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Hierarchical Federated Learning with Momentum
Acceleration in Multi-Tier Networks

Zhengjie Yang, Sen Fu, Wei Bao, Dong Yuan, and Albert Y. Zomaya

Abstract—In this paper, we propose Hierarchical Federated
Learning with Momentum Acceleration (HierMo), a three-tier
worker-edge-cloud federated learning algorithm that applies mo-
mentum for training acceleration. Momentum is calculated and
aggregated in the three tiers. We provide convergence analysis for
HierMo, showing a convergence rate of O

(
1
T

)
. In the analysis,

we develop a new approach to characterize model aggregation,
momentum aggregation, and their interactions. Based on this
result, we prove that HierMo achieves a tighter convergence
upper bound compared with HierFAVG without momentum.
We also propose HierOPT, which optimizes the aggregation
periods (worker-edge and edge-cloud aggregation periods) to
minimize the loss given a limited training time. By conducting
the experiment, we verify that HierMo outperforms existing
mainstream benchmarks under a wide range of settings. In
addition, HierOPT can achieve a near-optimal performance when
we test HierMo under different aggregation periods.

Index Terms—Federated learning; momentum; convergence
analysis; edge computing

I. INTRODUCTION

With the advancement of Industry 4.0, Internet of Things
(IoT), and Artificial Intelligence, machine learning applica-
tions such as image classification [1], automatic driving [2],
and automatic speech recognition [3] are rapidly developed.
Since the machine learning dataset is distributed in individual
users and in many situations they are not willing to share these
sensitive raw data, Federated Learning (FL) emerges [4]. It
allows workers to participate in the model training without
sharing their raw data. Typically, FL is implemented in two
tiers, where multiple devices (workers) are distributed and
connected to a remote aggregator (usually located in the
cloud). A potential issue of the two-tier FL setting is its
scalability. The communication overhead between workers and
the cloud is proportional to the number of workers, which
causes problems when there are a large number of geo-
distributed workers connecting to the remote cloud via the
public Internet.

With the development of edge computing [5], a more
effective solution is adding the edge tier between local workers
and the remote cloud to address the scalability issue. Dif-
ferent from the typical two-tier architecture, in the three-tier
hierarchical architecture as shown in Fig. 1, workers can first
communicate with the edge node for edge-level aggregation,
and then the edge nodes communicate with the remote cloud
for cloud-level aggregation. Each edge node is closer to the
workers and is usually connected with them in the same
local/edge network, so that the communication cost is much
cheaper compared with the two-tier case when the workers
directly communicate with the cloud. In Fig. 1, we can see that
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Fig. 1. Two-tier architecture vs. three-tier architecture. 6 connections are
through the public Internet in the two-tier architecture but only 2 connections
are through the public Internet in the three-tier architecture. Communication
burdens are restrained in the local/edge networks.

much of the traffic through the public Internet (left subfigure)
is restrained in the local edge networks (right subfigure) due
to the existence of the edge nodes. Therefore, the three-tier
architecture is a good fit for larger-scale FL, and has attracted
attentions from researchers in recent years [6]–[8].

Although the three-tier FL can improve the communication
efficiency in one training iteration by replacing worker-cloud
communication with worker-edge communication, there is also
a need to accelerate its convergence performance to reduce
the number of iterations. One obstacle in the three-tier FL
is that each edge node can only aggregate the updates of
its local workers, and there is a discrepancy among edge
nodes. The edge nodes are to be synchronized in the cloud-
level aggregation. The two-level aggregation causes delayed
synchronization, leading to less training efficiency. Therefore,
it is a strong motivation for us to develop a more efficient
algorithm to accelerate the convergence, reducing the number
of training iterations in the three-tier hierarchical architecture,
and finally improve the overall training efficiency (considering
both per-iteration cost and the number of iterations).

Momentum is proved to be an effective mechanism to
accelerate model training. Many studies have demonstrated
its advantage in both centralized machine learning environ-
ment [9]–[12] and two-tier FL environment [13]–[16]. Apart
from the conventional gradient descent step, the momentum
method conducts additional momentum steps [17] to accelerate
convergence. In this paper, we propose Hierarchical Feder-
ated Learning with Momentum Acceleration (HierMo), which
leverages momentum to accelerate three-tier FL. HierMo is
operated as follows: 1 In each iteration, each worker locally
updates its own model and worker momentum; 2 In every
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τ iterations (τ is called the worker-edge aggregation period),
each edge node receives, averages, and sends back the models
and momentum values with its connected workers.1 3 In
every τ · π iterations (π is called the edge-cloud aggregation
period), the cloud receives, averages, and sends back the
models and momentum values with edge nodes. The edge
nodes will then distribute them to connected workers. The
above 1 – 3 steps are repeated for multiple rounds until the
loss is sufficiently small.

Theoretically, we prove that HierMo is convergent and has
an O

(
1
T

)
convergence rate for smooth non-convex problems

for a given T iterations. In this step, we need to address
substantial new challenges, compared with two-tier FL. In
particular, we develop a new method to characterize the multi-
time cross-two-tier momentum interaction and cross-three-tier
momentum interaction, which do not exist in the two-tier FL.
After we theoretically prove the convergence, we observe that
the worker-edge and edge-cloud aggregation periods τ and
π are key design variables we aim to optimize. Based on
the result of the convergence analysis, we propose HierOPT
algorithm, which can find a local optimal (τ, π) value pair.

In the experiment, we demonstrate the performance of
HierMo compared with various mainstream hierarchical FL
and momentum-based FL algorithms, including hierarchical
FL without momentum (HierFAVG [18] and CFL [19]), two-
tier FL with momentum (FedMom [20], SlowMo [21], Fed-
NAG [22], Mime [23], DOMO [24], and FedADC [25]), and
two-tier FL without momentum (FedAvg [4]). The experiment
is implemented on different kinds of models (linear regression,
logistic regress, CNN [26], VGG16 [27], and ResNet18 [28])
based on various real-world datasets (MNIST [29], CIFAR-
10 [30], ImageNet [28], [31] for image classification, and UCI-
HAR [32] for human activity recognition). The experimental
results illustrate that HierMo drastically outperforms bench-
marks under a wide range of settings. We also verify HierOPT
can output a near-optimal (τ, π) in the real-world settings. All
these results match our expectations by the theoretical analysis.

The contributions of this paper are summarized as follows.

• We have proved that HierMo is convergent and has an
O
(
1
T

)
convergence rate for smooth non-convex problems

for a given T iterations under non-i.i.d. data.
• We have proved that as long as learning step size η is

sufficiently small, HierMo (with momentum acceleration)
achieves the tighter convergence upper bound than Hier-
FAVG (without momentum acceleration).

• We have proposed the new HierOPT algorithm which can
find a local optimal pair of (τ∗, π∗) when total training
time is constrained.

• HierMo is efficient and decreases the total training
time by 21–70% compared with the mainstream two-tier
momentum-based algorithms and three-tier algorithms.

• HierOPT generates the near-optimal pair of (τ∗, π∗)
when the total training time is constrained. HierOPT
achieves the near-optimal accuracy with only 0.23–0.29%

1Each edge node also calculates another momentum for its own usage to
further accelerate convergence. See Section III for the detailed algorithm.

(CNN on MNIST) and 0.04–0.16% (CNN on CIFAR10)
gap from the real-world optimum.

The rest of the paper is organized as follows. In Section II,
we introduce related works. The HierMo algorithm design is
described in Section III. In Section IV, we provide theoretical
results including the convergence analysis of HierMo and the
performance gain of momentum. The algorithm to optimize
the aggregation periods, i.e., HierOPT, is proposed in Sec-
tion V. Section VI provides our experimental results and the
conclusion is made in Section VII.

II. RELATED WORK

A. Momentum in Machine Learning and Federated Learning

Momentum [33] is a method that helps accelerate gradient
descent in the relevant direction by adding a fraction γ of
the difference between past and current model vectors. In the
classical centralized setting, the update rule of the momentum
(Polyak’s momentum) is as follows:

m(t) = γm(t− 1)− η∇F (w(t− 1)), (1)
w(t) = w(t− 1) + m(t), (2)

with γ ∈ [0, 1), t = 1, 2, . . . ,m(0) = 0, where γ is
momentum factor (weight of momentum), t is update iteration,
m(t) is momentum term at iteration t, and w(t) is model
parameter at iteration t. Through this method, the momentum
term increases for dimensions whose gradients point in the
same directions and reduces updates for dimensions whose
gradients change directions. As a result, momentum gains
faster convergence and reduces oscillation [17], [34].

Momentum has been investigated in both centralized ma-
chine learning and FL. In the centralized environment, an-
other form of momentum called Nesterov Accelerate Gra-
dient (NAG) [17], [35] is proposed. NAG2 calculates the
gradient based on an approximation of the next position of
the parameters, i.e., ∇F (w(t − 1) + γm(t − 1)), instead
of ∇F (w(t − 1)) in Polyak’s momentum, leading to better
convergence performance. In [11], authors study the utilization
of momentum in over-parameterized models. [9] provides a
unified convergence analysis for both Polyak’s momentum and
NAG. [12] studies NAG in stochastic settings.

All the above works show the advantages of momentum to
accelerate the centralized training and it attracts researchers’
attention to apply momentum in FL environment. Depending
on where the momentum is adopted, we can categorize them
into the worker momentum, aggregator momentum, and com-
bination momentum. For the worker momentum (e.g., Fed-
NAG [22] and Mime [23]), momentum acceleration is adopted
at workers in each local iteration. However, it is vulnerable
to data heterogeneity among workers, which may harm the
long-run performance. For the aggregator momentum (e.g.,
FedMom [20] and SlowMo [21]), the momentum acceleration
is adopted only at the aggregator based on the global model
and it shares the same property of acceleration as in centralized
setting and dampens oscillations [17]. Nevertheless, it is

2There are two mainstream equivalent representations of NAG. In this paper,
we employ the representation in [9], [36].
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TABLE I
KEY NOTATIONS

η worker model learning rate
τ worker-edge aggregation period
π edge-cloud aggregation period
γ worker momentum factor
γa edge momentum factor
T number of total local (worker) iterations indexed by t
K number of total edge aggregations indexed by k
P number of total global (cloud) aggregations indexed by p
L number of edge nodes indexed by `
C` number of workers under edge node `
N number of workers in the system indexed by {i, `}
xti,` worker model parameter in worker {i, `} at iteration t
yti,` worker momentum parameter in worker {i, `} at iteration t
yt`− aggregated worker momentum in edge node ` at iteration t
xt`− aggregated worker model in edge node ` at iteration t
yt`+ updated edge momentum in edge node ` at iteration t
xt`+ updated edge model in edge node ` at iteration t
yt worker momentum cloud aggregation in the cloud at iteration t
xt cloud model in the cloud at iteration t

conducted less frequently (every τ iterations3) compared with
worker momentum (every iteration), and the performance gain
may not be obvious especially when τ is large. To address the
above limitations, works in [24], [25], [37] combine the worker
and aggregator momenta and they show a better convergence
performance than only using either worker or aggregator
momentum. The above forms of momentum are only adopted
and analyzed in the two-tier FL and we focus on the three-tier
scenarios in this paper.

B. Three-Tier Hierarchical Federated Learning

Three-tier FL has attracted more attention in recent years.
Without considering momentum, studies have demonstrated
the convergence performance in three-tier FL [18], [19], [38],
[39]. The communication overhead can be further optimized
in [40]. The convergence analysis extended from two-tier to
three-tier FL is not straightforward. Different from two-tier
FL where the global aggregation is executed every τ local
iterations, in three-tier FL, each worker’s local model will be
first aggregated by the connected edge node every τ local
iterations, and will then be aggregated by the cloud in another
level of every π edge aggregations. Existing two-tier methods
can only bound the two-tier effects, but not the three-tier
effects. Substantial new challenges are encountered in this
paper. When momentum is leveraged in the three-tier scenario,
it additionally introduces multi-time cross-two-tier momentum
interaction and cross-three-tier momentum interaction. This is
completely different from the two-tier scenario. Existing two-
tier analyses cannot deal with the above two new terms. They
can only characterize multi-time inner-tier momentum acceler-
ation and one-time cross-two-tier momentum interaction. We
devise a two-level virtual update (edge and cloud) method,
which is able to bound the aforementioned new terms so that
the convergence of HierMo still holds.

