-
based Framework for Accelerating Statistical Machine Learning,”
in HPCA, 2016.

[52] T. Moreau, M. Wyse, J. Nelson, A. Sampson, H. Esmaeilzadeh,
L. Ceze, and M. Oskin, “SNNAP: Approximate Computing on
Programmable SoCs via Neural Acceleration,” in HPCA, 2015.

[53] J. Dass, Y. Narawane, R. N. Mahapatra, and V. Sarin, “Distributed
Training of Support Vector Machine on a Multiple-FPGA System,”
TC, 2020.

[54] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter Hub: a Rack-Scale Parameter Server for Distributed
Deep Neural Network Training,” in SoCC, 2018.

[55] R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer,
G. Bloch, D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koush-
nir et al., “Scalable Hierarchical Aggregation Protocol (SHArP):
a Hardware Architecture for Efficient Data Reduction,” in
COMHPC, 2016.

[56] I. Thangakrishnan, D. Cavdar, C. Karakus, P. Ghai, Y. Selivonchyk,
and C. Pruce, “Herring: Rethinking the Parameter Server at Scale
for the Cloud,” in SC, 2020.

Hongjing Huang is currently a Eng.D. student
at Zhejiang University, China. Prior to that, he re-
ceived his master’s and bachelor’s degree from
Zhejiang University. His research interests in-
clude distributed machine learning, SmartNIC,
etc.

https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds963-u280.pdf
https://www.edge-core.com/_upload/images/Wedge100BF-32X_65X_DS_R07_20200731.pdf
https://www.edge-core.com/_upload/images/Wedge100BF-32X_65X_DS_R07_20200731.pdf
https://www.edge-core.com/_upload/images/Wedge100BF-32X_65X_DS_R07_20200731.pdf
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://developer.nvidia.com/blog/cuda-graphs/
https://developer.nvidia.com/blog/cuda-graphs/
https://nvdam.widen.net/s/k8vrp9xkft/tech-overview-magnum-io-1790750-r5-web
https://nvdam.widen.net/s/k8vrp9xkft/tech-overview-magnum-io-1790750-r5-web
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html
https://docs.xilinx.com/r/en-US/pg348-cms-subsystem/Introduction
https://docs.xilinx.com/r/en-US/pg348-cms-subsystem/Introduction
https://github.com/lm-sensors/lm-sensors
https://github.com/lm-sensors/lm-sensors
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface


IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

Yingtao Li is currently a Eng.D. student at Zhe-
jiang University, China. His research interests
include in-network computation, programmable
switch application, etc.

Jie Sun is currently a Ph.D. student at Zhejiang
University, China. Prior to that, he received his
bachelor’s degree from Zhejiang University. His
research interests include graph neural network,
machine learning system, etc.

Xueying Zhu is currently a Ph.D. student at
Zhejiang University, China. Prior to that, she re-
ceived her bachelor’s degree from Zhejiang Uni-
versity. Her research interests include in-network
computation, SmartNIC, etc.

Jie Zhang is currently a Ph.D. student at Zhe-
jiang University, China. Prior to that, he received
his bachelor’s degree from Zhejiang University.
His research interests include cloud storage,
SmartNIC, etc.

Liang Luo Received his Ph.D. degree from
University of Washington in 2020. His research
focuses on improving distributed training effi-
ciency.

Jialin Li received his Ph.D. degree from the
University of Washington in 2019. Li is currently
an Assistant Professor in the School of Comput-
ing at the National University of Singapore. His
research interests are in co-designing distributed
systems with data center networks, data plane
operating systems, and system software for pro-
grammable network hardware.

Zeke Wang received his Ph.D. degree from Zhe-
jiang University, China in 2011. He is a Research
Professor at Collaborative Innovation Center of
Artificial Intelligence, Department of Computer
Science, Zhejiang University, China. His current
research interests mainly focus on building ma-
chine learning systems using heterogeneous de-
vices, e.g., SmartNIC and SmartSwitch.


	1 Introduction
	2 Background: Paralleling SGD Hardware
	2.1 Data-Parallel Training
	2.2 Model-Parallel Training
	2.3 Data- vs. Model-Parallel Training

	3 System Overview of P4SGD
	3.1 Design Goals and Overall Architecture
	3.2 Architecture of an FPGA-based Worker
	3.2.1 Parallelism Analysis
	3.2.2 Estimating Time per Iteration under P4SGD

	3.3 P4-Switch-FPGA Collective Operation

	4 Implementation of P4SGD
	4.1 Hardware Design of a Worker
	4.1.1 Hardware Design of Memory Subsystem
	4.1.2 Hardware Design of an Engine
	4.1.3 Hardware Design of a Bank

	4.2 Implementation of P4-switch-based Server

	5 Evaluation
	5.1 Experimental Setting
	5.2 Comparison of Aggregation Latency 
	5.3 Comparison of Data Parallelism and Model Parallelism
	5.4 Hardware Efficiency: Throughput
	5.4.1 Hardware Characteristics of P4SGD
	5.4.2 Scalability Comparison with CPU/GPU Baselines

	5.5 Statistical Efficiency: Loss vs. Epochs
	5.6 End-to-End Comparison: Loss vs. Time
	5.7 Energy Consumption

	6 Related work
	7 Conclusion
	References
	Biographies
	Hongjing Huang
	Yingtao Li
	Jie Sun
	Xueying Zhu
	Jie Zhang
	Liang Luo
	Jialin Li
	Zeke Wang


