
MULTI-GPU AGGREGATION-BASED AMG PRECONDITIONER
FOR ITERATIVE LINEAR SOLVERS

Massimo Bernaschi, Alessandro Celestini, Pasqua D’Ambra
Institute for Applied Computing at National Research Council of Italy

{name.surname}@cnr.it

Flavio Vella
University of Trento

{flavio.vella}@unitn.it

March 7, 2023

ABSTRACT

We present and release in open source format a sparse linear solver which efficiently exploits het-
erogeneous parallel computers. The solver can be easily integrated into scientific applications that
need to solve large and sparse linear systems on modern parallel computers made of hybrid nodes
hosting NVIDIA Graphics Processing Unit (GPU) accelerators.
The work extends our previous efforts in the exploitation of a single GPU accelerator and proposes
an implementation, based on the hybrid MPI-CUDA software environment, of a Krylov-type lin-
ear solver relying on an efficient Algebraic MultiGrid (AMG) preconditioner already available in
the BootCMatchG library. Our design for the hybrid implementation has been driven by the best
practices for minimizing data communication overhead when multiple GPUs are employed, yet pre-
serving the efficiency of the single GPU kernels. Strong and weak scalability results on well-known
benchmark test cases of the new version of the library are discussed. Comparisons with the Nvidia
AmgX solution show an improvement of up to 2.0x in the solve phase.

1 Introduction

Heterogeneity is a feature of state-of-the-art computing platforms. As a matter of fact, the trend toward using different
types of processors in the same computing node is well established [Shalf(2019)]. From laptops to (pre-)exascale
Top500 supercomputers [Top500(2022)], current computing platforms feature multi-core processors coupled with
accelerators, like Graphics Processing Units (GPUs). The efficient use of these heterogeneous systems, for general-
purpose computation, requires the redesign of the algorithms and of their implementation, although some efficient
and easy-to-use programming environments are able to hide most of the details of the architectures (e.g., Nvidia
CUDA, SYCL or OpenACC just to cite few). Exploiting all the computational power offered by such hybrid systems
is particularly challenging for those applications that expose irregular memory access patterns, such as sparse linear
solvers.

Let A be a square, non-singular, matrix of (real) values and of dimension n, and x and b two column vectors of (real)
values with consistent dimensions, a linear solver finds a solution to the problem Ax = b, where A and b are known
and x represents the unknown. An efficient and reliable linear solver, when matrix A has many zero entries (often
more than 99% of the overall) and very large n, is often the key element to obtain reliable simulations of complex
models or to carry out big-data analysis. Most of the methods used to find solutions of sparse and large linear systems
belong to the class of iterative Krylov-subspace projection methods, whose archetype is the well-known Conjugate
Gradient (CG) method [Saad(2003)] applicable when A is a symmetric and positive-definite (s.p.d) matrix. A basic
component for the practicability of the CG method is the so-called preconditioner, that is a new (s.p.d.) matrixB which
approximates in some way the inverse of matrix A. The application of a preconditioner accelerates the convergence
of the CG method when applied to the preconditioned system, such as BAx = Bb.

Some existing software tools, like Nvidia AmgX [Naumov(2015), AmgX(2020)] and hypre [Falgout(2006), Fal-
gout(2021)], are able to exploit multi-GPU systems. In particular, AmgX includes Algebraic MultiGrid (AMG)
preconditioners based on aggregation of unknowns driven by matchings in the adjacency graph of the system ma-

ar
X

iv
:2

30
3.

02
35

2v
1 

 [
cs

.D
C

] 
 4

 M
ar

 2
02

3



A PREPRINT - MARCH 7, 2023

trix, which are flexible methods able to balance the computational complexity and the convergence properties of the
resulting linear solvers. On the other hand, our AMG method implemented in BootCMatchG, leveraging on an ag-
gregation scheme which exploits some properties of maximum weight matchings in graphs, offer better convergence
properties in solving linear systems that fit in the memory of a single GPU [Bernaschi(2020a),Bernaschi(2020b)]. The
main goal of the present paper is targeting at the scalability of that solution, making it able to solve sparse linear sys-
tems whose dimensions largely go beyond the memory capacity of a single computing node, such as those stemming
from modern applications in Computational and Data Science. To fill this gap, some approximations in the original
numerical algorithms have been required, so that the combination of communication-avoiding techniques, fine-grained
parallelism, and overlapping between computation and data communication could allow us to design a scalable linear
solver. The contributions of this work are manifold:

• a parallel AMG preconditioner for hybrid architectures able to show better convergence properties and scal-
ability at lower complexity with respect to similar state-of-the-art AMG methods;

• a communication-efficient AMG preconditioner setup, based on parallel decoupled aggregation, which allows
us to overlap computations of matching on GPUs with data communication needed for sparse matrix-sparse
matrix products as well as to reduce overall data communication;

• a novel management of the data structure for non-local rows of sparse matrix in parallel hybrid sparse matrix-
sparse matrix products which allows us to re-use at the best very efficient existing GPU kernels.

Our multi-GPU version of BootCMatchG is able to solve linear systems with more that 200 millions of unknowns and
scaling up to 100 hybrid nodes hosting Nvidia GPUs, showing a speedup with respect to AmgX, in the solve phase,
ranging between 1.6x and 2.0x.

The paper is organized as follows: Section 2 briefly summarizes the main issues that affect the scalability and efficiency
of scientific applications, and in particular of sparse linear solvers, on large-scale heterogeneous systems; Section 3
summarizes the features of BootCMatchG and of its components design, which are thought for efficient exploitation
of highly parallel processors; Section 4 describes the main principles and guidelines that inspired our distributed
algorithms on multi-GPU systems based on Nvidia GPU accelerators; finally, Section 5 presents strong and weak
scalability results on realistic test cases stemming from the numerical solution of the 3D Poisson equation, which
represents a ubiquitous kernel in many scientific applications. In particular, we compare our results with those obtained
by a state-of-the-art solver, as implemented in Nvidia AmgX.

2 Iterative Linear Solvers on heterogenerous HPC systems

Solving large and sparse linear systems is a ubiquitous and time-consuming task in Computational and Data Science
applications. Physics-based simulations, statistical approaches for uncertainty quantification, and complex network
analysis are only some of the application contexts. In particular, we focus on scenarios where the approximate solution
is computed iteratively. Such an approach is generally used when the coefficient matrix A is large and sparse or
when the application tolerates a less accurate solution than that offered by the available machine precision. In the
context of heterogeneous computing, where we want to use multi-core architectures and accelerators like GPUs to
maximize performance, developing effective approaches for the iterative solution of linear systems brings the need
of new methods, algorithms, and implementations capable of exploiting the underlying hardware and basic software.
Indeed, regardless of the method adopted for solving the system, i.e., stationary iterative Jacobi and Gauss-Seidel
or un-stationary Krylov methods [Saad(2003)], the computation on sparse matrices is particularly challenging with
respect to its dense counterpart due to the irregular memory access pattern and intrinsic load imbalance caused by the
sparsity pattern of the matrix rows.

GPUs rely on fine-grained parallelism and access to medium-size memories with high bandwidth, but also not negli-
gible latency. Therefore, although the current software stack makes available programming environments, e.g., Nvidia
CUDA, which provide a clear interface to the features of the hardware, it is still challenging to use the above acceler-
ators efficiently, especially for memory-bound kernels, like sparse matrix-vector products involved in iterative linear
solvers. For example, the Nvidia GPUs are built in terms of arrays of multithreaded, streaming multiprocessors, and
each multiprocessor is composed of a fixed number of scalar processors. The CUDA programming paradigm is based
on the concept of blocks of threads which share data. Therefore, having a regular density in the rows of a matrix is
a favorable situation for high-throughput SIMD operations, whereas the irregular structure of general sparse matrices
poses some limitations for efficient usage of the architecture which often are smoothed by organizing matrices in suit-
able data structures [Filippone(2017)]. Furthermore, a sequence of SIMD operations applied to the same data allows
realizing the so-called data/thread-locality which makes GPU exploitation very efficient. For the same reasons, basic
iterative algorithms which express a high-level of data parallelism are preferred to more complex algorithms which in-

2



A PREPRINT - MARCH 7, 2023

duce data dependency although, generally, the former may have worse convergence properties. Indeed, extra computa-
tion is often well tolerated and balanced by a very efficient execution on the GPU [D’Ambra(2016),Bernaschi(2020a)].
On the other hand, the ability to exploit scalability of large clusters of heterogeneous nodes largely depends on ap-
propriate coordination among multiple levels of computation so that data partitioning, data/workload balancing, data
communication between GPUs, CPUs, and among distributed nodes, do not penalize in a significant way the final
performance.

During the years, many efforts have been devoted to design and implement efficient and reliable iterative sparse linear
solvers in the form of open-source software libraries. Among the most widely used, we recall PETSc [Petsc(2020)],
Trilinos [Heroux(2005)] and hypre [Falgout(2006), Falgout(2021)]. All these software libraries went through many
revisions to keep up with the technology development, as summarized in [Anzt(2019)]. Sparse solvers relying on well-
known AMG preconditioners specifically tuned for GPU clusters are available in Nvidia AmgX library [AmgX(2020)].