3τ the is aggregation period

III. HIERMO PROBLEM FORMULATION

A. Overview

We consider a three-tier hierarchical FL system consisting
of a cloud server, L edge nodes, and N workers. Each edge
node ` serves C` workers, and the total number of workers is
N =

∑L
`=1 C`. Worker {i, `} denotes the ith worker served

by edge node `, where i = 1, 2, . . . , C`. It contains its local
dataset with the number of data samples denoted by Di,`.
The total training dataset in the cluster of workers served by
edge node ` is D` ,

∑C`
i=1Di,` and the total training dataset

D ,
∑L
`=1D` =

∑L
`=1

∑C`
i=1Di,`. The target of three-tier

hierarchical FL is to find the stationary point x∗ that minimizes
the global loss function F (x) that is the weighted average of
all workers’ loss functions. The problem can be formulated as
follows:

min
x∈Rd

F (x) ,
1

D

L∑
`=1

C∑̀
i=1

Di,`Fi,`(x) (3)

=

L∑
`=1

D`

D

C∑̀
i=1

Di,`

D`
Fi,`(x) (4)

,
L∑
`=1

D`

D
F`(x), (5)

where d is the dimension of x, F (x) is the global loss function
at the cloud server, and Fi,`(x) is the local loss function at
worker {i, `}. (4) is the mathematical transformation from (3)
by adding D`. We also define the edge loss function at edge
node ` as F`(x) ,

∑C`
i=1

Di,`
D`

Fi,`(x), which is the weighted
average of edge node `’s connected workers’ local loss func-
tions Fi,`(x). Therefore, by replacing

∑C`
i=1

Di,`
D`

Fi,`(x) with
F`(x) in (4), we can directly derive (5), demonstrating that the
global loss function is the weighted average of all edge loss
functions as F (x) ,

∑L
`=1

D`
D F`(x). We assume the problem

is within the scope of cross-siloed federated learning [41]
where all workers are required to participate in the training
with siloed data. Each worker represents a repository of data,
and data are sensitive and non-i.i.d.. The key notations are
summarized in Table I.

B. Worker Momentum and Edge Momentum

We notice that there are two types of momentum in two-
tier FL: One type (i.e., worker momentum) is calculated at
each worker and is aggregated; The other type (i.e., aggregator
momentum) is calculated at the aggregator. Since both types
can accelerate the convergence, we adopt both of them in our
work. In the three-tier case in our paper, the worker momentum
is individually computed in each worker and aggregated in
the edge node (worker momentum edge aggregation) and the
cloud (worker momentum cloud aggregation). We still call it
worker momentum throughout the paper. For the aggregator
momentum, we apply it at each edge node. Each edge node
computes its own momentum and it is not shared with the
workers or the cloud. We call it edge momentum throughout
this paper.
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Algorithm 1 HierMo algorithm.
Input: τ, π, T = Kτ = Pτπ, η, γ, γa
Output: Final cloud (global) model parameter xT(a)

1: For each worker, initialize: x0
i,` as same value for all i, `, and

y0
i,` = x0

i,`

2: For each edge node, initialize: x0
`(a) = x0

i,`, and y0
`(a) = x0

`(a)

3: for t = 1, 2, . . . , T do
4: For each worker i = 1, 2, . . . , N in parallel,
5: yti,` ← xt−1

i,` − η∇Fi,`(x
t−1
i,` )

// Worker momentum update
6: xti,` ← yti,` + γ(yti,` − yt−1

i,` )
// Worker model update

7: if t == kτ where k = 1, . . . ,K then
8: For each edge node ` = 1, 2, . . . , L in parallel,
9: ykτ`− ←

∑C`
i=1

Di,`
D`

ykτi,`
// Worker momentum edge aggregation

10: ykτ`+ ← x
(k−1)τ
`+ −

∑C`
i=1

Di,`
D`

(
x

(k−1)τ
`+ − xkτi,`

)
// Edge momentum update

11: xkτ`+ ← ykτ`+ + γa
(
ykτ`+ − y

(k−1)τ
`+

)
// Edge model update

12: Set ykτi,` ← ykτ`− for all worker i ∈ C`
// Edge aggregated worker momentum
re-distribution to workers

13: Set xkτi,` ← xkτ`+ for all worker i ∈ C`
// Edge model re-distribution to workers

14: end if
15: if t == pτπ where p = 1, 2, . . . , P then
16: Aggregate ypτπ ←

∑L
`=1

D`
D

ypτπ`−
// Worker momentum cloud aggregation

17: Aggregate xpτπ ←
∑L
`=1

D`
D

xpτπ`+
// Edge model cloud aggregation

18: Set ypτπ`− ← ypτπ for all edge node l ∈ L
// Cloud aggregated worker momentum
re-distribution to edge nodes

19: Set xpτπ`+ ← xpτπ for all edge node l ∈ L
// Cloud model re-distribution to edge nodes

20: Set ypτπi,` ← ypτπ`− for all worker i ∈ C`, l ∈ L
// Cloud aggregated worker momentum
re-distribution from edge nodes to workers

21: Set xpτπi,` ← xpτπ`+ for all worker i ∈ C`, l ∈ L
// Cloud model re-distribution
from edge nodes to workers

22: end if
23: end for

C. HierMo Algorithm

In Algorithm 1, we propose a momentum-based three-tier
hierarchical FL algorithm, named as HierMo, which applies
both worker momentum and edge momentum. HierMo aims
to find the final cloud model xT(a) to solve the formula (3).
It conducts T local iterations, K edge aggregations, and P
cloud aggregations, where T = Kτ = Pτπ, τ is the worker-
edge aggregation period, and π is the edge-cloud aggregation
period.

1) Worker update: In each local iteration t, each
worker {i, `} computes its worker update, which includes two
things: 1 worker momentum update yti,` (Line 5) and 2

worker model update xti,` (Line 6). 1 and 2 follow the
Nesterov Accelerated Gradient (NAG) [35] momentum update
and are conducted every iteration. Through this way, each
worker can utilize its own worker momentum acceleration.

2) Edge update: When t = kτ, k = 1, 2, . . . ,K, each edge
node ` receives workers’ momenta and models in C` and per-
forms edge update, which includes two operations: 1 Worker
momentum edge aggregation ykτ`− (Line 9) with re-distribution
(Line 12). Through this way, some straggler workers with
high data-heterogeneity whose local momenta ykτi,` pointing
to an inappropriate direction can be refined from ykτ`−. 2

Edge momentum ykτ`+ and model xkτ`+ update (Lines 10–11)
with model re-distribution (Line 13). Since the computation
of edge momentum and model update is based on the edge
model, it is equivalent to perform it in edge setting involving
all workers’ dataset under edge node ` (D` =

∑C`
i=1Di,`).

By doing so, it dampens oscillations [17] within the edge
node. Please note that 1 and 2 are two operations on the
same edge node, so that we use subscript “−” and “+” to
label the momentum/model right after operations 1 and 2

respectively. Finally, both 1 and 2 are conducted in each
edge node every τ iterations.

3) Cloud update: When t = pτπ, p = 1, 2, . . . , P , the
cloud receives edge aggregated worker momentum ypτπ`− and
edge model xpτπ`+ for all ` ∈ L and performs cloud update,
which includes two things: 1 Worker momentum cloud ag-
gregation ypτπ (Line 16) and re-distribution (Lines 18 and 20).
Through this way, all edge nodes and workers receive the cloud
aggregated worker momentum and mitigate the disadvantage
caused by non-i.i.d. data heterogeneity. 2 Edge model cloud
aggregation xpτπ (Line 17) and cloud model re-distribution
(Lines 19 and 21). Please note that the cloud will re-distribute
the momentum and model to all edge nodes and all edge nodes
will then distribute them to all workers when t is a multiple
of τπ.

IV. CONVERGENCE ANALYSIS OF HIERMO

In this section, we present the theoretical analysis of Hi-
erMo. We first provide preliminaries. Then, we introduce the
concept of virtual update which is a significant intermediate
step to conduct convergence analysis. Afterward, we show the
convergence guarantee of HierMo. Finally, we compare the
convergence upper bound of HierMo and HierFAVG to analyze
the performance gain of momentum.

A. Preliminaries

We assume Fi,`(·) satisfies the following standard condi-
tions that are commonly adopted in the literature [13], [22],
[42].

Assumption 1. Fi,`(x) is ρ-Lipschitz, i.e., ‖Fi,`(x1) −
Fi,`(x2)‖ ≤ ρ‖x1 − x2‖ for any x1,x2, i, `.

Assumption 2. Fi,`(x) is β-smooth, i.e., ‖∇Fi,`(x1) −
∇Fi,`(x2)‖ ≤ β‖x1− x2‖ for any x1,x2, i, `.

Assumption 3. (Bounded diversity) The variance of local
gradient to edge gradient is bounded. i.e., ‖∇Fi,`(x) −
∇F`(x)‖ ≤ δi,` for ∀i, ∀`, and ∀x. We also define δ` as
the weighted average of δi,` and δ as the weighted average of
δ`, i.e., δ` ,

∑
i∈C`

Di,`
D`

δi,` and δ ,
∑
`∈L

D`
D δ`.
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Interval

Interval Interval

Fig. 2. Illustration of xt`−, xt`+, xt
[k],`

, xt{p}, and xt, when N = 4, τ =

2, π = 2 with each edge node serving 2 workers. Cyan lines show worker
model update. Blue lines show worker model edge aggregation. Purple lines
show edge model accelerated by edge momentum. Black lines show edge
model cloud aggregation. Red dashed lines show edge model virtual update.
Magenta dashed lines show cloud model virtual update.

According to Assumptions 1 and 2, and applying the
Triangle Inequality to Fi,`(x), it is straightforward to show
that F`(x) is ρ-Lipschitz and β-smooth. Applying the Triangle
Inequality to F`(x), we can also derive that F (x) is ρ-
Lipschitz and β-smooth. Assumptions 1 and 2 indicate that
the function and the gradient of the function are not changing
too fast. Assumption 3 indicates that the data distributed to
all workers are heterogeneous and non-i.i.d.. δi,` is used to
quantify the level of gradient divergence and is different at
different workers.

B. Virtual Update

In order to index the edge aggregation and cloud aggrega-
tion, we divide the total T local iterations into K edge intervals
and P cloud intervals. T = Kτ = Pτπ. We use [k] to denote
the edge interval t ∈ [(k − 1)τ, kτ ] for k = 1, 2, . . . ,K, and
{p} to denote the cloud interval t ∈ [(p − 1)τπ, pτπ] for
p = 1, 2, . . . , P . Please note that the edge aggregation occurs
at the end of each edge interval and the cloud aggregation
occurs at the end of each cloud interval. Therefore, each
edge interval [k] contains τ local iterations with one edge
aggregation, and each cloud interval {p} contains π edge
intervals with one cloud aggregation, i.e., {p} = ∪k[k] for
k = (p− 1)π + 1, (p− 1)π + 2, . . . , pπ.

