
FedHAP: Federated Hashing with Global Prototypes for
Cross-silo Retrieval

Meilin Yang, Jian Xu, Yang Liu, Wenbo Ding
Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University

Shenzhen, China
Institute for AI Industry Research, Tsinghua University

Beijing, China

ABSTRACT
Deep hashing has been widely applied in large-scale data retrieval
due to its superior retrieval efficiency and low storage cost. How-
ever, data are often scattered in data silos with privacy concerns,
so performing centralized data storage and retrieval is not always
possible. Leveraging the concept of federated learning (FL) to per-
form deep hashing is a recent research trend. However, existing
frameworks mostly rely on the aggregation of the local deep hash-
ing models, which are trained by performing similarity learning
with local skewed data only. Therefore, they cannot work well
for non-IID clients in a real federated environment. To overcome
these challenges, we propose a novel federated hashing framework
that enables participating clients to jointly train the shared deep
hashing model by leveraging the prototypical hash codes for each
class. Globally, the transmission of global prototypes with only
one prototypical hash code per class will minimize the impact of
communication cost and privacy risk. Locally, the use of global pro-
totypes are maximized by jointly training a discriminator network
and the local hashing network. Extensive experiments on bench-
mark datasets are conducted to demonstrate that our method can
significantly improve the performance of the deep hashing model
in the federated environments with non-IID data distributions.
ACM Reference Format:
Meilin Yang, Jian Xu, Yang Liu, Wenbo Ding. 2022. FedHAP: Federated
Hashing with Global Prototypes for Cross-silo Retrieval. In Proceedings
of . ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
With the explosive increase of data generated from different institu-
tions, achieving fast and storage-saving information retrieval across
multiple institutions has attracted much attention in recent years.
Deep hashing is a widely used method that aims to reduce storage
cost and improve retrieval efficiency by encoding data points into
non-invertible and compact binary hash codes with deep neural
networks (DNNs) [8, 14]. Most existing deep hashing methods as-
sume that data storage is centralized. For example, TDHPPIR [38]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

is an efficient privacy-preserving image retrieval method based on
deep hashing, in which data owners upload the encrypted data set
to the central cloud server, and provide data retrieval services via
the indexes established from the database. However, centralized
storage of private client data is not always feasible due to space
limitations, increasing privacy concerns and tough data protection
regulations such as GDPR 1. Therefore, it is increasingly desirable
to learn to hash over distributed data with privacy protection.

In recent years, federated learning (FL) [12] has emerged as a
promising paradigm for collaborative learning with privacy preser-
vation. In the original FL framework, the popular FedAvg algorithm
is proposed. In FedAvg, the selected clients first locally performmul-
tiple training epochs by stochastic gradient descent (SGD), and then
transmit their model updates to a central server, where the model
updates are aggregated to obtain a new global model. Previous
works [36, 41] have explored the combination of deep hashing with
FL and demonstrated their effectiveness, but these works simply
rely on model aggregation to achieve global hash learning, which
does not sufficiently address the non-IID2 nature of data in fed-
erated environments. For example, in a patient hashing problem
across multiple hospitals, the distribution of patients from an on-
cology hospital and a psychiatric hospital can be quite different,
so can the data quantity. Since the core of deep hashing models
is data similarity learning, skewed and highly imbalanced local
data distributions can result in biased local models that cannot be
sufficiently corrected by the FedAvg algorithm.

To tackle the above issues, in this paper, we introduce a federated
deep hashing method with global prototypes (FedHAP) for cross-
silo retrieval. In the FedHAP framework, each client in the federa-
tion can jointly train the hashing model using its own local data
and global prototypical hash codes of each class to guide the local
training. Specifically, the global prototypes are generated in the
server by aggregating the class-averaged hash codes from clients.
Then the prototypes, together with the global model, are broadcast
to clients for local training. To better utilize the global prototypes
locally, we not only design similarity learning algorithms with su-
pervision from the global hash codes, but also creatively design a
discriminator network to ensure the distribution consistency be-
tween the locally generated binary hash codes and the global ones.
By this way, we maximize the usage of global prototypes to enhance
the local training of each client without exchanging sample-level
information, thereby significantly improving the performance of
the federated hashing model while preserving the privacy of local
data. During the retrieval process, the hash code of query generated

1https://gdpr-info.eu
2Data distributions across clients are not identical.

ar
X

iv
:2

20
7.