In this scenario, we propose an open-source software package for solving large and sparse linear systems with s.p.d.
matrices as a fundamental component for an efficient exploitation of current high-end supercomputers. Our precondi-
tioning method, although requires a higher setup-time with respect to Nvidia Amgx solver, achieves a better scalability
on multiple nodes and, generally, a faster convergence rate at a smaller complexity. We combine the preconditioned
CG (PCG) method, originally proposed in [Notay(2015)] to be efficiently implemented on distributed-memory ma-
chines, and some of the enhancements introduced in [Bernaschi(2020a), Bernaschi(2020b)] specifically designed for
GPUs.

This work extends and improves our previous work by targeting very-large scale problems, having dimensions which
go beyond the capacity of a single GPU. We apply an approach which introduces some approximations in the algo-
rithms aimed at balancing high-levels of scalability with good convergence properties and computational complexity
of the final sparse linear solver.

3 Preconditioned Conjugate Gradient

Briefly, we recall the preconditioned CG (PCG) proposed by Notay [Notay(2015)] that is particularly suitable for scal-
ing on distributed machines. It is a flexible version of the original CG, supporting the use of variable preconditioners,
which relies on a re-organization of the basic operations, i.e., sequences of inner products and vector updates of the
form y = αx+ y (usually named dot and axpy operations, respectively), in order to reduce the overhead due to global
synchronization and communication latency. The method is described in Algorithm 1, where we highlight as the main
computational kernels:

1. the application of the preconditioner represented by the matrix B at lines 2 and 9;
2. the sparse matrix-vector product (SpMV) involving the original matrix A at lines 3 and 10 ;
3. a sequence of dot products, instructions from line 11 to 13;
4. a sequence of axpy operations, instructions from line 15 to 18.

The above version of the PCG brings out data locality, both in the sequence of dot products and in the sequence of
the axpy operations, which can be also exploited at node-level for reducing global memory access, as we described
in [Bernaschi(2020a)] and implemented in [Bernaschi(2020b)].

3.1 Algebraic Multigrid Preconditioner

One of the most relevant operations in the PCG is the application of a preconditioner which aims at reducing the
number of iterations to solve the system within a given accuracy. Specifically, a preconditioner is a matrix B that
attempts to improve the spectral properties of the system coefficient matrix. For s.p.d. matrices, it can be proved that
the rate of convergence of the Conjugate Gradient method depends on the distribution of the eigenvalues of the system
matrix [Saad(2003)]. It is expected that the condition number being smaller for the preconditioned matrix BA w.r.t.
the matrix A, i.e. κ(BA) = ‖BA‖‖(BA)−1‖ < κ(A), where ‖ · ‖ is a matrix norm.

From a computational perspective, there are two main issues that limit the scalability of preconditioning techniques.
The first one depends on the cost of the application of the preconditioner, that consists of multiplying the sparse matrix
B and the current residual vector ri, as reported in Algorithm 1, or in a more general procedure which computes the
multiplication in an implicit way. The setup of B is therefore particularly relevant; ideally its cost linearly increases
in the problem size in terms of floating-point operations and memory footprint. It should be composed of as local as
possible actions, reducing data communication among parallel tasks and leading to parallel performance which could
be linearly increasing for an increasing number of tasks. We will refer to these features as implementation scalability.

3



A PREPRINT - MARCH 7, 2023

Algorithm 1 Preconditioned Flexible Conjugate Gradient
1: Given u0 and set r0 = b−Au0
2: w0 = d0 = Br0
3: v0 = q0 = Aw0

4: α0 = wT
0 r0

5: β0 = ρ0 = wT
0 v0

6: u1 = u0 + α0/ρ0d0
7: r1 = r0 − α0/ρ0q0

8: for i = 1, . . . do
9: wi = Bri

10: vi = Awi

11: αi = wT
i ri

12: βi = wT
i vi

13: γi = wT
i qi−1

14: ρi = βi − γ2i /ρi−1

15: di = wi − γi/ρi−1di−1
16: ui+1 = ui + αi/ρidi

17: qi = vi − γi/ρi−1qi−1
18: ri+1 = ri − αi/ρiqi
19: end for

The second aspect is related to the number of iterations that depends on the optimal convergence or algorithmic
scalability of the preconditioner. An ideal preconditioner produces a preconditioned matrix whose condition number
is very small (κ(BA) ≈ 1) and independent of the problem size so that the PCG could have an almost constant number
of iterations.

In this paper, we focus on a class of multigrid preconditioners named Algebraic MultiGrid (AMG) methods. They
are considered purely algebraic since the information they use for building B comes only from the system matrix A
rather than from the characteristics of the application domain. Such methods exhibit optimality both in computational
complexity and convergence in some cases and therefore are suitable candidates for scalable parallel implementa-
tion [Xu(2017), Vassilevski(2008)].

The challenge in this type of preconditioners is the need to setup, in a purely algebraic setting, a hierarchy of coarse
index spaces and matrices from the original system matrix (the fine matrix), which are sufficiently sparse and are still
able to well represent, at each coarse level of the hierarchy, the components of the error vector which slow down the
convergence of the PCG method.

In details, the setup of any AMG generates a hierarchy of nl matrices, Ak = (akij)i,j=1,...,nk
, k = 1, . . . , nl, where

A1 = A by a coarsening algorithm. For all k < nl, a prolongation matrix P k of dimension nk ×nk+1 is built and the
matrix Ak+1 = (P k)TAkP k is computed according to the usual triple-matrix Galerkin product.

At each level of the hierarchy, a smoother Mk is also defined, representing the iteration matrix of a simple relaxation
method. In our approach, we employ a weighted version of the Jacobi iterative method, named `1−Jacobi. This
method is highly parallel and always convergent for s.p.d. matrices, furthermore it exposes good smoothing properties
for diagonally dominant matrices [Brannick (2013)]. Its iteration matrix is defined as the diagonal matrix Mk =
diag(Mk

11, . . . ,M
k
nknk

), with Mk
ii = akii +

∑
j 6=i a

k
ij , whose inversion is immediate.

The components produced in the setup may be combined in several ways to obtain different types of multigrid cycles
to be applied in Algorithm 1 (line 9) as a procedure which computes the effect of the application of the preconditioner
operator to the residual vector.

An example of such a combination, known as V-cycle, is given in Algorithm 2. In that case, a single iteration of the
same smoother is used before and after the recursive call to the V-cycle (i.e., in the pre-smoothing and post-smoothing
phases). At the coarsest level, i.e., for k = nl, a direct solver is usually employed. However, using direct solvers at the

4



A PREPRINT - MARCH 7, 2023

coarsest level of an AMG method on multiple GPUs has two significant drawbacks: (i) the coarsest-level matrix tends
to have a small size, therefore, in a multiple-node setting the cost of data communication dominates the local compu-
tations; (ii) direct solvers require the solution of a triangular system, which is particularly challenging on GPUs, due
to the strong data dependencies and the load imbalance inherent to the sparse triangular structure [Yamazaki (2020)].
In this work, we focus on a distributed iterative solver of the coarsest system to reduce data dependencies among
parallel processors, in particular we apply the same version of the Jacobi method applied as smoother, for a fixed,
sufficiently large, number of iterations. This approach allows us to re-use the kernels developed for the smoothing
step and already demonstrated its benefits in the parallel version of the method for single GPU [Bernaschi(2020a)].
Algorithm 2 corresponds to the application of a preconditioner matrix B implicitly defined by the sequence of the

Algorithm 2 V-cycle

1: procedure V-CYCLE(k, nl, Ak, rk)
2: if k 6= nl then
3: rk = (Mk)−1rk

4: rk+1 = (P k+1)T rk

5: rk+1 = V-cycle
(
k + 1, nl, Ak+1, rk+1

)
6: rk = P k+1rk+1

7: rk = (Mk)−T rk

8: else
9: rk =

(
Ak
)−1

rk

10: end if
11: return rk
12: end procedure

following matrices:

Bk = (Mk)−T + (Mk)−1 − (Mk)−TAk(Mk)−1+

(I − (Mk)−TAk)(P kBk+1(P k)T )(I −Ak(Mk)−1) ∀k,

assuming that Bnl ≈ (Anl)−1 is an approximation of the inverse of the coarsest-level matrix.

Recently, we proposed an AMG relying on a coarsening algorithm based on a paiwise aggregation of unknowns which
exploits maximum weight matchings (hereby MWM) in the adjacency graph of the system matrix. The graph weights
are computed by a suitable function of a smooth vector (namely w) for the problem at hand and of the matrix entries.
The procedure is applied recursively to obtain a hierarchy of coarser matrices until the coarsest matrix has a sufficiently
small dimension (coarsesize) (see Algorithm 3).