At the beginning of edge interval [k] when t = (k − 1)τ ,
we set edge virtual update

y
(k−1)τ
[k],` ← y

(k−1)τ
`− , (6)

x
(k−1)τ
[k],` ← x

(k−1)τ
`+ , (7)

for each edge node `, where y
(k−1)τ
[k],` and x

(k−1)τ
[k],` are set as

the virtual aggregated values right after the edge aggregation
occurs. Then, we further conduct edge virtual update as if

model and momentum updates are conducted in the edge node.
When t ∈ ((k − 1)τ, kτ ], we conduct edge virtual update as

yt[k],` ← xt−1[k],` − η∇F`(x
t−1
[k],`), (8)

xt[k],` ← yt[k],` + γ(yt[k],` − yt−1[k],`). (9)

We repeat (6)–(9) for each edge interval [k] where k =
1, 2, . . . ,K. Please note that only if t = kτ, k = 1, . . . ,K,
yt`− and xt`+ are computed. For ease of analysis, we de-
fine intermediate value xt`− =

∑C`
i=1

Di,`
D`

xti,` and yt`− =∑C`
i=1

Di,`
D`

yti,` that are meaningful at any iteration t.
Same as edge intervals, for each cloud interval {p} where

p = 1, 2, . . . , P , the cloud virtual update is also conducted:

y
(p−1)τπ
{p} ← y(p−1)τπ, (10)

x
(p−1)τπ
{p} ← x(p−1)τπ, (11)

when t = (p− 1)τπ, and

yt{p} ← xt−1{p} − η∇F (xt−1{p} ), (12)

xt{p} ← yt{p} + γ(yt{p} − yt−1{p} ), (13)

when p ∈ ((p− 1)τπ, pτπ].
By applying virtual updates on edge nodes and the cloud,

we can bound the gap between real updates and these virtual
updates that can be then used to prove the convergence. Since
in HierMo, the momenta and the models are aggregated on
both edge nodes and the cloud, it brings much more challenges
to conduct convergence analysis. The virtual update is an
important intermediate process for convergence analysis and
is one of our contributions in this paper.

Fig. 2 illustrates the evolution of xt`−, xt`+, xt[k],`, xt{p},
and xt when τ = 2, π = 2. There are 2 edge nodes and each
edge node serves 2 workers (in total 4 workers in Fig. 2).
After every 2 local updates, there is an edge aggregation,
and after every 2 edge aggregations (4 local updates), there
is a cloud aggregation. Please note 1 xkτ[k],` and xkτ[k+1],` are

different. xkτ[k],` is calculated from x
(k−1)τ
[k],` after τ edge virtual

updates, while xkτ[k+1],` is directly given by xkτ`+. 2 xkτ`− and
xkτ`+ are different. xkτ`− is the intermediate value that is used
for edge model/momentum update, while xkτ`+ is calculated
from xkτ`− during edge model/momentum update. 3 x

(k+1)τ
{p}

and x
(k+1)τ
{p+1} are different. x(k+1)τ

{p} is calculated from x
(k−1)τ
{p}

after τ ·π cloud virtual updates, while x
(k+1)τ
{p+1} is directly given

by x(k+1)τ .

C. Convergence Analysis

In this section, we provide the convergence analysis of
HierMo. In Theorem 1, we first focus on worker models
under each edge node ` to bound the distance between edge
intermediate value xt`− and edge virtual update xt[k],` within
interval [k].

Theorem 1. For any edge interval [k], ∀t ∈ ((k − 1)τ, kτ ]
and ∀` ∈ L, we have

‖xt`− − xt[k],`‖ ≤ h(t− (k − 1)τ, δ`), (14)



6

where h(x, δ`) is

h(x, δ`) =ηδ`

(
I(γA)x + J(γB)x − 1

ηβ

−γ
2(γx − 1)− (γ − 1)x

(γ − 1)2

)
, (15)

and A,B, I, and J are constants defined in Appendix A, for
0 < γ < 1 and any positive integer x.

Please note that when t = (k − 1)τ for all [k], we have
‖xt`−−xt[k],`‖ = 0 = h(0, δ`), which also satisfies (15). Also,
F`(x) is ρ-Lipschitz, so that we also have

F`(x
t
`−)− F`(xt[k],`) ≤ ρh(t− (k − 1)τ, δ`). (16)

Proof sketch. We first obtain the worker momentum upper
bound ‖yti,` − yt[k],`‖ for each worker {i, `}. Based on it and
worker momentum update rules in Lines 5–6 in Algorithm 1,
we bound the worker model parameter gap ‖xti,` − xt[k],`‖.
Then, we extend above two bounds to obtain edge aggregated
worker momentum upper bound ‖yt`− − yt[k],`‖. Finally, the
gap of edge model parameter ‖xt`− − xt[k],`‖ is obtained. See
Appendix A for the complete proof.

In Theorem 2, we then bound the edge momentum update
between xkτ`+ and xkτ`− within interval [k].

Theorem 2. For any edge interval [k] in any edge node ` ∈ L,
suppose 0 < γ < 1, 0 < γa < 1, and any τ = 1, 2, . . . , we
have

‖xkτ`+ − xkτ`−‖ ≤ s(τ), (17)

where s(τ) is

s(τ) =γaτηρ(γµ+ γ + 1) (18)

and constant µ is defined in Appendix E.

Proof sketch. Based on the edge momentum update rules in
Lines 10–11 in Algorithm 1, we can derive xkτ`+ − xkτ`− =

γa

(
xkτ`− − x

(k−1)τ
`−

)
= γa

∑kτ−1
t=(k−1)τ

(
xt+1
`− − xt`−

)
. Then

we prove the bound of ‖xt+1
`− −xt`−‖ based on the definition of

intermediate value where xt`− =
∑C`
i=1

Di,`
D`

xti,`, and then the
result is obtained. See Appendix E for the complete proof.

By combining the results of Theorem 1 and Theorem 2, we
can telescope the bound within edge interval [k] to the cloud
interval {p} where k = (p−1)π+1, (p−1)π+2, . . . , pπ. Then,
we are ready to bound the gap between weighted average of
edge virtual update

∑L
`=1

D`
D xpτπ[pπ],` and cloud virtual update

xpτπ{p} in Theorem 3.

Theorem 3. For any cloud interval {p}, 0 < γ < 1, and
0 < γa < 1, when edge interval [k] = [pπ] (the last edge
interval in cloud interval {p}), and ∀τ, π ∈ {1, 2, . . .} we
have

‖xpτπ[pπ] − xpτπ{p} ‖ ≤ h(τπ, δ) + π

L∑
`=1

D`

D
(h(τ, δ`) + s(τ)) ,

(19)

where we define xpτπ[pπ] ,
∑L
`=1

D`
D xpτπ[pπ],`, for ∀` ∈ L.

Proof sketch. We propose an intermediate sequence of edge
virtual update on the cloud xpτπ{p},`. We then bound ‖xpτπ[pπ] −
xpτπ{p},`‖ and ‖xpτπ{p},` − xpτπ{p} ‖ respectively to obtain the final
result. See Appendix F for complete proof.

Theorem 4. Under the following conditions: (1) 0 < βη(γ +
1) ≤ 1, 0 < γ < 1, 0 < γa < 1, and ∀τ, π ∈ {1, 2, . . .};
(2) ∃ε > 0, (2.1) ωασ2 − ρj(τ,π,δ`,δ)

τπε2 > 0; (2.2) F (xpτπ{p} ) −
F (x∗) ≥ ε, ∀p; and (2.3) F (xT )− F (x∗) ≥ ε are satisfied;
Algorithm 1 gives

F (xT )− F (x∗) ≤ 1

T
(
ωασ2 − ρj(τ,π,δ`,δ)

τπε2

) . (20)

where j(τ, π, δ`, δ) is

j(τ, π, δ`, δ) = h(τπ, δ) + (π + 1)

L∑
`=1

D`

D
((h(τ, δ`) + s(τ))) .

(21)

We define F (x∗) as the minimum value, if there exists some
ϕ > 0 such that F (x∗) ≤ F (x) for all x within distance ϕ of
x∗. Constant µ is defined in Appendix E and constants ω, σ,
and α are defined in Appendix H.

Proof sketch. We first analyze the convergence of F (xt+1
{p} )−

F (xt{p}) within cloud interval {p} when t ∈ [(p−1)τπ, pτπ).
Then, we merge h(τ, δ`), s(τ), and result of Theorem 3 to
handle the overall effects and telescope the gap of overall
effects to all P cloud intervals, and then the final result is
obtained. See Appendix H for complete proof.

Please note in the proof of Theorems 2, 3, and 4, we
have characterized the multi-time cross-two-tier momentum
interaction and cross-three-tier momentum interaction brought
by the three-tier FL. To analyze π times cross-two-tier mo-
mentum interactions, we devise a new telescope form to
bound these new deviations (Equations (49)–(51) and (58)).
To analyze cross-three-tier momentum interaction, we devise a
new mechanism to analyze such momentum interactions across
multi-tiers (Equations (52)–(58) and (64)–(67)).

We have demonstrated that the gap between the global loss
function value F (xT ) and the stationary point F (x∗) is upper
bounded by a function of T (T = Kτ = Pτπ) which is
inversely proportional to T . It converges with the convergence
rate O

(
1
T

)
for smooth non-convex problems under non-i.i.d.

data distribution. We also give the following observations
based on the above theorems.

Observation 1. The overall gap in Theorem 4, F (xT ) −
F (x∗) decreases when T is larger. From Appendix G, we
have h(x) ≥ 0 for any x = 1, 2, . . . , and it increases with x.
According to (18), s(τ) increases with τ . According to (21),
j(τ, π) increases with τ and π. Therefore, the value of ρj(τ,π)

τπε2

increases with τ and π so as to increase the overall bound
F (xT )−F (x∗). However, in order to let the Condition (2.1) in
Theorem 4 hold, we cannot set a very large τ and π, implying
that convergence is guaranteed when j(τ, π) is below a certain
threshold. Experiments on the effects of τ and π further verify
that larger τ and π decreases the convergence performance.
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In Theorem 5, we further eliminate the value ε in Theorem 4
and further demonstrate the bound between the final loss
function value that the algorithm can obtain F (xf) and the
stationary point F (x∗), where we define

xf , arg min
x∈{xpτπ

(a)
:p=1,2,...,P}

F (x). (22)

Theorem 5. Under the following condition: 0 < βη(γ+1) ≤
1, 0 < γ < 1, 0 < γa < 1, and ∀τ, π ∈ {1, 2, . . .}, we have

F (xf)− F (x∗) ≤ 1

2Tωασ2
+ ρj(τ, π, δ`, δ) (23)

+

√
1

4T 2ω2α2σ4
+
ρj(τ, π, δ`, δ)

ωασ2τπ
, fHierMo(T ).

Proof. See Appendix I for complete proof.

Theorem 5 will be used in Section IV-D and Section V
to compare the convergence upper bound and formulate the
optimization problem respectively.

D. Comparison between HierMo and HierFAVG

In this section, we theoretically quantify the performance
gain brought by HierMo compared with HierFAVG (without
momentum). The convergence upper bound of HierFAVG can
be derived from [18] as follows:

F (x̂f)− F (x∗) ≤ 1

2Tωα̂σ2
+ ρĵ(τ, π, δ`, δ) (24)

+

√
1

4T 2ω2α̂2σ4
+
ρĵ(τ, π, δ`, δ)

ωα̂σ2τπ
, fHierFAV G(T ).

The definitions of α̂ and ĵ(·) can be found in [18].
To prevent the gradient descent from overshooting [43], it

is common to choose a very small η. The following theorem
is made when η → 0+.

Theorem 6. When 0 < βη(γ + 1) ≤ 1, 0 < γ < 1, 0 < γa <
1, and ∀τ, π ∈ {1, 2, . . .}, HierMo outperforms HierFAVG,
i.e.,

fHierFAV G(T )− fHierMo(T ) > 0

for any T and η → 0+.

Proof. See Appendix J for detailed proof.

The above theorem indicates that HierMo leads to a tighter
convergence upper bound compared with HierFAVG, showing
that HierMo theoretically outperforms HierFAVG.