05
52

5v
1

 [
cs

.I
R

]
 1

2
Ju

l 2
02

2

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, , Meilin Yang, Jian Xu, Yang Liu, Wenbo Ding

by the trained hashing model will be sent to each client, and the
best matching data will be retrieved by finding the data with the
shortest similarity distance.

(a) DPSH(FedAvg) (b) FedHAP

Figure 1: Visualization of hash codes generated by the two
deep hash learning methods, trained on 10000 training data
points of NUS-WIDE for different classes. (For ease of visu-
alization, we sample six categories)

As an example for demonstrating the efficacy of our proposed
FedHAP, we compare the hash codes generated by our approach
and the naive FedAvg approach as in Fig. 1, where each data point
is visualized using t-SNE [29]. We observe that the hash codes
learned by FedHAP exhibit favorable intra-class compactness and
inter-class separability compared with the baseline that adopts
deep supervised hashing using pairwise labels (DPSH) [18] with
FedAvg [17] for hashing. It is worth noting that our approach works
especially better for under-represented classes with fewer samples,
as demonstrated by the clear discrimination of the two categories
in blue and purple.

The major contributions of this paper are summarized as follows:
• We present a novel federated supervised hashing method named
FedHAP for efficient and effective cross-silo retrieval. Thismethod
integrates hashing learning with federated learning and takes
advantage of the global prototypes, to enhance the performance
of the hashing model with minimal impact on privacy.
• The global prototypes are leveraged in both hashing learning
and our introduced adversarial learning to enforce the semantic
consistency between local hash codes and global prototypes,
which can align the local learned distributions of hash codes and
thus facilitate the global model aggregation.
• Experimental results on three benchmark datasets demonstrate
that our approach outperforms existing methods and can achieve
significantly improved mAPs in both IID and non-IID scenarios.
Furthermore, we verify the efficacy of each component in our
proposed method by ablation experiments.

2 RELATEDWORK
2.1 Deep Hashing
Hashing functions have been attractive due to their irreversible
nature, which can map sensitive data into compact binary codes.
Analytics has proven that the learned binary hash codes can lead
to less memory consumption and short query time [3]. Existing
hashing methods can be generally organized into two categories:

unsupervised hashing and supervised hashing. Unsupervised hash-
ing methods [6, 13, 21, 33] learn hashing functions that map input
data points into binary codes by exploiting the similarity distances
of samples. Supervised hashing methods [1, 5, 18, 22, 26, 28, 37]
aim to further exploit available supervised information (such as
labels or the semantic affinities of training data) to improve per-
formance. In recent years, supervised hashing has attracted more
attention as it can achieve better accuracy than unsupervised hash-
ing. Deep Convolutional Neural Network based hashing methods
[5, 15, 35, 39, 40] are proposed to learn data representations in bi-
nary codes that preserve the locality and similarity of data samples.
By coupling data feature extraction and binary code learning, these
methods have been shown to greatly improve retrieval accuracy.