Algorithm 3 Basic coarsening based on MWM
1: procedure COARSENING(A,w, coarsesize)
2: k = 1, A1 = A, w1 = w
3: while size(Ak) > coarsesize do
4: apply MWM(Ak, wk)
5: setup of pairwise prolongator P k

6: compute Rk = (P k)T

7: compute Ak+1 = RkAkP k

8: compute wk+1 = Rkwk

9: k = k + 1
10: end while
11: NL = k
12: return NL,A2, . . . , ANL

13: end procedure

The NL− 1 paiwise prolongator operators built after matching correspond to piecewise constant interpolators having
only one entry per row and two entries per column whose values depend on the chosen smooth vector. More aggressive
coarsening, with aggregates merging multiple pairs and having almost arbitrary large size of the type 2s for a given
s > 1, can be obtained by combining multiple steps of the basic pairwise aggregation, i.e., by computing the product
of s consecutive pairwise prolongators; then, the final nl − 1 prolongator operators have columns with at most 2s

5



A PREPRINT - MARCH 7, 2023

entries. This choice of piecewise constant operators, also known as un-smoothed or plain prolongators, allows us to
preserve sparsity of the coarser levels matrices, so that the final preconditioner has pretty small memory requirements
and its application at each PCG iteration can be efficiently implemented in a parallel setting. For details on the
formulation and the mathematical rationale of our method we refer the reader to [D’Ambra(2013), D’Ambra(2018),
Bernaschi(2020a), D’Ambra(2019)]. Here, we point out just that the main computational building blocks in the AMG
preconditioner setup are:

1. the recursive application of MWM for building the sequence of basic pairwise prolongator operators P k for
k = 1, . . . , NL− 1;

2. triple-(sparse) matrix multiplications (hereby SpMM) to compute the coarse matrices Ak+1 = (P k)TAkP k

at each level k = 1, . . . , NL− 1;
3. (sparse) matrix-(dense) vector products (hereby SpMV) to compute the coarse smooth vector wk+1 = Rkwk

at each level k = 1, . . . , NL− 1;

4. computation of a sequence of SpMM of the type P
1
= P 1 · · ·P s, P

2
= P s+1 · · ·P 2s, . . ., P

nl−1
=

P bNL/scs+1 · · ·PNL−1, to merge basic pairwise aggregates in aggregates of size at most 2s and obtain the
final hierarchy of nl − 1 = dNL/se − 1 prolongators;

5. computation of the new nl − 1 coarse matrices by SpMM of Galerkin type involving the final sequence of
prolongators P

k
.

The last two steps may be not applied in the case of a final AMG hierarchy based on basic pairwise aggregates.

4 BootCMatch on Multi-GPU systems

Enabling a hybrid MPI-CUDA scalable implementation of the computational procedure described in the previous
section required a significant re-design of our single-GPU version. Our guidelines, as in the best practices, have
been: efficient GPU exploitation by data and thread locality, minimization of data exchange between host and GPU
accelerator as well as among multiple MPI tasks, possible exploitation of overlapping between computation and data
communication among distributed MPI tasks.

The need to introduce parallelism in the operations for the setup of the AMG preconditioner led us to apply some
algorithmic choices which impacted the quality of the coarsening algorithm described in Algorithm 3, as we detail in
the following. However, as we demonstrate in Section 5, our approach is able to sufficiently preserve the convergence
properties of the AMG preconditioner albeit some forms of approximation are introduced in its setup. In the hybrid
implementation, as in the original sequential code and in the mono-GPU version, the distributed sparse matrices are
represented in the widely used Compressed Sparse Row (CSR) storage format. Furthermore, a row-block distribution
of the matrices is applied, where each task owns a block of consecutive rows of the system matrix, and consecutive
blocks of rows are assigned to MPI tasks with consecutive ranks.

4.1 Decoupled Aggregation

Our preconditioner setup relies on a close-to-linear time complexity algorithm for computing matchings corresponding
to a sub-optimal maximum weight. In general, algorithms for computing matchings with maximum weight (optimal
or exact matchings) are intrinsically sequential and feature a super-linear computational complexity [Pothen(2019)].
In [Bernaschi(2020a)] we discussed our effort in adapting an existing GPU implementation of the Suitor algo-
rithm [Naim(2015], which computes a matching whose weight is, at least, half of the optimum. Although the Suitor
aims at reducing the length of critical paths exploiting the principle of local dominant edges, it follows a bidding
strategy to finalize matching. This bidding requires, in a distributed framework with multiple GPUs, a number of
communication rounds, with corresponding expensive memory copies between CPU and GPU, that is basically equal
to the number of tasks. It is apparent that, although it is possible to develop a multi-GPU version of the Suitor (and we
did it for comparing the quality of the results, see below), it can not be used in practice because it would hinder the
scalability in a dramatic way. As a matter of fact, many research efforts are in progress to design parallel sub-optimal
matching algorithms for very large graphs, as discussed in [Acer(2021)]. To the best of our knowledge, efficient al-
gorithms and software exploiting multiple GPUs in a distributed setting are not yet available and their development is
beyond the scope of this paper. However, for our aims, having a multi-GPU version of the MWM computation is not
needed, as argued in the following.

A well studied parallelization strategy for coarsening in a distributed-memory programming model, which demon-
strated to produce good quality coarse matrices in practice [Tuminaro(2000), D’Ambra(2010), Notay(2015)], is based

6



A PREPRINT - MARCH 7, 2023

on a so-called decoupled approach for the aggregation of unknowns. In details, every parallel task independently ag-
gregates the subset of unknowns assigned to it in the row-block distribution of the current-level matrix. This decoupled
aggregation is embarrassingly parallel, indeed it does not require any data communication among the parallel tasks.
However, it has a drawback which could affect the quality of the coarsening. Indeed it may produce non-uniform
aggregates for the boundary unknowns, that are the unknowns owned by a task and connected to unknowns owned by
other tasks. Furthermore, it is dependent on the number of parallel tasks and on the initial partitioning of the system
matrix. We resort to the parallel decoupled approach of Algorithm 3, which results in the application of the MWM
kernel only to the local subgraph corresponding to the local unknowns, ignoring the possible connections among un-
knowns owned by different tasks. This choice allows us to exploit the already available mono-GPU version of the
Suitor algorithm. Despite the above mentioned simplification, as also demonstrated by the results discussed in Sec-
tion 5, the decoupled approach realizes a good trade-off between convergence of the final PCG and parallel efficiency
of the preconditioner setup. We observe that, after the decoupled MWM computation, since our aggregates involve
only unknowns local to the GPU, the aggregation algorithm defines a distributed block prolongator (and then a restric-
tor) whose blocks, corresponding to the different tasks, can be locally built. As detailed in the next section, this special
structure of the prolongation/restriction matrices also impacts on the successive computations to finalize the AMG
preconditioner setup, i.e., on the parallel SpMM operations needed for possible products of successive prolongators
and for the triple sparse matrix Galerkin products required to compute the coarser matrices.

4.2 Parallel Hybrid SpMM Product

General SpMM is a fundamental building block in several scientific computing applications involving sparse matri-
ces and graphs, not only for AMG preconditioners in linear solvers. A large interest to have efficient SpMM kernels
on parallel computers employing high-throughput accelerators has recently been observed in the context of Artificial
Intelligence, e.g., in neural network compression using the factorization of layers into sparse matrix products [Good-
fellow(2016), Zachariadis(2020, Giffon(2021].

The main issue in SpMM is represented by the number of non-zero entries as well as the sparsity pattern of the
resulting matrix product that are not predictable in advance. A so-called symbolic phase is in general applied, in which
the number of nonzeros in the result matrix is computed, postponing the actual calculations of the values to a following
numeric phase. For the single GPU version of BootCMatchG, we resorted to the nsparse [Nagasaka(2017)] package,
which revealed much more efficient of any combination of primitives provided by Nvidia’s cuSparse library. However,
the nsparse solution had two disadvantages: i) it relied on the legacy behaviour of CUDA shuffle primitives and ii) it
assumes that the two matrices are local to the GPU (there is no support for multi-GPU execution). While we solved
the first issue by a simple updating of the shuffle primitives, according to their new definition introduced in CUDA-9,
the second issue deserves a more detailed discussion.

Assumed that both operands are distributed in a consecutive row-block setting assigned to parallel tasks with con-
secutive MPI ranks, a straightforward solution to split the product computation among the GPUs is that each GPU
computes the corresponding block of rows of the product matrix. As an example, in the most simple configuration
with just two GPUs, the first GPU is in charge of computing the first half of the rows and the second GPU is in charge
of the second half of the rows of the product matrix. We describe the steps to be carried out for computing the rows of
just the first half of the product matrix (i.e., from the viewpoint of the first GPU) but it will be apparent that the same
approach can be applied to any subset of rows. Each GPU owns the nonzeros of its row block of both the operands
then, to finalize the scalar products of its rows of the first matrix by the columns of the second matrix, it generally
needs the nonzeros of the second matrix corresponding to the row indices that are above or below its range of row
indices, depending on the sparsity structure of each row of the first matrix. In our example the first GPU has just the
nonzeros of the first half of each column of the second matrix. If a row belonging to its subset of the first matrix has
nonzeros whose column index is larger than n/2, where n is the total number of rows (we assume that n is an even
number), it needs those nonzero entries to complete the product. In the following example of two very small (4 × 4)
matrices (the horizontal line represents the division between the two GPUs), the first GPU, in order to complete its

7



A PREPRINT - MARCH 7, 2023

part of the product, needs the elements, b41 and b44 of the last row in charge of the second GPU.a11 0 0 a14
0 a22 0 a24
0 0 a33 0
a41 a42 0 a44

 ∗
b11 0 0 b14

0 b22 b23 0
0 b32 b33 0
b41 0 0 b44

 =


a11b11 + a14b41 0 0 a11b14 + a14b44

a24b41 a22b22 a22b23 a24b44

. . .