V. AGGREGATION PERIOD OPTIMIZATION BY HIEROPT

We have proved that HierMo is convergent in section IV.
We observe that the worker-edge and edge-cloud aggregation
periods τ and π are two key design variables that will influence
the convergence performance. The values of τ and π will
also influence the usage of communication and computation
resources in the real-world training process. Therefore, we aim
to optimize these two variables and formulate an optimization
problem: Under a given total training time denoted as Ψ,
how the HierMo algorithm achieves the best performance (min
global model loss).

We denote the worker computation delay for one iteration
as Θw, edge computation delay for one edge aggregation as
Θe, and cloud computation delay for one cloud aggregation
as Θc. We also denote the worker communication delay to the
edge as Φw2e and edge communication delay to the cloud as
Φe2c. All the above values are assumed to be given as they
can be measured in the real world. We assume each worker
{i, `} communicates with connected edge node ` in parallel
and each edge node ` communicates with cloud in parallel [8],
[18], [44]. The above assumptions are commonly adopted in
the literature [42], [44]. As a result, the total training time for
HierMo is calculated as follows

Ψ , P · (τπΘw + πΘe + Θc + πΦw2e + Φe2c) , (25)

where P is the total number of cloud aggregations (P = T
τπ ).

In order to find the optimal pair of (τ, π), we target to
minimize (23), where (23) demonstrates the bound between the
global loss and the stationary point [18], [42]. By incorporating
the constraints, the optimization problem can be formulated as
follows

min
τ,π

1

2Tωασ2
+ ρj(τ, π, δ`, δ) (26)

+

√
1

4T 2ω2α2σ4
+
ρj(τ, π, δ`, δ)

ωασ2τπ
,

s.t. P · (τπΘw + πΘe + Θc + πΦw2e + Φe2c) = Ψ, (26a)
T = Pτπ, (26b)
τ ≥ 1, (26c)
π ≥ 1. (26d)

From constraints (26a) and (26b), we obtain
1

T
=

Θe + Φw2e

Ψ

1

τ
+

Θc + Φe2c
Ψ

1

τπ
+

Θw

Ψ
. (27)

Substituting (27) into (26), we can eliminate the equation
constraints. We also define

q(τ, π) ,
1

2Tωασ2
(28)

=
Θe + Φw2e

2Ψωασ2

1

τ
+

Θc + Φe2c
2Ψωασ2

1

τπ
+

Θw

2Ψωασ2
.

The problem (26) can be re-formulated as

min
τ,π

q(τ, π) + ρj(τ, π, δ`, δ) +

√
q2(τ, π) +

ρj(τ, π, δ`, δ)

ωασ2τπ
,

(29)
s.t. τ ≥ 1, (29a)

π ≥ 1. (29b)

It is non-trivial to find a closed-form optimal pair of (τ, π)
in the three-tier hierarchical FL because problem (29) includes
both polynomial and exponential terms of τ and π, where the
exponential term is nest-embedded in h(·) that is embedded in
j(·). Even if for a two-tier FL problem, the objective function
of the bound is complicated, and it is still infeasible to find an
optimal solution in closed form [42], [44]. In what follows,
we propose the Hierarchical Optimizing Periods (HierOPT)
algorithm to find a local optimal solution to problem (29).

In Algorithm 2, for convenience, we define the objective
function (29) as R(τ, π) with respect to τ and π. We also
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Algorithm 2 HierOPT algorithm.
Input: Ψ,Θw,Θe,Θc,Φw2e,Φe2c
Output: τ∗ and π∗

1: Initialize τ0 and π0 as random positive integers, i = 0 as the
index of search iteration.

2: while true do
3: Calculate R′(τi)
4: if R′(τi) > 0 then
5: τi+1 ← max{τi − 1, 1}
6: else if R′(τi) < 0 then
7: τi+1 ← τi + 1
8: end if
9: Calculate R′(πi)

10: if R′(πi) > 0 then
11: πi+1 ← max{πi − 1, 1}
12: else if R′(πi) < 0 then
13: πi+1 ← πi + 1
14: end if
15: Record (τi, πi)
16: if the pair of values (τi, πi) is visited before then
17: Set τ∗ ← τi and π∗ ← πi
18: BREAK
19: end if
20: i← i+ 1
21: end while

define the partial derivative of τ and π as R′(τ) and R′(π)
respectively. SinceR(τ, π) is in closed-form,R′(τ) andR′(π)
are also in closed-form and can be calculated numerically
given any π and τ respectively. Algorithm 2 is operated as
follows: 1 We take turns to calculate R′(τ) (Lines 3–8) and
R′(π) (Lines 9–14). When the gradient is greater than zero,
implying that the objective function has the trend to increase,
we decrease the value by 1 (Lines 5 and 11). When the gradient
is less than zero, implying that the objective function has the
trend to decrease, we increase the value by 1 (Lines 7 and 13).
Due to constraints (29a) and (29b), we restrict the values of
τ and π to be equal or greater than 1. 2 If the pair of value
(τ , π) is visited before (Lines 16–19), it means Algorithm 2
converges and (τ, π) oscillates within a number of feasible
value pairs (because τ and π can only be integers). In this
case, we find a local optimal pair of (τ∗, π∗) and we can exit
the algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the convergence performance
of HierMo compared with three typical categories of bench-
mark algorithms: 1 three-tier FL without momentum (Hier-
FAVG [18] and CFL [19]), 2 two-tier FL with momentum
(DOMO [24], FedADC [25], FedMom [20], SlowMo [21],
FedNAG [22], and Mime [23]), and 3 two-tier FL without
momentum (FedAvg [4]). For the two-tier benchmarks, we
assume that the edge nodes do not exist and the workers are
directly connected to the cloud. We then discuss the effects
of τ and π respectively and their joint effects. Afterwards,
we explicitly quantify different levels of non-i.i.d. data and
analyze their effects. Finally, we perform a trace-driven simu-
lation of the three-tier hierarchical FL environment as if real-
world hierarchical FL is implemented so that we can test the
overall training time. Through this way, we verify that (τ∗, π∗)

derived in Section V leads to near-optimal performance in the
realistic scenario.

A. Experiment on Convergence of HierMo

1) Experimental Setup: We employ four real-world datasets
including MNIST [29], CIFAR-10 [30], and ImageNet [28],
[31] for image classification, and UCI-HAR [32] for human
activity recognition. All training and testing samples are ran-
domly shuffled and distributed to workers. Please note there
is no restriction on how the data is distributed at different
workers, therefore, the level of non-i.i.d. data distribution
captured by δi,` is different for each worker {i, `}. The training
is run on a GPU tower server with 4 NVIDIA GeForce RTX
2080Ti GPUs.

We use five models including linear regression, logistic
regression, CNN, VGG16, and ResNet18. The CNN model’s
structure is the classic one in [26], which has two 5 × 5
convolutional layers with 32 and 64 channels respectively. In
each convolutional layer, 2× 2 max pooling is used. The last
three layers are fully connected layers with ReLu activation
and softmax. The structure of VGG16 and ResNet18 can be
found in [27], [28] respectively. We use mini-batch in all
experiments, and the batch size is 64. We set the learning
rate η = 0.01. Other hyper-parameters will be specified in
each experiment.

In this experiment, we focus on the convergence per-
formance (i.e., accuracy given the number of iterations) of
different algorithms. We do not consider the real-world delay
for now. The results do not depend on hardware but on
the algorithm itself. Therefore, we can create several virtual
machines within a single server to carry out the experiment.
(Even if real-world hardware is used in the experiment, it
will still give the same results.) The experiment on the
optimization considering real-world delay will be discussed
in Section VI-B.

2) Performance Comparison: In Table II, we compare
the convergence performance of HierMo with benchmark
algorithms. The numbers show the accuracy when different
algorithms are run for T iterations. The experiment is con-
ducted on linear regression, logistic regression, CNN, VGG16,
and ResNet18. We set T = 1000 (MNIST), T = 4000
(UCI-HAR), or T = 10000 (CIFAR10 and ImageNet), γ =
0.5, γa = 0.5. There are 4 workers and 2 edge nodes with each
edge node serving 2 workers (three-tier algorithm). There are
4 workers directly served by the cloud (two-tier algorithm).
For two-tier algorithms, we set τ = 20 (convex model) or
τ = 40 (non-convex model). For three-tier algorithms, we set
τ = 10, π = 2 (convex model) or τ = 20, π = 2 (non-convex
model). Please note that since π does not exist for two-tier
algorithms, we set τ value for two-tier algorithms equal to τπ
value for three-tier algorithms for a fair comparison. These
hyper-parameters are typically used in existing works [8], [13],
[14], [18], [22].

In all cases, HierMo outperforms all other benchmarks.
This confirms that applying momentum on both worker-level
and edge-level with three-tier architecture achieves the best
performance.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT FL ALGORITHMS (ACCURACY %).

Linear on
MNIST

Logistic on
MNIST

CNN on
MNIST

CNN on
CIFAR10

VGG16 on
CIFAR10

ResNet18 on
ImageNet

CNN on
UCI-HAR

HierMo 85.9785.9785.97± 0.03 89.2389.2389.23± 0.04 96.1396.1396.13± 0.07 64.1864.1864.18± 0.08 90.0690.0690.06± 0.15 69.6469.6469.64± 0.12 88.3688.3688.36± 0.06
HierFAVG [18] 83.62± 0.03 87.00± 0.05 93.40± 0.07 38.46± 0.13 89.46± 0.12 68.63± 0.10 54.56± 0.11
CFL [19] 83.36± 0.04 86.98± 0.06 93.58± 0.06 38.79± 0.11 89.80± 0.11 68.87± 0.09 69.19± 0.09
DOMO [24] 85.79± 0.05 89.02± 0.05 95.90± 0.05 59.39± 0.07 88.53± 0.09 67.05± 0.10 88.15± 0.06
FedADC [25] 85.51± 0.04 88.18± 0.05 95.09± 0.07 56.00± 0.11 89.38± 0.08 67.76± 0.12 85.14± 0.09
FedMom [20] 84.84± 0.06 88.05± 0.05 94.74± 0.05 54.87± 0.07 88.03± 0.10 66.91± 0.11 84.69± 0.07
SlowMo [21] 84.82± 0.06 88.00± 0.06 94.88± 0.05 54.43± 0.06 88.47± 0.09 66.84± 0.09 83.03± 0.10
FedNAG [22] 84.97± 0.04 88.14± 0.05 95.04± 0.06 55.54± 0.09 88.33± 0.06 66.81± 0.14 84.69± 0.06
Mime [23] 84.41± 0.06 87.73± 0.06 93.89± 0.08 48.24± 0.15 81.76± 0.11 64.33± 0.21 76.75± 0.11
FedAvg [4] 83.57± 0.04 86.89± 0.05 93.31± 0.08 37.79± 0.19 88.27± 0.15 66.59± 0.09 53.31± 0.12

Fig. 3. (a)–(c): Accuracy comparison for HierMo under different settings of worker-edge aggregation period τ and edge-cloud aggregation period π when
CNN is trained on MNIST. (e)–(g): Accuracy comparison under 3-class (e), 6-class (f), and 9-class (g) non-i.i.d. data when CNN is trained on MNIST. (d)
and (h): Accuracy comparison for large N (N = 50 and N = 100) when CNN is trained on MNIST.

Comparing HierMo with HierFAVG and CFL, we observe
that HierMo > CFL > HierFAVG . (We use “>” to indicate
“is better than” for presentation convenience.) This verifies
that the momentum can accelerate the convergence in three-
tier architecture.

Comparing HierMo with DOMO and FedADC, we observe
that HierMo > DOMO > FedADC. This verifies that when
two types of momentum are applied, the three-tier architecture
outperforms the two-tier architecture. This is because the
additional edge aggregation can decrease the effect of data
heterogeneity among workers under the same edge node, so
as to improve the performance.