2.2 Federated Learning
FL was first proposed by Google in 2016 [12], and has emerged as a
paradigm for distributed training of machine learning models with-
out direct data-sharing. It enables multiple clients to collectively
learn a model under the coordination of a central server while keep-
ing the data decentralized and protecting the data privacy of each
client. FedAvg [17] is a popular optimization method in federated
learning but relies on the premise that each local solver is a copy of
the same stochastic process (due to the IID assumption). FedProx
[24] is presented as a generalization and re-parametrization of Fe-
dAvg, and it achieves stable and accurate convergence behavior
compared to FedAvg in highly heterogeneous settings. To address
the non-IID nature of FL, various algorithms have been proposed
since then [9, 16, 19, 25, 30, 31]. FedProc [25] designs a local net-
work architecture and a contrastive loss to regulate the training
of local models with the class-wise logits transmission. However,
unprocessed raw intermediate logits may cause leakage of the orig-
inal data and local data distribution. Knowledge Distillation based
federated frameworks [19, 23] have recently emerged to tackle the
non-IID issue by refining the server model using aggregated knowl-
edge from heterogeneous users, which may need a proxy dataset or
require the client to provide the server with the label distribution.

2.3 Federated Hashing
Recently, the framework of federated learning has been applied to
hashing for various tasks [36, 41]. For example, Federated Patient
Hashing (FPH) [36] has been proposed to collaboratively train a
patient information retrieval model stored in a shared memory
while keeping all the patient-level information in local clients. Fed-
erated Cross-Modal Retrieval (FedCMR) [41] is the first attempt
to combine federated learning with cross-modal retrieval. While
the abovementioned methods have certainly proved the feasibility
of federated hashing to some extent, they did not exploit the rela-
tionship between the global hashing model and the local hashing
model in the FL framework, nor did they sufficiently address the
prominent non-IID problem in the federated environments, such
as label distribution skewness. Different from these methods, our
approach design a mechanism to extract the statistics of class-wise
global prototypes, and symbolic operations are also performed on
the class-wise global prototypes, which greatly avoids the leakage
of data and label distribution. The class-wise global prototypes
will participate the local training process and alleviate the model
drift issue. Furthermore, illuminated by adversarial learning, we

FedHAP: Federated Hashing with Global Prototypes for Cross-silo Retrieval , ,

design a discriminator network to further bridge the global and
local generation of hash codes.

3 THE PROPOSED METHOD
In this section, we first present the problem definitions. Then, we
introduce the details of our FedHAP approach and provide analysis
on each of the design components.

3.1 Problem Formulation
Without losing generality, we assume there are𝑚 clients whose
private data are denoted as D𝑖 = {x𝑗 }𝑛𝑖𝑗=1, where x𝑗 ∈ R1×𝑑 is
the input features, 𝑛𝑖 is the number of data in client 𝑖 , and 𝑑 is the
dimension of features. All clients collaboratively train a hashing
model 𝐺 with parameters \𝐺 , which maps the input features x𝑗
into output b𝑗 ∈ R1×𝐾 , where 𝐾 is the number of bits in Hamming
space. The hash code of x𝑗 is denoted as h𝑗 and can be gained by
h𝑗 = 𝑠𝑖𝑔𝑛(b𝑗), where 𝑠𝑖𝑔𝑛 denotes the element-wise sign function.
Let H𝑖 = {h𝑗 }𝑛𝑖𝑗=1, the problem to tackle here is for 𝑚 clients to
collaboratively train a deep hashing model without exposing their
data D𝑖 , so that the similarities among all data sample pairs are
preserved as follows:

min
\𝐺

𝑚∑︁
𝑖=1

L𝑖
ℎ𝑎𝑠ℎ
(D𝑖 ,H𝑖) . (1)

where L𝑖
ℎ𝑎𝑠ℎ

denotes the hashing loss which we will explain next.

3.2 Learning the Hashing Model
The deep hashingmodel𝐺 is comprised of a feature learningmodule
and a hash learning module. The feature learning module is a deep
convolutional neural network to extract representations from the
input data, which is then fed into the hash learning module. The
hash learning module consists of multiple fully connected layers to
obtain b𝑗 .
Similarity preserving loss (L𝑡𝑙). To ensure that the hash codes
of similar data pairs are pulled together and the codes of dissimilar
data pairs are pushed away from each other, we choose a widely
used triplet ranking loss[32] to preserve the similarity structure
between data pairs. In order to explain the triplet loss briefly, we
suppose there is a set of triplets

(
b𝑗 , b𝑗+ , b𝑗−

)
. b𝑗+ is a positive pair

of b𝑗 , which indicates b𝑗 and b𝑗+ have the same class. b𝑗− is a
negative pair of b𝑗 , which indicates b𝑗 and b𝑗− are of the different
classes. The similarity between the codes can be evaluated using a
general distance metric 𝑑 (·, ·), e.g., cosine distance. For example,
𝑑

(
b𝑗 , b𝑗+

)
computes the dissimilarity between the sample pairs.