. . .


We exchange all the data necessary to complete the product on each GPU before starting the computation, so that the
product appears as if it were completely local from the viewpoint of the nsparse CUDA kernel. We made this choice
because nsparse is very efficient up to the point that is better to call it once rather than to compute the local part of the
product, exchanging, in the mean time, the required data, then compute the remaining part of the product and sum the
two contributions. This alternative choice could offer an advantage due to the potential overlap of the computation of
the local part with the exchange of the data for the non local part. However, it would entail a double execution of the
nsparse kernel (with two different symbolic steps) and also the execution of an additional kernel for the sum of the
two partial products. In summary, our final procedure for the multi-GPU SpMM is composed by the following steps,
as sketched in Algorithm 4:

1. Each GPU checks which rows of the second matrix needs to receive from other GPUs, (lines 2 to 6).

2. CPUs exchange information about the number of non-zeros entries of each required row, using the following
MPI collective communication primitives: MPI Allgather, MPI Alltoall, MPI Alltoallv, (line 7).

3. CPUs, after the allocation of suitable memory buffers (whose size is set in the previous step), exchange the
indices and the corresponding values of the non-local rows using MPI point-to-point (MPI p2p) non blocking
communication primitives, (lines 8 and 9).

4. Each GPU builds the subset of rows of the second matrix that it needs, by combining the rows it already
owned with those received by other GPUs in the previous step. To minimize the number of memory copy
operations, we introduced a new form of sparse matrix representation that we call segmented CSR. The idea
is to maintain the local part of the matrix in its original CSR data structure and to store the non-local part,
coming from other tasks, in an auxiliary CSR data structure. The data structure of the auxiliary CSR should
include, in general, all the information required to decide which of the two parts, local or remote, is used
during the computation of the matrix product. For the one-dimension decomposition adopted in the present
work (i.e., each GPU has a block of consecutive rows), it is enough to know which subset of rows is local
to the GPU. Each column index (and corresponding value) within that range is accessed through the original
CSR structure whereas any other column index (and corresponding value) is accessed through the auxiliary
CSR. The original nsparse has been amended to include this simple criterion of selection whose cost is
completely negligible with respect to the time saving it provides.

5. Each GPU carries out the product between its part of the first matrix and the suitable subset of the second
matrix built in the previous step, (see line 11 in Algorithm 4).

We observe that, in our implementation specifically tuned for the AMG preconditioner setup, steps 1), 4) and 5)
are executed as GPU kernels, whereas steps 2) and 3) are carried out on CPU. This design choice is driven by the
possibility to overlap computation and data communication, indeed the steps 2) and 3) can be executed on the CPU
when the GPU is working on the MWM computation. As we discuss in section 5.2, this overlap allows us to completely
hide the communication overhead when the number of parallel tasks is sufficiently small (see Fig. 7). However, when
the number of tasks increases, the overlap is not longer balanced because the time required by steps 4) and 5) becomes
dominant with respect to the time required by the MWM computation (that remains always the same regardless of the
number of tasks, see Section 4.1).

We finally observe that, due to the decoupled aggregation approach described in Section 4.1, we are able to completely
avoid the communication for one SpMM operation of the triple-matrix Galerkin product needed to compute the coarse
matrix at each level of the preconditioner hierarchy. Indeed, data communication among the tasks is only required for
the first product C = AkP k, whereas the second SpMM product (RkC) is completely local, because the rows of Rk

do not include nonzeros whose column indices correspond to rows owned by different tasks, as sketched in Figure 1.

8



A PREPRINT - MARCH 7, 2023

Algorithm 4 Parallel SpMM
Input: Two matrices A and B, each process owns only a block of consecutive rows (from h to k) of each matrix.
Output: Matrix C = AB, each process computes only its block of consecutive rows (from h to k).

1: rowsToReceive← 0
2: for aij ∈ Alocal do
3: if j < h or j > k then
4: rowsToReceive← j
5: end if
6: end for
7: nnzPerRow ←MPIcoll(nnz(B(rowsToReceive)))
8: Allocate memory for B(rowsToReceive) combining the information contained in nnzPerRow and
rowsToReceive

9: B(rowsToReceive)←MPIp2p(Bremote)
10: Bsegmented ← merge(Blocal, B(rowsToReceive))
11: C ← sparseProduct(Alocal, Bsegmented)
12: return C

Ak (nk x nk)

i

j

h v

i

j

Pk (nk x nk+1)Rk (nk+1 x nk)

i j

h

v

Figure 1: Triple-matrix Galerkin product in the decoupled aggregation: matricesRk and P k have nonzeros only inside
the gray blocks.

4.3 Parallel hybrid SpMV Product

It is well known that sparse matrix-dense vector product is the key operation in iterative methods for linear solvers. In
BootCMatchG, it is largely employed in the PCG method and in the V-cycle. As we described in [Bernaschi(2020a)],
depending on the sparsity pattern of the matrix, we resort to different solutions to carry out the product on the GPU.
Regardless of the specific solution, when it comes to a distributed implementation using multiple GPUs, there is
the need to exchange data among the GPUs to complete the product. The problem is similar to that described in
Section 4.2: any GPU may need some entries of the vector owned by other GPUs. In the following example, the first
GPU needs the entry x4 whereas the second GPU needs the entries x1 and x2 to complete the corresponding SpMV.a11 0 0 a14

0 a22 0 a24
0 0 a33 0
a41 a42 0 a44

 ∗
x1x2x3
x4

 =

 a11x1 + a14x4
a22x2 + a24x4

a33x3
a41x1 + a42x2 + a44x4


It is apparent that the amount of data that needs to be exchanged among GPUs is very limited compared to the SpMM
product. Each GPU needs to send, at most, n/np entries to other GPUs (where np is the number of parallel tasks)
and needs to receive, at most, np−1

np n entries from other GPUs. However, in the SpMV product, there is no need to
carry out a symbolic step, so it makes sense to split the product in a local part that involves just the entries of the
vector that each GPU already owns and a non-local part that involves the entries of the vector that each GPU needs
to receive from other GPUs. This split makes possible to overlap the local computation with the communication
of the necessary entries of the vector so that the communication overhead may be hidden. Albeit this approach is
similar to what proposed in [Kreutzer(2012), Naumov(2015)], to the best of our knowledge, it has not been widely
used in practice because its implementation is not straightforward. To provide an actual advantage, it requires several
mechanisms: i) asynchronous memory copies; ii) CUDA streams; iii) non-blocking MPI primitives that, properly
combined, support the concurrent execution of memory copies, data-communication among CPUs and computation
on local data carried out by the GPU. Our scheme is shown in Algorithm 5. The overlap is between the execution of the
local part of the product (line 9) and the communication (the block between line 10 and line 12). Then the execution is

9



A PREPRINT - MARCH 7, 2023

completed by computing the entries of the vector product that require communication with other tasks. With respect
to [Kreutzer(2012)] we anticipate the execution of the local part exploiting the chance of running the kernel in line 9
in asynchronous mode under the assumption that the output vector y is different from the input vector x (if the output
vector had to replace the input vector, then a preliminary copy of the vector would be required).

Algorithm 5 Parallel SpMV
Input: A matrix A and a vector x, each process owns only a block of consecutive rows (from h to k) of matrix A
and the corresponding elements of vector x.
Output: Vector y = Ax, each process computes only its set of consecutive elements of x (from h to k).

1: elToReceive← 0
2: for aij ∈ Alocal do
3: if j < h or j > k then
4: elToReceive← j
5: end if
6: end for
7: x(elToSend)←MPIcoll(x(elToReceive))
8: Allocate memory for x(elToReceive) and x(elToSend)
9: y ← SparseMatrixV ectorProduct(Alocal, xlocal)

10: Copy x(elToSend) to CPU
11: x(elToReceiveCPU)←MPIp2p(xelToSendCPU )
12: Copy x(eToReceiveCPU) to GPU
13: y ← SparseMatrixV ectorProduct(Alocal, xremote)
14: return y

Within the iterations of the PCG method, the sparse matrices involved in the SpMV products do not change, therefore
the indices which identify the vector entries to be exchanged in line 11 remain always the same. Finally, the pre-
computation required for the communication operations (i.e., the selection of the elements to exchange among GPUs,
corresponding to the block between lines 2 and 8 in Algorithm 5) is performed once before the solve phase and ex-
ploited throughout all iterations of PCG for each matrix in the AMG hierarchy. We highlight that data communication
is only needed for the SpMV products involving the original system matrix and the coarser matrices at each level of
the AMG hierarchy, whereas all the SpMV products needed in the V-cycle and involving prolongator and restrictor
operators are purely local because of the block structure of the related matrices.