Comparing DOMO and FedADC with FedMom, SlowMo,
FedNAG, and Mime, we observe that DOMO > FedADC >
FedNAG > FedMom ≈ SlowMo > Mime. This confirms that
using combined worker momentum and aggregator momentum
can accelerate the convergence compared with those using mo-
mentum only on workers or only on the aggregator. For worker
momentum only or aggregator momentum only algorithms, we
can still observe their acceleration compared with FedAvg. We
also observe Mime may not perform well. Sometimes, it is
even worse than FedAvg. This is because Mime uses the fixed
momentum value in worker momentum update, where such

value can be refreshed only in the global aggregation phase.
As a result, the momentum value may be stale, especially when
τ is as large as 40.

Comparing HierFAVG and CFL with two-tier momentum-
based algorithms (DOMO, FedADC, FedMom, SlowMo, Fed-
NAG, and Mime), we observe that for DNN, HierFAVG and
CFL outperform two-tier momentum-based algorithms, while
for convex model and CNN, the later is better. This shows
that for complicated models, the three-tier architecture plays
a more significant role to accelerate the convergence while
for less complicated models, the momentum plays a more
significant role to accelerate the convergence.

We also compare the training accuracy when more workers
(N = 50 and N = 100) participate the training to demon-
strate the cross-siloed FL [41] (typically up to one hundred
participants). The results in Fig. 3(d) and (h) show the same
trend as results in Table II.

3) Effects of τ and π: In Fig. 3, we evaluate the effects
of τ and π, and their joint effects. The curves in the figure
show the accuracy when CNN is trained on MNIST. We set
T = 1000, γ = 0.5, γa = 0.5. There are 16 workers and 4
edge nodes with each edge node serving 4 workers.

When π and τ are fixed in Fig. 3(a) and Fig. 3(b) respec-
tively, we observe that larger τ or π lowers the performance.
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Fig. 4. Comparison of total training time to reach 0.95 accuracy under two
different settings when CNN is trained on MNIST. The time to reach 0.95
accuracy is labeled in the legends. (a): γ = 0.5, γa = 0.5, τ = 20 (two-tier)
or τ = 10, π = 2 (three-tier). (b): γ = 0.5, γa = 0.5, τ = 40 (two-tier) or
τ = 20, π = 2 (three-tier).

This observation matches our expectation and verifies the
result of Theorem 4 showing that the larger τ or π leads to
larger convergence upper bound.

When τ ·π (the product of τ and π) is fixed in Fig. 3(c), we
observe that smaller τ (larger π) leads to better performance.
This shows that more frequent edge aggregation is more
effective compared with more frequent cloud aggregation.

4) Effects of non-i.i.d. data distribution: In Fig. 3(e)–(g),
we evaluate the effects of different levels of non-i.i.d. data
distribution. We train CNN on MNIST with the setting τ = 40
(two-tier) or τ = 20, π = 2 (three-tier), N = 4, L = 2, and
T = 1000. The curves show the training accuracy. To quantify
the level of non-i.i.d. data distribution, we explicitly assign
only x < 10 out of 10 classes of data for each worker. (Each
worker has data samples from a subset of classes.) The class of
data is randomly allocated to each worker. Smaller x represents
higher level of non-i.i.d. setting. We use 3-class non-i.i.d., 6-
class non-i.i.d., and 9-class non-i.i.d. to represent high, middle
and low level of non-i.i.d. data respectively.

We observe that HierMo > HierFAVG > DOMO >
FedADC > FedNAG > CFL > FedMom > SlowMo > Mime
≈ FedAvg in most cases. This is consistent with the results
in Table II, showing that HierMo outperforms all benchmarks
under any levels of non-i.i.d. data distribution. We also ob-
serve higher level of non-i.i.d. setting decreases convergence
performance for all algorithms. Specifically, HierMo achieves
66.11% accuracy for high level non-i.i.d. data, while achieving
92.21% accuracy and 94.70% accuracy for middle and low
level non-i.i.d. data respectively. This matches our expectations
where higher level of non-i.i.d. setting causes more data
divergence that is denoted by larger δ, and therefore lowers
the accuracy.

B. Experiment on Trace-driven simulation of HierMo

1) Experimental Setup: We emulate the real-world three-
tier hierarchical FL environment to test the performance of
HierMo in the following two aspects. 1 To reach a target
training accuracy (0.95), we compare the total training time
of HierMo and benchmarks. 2 For a given total training time
Ψ, we compare the performance of HierMo under different
(τ, π) and verify that (τ∗, π∗) derived by HierOPT is near
optimal.

We train the CNN on MNIST in the GPU tower server
to keep the trace of the sequence of iterations. We use real-
world devices as workers (one laptop with Intel Core i3 M380
CPU, three Android phones: Nubia z17s with Qualcomm
Snapdragon 835 CPU, Realme GT Neo with MTK Dimensity
1200 CPU, Redmi K30 Ultra with MTK Dimensity 1000+
CPU) to sample worker computation delays. We use Macbook
Pro 2018 with Intel Core i7-8750H CPU as the edge node to
sample the edge computation delays. The GPU tower server is
regarded as the cloud server and the cloud computation delays
are sampled on it. The workers are connected to a HUAWEI
Honor router X2+ with 5GHz WiFi. The edge node is also
connected to the router with a wired cable (1 Gbps Ethernet).
The router is then connected to the public Internet.

The cloud server is connected to the Internet via another
ISP’s access network. The worker communication delays are
sampled between the workers and the edge node. The edge
communication delays are sampled between the edge node and
the server via the public Internet. Please note that for two-
tier FL algorithms, since the workers directly communicate
with the cloud, the worker-to-cloud communication delays are
sampled as the delays from the devices to the server. We use
the trace of the sequence of iterations and the sampled delays
to figure out the overall delays as if the training process is
conducted in real-world three-tier or two-tier FL environment.
Please note that such approach to use a digital representation
of physical objects to conduct the experiment is widely used in
distributed systems, IoT, Industry 4.0, and machine learning
applications [45], [46]. It can generate a convincing system
performance evaluation without deploying physical devices.

2) Total Training Time Comparison: In Fig. 4, we compare
the total training time of HierMo and benchmarks when CNN
is trained on MNIST. The experiment is conducted under two
settings: 1 γ = 0.5, γa = 0.5, τ = 20 (two-tier) or τ =
10, π = 2 (three-tier) and 2 γ = 0.5, γa = 0.5, τ = 40 (two-
tier) or τ = 20, π = 2 (three-tier). There are 4 workers and 2
edge nodes with each edge node serving 2 workers (three-tier
algorithm). There are 4 workers directly served by the cloud
(two-tier algorithm).

We observe that to reach the accuracy 0.95, HierMo spends
558.94s under setting 1 and 459.48s under setting 2 while
other benchmarks spend 706.18s–1544.76s under setting 1

and 599.73s–1532.65s under setting 2 respectively. This
demonstrates that HierMo is efficient and decreases the total
training time by 21–70% compared with the benchmarks.

3) Performance of HierOPT: In Fig. 5, we illustrate the
performance of HierOPT. In this experiment, CNN is trained
on MNIST and CIFAR10. We set γ = 0.5, γa = 0.5,
Ψ = 400s or Ψ = 200s (MNIST), and Ψ = 6000s or
Ψ = 3000s (CIFAR10). There are 16 workers and 4 edge
nodes with each edge node serving 4 workers. All constants
in the objective function (29) can be sampled in advance of
the training process [42], [44].

We show the accuracy under different pairs of (τ, π) and
flag (τ∗, π∗) derived by HierOPT. The darker color in the
chromatography indicates a higher training accuracy. The red
cross indicates the derived (τ∗, π∗) by HierOPT. We observe
that in all figures, HierOPT can find near-optimal solutions.
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Fig. 5. Accuracy comparison for HierMo with derived pair of (τ∗, π∗) by HierOPT (red cross) and different pairs of (τ, π) under limited total training time
Ψ. The darker color indicates the higher training accuracy (in %). (a): Ψ = 400s on MNIST. (b): Ψ = 200s on MNIST. (c): Ψ = 6000s on CIFAR10. (d):
Ψ = 3000s on CIFAR10.

In Fig. 5(a), when Ψ = 400s, the optimal accuracy is
95.05%, with optimal (τ, π) = (42, 2), while HierOPT finds
(τ∗, π∗) = (40, 2), with accuracy 94.82%, only a 0.23% gap
from the optimum. In Fig. 5(b), when Ψ = 200s, the optimal
accuracy is 92.52%, with optimal (τ, π) = (46, 2), while
HierOPT finds (τ∗, π∗) = (43, 2), with accuracy 92.23%, only
a 0.29% gap from the optimum. For CIFAR10, HierOPT can
still find the near-optimal (τ∗, π∗), with only 0.04% (67.09%
to 67.05%) and 0.16% (56.82% to 56.66%) gap from the real-
world optimum, when Ψ = 6000s and Ψ = 3000s respectively.

VII. CONCLUSION

In this paper, we propose HierMo, a three-tier hierarchical
FL algorithm that applies momentum to accelerate conver-
gence. We provide convergence analysis for HierMo, showing
that it converges with a rate of O

(
1
T

)
for smooth non-convex

problems under non-i.i.d. data. In the analysis, we develop
a new two-level virtual update (edge and cloud) method to
characterize the multi-time cross-two-tier momentum inter-
action and the cross-three-tier momentum interaction. The
performance gain of momentum is also quantified. We also
propose HierOPT to derive a near-optimal setting of worker-
edge and edge-cloud aggregation periods (τ, π) under a limited
total training time. We verify that HierMo outperforms existing
mainstream benchmarks under a wide range of settings. In
addition, HierOPT can achieve a near-optimal performance
when we test HierMo under different values of (τ, π).

APPENDIX

A. Proof of Theorem 1

1) Equivalent Update: First, we define vti,` , yti,` − yt−1i,`

with v0
i,` = 0 for all i, `. We can obtain xt−1i,` = yt−1i,` +

γvt−1i,` . The worker momentum/model update in Lines 5–6 in
Algorithm 1 can then be equivalently written as

vti,` ← γvt−1i,` − η∇Fi,`(x
t−1
i,` ), (30)

xti,` ← xt−1i,` + γvti,` − η∇Fi,`(xt−1i,` ). (31)

The aggregated value vt` and the intermediate value xt`− can
also be equivalently written as

vt` ←
C∑̀
i=1

Di,`

D`
vti,`, xt`− ←

C∑̀
i=1

Di,`

D`
xti,`. (32)

Similarly, the edge and cloud virtual updates (8)–(9) and (12)–
(13) can be equivalently written as

vt[k],` ←γv
t−1
[k],` − η∇F`(x

t−1
[k],`),

xt[k],` ←xt−1[k],` + γvt[k],` − η∇F`(x
t−1
[k],`), (33)

vt{p} ←γv
t−1
{p} − η∇F (xt−1{p} ),

xt{p} ←xt−1{p} + γvt{p} − η∇F (xt−1{p} ). (34)

We employ the above equivalent update format (30)–(34) to
complete the proof in the rest of the Appendix.

2) Constant Definition: We define the constants as follows,
which are more conveniently used in the rest of the Appendix.

A ,
(1 + ηβ)(1 + γ) +

√
(1 + ηβ)2(1 + γ)2 − 4γ(1 + ηβ)

2γ
,

B ,
(1 + ηβ)(1 + γ)−

√
(1 + ηβ)2(1 + γ)2 − 4γ(1 + ηβ)

2γ
,

I ,
γA+A− 1

(A−B)(γA− 1)
, J ,

γB +B − 1

(A−B)(1− γB)
,

U ,
1+ηβ+ηβγ

γ
−B

A−B =
A− 1

A−B , V ,
A− 1+ηβ+ηβγ

γ

A−B =
1−B
A−B .