The triplet loss mentioned above can be formulated as follows:

L𝑖
𝑡𝑙𝑙𝑜𝑐𝑎𝑙

=

𝑛𝑖∑︁
𝑗=1

𝑚𝑎𝑥
(
𝑑

(
b𝑗 , b𝑗+

)
− 𝑑

(
b𝑗 , b𝑗−

)
+ 𝑎, 0

)
. (2)

where 𝑎 is the margin parameter. Note this loss can be only com-
puted locally for each client 𝑖 as denoted by the 𝑙𝑜𝑐𝑎𝑙 mark on
L𝑖
𝑡𝑙𝑙𝑜𝑐𝑎𝑙

, as clients are not supposed to exchange raw data. To en-
hance hash learning by leveraging other clients’ prototypes, we fur-
ther consider a novel global triplet loss between local data and global
prototypes of the hash codes for each class, denoted as L𝑖

𝑡𝑙𝑔𝑙𝑜𝑏𝑎𝑙
,

see Eq. (3). Here, the global prototypes collectively are denoted

as Ĥ = {ĥ𝑐 }𝐶𝑐=1, where 𝐶 is the number of classes and ĥ𝑐 is the
prototypical hash code for class 𝑐 . In Eq. (3), ĥ+

𝑗
denotes the global

hash code that is of the same class as b𝑗 , and ĥ−𝑗 denotes the global
hash code that is of a different class from b𝑗 . We will discuss how
to generate Ĥ in the following.

L𝑖
𝑡𝑙𝑔𝑙𝑜𝑏𝑎𝑙

=

𝑛𝑖∑︁
𝑗=1

𝑚𝑎𝑥

(
𝑑

(
b𝑗 , ĥ𝑗+

)
− 𝑑

(
b𝑗 , ĥ𝑗−

)
+ 𝑎, 0

)
. (3)

L𝑖
𝑡𝑙
= L𝑖

𝑡𝑙𝑙𝑜𝑐𝑎𝑙
+ L𝑖

𝑡𝑙𝑔𝑙𝑜𝑏𝑎𝑙
. (4)

At each round, the global hash codes Ĥ will be computed by
Ĥ = 𝑠𝑖𝑔𝑛

(
B̂

)
, and B̂ = {b̂𝑐 }𝐶𝑐=1 is obtained by aggregating all the

class-level vectors from clients as illustrated in Fig.3. First, each
client aggregates their class prototypical hash codes by Eq. (5).

b̄𝑖,𝑐 =

∑𝑛𝑖,𝑐
𝑗=1 b𝑗,𝑐

𝑛𝑖,𝑐
. (5)

where 𝑛𝑖,𝑐 indicates the number of data samples of class 𝑐 in client
𝑖 and b𝑗,𝑐 represents the ouput feature vector of the 𝑗-th data of
class 𝑐 . Next, clients send their class-level hash codes to the server
which performs the aggregation:

ĥ𝑐 = 𝑠𝑖𝑔𝑛
(
b̂𝑐

)
= 𝑠𝑖𝑔𝑛

(
1

𝑚

𝑚∑︁
𝑖=1

b̄𝑖,𝑐

)
. (6)

Quantization loss (L𝑞𝑢𝑎𝑛). The binary constraints on b𝑗 require
thresholding the network outputs (e.g. with a sign function), which
will make it difficult to train the network with backpropagation. To
simplify the optimization process during the hashing learning, the
common way is to solve the relaxed problem through dropping the
sign function, which will introduce the non-negligible quantization
loss. To overcome this problem, we introduce the approximation
loss for the learned hash codes in Eq. (7),