5 Experimental Setting and Results

In this section, we analyze parallel performance of the hybrid version of BootCMatchG on well-known benchmark test
cases. We consider algebraic systems required for the solution of the Poisson equation in 3D:

−∇ · (K∇u) = f , in [0, 1]3, (1)

with homogeneous Dirichlet boundary conditions, K = 1 and unitary right-hand side. The discretization of this
problem is obtained by the classic 7-points finite-difference stencil for the left-hand side operator (the Laplacian
operator), which results in the following system of algebraic equations:

6ui,j,k
h2

− ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k + ui,j,k−1 + ui,j,k+1

h2

= fi,j,k ≡ 1,

for i, j, k = 1, . . . , nd, and h = 1/(nd + 1)2, and with ui,j,k = u(ih, jh, kh) ≡ 0 on ∂[0, 1]3. The above linear
systems are characterized by a s.p.d matrix of coefficients and represent the computational kernel of many widely used
scientific and engineering applications. Linear systems associated to the discrete Laplacian are also frequent in net-
work analysis, e.g., in community detection algorithms based on spectral properties of the Laplacian graph associated
with the network [D’Ambra(2019)]. We are interested in analyzing both strong scalability, i.e., the reduction in the
execution times when a linear system with a fixed size is solved with an increasing number of parallel resources, and
weak scalability properties of our code for solving linear systems of increasing dimension, while parallel resources
increase. As already reported in Section 4, data distribution is based on a row-block distribution of the system matrix

10



A PREPRINT - MARCH 7, 2023

among the MPI tasks and the related right-hand sides, that is blocks of contiguous rows are assigned to each task
according to the order defined by the MPI rank. We apply the hybrid version of BootCMatchG to setup AMG hier-
archies with the maximum size of the coarsest matrix fixed to 40 · nd. A maximum number of levels is also fixed to
40. We compose couples of basic pairwise prolongator operators computed by basic pairwise aggregation, resulting in
aggregates of size at most 8, i.e., in prolongator operators having at most 8 entries per column. After completing the
setup, we apply the AMG preconditioner as a single iteration of a V-cycle with 4 iterations of `1−Jacobi as pre- and
post-smoother, whereas 20 iterations of the same smoother are applied at the coarsest level.

We ran our experiments on Piz Daint1, operated by the Swiss National Supercomputing Center. It is based on the Cray
XC40/XC50 architecture with 5704 hybrid compute nodes (Intel Xeon E5-2690 v3 with Nvidia Tesla P100 accelerator)
and 1813 multicore compute nodes (Intel Xeon E5-2695 v4), using the Cray Aries routing and communications ASIC
with Dragonfly network topology. We ran the tests assigning 1 MPI rank per each hybrid node embedding 1 GPU.

We analyze the performance of the linear solver looking at the operator complexity OPC of the resulting AMG
hierarchy and tsetup, that is the execution time for the hierarchy setup. The number of iterations it of the PCG, the
execution time tsolve to solve the system and the execution time titer per each PCG iteration are also discussed to
characterize the application phase from the viewpoint of both algorithmic and implementation scalability. All times
are in seconds. We observe that the operator complexity of an AMG hierarchy allows us to quantify both the memory
requirements needed to store the operators at each level of the hierarchy and the cost of the application of a related

V-cycle during the PCG iterations. It can be measured by OPC =
∑nl−1

k=0 nnz(Ak)

nnz(A0) > 1, where nnz(·) is the number
of nonzero entries in a matrix. Note that we stop PCG iterations when the relative residual in the `2 norm is less than
10−6 or the number of iterations reaches the maximum value fixed to 1000.

Our hybrid version of BootCMatchG, hereby named BCMG, is compared with the hybrid version of Nvidia
AmgX [AmgX(2020)]. AmgX makes available various AMG preconditioners, based on different well known coarsen-
ing approaches already available in other libraries, such as hypre, and producing AMG hierarchies with different op-
erator complexities. For a fair comparison, we selected the input configuration which defines AMG hierarchies based
on aggregation of unknowns and having operator complexities comparable with the BCMG preconditioner described
above. To this aim we modified few parameters of the configuration file named PCG AGGREGATION JACOBI.json,
that is distributed with the library. The selected AmgX preconditioner, hereby named AMGX, relies on a decoupled
plain aggregation scheme based on local matching of unknowns as in our method, but their matching is driven by a
simple heuristic. This heuristic, well understood only for the class of M-matrices [Vassilevski(2008)], is a measure of
strength of connections among the unknowns which derives from a characterization of the smooth error components;
in analogy to what we do for BCMG, aggregates of size 8 are set. The resulting preconditioners are then applied
in the same conditions described for BCMG: at each iteration of the PCG method, 1 iteration of a V-cycle, with 4
pre/post-smoothing iterations of `1−Jacobi at intermediate levels and 20 iterations of `1−Jacobi at the coarsest level,
is applied. In all the cases, we built an AMG hierarchy with the same number of levels obtained by using our stopping
criterion for coarsening in BCMG.

5.1 Strong Scalability

We first discuss performance behaviour in solving a linear system with 3003 = 27 × 106 degrees of freedom (dofs),
increasing number of parallel nodes embedding 1 GPU per node up to 16 nodes. In all the cases, the number of
AMG hierarchy levels is 5. In Fig. 2, we show operator complexity and number of iterations of BCMG and AMGX.
We observe that in all the cases BCMG produces an AMG hierarchy with a smaller complexity than AMGX; it is
generally about 1.14 for BCMG, whereas in the case of AMGX it ranges in the interval [1.28, 1.34] corresponding to
an increase in memory footprint and computational complexity of the preconditoner application ranging from 12%
to 20% with respect to BCMG. On the other hand, we observe that in spite of the larger complexity, AMGX always
requires a larger, albeit more stable, number of linear iterations in the solve phase. The expected variability in the
number of iterations of BCMG for an increasing number of parallel nodes is due to a degradation of the quality of the
coarse matrices related to the decoupled approach applied in Algorithm 3. Increasing the number of parallel nodes
corresponds to larger non-local matrix blocks which are ignored in the local MWM and in the corresponding block
prolongators/restrictors; this is not a significant drawback because a large increase in the number of parallel resources
for a fixed size problem is not beneficial due to the well known Amdahl’s law effect. The smaller operator complexity
and number of iterations of BCMG corresponds to a smaller solve time going from 5.14 sec. on 1 node to 0.95 on 16
nodes (see Fig. 3), which results in a satisfactory speedup of about 5.4. A slightly larger speedup of AMGX of about
5.60 on 16 nodes is essentially due to its very large solve time on 1 node. This behaviour highlights a very efficient
implementation both at the node level and in exploitation of parallelism of all the computational kernels of the BCMG

1https://www.cscs.ch/computers/piz-daint/

11



A PREPRINT - MARCH 7, 2023

1 2 4 8 16
Number of GPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

OP
C

Strong scaling for 27M dofs: V-Cycle Complexity

BCMG
AMGX

1 2 4 8 16
Number of GPUs

0
10
20
30
40
50
60
70

Ite
ra

tio
ns

Strong scaling for 27M dofs: Number of Iterations

BCMG
AMGX

Figure 2: Strong Scalability: Operator complexity and Number of PCG Iterations

solve phase, as also confirmed by the very good behaviour of the time per iteration which shows a speedup of about
7.5 on 16 nodes, against a corresponding speedup of AMGX of about 5.53. For sake of completeness, in Fig. 4, we

1 2 4 8 16
Number of GPUs

0

2

4

6

8

Ti
m

e 
to

 so
lv

e 
[s

]

Strong scaling for 27M dofs: Time to Solve

BCMG
AMGX

1 2 4 8 16
Number of GPUs

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Ti
m

e 
pe

r i
te

ra
tio

n 
[s

]

Strong scaling for 27M dofs: Time per Iteration

BCMG
AMGX

Figure 3: Strong Scalability: Solve Time and Solve Time per Iteration

also show the execution time for preconditioners setup and the total execution time given by the sum between solve
time and preconditioner setup time. As expected, the setup of BCMG requires a larger time due to the very different
algorithmic approach. Indeed, our algorithm relies on the MWM kernel for coarsening and on an explicit triple sparse
matrix product to generate the AMG hierarchy. On the contrary, the plain aggregation implemented in AMGX is driven
by a simple heuristic based on a parameter-dependent measure of the connections’ strength among the unknowns and
builds binary prolongators so that the computation of the coarser matrices at each level requires just simple local sums.
As a consequence, the overall procedure is embarrassingly parallel [Naumov(2015)]. Nevertheless, a speedup of about
3.7 is obtained for BCMG on 16 parallel nodes, and the total execution time is always lower for BCMG.

1 2 4 8 16
Number of GPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Se
tu

p 
Ti

m
e 

[s
]

Strong scaling for 27M dofs: Setup Time

BCMG
AMGX

1 2 4 8 16
Number of GPUs

0

2

4

6

8

To
ta

l T
im

e 
[s

]

Strong scaling for 27M dofs: Total Time

BCMG
AMGX

Figure 4: Strong Scalability: Preconditioner Setup Time and Total Time

5.2 Weak Scalability

In this section, we analyze weak scalability of our solver; the fixed matrix size per node is equal to 1303 ≈ 2.2× 106,
going from 1 to 100 nodes. Therefore, we solve problems up to ≈ 2.2 × 108 dofs. We observe that, in this case, the

12



A PREPRINT - MARCH 7, 2023

number of levels of the AMG hierarchies increases for increasing number of parallel nodes, ranging from 4 levels on
1 node to 5 levels from 2 to 16 nodes, and finally to 6 levels from 32 up to 100 nodes. This is due to our stopping
criterion for the coarsening algorithm which tries to realize a good trade-off between the number of hierarchy levels
and the size of the coarsest matrix, so that we can obtain a sufficiently accurate solution of the coarsest system at each
preconditioner application while preserving parallel efficiency.