3) Subscript `: Since Theorem 1 focuses on a specific edge
node `, for presentation convenience, in the proofs of Theo-
rem 1 (including Lemmas 1–3), we ignore all subscript `. We
use xi,vi,x,v,x[k],v[k], Fi, F,Di, D, δi, δ, and C to repre-
sent xi,`,vi,`,x`−,v`,x[k],`,v[k],`, Fi,`, F`, Di,`, D`, δi,`, δ`,
and C` respectively. Please note that in the proofs of the
theorems other than Theorem 1, we do not ignore subscript `.

4) Prerequisite Lemmas for the Proof of Theorem 1: To
prove Theorem 1, the progress mainly includes four steps. (1)
We first introduce an important equality in Lemma 1, which
will be used to prove Lemma 2. (2) We bound ‖xti − xt[k]‖
in Lemma 2 based on Lemma 1. (3) Based on the result of
Lemma 2, we then bound ‖vt − vt[k]‖ in Lemma 3. Please
note that the proofs of Lemmas 1–3 are in Appendix B–D
respectively. (4) Finally, based on the result of Lemma 3, we
bound ‖xt − xt[k]‖, which concludes Theorem 1.
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Lemma 1. Given

at =
δi
β

(
1+ηβ+ηβγ

γ −B
A−B

At −
1+ηβ+ηβγ

γ −A
A−B

Bt

)
, (35)

A+B =
1 + ηβ + ηβγ + γ

γ
=

(1 + ηβ)(1 + γ)

γ
,

AB =
1 + ηβ

γ
, (36)

where t = 0, 1, 2, ..., 0 < γ < 1, ηβ > 0, we have (1 +
ηβ)at−1 + ηβγ

∑t−1
i=0 ai = γat.

Lemma 2. For any interval [k], ∀t ∈ [(k− 1)τ, kτ ], we have
‖xti − xt[k]‖ ≤ fi(t− (k− 1)τ), where we define the function
fi(x) as fi(x) , δi

β (γx(UAx + V Bx) − 1) and the function
u(x) as u(x) , γx(UAx + V Bx)− 1.

Lemma 3. For any interval [k], ∀t ∈ [(k−1)τ, kτ ], we have:

‖vt − vt[k]‖ ≤ ηδ
(
U(γA)t0

γ(A− 1)
+
V (γB)t0

γ(B − 1)
− γt0 − 1

γ − 1

)
,

where t0 = t− (k − 1)τ .

5) Derivation of Theorem 1: From (31) and (32), we have

xt = xt−1 + γvt − η
∑C
i=1Di∇Fi(xt−1i )

D
. (37)

From (33) and (37), and according to β-smoothness, Lemma
2, the definition of fi(x) and u(x), and Assumption 3, we
have

‖xt − xt[k]‖ = ‖xt−1 + γvt − η
∑C
i=1Di∇Fi(xt−1i )

D
− xt−1[k] − γv

t
[k] + η∇F (xt−1[k] )‖

≤‖xt−1 − xt−1[k] ‖+ γ‖vt − vt[k]‖+ ηδu(t− 1− (k − 1)τ).

Then, according to Lemma 3, we have

‖xt − xt[k]‖ − ‖xt−1 − xt−1
[k] ‖

≤γηδ
(
U(γA)t0

γ(A− 1)
+
V (γB)t0

γ(B − 1)
− γt0 − 1

γ − 1

)
+ ηδ(γt0−1(UAt0−1 + V Bt0−1)− 1) (38)

=ηδ

(
U(γA)t0−1

A− 1
(γA+A− 1) +

V (γB)t0−1

B − 1
(γB +B − 1)

−γ
t0+1 − 1

γ − 1

)
. (39)

When t = (k − 1)τ , we have ‖xt − xt[k]‖ = 0. When t ∈ ((k −
1)τ, kτ ], we sum up (39) for t, t− 1, . . . , (k − 1)τ + 1, leading to

‖xt − xt[k]‖ ≤
t0∑
x=1

ηδ

(
U(γA)x−1

A− 1
(γA+A− 1)

+
V (γB)x−1

B − 1
(γB +B − 1)− γx+1 − 1

γ − 1

)
=ηδ

[
I
(
(γA)t0 − 1

)
+ J

(
(γB)t0 − 1

)
−γ

2(γt0 − 1)− (γ − 1)t0
(γ − 1)2

]
=ηδ

[
I(γA)t0 + J(γB)t0 − 1

ηβ
− γ2(γt0 − 1)− (γ − 1)t0

(γ − 1)2

]
=h(t0),

where I = γA+A−1
(A−B)(γA−1) and J = γB+B−1

(A−B)(1−γB) (as defined
before). I+J = 1

ηβ . t0 = t−(k−1)τ . We complete the proof
of Theorem 1.

B. Proof of Lemma 1
Based on the definitions of U, V , and at, we have at =

δi
β (UAt + V Bt). According to the inverse theorem of Vieta’s
formulas, we have

γx2 − (1 + ηβ + ηβγ + γ)x+ ηβ + 1 = 0, (40)

where x values are the roots of the quadratic equation. The
discriminant of the quadratic equation is positive.

∆ = (1 + ηβ + ηβγ + γ)2 − 4(1 + ηβ)γ

> (1 + ηβ + γ)2 − 4(1 + ηβ)γ = ((1 + ηβ)− γ)2 > 0.

Thus, the roots of (40) can be expressed as A and B.
Therefore, we can obtain

(1 + ηβ)at−1 + ηβγ

t−1∑
i=0

ai − γat

=(1 + ηβ)
δi
β

(
UAt−1 + V Bt−1

)
+ ηβγ

δi
β
U
At − 1

A− 1

+ ηβγ
δi
β
V
Bt − 1

B − 1
− γ δi

β
UAt − γ δi

β
V Bt

=
δi
β

[
At−1U

1−A
(
γA2 − (1 + ηβ + ηβγ + γ)A+ 1 + ηβ

)
+
Bt−1V

1−B
(
γB2 − (1 + ηβ + ηβγ + γ)B + 1 + ηβ

)]
− δi
β
ηβγ

(
U

A− 1
+

V

B − 1

)
=0− ηδiγ

(
U

A− 1
+

V

B − 1

)
= 0.

We complete the proof of Lemma 1.

C. Proof of Lemma 2
To prove Lemma 2, (1) we first bound the gap of ‖vti−vt[k]‖;

(2) then we bound the gap of ‖xti − xt[k]‖, which concludes
Lemma 2.

When t = (k − 1)τ , we know xti = xt = xt[k] by the
definition of xt[k] and the aggregation rules. Hence, we have
‖xti − xt[k]‖ = 0. Meanwhile, when t = (k − 1)τ , we have
x = 0 and fi(0) = 0 (Lemma 2 holds).

When t ∈ ((k − 1)τ, kτ ], we bound the momentum gap

‖vti − vt[k]‖
=‖γvt−1i − η∇Fi(xt−1i )− (γvt−1[k] − η∇F (xt−1[k] ))‖
=‖γ(vt−1i − vt−1[k] )− η[∇Fi(xt−1i )−∇Fi(xt−1[k] )

+∇Fi(xt−1[k] )−∇F (xt−1[k] )]‖
(a)

≤γ‖vt−1i − vt−1[k] ‖+ η‖∇Fi(xt−1i )−∇Fi(xt−1[k] )‖
+ η‖∇Fi(xt−1[k] )−∇F (xt−1[k] )‖

(b)

≤γ‖vt−1i − vt−1[k] ‖+ ηβ‖xt−1i − xt−1[k] ‖+ ηδi, (41)
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where (a) is from triangle inequality and (b) is from β-
smoothness and Assumption 3.

We use γ0, γ1, . . . , γt−(k−1)τ−1 as multipliers to multiply
(41) when t, t− 1, . . . , (k − 1)τ + 1, respectively.

‖vti − vt[k]‖ ≤ γ‖vt−1
i − vt−1

[k] ‖+ ηβ‖xt−1
i − xt−1

[k] ‖+ ηδi,

γ‖vt−1
i − vt−1

[k] ‖ ≤ γ(γ‖vt−2
i − vt−2

[k] ‖+ ηβ‖xt−2
i − xt−2

[k] ‖+ ηδi),

. . .

γt−(k−1)τ−1‖v(k−1)τ+1
i − v

(k−1)τ+1

[k] ‖ ≤ γt−(k−1)τ−1

(γ‖v(k−1)τ
i − v

(k−1)τ

[k] ‖+ ηβ‖x(k−1)τ
i − x

(k−1)τ

[k] ‖+ ηδi).

For convenience, we define Gi(t) , ‖xti−xt[k]‖. Summing up
all of the above inequalities with respect to b ∈ [1, t−(k−1)τ ],
we have

‖vti − vt[k]‖ ≤ ηβ
t−(k−1)τ∑
b=1

γb−1Gi(t− b) + ηδi

t−(k−1)τ∑
b=1

γb−1

+ γt−(k−1)τ‖v(k−1)τ
i − v

(k−1)τ
[k] ‖.

When t = (k − 1)τ , we know that vti = vt = vt[k] by
the definition of vt[k] and aggregation rules. Then we have

‖v(k−1)τ
i − v

(k−1)τ
[k] ‖ = 0, so that the last term of above

inequality is zero and

‖vti − vt[k]‖ ≤ ηβ
t−(k−1)τ∑
b=1

γb−1Gi(t− b) + ηδi

t−(k−1)τ∑
b=1

γb−1.

(42)

Now, we can bound the gap between xti and xt[k]. When t ∈
((k − 1)τ, kτ ], we have

‖xti − xt[k]‖
(a)
=‖xt−1

i + γvti − η∇Fi(xt−1
i )− (xt−1

[k] + γvt[k] − η∇F (xt−1
[k] ))‖

=‖xt−1
i − xt−1

[k] + γ(vti − vt[k])− η[∇Fi(xt−1
i )−∇Fi(xt−1

[k] )

+∇Fi(xt−1
[k] )−∇F (xt−1

[k] )]‖
(b)

≤‖xt−1
i − xt−1

[k] ‖+ γ‖vti − vt[k]‖+ ηβ‖xt−1
i − xt−1

[k] ‖+ ηδi

=(ηβ + 1)‖xt−1
i − xt−1

[k] ‖+ γ‖vti − vt[k]‖+ ηδi, (43)

where (a) is from (31) and (33), and (b) is from triangle
inequality, β-smoothness, and Definition 3.

Substituting (42) into (43) and using Gi(t) to denote ‖xti−
xt[k]‖ for t, t− 1, . . . , (k − 1)τ + 1, we have

Gi(t) ≤(ηβ + 1)Gt−1i + ηβγ

t−(k−1)τ∑
b=1

γb−1Gi(t− b)

+ ηδiγ

t−(k−1)τ∑
b=1

γb−1 + ηδi

=(ηβ + 1)Gt−1i + ηβγ

t−(k−1)τ∑
b=1

γb−1Gi(t− b)

+ ηδi

t−(k−1)τ∑
b=0

γb. (44)

For convenience, we define gi(x) , δi
β (UAx + V Bx). We

have fi(x) = γxgi(x)− δi
β .

We use induction to prove Gi(t) ≤ fi(t− (k − 1)τ), ∀t ∈
[(k − 1)τ, kτ ]. First of all, we know that it is true when t =
(k−1)τ because Gi((k−1)τ) = fi(0). Then, we assume that
Gi(c) ≤ fi(c− (k − 1)τ) holds for all c ∈ [(k − 1)τ, t), and
we show it also holds for t.