In Fig. 5, we show operator complexity and number of iterations of BCMG versus AMGX. We can see that in all
cases, OPC is smaller for BCMG than AMGX and it is about 1.14 for all the number of nodes. This confirm that our
AMG hierarchy is generally cheaper than that of AMGX both in terms of memory footprint and in terms of the V-cycle
application. On the other hand, in spite of the larger complexity, the number of iterations required by AMGX in the
solve phase is always higher than that of BCMG. After an initial increase for both the solvers, they have a similar
more stable behaviour, but the increase in the number of iterations for AMGX is ∼ 50% going from 1 to 100 nodes,
whereas the increase for BCMG is of about 36%, showing that BCMG produces hierarchies with better algorithmic
scalability. This better quality and lower complexity of our preconditioner is confirmed by the solve time (see Fig.
6). BCMG solve times are always significantly smaller than that of AMGX. In many cases AMGX requires a solve
time that is double than that of BCMG. The more stable behaviour of the BCMG solve times for increasing number of
resources and problem size is the result of the better scalability properties of our solver. Finally, if we look at the time
per iteration, as expected from the values of the operator complexity, we see that BCMG always has smaller time than
AMGX. On the other hand BCMG also shows a smaller increase ratio for increasing number of nodes, showing that all
the computational kernels in the application phase of the preconditioner are efficiently implemented. We observe from

1 2 4 8 16 32 64 100
Number of GPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

OP
C

Weak scaling for 27M dofs per GPU: V-Cycle Complexity

BCMG
AMGX

1 2 4 8 16 32 64 100
Number of GPUs

0

10

20

30

40

50
Ite

ra
tio

ns
Weak scaling for 27M dofs per GPU: Number of Iterations

BCMG
AMGX

Figure 5: Weak Scalability: Operator complexity and Number of PCG Iterations

1 2 4 8 16 32 64 100
Number of GPUs

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Ti
m

e 
to

 so
lv

e 
[s

]

Weak scaling for 27M dofs per GPU: Time to Solve

BCMG
AMGX

1 2 4 8 16 32 64 100
Number of GPUs

0.000

0.005

0.010

0.015

0.020

0.025

Ti
m

e 
pe

r i
te

ra
tio

n 
[s

]

Weak scaling for 27M dofs per GPU: Time per Iteration

BCMG
AMGX

Figure 6: Weak Scalability: Solve Time and Solve Time per Iteration

Fig. 7 that, as expected, AMGX has a smaller setup time than BCMG due to the very different implemented algorithms.
On the other hand, our larger setup times are very well balanced by the significant smaller solve times. Furthemore, we
point out that in sparse linear solvers, a reasonably greater preconditioner setup time is tolerated if good convergence
rates and parallel efficiency are obtained in the solve phase. Indeed, in time-dependent and/or non-linear applications,
it is usually necessary to solve multiple linear systems with the same coefficient matrix or sequences of linear systems
with slowly varying matrices that allow reusing of the preconditioner, therefore greater setup times are dampened over
multiple solution steps.

For a deeper analysis of the performance of our setup phase, a breakdown of the time spent in the two main com-
putational kernels, i.e. MWM and SpMM, is reported in Fig. 7. The time of the measured overhead due to data
communication required by the SpMM parallel computation is also shown (see SpMMComm bar in Fig. 7). We note

13



A PREPRINT - MARCH 7, 2023

that, as described in section 4.2, this data communication is in charge of the CPU, while MWM computation runs on
the GPU to make possible an overlap between MPI data communication and computation. We see that the extra-time
needed for data communication, represented by the SpMMComm bar, is measured for a number of GPUs larger than
16 and, as expected, it increases for increasing number of GPUs. It is worth to note that, when the problem size
and the number of parallel nodes increase, as we already observed, there is an increase in the number of levels of
the AMG hierarchy, then the amount of MWM and SpMM computations increase as well, while the dimension of the
coarser matrices decreases. This is the reason of the increase in the execution time of the SpMM kernel and the related
communication time.

1 2 4 8 16 32 64 100
Number of GPUs

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Se
tu

p 
Ti

m
e 

[s
]

Weak scaling for 27M dofs per GPU: Time for Preconditioner Setup

BCMG
AMGX

Figure 7: Weak Scalability: Preconditioner Setup Time and Breakdown of Setup Time

6 Conclusions

In this paper, we discussed design choices and results of a hybrid MPI-CUDA implementation of a software library for
solving large and sparse linear systems on multiple GPUs. The library design has been driven both at the algorithmic
and at the implementation level by the need to exploit parallelism in each computational kernel of the linear solver.
Best practices for hiding communication by overlapping data communication and computation have been applied,
wherever possible. Weak scalability results and comparisons with a state-of-the-art software showed that our package
is very promising for solving very large systems on heterogeneous parallel computers with multiple GPUs. Future
work includes the extension of the library with new and robust highly parallel smoothers and coarsest solvers. The
source code of the library is available at https://github.com/bootcmatch/BootCMatchGX.

7 Acknowledgments

This work has been supported in part by the EC under the EuroHPC Project: Towards EXtreme scale Technologies
and Accelerators for euROhpc hw/Sw Supercomputing Applications for exascale (TEXTAROSSA), Horizon 2020 Pro-
gram for Research and Innovation, ID: 956831 and by INdAM under GNCS Project: InSANE: Investigating Sparse
Algorithms in the post von Neumann Era CUP: E55F22000270001.

We gratefully acknowledge PRACE for granting us access to Piz Daint at ETH Zurich/CSCS, Switzerland.

The authors also thank Dario Pasquini, Post-Doc fellow at IAC-CNR, for helping in implementing some of the GPU
kernels used in this work.

References

[Shalf(2019)] Shalf, J. The future of computing beyond Moore’s Law. Phil. Trans. R. Soc. A 2019, 378: 20190061.

[Top500(2022)] Top 500. The List. Available online: https://www.top500.org/lists/top500/2022/11/

[Anzt(2019)] Anzt H, et al. Preparing sparse solvers for exascale computing. Phil. Trans. R. Soc. A 2019, 378:
20190053.

[Bernaschi(2020a)] Bernaschi M, D’Ambra P, Pasquini D. AMG based on compatible weighted matching for GPUs.
Parallel Computing 2020, 92: 102599.

14



A PREPRINT - MARCH 7, 2023

[Bernaschi(2020b)] Bernaschi M, D’Ambra P, Pasquini D. BootCMatchG: An adaptive Algebraic MultiGrid linear
solver for GPUs. Software Impacts 2020, 6.

[Saad(2003)] Saad, Y. Iterative methods for sparse linear systems. 2nd ed.; SIAM: Philadelphia, USA, 2003.

[AmgX(2020)] Nvidia, Algebraic multigrid solver (AmgX) library, rel.2.1, 2020.
https://github.com/NVIDIA/AMGX.

[Naumov(2015)] Naumov M, Arsaev M, Castonguay P, Cohen J, Demouth J, Eaton J, Layton S, Markovskiy N,
Reguly I, Sakharnykh N, Sellappan V, Strzodka R. AmgX: a library for GPU accelerated algebraic multigrid and
preconditioned iterative methods, SIAM Journal on Scientific Computing, 2015, 37, S602—S626.

[Falgout(2006)] Falgout RD, Jones JE, Yang UM. The design and implementation of hypre, a library of parallel
high performance preconditioners. In Numerical solution of partial differential equations on parallel computers;
Bruaset AM, Tveito A, Eds.; 2006, 51 Lect. Notes Comput. Sci. Eng., Springer, Berlin, 267—294.

[Falgout(2021)] Falgout RD, Li R, Sjögreen B, Wang L, Yang UM. Porting hypre to heterogeneous computer archi-
tectures: Strategies and experiences. Parallel Computing, 2021, 108, 102840.

[Brodtkorb(2010)] Brodtkorb AR, Dyken C, Hagen TR, Hjelmervik JM, Storaasli OO. State-of-the-art in heteroge-
neous computing. Scientific Programming 2010, 18, 1–33.

[Filippone(2017)] Filippone S, Cardellini V, Barbieri D, Fanfarillo A. Sparse Matrix-Vector Multiplication on GPG-
PUs. ACM Trans. Math. Softw. 2017, 43:30.

[D’Ambra(2016)] D’Ambra P, Filippone S. A parallel generalized relaxation method for high-performance image
segmentation on GPUs. J. Comput. Appl. Math. 2016, 293, 35–44.

[D’Ambra(2002)] D’Ambra P, Danelutto M, di Serafino D, Lapegna M. Advanced environments for parallel and
distributed applications: a view of current status. In Parallel Computing, Special Issue on Advanced environments
for parallel and distributed computing; D’Ambra P, Danelutto M, di Serafino D, Eds.; 2002, 28, 1637–1662.

[Heroux(2013)] Heroux MA, Dongarra JJ. Toward a New Metric for Ranking High-Performance Computing Systems.
Sandia National Lab. Tech. Rep., SAND2013-4744, 2013.

[Petsc(2020)] PETSc users manual. http://www.mcs.anl.gov/petsc. Technical Report ANL-95/11 - Revision 731
3.111, 2020, Argonne National Laboratory.

[Heroux(2005)] Heroux M, et al. An overview of the Trilinos project, ACM Trans. Math. Softw. 2005, 13, 397—423.

[Notay(2015)] Notay Y, Napov A. A massively parallel solver for discrete Poisson-like problems, J. Comput. Physiscs
2015, 281, 237–250.

[Xu(2017)] Xu J, Zikatanov L. Algebraic multigrid methods, Acta Numer. 2017, 26, 591—721.

[Vassilevski(2008)] Vassilevski PS. Multilevel block factorization preconditioners: matrix based analysis and algo-
rithms for solving finite element equations; Springer: New York, USA, 2008.

[Brannick (2013)] Brannick J, Chen Y, Hu X, Zikatanov LT. Parallel unsmoothed aggregation algebraic multigrid
algorithms on GPUs. In Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their
Applications. 2013, Iliev OP, Margenov SD, Minev PD, Vassilevski PS, Zikatanov LT eds., Springer, 81–102.

[Yamazaki (2020)] Yamazaki I, Rajamanickam S, Ellingwood N. Performance Portable Supernode-Based Sparse Tri-
angular Solver for Manycore Architectures. In 49th International Conference on Parallel Processing - ICPP.
2020, Edmonton, AB, Canada. Association for Computing Machinery, 70.

[D’Ambra(2013)] D’Ambra P, Vassilevski PS. Adaptive AMG with coarsening based on compatible weighted match-
ing, Computing and Visualization in Science 2013, 16, 59—76.

[D’Ambra(2018)] D’Ambra P, Filippone S, Vassilevski PS. BootCMatch: a software package for bootstrap AMG
based on graph weighted matching, ACM Trans. Math. Softw. 2018, 44, 39.

[D’Ambra(2019)] D’Ambra P, Vassilevski PS. Improving solve time of aggregation-based adaptive AMG, Numerical
Linear Algebra with Applications 2019, 26, e2269.

[Goodfellow(2016)] Goodfellow I., Bengio Y., Courville A., Deep Learning; MIT Press, 2016,
http://www.deeplearningbook.org.

[Zachariadis(2020] Zachariadis O., Satpute N., Gómez-Luna J., Olivares J. Accelerating Sparse Matrix-Matrix Mul-
tiplication with GPU Tensor Cores, Computers & Electrical Engineering 2020, 88; 106848.

[Giffon(2021] Giffon L., Ayache S., Kadri H., Artiéres T., Sicre R. PSM-nets: Compressing Neural Networks with
Product of Sparse Matrices, HAL Id: hal-03151539, https://hal.archives-ouvertes.fr/hal-03151539.

15

http://www.mcs.anl.gov/petsc
http://www.deeplearningbook.org


A PREPRINT - MARCH 7, 2023

[Nagasaka(2017)] Nagasaka Y., Nukada A., Matsuoka S. High-Performance and memory-saving sparse general
matrix-matrix multiplication for Nvidia Pascal GPU, IEEE 46th International Conference on Parallel Processing
2017, Bristol (UK), 101–110.

[Pothen(2019)] Pothen A, Ferdous SM, Manne F. Approximation algorithms in combinatorial scientific computing,
Acta Numerica 2019, 28, 541–663.

[Naim(2015] Naim M, Manne F, Halappanavar M, Tumeo A, Langguth J. Optimizing Approximate Weighted Match-
ing on Nvidia Kepler K40, IEEE 22nd annual International Conference on High Performance Computing 2015,
Bengaluru (India), 105–114.

[Acer(2021)] Acer S, Azad A, Boman EG, Buluç A, Devine KD, Ferdous SM, Gawande N, Ghosh S, Halappanavar
M, Kalyanaraman A, Khan A, Minutoli M, Pothen A, Rajamanickam S, Selvitopi O, Tallent NR, Tumeo A.
EXAGRAPH: Graph and combinatorial methods for enabling exascale applications, The International Journal
of High Performance Computing Applications 2021, 35, 553—571.

[Tuminaro(2000)] Tuminaro RS, Tong C. Parallel smoothed aggregation multigrid: Aggregation strategies on mas-
sively parallel machines. In Proceedings of the ACM/IEEE Conference on Supercomputing. 2000, CDROM,
Dallas, TX.

[D’Ambra(2010)] D’Ambra P, di Serafino D, Filippone S. MLD2P4: a package of parallel algebraic multilevel domain
decomposition preconditioners in Fortran 95. ACM Trans. on Math. Softw. 2010, 37, 7–23.

[Kreutzer(2012)] Kreutzer M, Hager G, Wellein G, Fehske H, Basermann A, Bishop AR, Sparse matrix-vector multi-
plication on GPGPU clusters: a new storage format and a scalable implementation. 2012 IEEE 26th International
Parallel and Distributed Processing Symposium Workshops & PhD Forum 2012, 1696–1702.

[D’Ambra(2019)] D’Ambra P, Cutillo L, Vassilevski PS. Bootstrap AMG for spectral clustering, Computational and
Mathematical Methods 2019, 1, e1020.

16



A PREPRINT - MARCH 7, 2023

8 Appendix

A How to use the solver

Hereafter we briefly explain how a user can employ our linear solver within its application. Algorithm 6 shows the
pseudo-code of an example of usage. We remind the interested reader that the source code of the library is available
at https://github.com/bootcmatch/BootCMatchGX. The repository contains all information needed to compile and run
our solver. A sample program is included in the repository, and commands line parameters are described as well.

Algorithm 6 Example of Usage
Prepare the input parameters A and b
The input matrix A is stored in CSR format

1: CSR *A← Generate or Read local matrix
2: vector〈vtype〉 *b← Generate or Read local rhs

Read the configuration parameters
3: param p← Read Configuration File

Compute the solution
4: vector〈vtype〉 *x← bcmgx(A, b, p, precflag)

Algorithm 7 Preconditioned Flexible Conjugate Gradient
1: Given u0 and set r0 = b−Au0
2: w0 = d0 = Br0
3: v0 = q0 = Aw0

4: α0 = wT
0 r0

5: β0 = ρ0 = wT
0 v0

6: u1 = u0 + α0/ρ0d0
7: r1 = r0 − α0/ρ0q0

8: for i = 1, . . . do
9: wi = Bri

10: vi = Awi

11: αi = wT
i ri

12: βi = wT
i vi

13: γi = wT
i qi−1

14: ρi = βi − γ2i /ρi−1

15: di = wi − γi/ρi−1di−1
16: ui+1 = ui + αi/ρidi

17: qi = vi − γi/ρi−1qi−1
18: ri+1 = ri − αi/ρiqi
19: end for

The first step for the usage of the solver is to prepare the input parameters,A and b. The library provides a few functions
to read and distribute, or generate on each GPU, the input matrix A (line 1). Then, solver parameters are read from the
configuration file (line 3), whose location can be specified through the command line. The library repository contains
a sample of the configuration file with a short description of each parameter. Finally, the function bcmgx (line 4) sets
up the preconditioner, if required, and compute the solution applying Algorithm 7. The unpreconditioned version of
the CG method corresponds to Algorithm 7 with B = I , where I is the identity matrix, therefore it is obtained by a
straightforward modification to the code which implements Algorithm 7. In the sample program, the unpreconditioned
CG can be set through the command line parameter -p and corresponds to the value 0 for the precflag input parameter
of bcmgx. The configuration file used for the experiments discussed in this work is shown in Listing 1.

1 NONE % rhs file NONE if not present

17



A PREPRINT - MARCH 7, 2023

2 NONE % sol file NONE if not present
3 0 % bootstrap_type: 0 multiplicative ,
4 % 1 symmetrized multi., 2 additive;
5 % NB: This is the composition rule
6 % when bootstrap is applied and more
7 % than 1 AMG hierarchy is setup
8 1 % max_hrc , in bootstrap AMG , max
9 % hierarchies; NB: Here put 1 for

10 % single AMG component
11 0.8 % desired convergence rate of the
12 % composite AMG; NB: This is not
13 % generally obtained if criterion
14 % on max_hrc is reached
15 3 % matchtype: 3 Suitor
16 2 % aggrsweeps; pairs aggregation
17 % steps. 0 pairs;
18 % 1 double pairs , etc ...
19 0 % aggr_type; 0 unsmoothed ,
20 % 1 smoothed (not yet supported)
21 39 % max_levels; max number of levels
22 % built for the single hierarchy
23 0 % cycle_type: 0-Vcycle , 1-Hcycle ,
24 % 2-Wcycle
25 4 % coarse_solver: 0 Jacobi , 1 FGS/BGS ,
26 % 3 symmetrized GS , 4 l1 -Jacobi
27 4 % relax_type: 0 Jacobi , 1 FGS/BGS ,
28 % 3 symmetrized GS , 4 l1 -Jacobi
29 20 % relaxnumber_coarse
30 4 % prerelax_sweeps
31 4 % postrelax_sweeps
32 1000 % itnlim
33 1.e-6 % rtol
34 2000000 % mem_alloc_size