Gi(t)

(a)

≤ (ηβ + 1)fi(t− 1− (k − 1)τ)

+ ηβ

t−(k−1)τ∑
b=1

γbfi(t− b− (k − 1)τ) + ηδi

t−(k−1)τ∑
b=0

γb

(b)
=(ηβ + 1)

(
γt−1−(k−1)τgi(t− 1− (k − 1)τ)− δi

β

)
+ ηβ

t−(k−1)τ∑
b=1

(
γt−(k−1)τgi(t− b− (k − 1)τ)− γb δi

β

)

+ ηδi

t−(k−1)τ∑
b=0

γb

=γt−1−(k−1)τ ((ηβ + 1)gi(t− 1− (k − 1)τ)

+ηβγ

t−(k−1)τ∑
b=1

gi(t− b− (k − 1)τ)

− δi
β

(c)
=γt−(k−1)τgi(t− (k − 1)τ)− δi

β
= fi(t− (k − 1)τ),

where (a) is from (44), (b) is from definition of fi(x), and (c)
is from Lemma 1 and Gi(t) = at. We complete the proof of
Lemma 2.

D. Proof of Lemma 3

Based on the definition of u(x) in Lemma 2, we get fi(x) =
δi
β u(x). From (31) and (32), we have

vt = γvt−1 − η
∑C
i=1Di∇Fi(xt−1i )

D
. (45)

For t ∈ ((k − 1)τ, kτ ], we have

‖vt − vt[k]‖

(a)
=‖γvt−1 − η

∑C
i=1Di∇Fi(xt−1i )

D
− γvt−1[k] + η∇F (xt−1[k] )‖

≤γ‖vt−1 − vt−1[k] ‖+ η

∑C
i=1Di‖∇Fi(xt−1i )−∇Fi(xt−1[k] )‖

D
(b)

≤γ‖vt−1 − vt−1[k] ‖+ ηβ

∑C
i=1Difi(t− 1− (k − 1)τ)

D
(c)
=γ‖vt−1 − vt−1[k] ‖+ ηδu(t− 1− (k − 1)τ), (46)

where (a) is from (45) and (33); (b) is from β-smoothness
and Lemma 2; and (c) is from definition of fi(x) and As-
sumption 3.
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We use γ0, γ1, . . . , γt−(k−1)τ−1 as multipliers to multiply
(46) when t, t− 1, . . . , (k − 1)τ + 1, respectively.

‖vt − vt[k]‖ ≤ γ‖vt−1 − vt−1
[k] ‖+ ηδu(t− 1− (k − 1)τ),

γ‖vt−1 − vt−1
[k] ≤ γ

2(‖vt−2 − vt−2
[k] ‖+ γηδu(t− 2− (k − 1)τ),

. . .

γt−(k−1)τ−1‖v(k−1)τ+1 − v
(k−1)τ+1

[k] ‖

≤ γt−(k−1)τ‖v(k−1)τ − v
(k−1)τ

[k] ‖+ γt−1−(k−1)τηδu(0).

Summing up all of the above inequalities, and according to
‖v(k−1)τ − v

(k−1)τ
[k] ‖ = 0, we have

‖vt − vt[k]‖ ≤ ηδ
t−(k−1)τ∑
b=1

γt−b−(k−1)τu(b− 1) (47)

=ηδ

γt−1−(k−1)τU t−(k−1)τ∑
b=1

Ab−1

+γt−1−(k−1)τV

t−(k−1)τ∑
b=1

Bb−1 −
t−(k−1)τ∑
b=1

γb−1


=ηδ

(
γt0−1U

At0 − 1

A− 1
+ γt0−1V

Bt0 − 1

B − 1
− γt0 − 1

γ − 1

)
=ηδ

(
U(γA)t0

γ(A− 1)
+
V (γB)t0

γ(B − 1)
− γt0 − 1

γ − 1

)
− ηδγt0−1

(
U

A− 1
+

V

B − 1

)
=ηδ

(
U(γA)t0

γ(A− 1)
+
V (γB)t0

γ(B − 1)
− γt0 − 1

γ − 1

)
(48)

where t0 = t− (k−1)τ . We complete the proof of Lemma 3.

E. Proof of Theorem 2

Based on the edge momentum update rules in Lines 10–11
in Algorithm 1, and (31) we have

xkτ`+ − xkτ`− = γa
(
xkτ`− − x

(k−1)τ
`−

)
= γa

kτ−1∑
t=(k−1)τ

(
xt+1
`− − xt`−

)
= γa

kτ−1∑
t=(k−1)τ

C∑̀
i=1

Di,`
D`

(
xt+1
i,` − xti,`

)
= γa

kτ−1∑
t=(k−1)τ

C∑̀
i=1

Di,`
D`

(
γ2vti,` − η(γ + 1)∇Fi,`(xti,`)

)
, (49)

and we define

µ , max
p∈[1,P ],∀t,`,i

{
‖γ(vt{p})‖
‖η∇F (xt{p})‖

,
‖γ(vti,`)‖

‖η∇Fi,`(xti,`)‖

}
. (50)

Because Fi,`(·) is ρ-Lipschitz, and according to [47, Lecture
2, Lemma 1], we have ‖∇Fi,`(·)‖2 ≤ ρ2. Therefore, based on

the definition of µ and (49), we can derive∥∥xkτ`+ − xkτ`−
∥∥

≤γa
kτ−1∑

t=(k−1)τ

C∑̀
i=1

Di,`

D`

∥∥γ2vti,` − η(γ + 1)∇Fi,`(xti,`)
∥∥

≤γa
kτ−1∑

t=(k−1)τ

C∑̀
i=1

Di,`

D`
(γµη + η(γ + 1)) ρ

=γaτρη(γµ+ γ + 1). (51)

We complete the proof of Theorem 2.

F. Proof of Theorem 3

First, we define edge virtual update which is meaningful in
cloud interval {p} as yt{p},` and xt{p},`. The value synchro-
nization and edge virtual update on {p} are conducted as

y
(p−1)τπ
{p},` ← y(p−1)τπ, (52)

x
(p−1)τπ
{p},` ← x(p−1)τπ, (53)

when t = (p− 1)τπ, and

yt{p},` ← xt−1{p},` − η∇F`(x
t−1
{p},`), (54)

xt{p},` ← yt{p},` + γ(yt{p},` − yt−1{p},`), (55)

when p ∈ ((p − 1)τπ, pτπ]. According to Theorem 1, we
have proved the gap between intermediate worker update
on the edge

∑C`
i=1

Di,`
D`

xti,` and edge virtual update xt[k],`.
Equivalently, the gap between the intermediate edge virtual
update on the cloud

∑L
`=1

D`
D xt{p},` and the cloud virtual

update xt{p} can be derived as the same way as Theorem 1.
The only difference is the gradient divergence. The edge-
level gradient divergence is δ` and the cloud-level gradient
divergence is δ. Therefore, for any cloud interval {p},∀t ∈
[(p− 1)τπ, pτπ],∀` ∈ L, we have∥∥∥∥∥

L∑
`=1

D`

D
xt{p},` − xt{p}

∥∥∥∥∥ ≤ h(t− (p− 1)τπ, δ). (56)

At the end of cloud interval {p}, when t = pτπ, we have∥∥∥∥∥
L∑
`=1

D`

D
xpτπ{p},` − xpτπ{p}

∥∥∥∥∥ ≤ h(τπ, δ). (57)

Based on the definition of xpτπ[pπ] in Theorem 3 and the
definition of xpτπ{p},`, we obtain∥∥∥∥∥xpτπ[pπ] −

L∑
`=1

D`

D
xpτπ{p},`

∥∥∥∥∥ ≤
L∑
`=1

D`

D

∥∥∥xpτπ[pπ],` − xpτπ{p},`

∥∥∥
≤ π

L∑
`=1

D`

D
(h(τ, δ`) + s(τ)). (58)

Combining (57) and (58), we complete the proof of Theo-
rem 3.
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G. Proof of Monotone of h(x)

To prove the monotone increasing of h(x), it is equivalent
to prove h(x)− h(x− 1) ≥ 0 for all integer x ≥ 1.

When x = 0 or x = 1, because IA + JB = 1+ηβ+ηβγ
ηβγ ,

we have h(0) = ηδ(I + J − 1
ηβ ) = 0 and h(1) =

ηδ
(
γ(IA+ JB)− 1

ηβ − γ − 1
)

= 0. Then, when x = 1,
we have h(x) − h(x − 1) = 0. When x > 1, according to
the definitions of A, B, U , and V , we can obtain that γA >
1, 0 < γB < 1, 1

γ+1 < B < 1, I > 0, J > 0, U > 0, V > 0,
and U + V = 1. Then, we have

U(γA)i + V (γB)i ≥ (1 + ηβ + ηβγ)i (59)

holds ∀i = 0, 1, . . .. This is because: 1 When i =
0, U(γA)i + V (γB)i = (1 + ηβ + ηβγ)i = 1, (59) holds. 2

When i = 1, we have U(γA)i + V (γB)i = γ(UA+ V B) =

γ
(
A−1
A−BA+ 1−B

A−BB
)

= γ(A+B− 1) = 1 + ηβ + ηβγ. (59)
still holds. 3 When i > 1, according to Jensen inequality,
and because any function n(x) = xi is convex, we have
U(γA)i + V (γB)i ≥ (γUA + γV B)i = (1 + ηβ + ηβγ)i.
(59) still holds.

According to (59) and the definition of u(x) in Lemma 2, we
have u(x) = U(γA)x+V (γB)x−1 ≥ (1+ηβ+ηβγ)x−1 > 0.
Then, we have

h(x)− h(x− 1) = ηδ

(
U(γA)x(γA+A− 1)

γA(A− 1)

+
V (γB)x(γB +B − 1)

γB(B − 1)
− γx+1 − 1

γ − 1

)
(a)
=γηδ

(
U(γA)x

γ(A− 1)
+

V (γB)x

γ(B − 1)
− γx − 1

γ − 1

)
+ ηδ(γx−1(UAx−1 + V Bx−1)− 1)

(b)
=γηδ

x∑
b=1

γx−bu(b− 1) + ηδu(x− 1) > 0,

where (a) is because (39) equals (38); (b) is because (48)
equals (47), x = t− (k − 1)τ , and the definition of u(x). To
conclude, we have proven that h(0) = h(1) = 0 and h(x)
increases with x when x ≥ 1.

H. Proof of Theorem 4

For convenience, we define c{p}(t) , F (xt{p})−F (x∗) for
a given cloud interval {p}, where t ∈ [(p − 1)τπ, pτπ]. We
also define the following constants in this subsection.

ω , min
p∈[1,P ],t∈{p}

1

‖xt{p} − x∗‖2
,

σ , min
p∈[1,P ],t1,t2∈{p}

‖∇F (xt1{p})‖
‖∇F (xt2{p})‖

, (60)

α , η(γ + 1)

(
1− βη(γ + 1)

2

)
− βη2γ2µ2

2

− ηγµ(1− βη(γ + 1)). (61)

According to the convergence lower bound of any gradient
descent methods given in [36, Theorem 3.14], we always have
c{p}(t) > 0 for any t and p. Then we derive the upper bound

of c{p}(t + 1) − c{p}(t), where t ∈ [(p − 1)τπ, pτπ − 1].
Because F (·) is β-smooth, according to [36, Lemma 3.4], we
have
c{p}(t+ 1)− c{p}(t) = F (xt+1

{p} )− F (xt{p})

≤〈∇F (xt{p}),x
t+1
{p} − xt{p}〉+

β

2
‖xt+1
{p} − xt{p}‖2

=γ〈∇F (xt{p}),v
t+1
{p} 〉 − η‖∇F (xt{p})‖2

+
β

2
‖γvt+1

{p} − η∇F (xt{p})‖2

(a)
= − η(γ + 1)

(
1− βη(γ + 1)

2

)
‖∇F (xt{p})‖2

+
βγ4

2
‖vt{p}‖2 + γ2 (1− βη(γ + 1)) 〈∇F (xt{p}),v

t
{p}〉

(b)

≤
(
−η(γ + 1)

(
1− βη(γ + 1)

2

)
+
βη2γ2µ2

2

+ηγµ(1− βη(γ + 1))) ‖∇F (xt{p})‖2, (62)

where (a) is replacing vt+1
{p} by (34) and rearranging the

formula; (b) is because ‖γvt{p}‖ ≤ µ‖η∇F (xt{p})‖ with
the definition of µ. According to Cauchy-Schwarz inequality,
we can obtain 〈∇F (xt{p}),v

t
{p}〉 ≤ ‖∇F (xt{p})‖‖v

t
{p}‖ ≤

µη
γ ‖∇F (xt{p})‖

2. According to the definition of α, and Con-
dition (2.1) of Theorem 4 with h(τ, δ`) ≥ 0 and h(τπ, δ) ≥ 0
which are proved in Appendix G, we have α > 0. Then from
(62), we have

c{p}(t+ 1) ≤ c{p}(t)− α‖∇F (xt{p})‖
2. (63)

Because F (·) is ρ-Lipschitz, and according to [47, Lec-
ture 2, Lemma 1], there exists a point xt2{p} such that
F (xt{p}) − F (x∗) = 〈∇F (xt2{p}),x

t
{p} − x∗〉. Hence, by

Cauchy-Schwarz inequality, we have c{p}(t) = F (xt{p}) −
F (x∗) ≤ ‖∇F (xt2{p})‖‖x

t
{p} − x∗‖. Based on the definition

of σ, and replacing t with t1, we have ‖∇F (xt{p})‖ ≥
σ‖∇F (xt2{p})‖. Thus, ‖∇F (xt{p})‖ ≥ σ‖∇F (xt2{p})‖ ≥
σc{p}(t)

‖xt{p}−x∗‖
. Substituting above inequality into (63), and noting

ω ≤ 1
‖xt{p}−x∗‖2

by the definition of ω, we get c{p}(t +

1) ≤ c{p}(t) −
ασ2c{p}(t)

2

‖xt{p}−x∗‖2
≤ c{p}(t) − ωασ2c{p}(t)

2.

Because α > 0, c{p}(t) > 0, and (63), we have 0 <
c{p}(t + 1) ≤ c{p}(t). Dividing both sides by c{p}(t +

1)c{p}(t), we get 1
c{p}(t)

≤ 1
c{p}(t+1) − ωασ2 c{p}(t)

c{p}(t+1) .

We note that c{p}(t)

c{p}(t+1) ≥ 1. Thus, 1
c{p}(t+1) −

1
c{p}(t)

≥
ωασ2 c{p}(t)

c{p}(t+1) ≥ ωασ
2. Summing up the above inequality by

t ∈ [(p−1)τπ, pτπ−1], we have 1
c{p}(pτπ)

− 1
c{p}((p−1)τπ)

=∑pτπ−1
t=(p−1)τπ

(
1

c{p}(t+1) −
1

c{p}(t)

)
≥
∑pτπ−1
t=(p−1)τπ ωασ

2 =

τπωασ2. Then, we sum up the above inequality by p ∈ [1, P ],
after rearranging the left-hand side and noting that T = Pτπ,
we can get

P∑
p=1

(
1

c{p}(pτπ)
− 1

c{p}((p− 1)τπ)

)

=
1

c{p}(T )
− 1

c{1}(0)
−
P−1∑
p=1

(
1

c{p+1}(pτπ)
− 1

c{p}(pτπ)

)
≥Pτπωασ2 = Tωασ2. (64)
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Following (64), we note that

1

c{p+1}(pτπ)
− 1

c{p}(pτπ)
=
c{p}(pτπ)− c{p+1}(pτπ)

c{p}(pτπ)c{p+1}(pτπ)

=
F (xpτπ{p} )− F (xpτπ{p+1})

c{p}(pτπ)c{p+1}(pτπ)
=

F (xpτπ{p} )− F (xpτπ)

c{p}(pτπ)c{p+1}(pτπ)

=
F (xpτπ{p} )− F (xpτπ[pπ]) +

(
F (xpτπ[pπ])− F (xpτπ)

)
c{p}(pτπ)c{p+1}(pτπ)

(a)

≥
−ρ
∑L
`=1

D`
D (h(τ, δ`) + s(τ))

c{p}(pτπ)c{p+1}(pτπ)

(b)
+
−ρ
(
h(τπ, δ) + π

∑L
`=1

D`
D (h(τ, δ`) + s(τ))

)
c{p}(pτπ)c{p+1}(pτπ)

=
−ρj(τ, π, δ`, δ)

c{p}(pτπ)c{p+1}(pτπ)
, (65)

where (a) is because of combining Theorem 1 and Theorem 2;
(b) is because of Theorem 3.

From (63), we can get F (xt{p}) ≥ F (xt+1
{p} ) for any

t ∈ [(p − 1)τπ, pτπ). Recalling Condition (2.2) in Theorem
4, where F (x{p}(pτπ))−F (x∗) ≥ ε for all p, we can obtain
c{p}(t) = F (xt{p})− F (x∗) ≥ ε for all t ∈ [(p− 1)τπ, pτπ]

and p. Thus, c{p}(pτπ)c{p+1}(pτπ) ≥ ε2. According to
Appendix G, we have h(τ, δ`) ≥ 0 and h(τπ, δ) ≥ 0.
Then substituting above inequalities into (65), we obtain

1
c{p+1}(pτπ)

− 1
c{p}(pτπ)

≥ −ρj(τ,π,δ`,δ)ε2 . Substituting the above
inequality into (64) and rearrange, we get

1

c{p}(T )
− 1

c{1}(0)
≥ Tωασ2 − (P − 1)

ρj(τ, π, δ`, δ)

ε2
.

(66)

Recalling Condition (2.3) in Theorem 4, where F (xT ) −
F (x∗) ≥ ε, and noting that c{p}(T ) ≥ ε, we get (F (xT ) −
F (x∗))c{p}(T ) ≥ ε2. Thus,

1

F (xT )− F (x∗)
− 1

c{p}(T )
=
c{p}(T )− (F (xT )− F (x∗))

(F (xT )− F (x∗))c{p}(T )

=
F (xT{p})− F (xT )

(F (xT )− F (x∗))c{p}(T )

≥ −ρj(τ, π, δ`, δ)
(F (xT )− F (x∗))c{p}(T )

≥ −ρj(τ, π, δ`, δ)
ε2

, (67)

where the first inequality follows the same method to prove
(65).

Combining (66) with (67), we get 1
F (xT )−F (x∗)

− 1
c{1}(0)

≥
Tωασ2 − P ρj(τ,π,δ`,δ)

ε2 = Tωασ2 − T ρj(τ,π,δ`,δ)
τπε2 =

T
(
ωασ2 − ρj(τ,π,δ`,δ)

τπε2

)
. Noting that c{1}(0) = F (x0

{1}) −
F (x∗) > 0, the above inequality can be expressed as

1
F (xT )−F (x∗)

≥ T
(
ωασ2 − ρj(τ,π,δ`,δ)

τπε2

)
. Recalling Condi-

tion (2.1) in Theorem 4, where ωασ2 − ρj(τ,π,δ`,δ)
τπε2 > 0,

we obtain that the right-hand side of above inequality is
greater than zero. Therefore, taking the reciprocal of the above
inequality, we finally complete the proof of Theorem 4.

I. Proof of Theorem 5

At the beginning, we see that Condition (1) in Theorem 4
holds due to the Condition in Theorem 5 (0 < βη(γ+1) ≤ 1,
0 < γ < 1, 0 < γa < 1, and ∀τ, π ∈ {1, 2, . . .}).

1) ρj(τ, π) = 0: In this case, there is an arbitrarily small
ε > 0 that let Conditions (2.1)–(2.3) in Theorem 4 hold. In
this case, Theorem 4 holds. We also note that the right-hand
side of (23) is equivalent to the right-hand side of (20) when
ρj(τ, π) = 0. According to the definition of xf in (22), we
have F

(
xf
)
− F (x∗) ≤ F (xT ) − F (x∗) ≤ 1

Tωασ2 , which
satisfies the result in Theorem 4 directly. Thus, Theorem 5
holds when ρj(τ, π) = 0.

2) ρj(τ, π) > 0: In this case, we aim to find an ε satisfying
Condition (2.1), but Conditions (2.2) and (2.3) cannot be
satisfied together so that F (xf)−F (x∗) can be bounded. We
first define an ε0, then we claim that any ε > ε0 is what we
want to find.

We set ε0 as the root of the following equation,

ε0 =
1

T
(
ωασ2 − ρj(τ,π)

τπε20

) . (68)

The positive root is

ε0 =
1

2Tωασ2
+

√
1

4T 2ω2α2σ4
+
ρj(τ, π)

ωασ2τπ
. (69)

Through this way, since ωασ2− ρj(τ,π)
τπε2 increases with ε, ε >

ε0 will lead to Condition (2.1).
Next, using the proof by contradiction, we can prove that

when ε > ε0, there does not exist ε > ε0 that satisfies both
Conditions (2.2) and (2.3) in Theorem 4 at the same time.

We assume that there exists such ε > ε0, so that Conditions
(2.1)–(2.3) hold and thus Theorem 4 holds. Then we have
F (xT ) − F (x∗) ≤ 1

T(ωασ2− ρj(τ,π)

τπε2
)
< 1

T

(
ωασ2− ρj(τ,π)

τπε20

) =

ε0, which contradicts the Condition (2.3) in Theorem 4.
Therefore, for any ε > ε0, one of the following (A) or (B)

holds. (A) ∃p ∈ [1, P ] such that F (xpτπ{p} ) − F (x∗) ≤ ε0 or
(B) F (xT )− F (x∗) ≤ ε0. (A) or (B) gives

min

{
min
p∈[1,P ]

F (xpτπ{p} );F (xT )

}
− F (x∗) ≤ ε0. (70)

According to (67), when t = pτπ, we have F (xpτπ) ≤
F (xpτπ{p} ) + ρj(τ, π) for any cloud interval {p}. Combining
it with (70), we have minp∈[1,P ] F (xpτπ) − F (x∗) ≤ ε0 +
ρj(τ, π). Recalling the definition of xf in (22), T = Pτπ, and
combining xf with above inequality, we get F

(
xf
)
−F (x∗) ≤

ε0 + ρj(τ, π). Substituting (69) into above inequality, we
finally get the result in (23), which completes the proof of
Theorem 5.
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J. Proof of Theorem 6

When η → 0+, we have γA ' 1, γB ' γ, and J ' γ2

(1−γ)2 .
Therefore,

lim
η→0+

h(τ, δ`)

= lim
η→0+

ηδ`

[
I(γA)τ + J(γB)τ − 1

ηβ
− γ2(γτ − 1)− (γ − 1)τ

(γ − 1)2

]
= lim
η→0+

ηδ`

(
I − 1

ηβ

)
= lim
η→0+

ηδ`

(
1

(1− γ)(γA− 1)
− 1

ηβ

)
=

δ`
1− γ lim

η→0+

η

γA− 1
− δ`
β

=
δ`

1− γ lim
η→0+

1

(γA− 1)′
− δ`
β

=
δ`

1− γ
1− γ
β
− δ`
β

= 0

where the second last line is because of the L’Hôpital’s
rule. Then, we can derive s(·) ' 0. Afterwards, we have
j(·) ' 0 and ĵ(·) ' 0. Therefore, fHierMo(T ) ' 1

Tωασ2 and
fHierFAV G(T ) ' 1

Tωα̂σ2 . Based on the conditions in Theo-
rem 6, we have α > α̂. Therefore, we have fHierFAV G(T )−
fHierMo(T ) > 0, which completes the proof of Theorem 6.
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