Listing 1: Configuration File

B Comparisons with related software

In the following, we show comparison results obtained on the GPUs of the Marconi-100 supercomputer. All
the codes were compiled with the gnu/8.4.0 suite, CUDA 11.0 for GPU kernels, and linked against the
spectrum mpi/10.4.0 and openblas/0.3.9 libraries. We compared our BCMG solver both with the aggregation-
based method of AmgX, already used in the paper (section 5.1 and section 5.2), hereby referred as AMGX-A, and with
the AmgX implementation of the classical AMG method, explained in section 2.5 of the AMGX Reference Manual
available at https://github.com/NVIDIA/AMGX/blob/main/doc/, hereby referred as AMGX-C. We used the NVIDIA
AmgX library (rel. 2.2.0) already installed on Marconi 100. Furthermore, we also installed on Marconi 100 the hypre
library (rel. 2.26.0) available at https://github.com/hypre-space/hypre. For a fair comparison, among all the available
AMG preconditioners, we selected the classical AMG method based on Parallel Maximal Independent Set (PMIS),
which is the only coarsening method whose complete setup is currently supported on GPUs. The coarsening was
applied using library default configuration to set up the AMG hierarchy. In the following, we refer to the solver based
on hypre as HYPRE. For all our tests, the same configuration of the V-cycle described in the paper is applied at each
iteration of the PCG method. Therefore, we applied 4 pre/post-smoothing iterations of `1−Jacobi at intermediate
levels and 20 iterations of `1−Jacobi at the coarsest level. Furthermore, we stopped PCG iterations when the relative
residual in the `2 norm is less than 10−6 or the number of iterations reaches the maximum value fixed to 1000. Due
to our grant restrictions, we were able to use up to 32 GPUs of Marconi 100 and analyzed weak scalability of the
solvers; the fixed matrix size per GPU is equal to 1303 ≈ 2.2 × 106. We point out that HYPRE does not run when
8 GPUs are used and exits with an MPI error. A black square is put in the figures to emphasize that the line is the
result of a constant interpolation from the previous value. In Fig. 8, we show operator complexity and number of
iterations of the different solvers. We can see that in all cases, OPC is smaller for BCMG, confirming that our AMG
hierarchy is generally cheaper than that of the other preconditioners both in terms of memory footprint and in terms
of floating-point operations needed for the V-cycle application. Similar operator complexity, as already observed in
the paper, is obtained by AMGX-A, whereas very large operator complexity characterizes both AMGX-C and HYPRE

18



A PREPRINT - MARCH 7, 2023

due to their denser transfer operators set up in the AMG coarsening. The large operator complexity of AMGX-C and
HYPRE leads, on one hand, to very good algorithmic scalability, as demonstrated by the small and very stable number
of iterations for an increasing number of GPUs, and, on the other hand, to larger preconditioner setup time, as shown in
Fig. 10 (up). The gain in the number of iterations allows the classical AMG methods of AMGX-C and HYPRE to have
smaller solve time with respect to the aggregation-based AMG approaches albeit at the cost of a very large memory
footprint. However, we observe that BCMG has solved time comparable to AMGX-C despite its smaller complexity.
This demonstrates the effectiveness of our preconditioner and the overall implementation procedure. Finally, from
Fig. 10 (down), we can see that BCMG always obtains the best total time.

1 2 4 8 16 32
Number of GPUs

0

1

2

3

4

5

OP
C

Weak-scaling for ~2.2M dofs per GPU: V-cycle Complexity

BCMG
AMGX-A
AMGX-C
HYPRE

1 2 4 8 16 32
Number of GPUs

0

10

20

30

40

50

60

Ite
ra

tio
ns

Weak-scaling for ~2.2M dofs per GPU: Number of Iterations

BCMG
AMGX-A
AMGX-C
HYPRE

Figure 8: Weak Scalability: Operator complexity (up) and Number of PCG Iterations (down)

1 2 4 8 16 32
Number of GPUs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ti
m

e 
to

 so
lv

e 
[s

]

Weak-scaling for ~2.2M dofs per GPU: Time for Solve (sec.)

BCMG
AMGX-A
AMGX-C
HYPRE

1 2 4 8 16 32
Number of GPUs

0.00

0.01

0.02

0.03

0.04

0.05

Ti
m

e 
pe

r i
te

ra
tio

n 
[s

]

Weak-scaling for ~2.2M dofs per GPU: Time per Iteration (sec.)

BCMG
AMGX-A
AMGX-C
HYPRE

Figure 9: Weak Scalability: Solve Time (up) and Solve Time per Iteration (down)

C Example test and configuration files for AmgX Methods

The experiments carried out in this work have been run by using the example program amgx mpi poisson7 available
in the examples folder of the AmgX distribution. This example program generates the data set described in
the paper at section 5 and solve the related systems. The configuration file needed to run the AMGXA method
and the AMGXC method are modifications of the PCG AGGREGATION JACOBI.json file (Listing 2) and of the
PCG CLASSICAL V JACOBI.json file (Listing 3), respectively, which are distributed with the library. We report here
both files for possible reproducibility needs.

19



A PREPRINT - MARCH 7, 2023

1 2 4 8 16 32
Number of GPUs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Se

tu
p 

Ti
m

e 
[s

]
Weak-scaling for ~2.2M dofs per GPU: Time for Preconditioner Setup (sec.)

BCMG
AMGX-A
AMGX-C
HYPRE

1 2 4 8 16 32
Number of GPUs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

l T
im

e 
[s

]

Weak-scaling for ~2.2M dofs per GPU: Total Time (sec.)

BCMG
AMGX-A
AMGX-C
HYPRE

Figure 10: Weak Scalability: Preconditioner Setup Time (up) and Total Time (down)

1 {
2 "config_version": 2,
3 "determinism_flag": 1,
4 "solver": {
5 "preconditioner": {
6 "print_grid_stats": 1,
7 "algorithm": "AGGREGATION",
8 "print_vis_data": 0,
9 "selector": "SIZE_8",

10 "solver": "AMG",
11 "smoother": {
12 "scope": "jacobi",
13 "solver": "JACOBI_L1",
14 "monitor_residual": 0,
15 "print_solve_stats": 0,
16 "relaxation_factor" : 1
17 },
18 "print_solve_stats": 0,
19 "presweeps": 4,
20 "coarse_solver": "JACOBI_L1",
21 "coarsest_sweeps" : 20,
22 "max_iters": 1,
23 "monitor_residual": 0,
24 "store_res_history": 0,
25 "scope": "amg",
26 "postsweeps": 4,
27 "cycle": "V"
28 },
29 "solver": "PCG",
30 "print_solve_stats": 1,
31 "obtain_timings": 1,
32 "max_iters": 1000,
33 "monitor_residual": 1,
34 "convergence": "RELATIVE_INI",
35 "scope": "main",
36 "tolerance": 1e-06,
37 "norm": "L2"
38 }
39 }

Listing 2: Modified PCG AGGREGATION JACOBI.json

1 {

20



A PREPRINT - MARCH 7, 2023

2 "config_version": 2,
3 "solver": {
4 "preconditioner": {
5 "print_grid_stats": 1,
6 "print_vis_data": 0,
7 "solver": "AMG",
8 "smoother": {
9 "scope": "jacobi",

10 "solver": "JACOBI_L1",
11 "monitor_residual": 0,
12 "print_solve_stats": 0
13 },
14 "print_solve_stats": 0,
15 "presweeps": 4,
16 "interpolator": "D2",
17 "coarse_solver": "JACOBI_L1",
18 "coarsest_sweeps" : 20,
19 "max_iters": 1,
20 "monitor_residual": 0,
21 "store_res_history": 0,
22 "scope": "amg",
23 "cycle": "V",
24 "postsweeps": 4
25 },
26 "solver": "PCG",
27 "print_solve_stats": 1,
28 "obtain_timings": 1,
29 "max_iters": 1000,
30 "monitor_residual": 1,
31 "convergence": "ABSOLUTE",
32 "scope": "main",
33 "tolerance": 1e-06,
34 "norm": "L2"
35 }
36 }

Listing 3: Modified PCG CLASSICAL V JACOBI.json

D Configuration line for hypre

Experiments with hypre have been carried out by using the ij test program distributed with the library. In this case,
we did not need any configuration file and the following options have been used for running: -solver 1 -rlx down 18
-rlx up 18 -ns 4 -pmis.

21


	1 Introduction
	2 Iterative Linear Solvers on heterogenerous HPC systems
	3 Preconditioned Conjugate Gradient
	3.1 Algebraic Multigrid Preconditioner

	4 BootCMatch on Multi-GPU systems
	4.1 Decoupled Aggregation
	4.2 Parallel Hybrid SpMM Product
	4.3 Parallel hybrid SpMV Product

	5 Experimental Setting and Results
	5.1 Strong Scalability
	5.2 Weak Scalability

	6 Conclusions
	7 Acknowledgments
	8 Appendix
	A How to use the solver
	B Comparisons with related software
	C Example test and configuration files for AmgX Methods
	D Configuration line for hypre