L𝑖𝑞𝑢𝑎𝑛 =

𝑛𝑖∑︁
𝑗=1

b𝑗 − 𝑠𝑖𝑔𝑛 (
b𝑗

)2 . (7)

Adversarial loss (L𝑑). In the federated scenario with non-IID
distributions, the consistency of the generated hash codes from
different clients cannot be guaranteed. In order to preserve the con-
sistency of local and global distributions of hash codes, we further
introduce a local discriminator network 𝐷𝑖 for each client with
trainable parameters \𝐷𝑖 . The discriminator network is initially
used in adversarial learning to identify whether the data come from
a real dataset or a neural network [7] and its output is the proba-
bility that the input data come from the real dataset. In this paper,
we treat the global hash codes Ĥ = {ĥ𝑐 }𝐶𝑐=1 as the real dataset
and the hash codesH𝑖 = {h𝑗 }𝑛𝑖𝑗=1 generated by the local hashing
model as the latter. We utilize the local labels 𝑌𝑖 = {y𝑗 }𝑛𝑖𝑗=1 and
global labels 𝑌 = {ŷ𝑐 }𝐶𝑐=1 as constraints on H𝑖 and Ĥ to realize
the discrimination of hash codes of a specific class. Specifically, we
use the one-hot vector of the class label as extra information and
concatenate it withH𝑖/Ĥ together as the input vectors of 𝐷 , and
the output is the probability score (between 0 and 1) that the input
data come from the global prototypes as shown in Fig.4. Specifically,

, , Meilin Yang, Jian Xu, Yang Liu, Wenbo Ding

Figure 2: The framework of our proposed FedHAP.

!!

b!"## 	

... Avg
"̅!"#
"̅!"$

...

Client 1

. . . Server

Avg
"$!"#... sign

%$!"#	

%$!"$
...

!'
...

Avg
"̅!"#
"̅!"$

...

Client m

"!"#	
b!"#$ 	
b!"#
%!"#! 	

...

b!"&# 	
...

b!"&
%$"#% 	 "!"$	

b!"## 	

b!"## 	
b!"#$ 	

...

...
"!"#	

"!"$	

b!"#
%!"#! 	

b!"&
%$"#% 	

"$!"$

Figure 3: The generation of the global prototypes.

the score approaches to “1” when the input vector is classified as
global prototypes, and vice versa. We define the adversarial loss as
L𝑑 , which is a cross-entropy loss. The adversarial loss L𝑖

𝑑
of client

𝑖 can be written as follows:

L𝑖
𝑑
= − ©« 1

𝑛𝑖

𝑛𝑖∑︁
𝑗=1

(
1 − 𝑙𝑜𝑔(𝐷𝑖

(
h𝑗 |y𝑗

))
+ 1

𝐶

𝐶∑︁
𝑐=1

(
𝑙𝑜𝑔(𝐷𝑖

(
ĥ𝑐 |ŷ𝑐

))ª®¬ .
(8)

where the first term in the above equation is the cross-entropy loss
for the local dataset, followed by the cross-entropy loss for the
global prototypes.
Overall local objective. The overall local loss function L𝑖

ℎ𝑎𝑠ℎ
can

be obtained by combining Eq. (4), Eq. (7) and Eq. (8), formulated as
follows: for the global prototypes.

L𝑖
ℎ𝑎𝑠ℎ

= L𝑖
𝑡𝑙
+ ` ∗ L𝑖𝑞𝑢𝑎𝑛 + _ ∗ L𝑖𝑑 . (9)

where ` and _ are two penalty parameters to balance different loss
components.

Local	hash	codes	+!

Label	-!

Global	knowledge	+3

Label	-3

! Score
Global

Local0

1

Figure 4: The workflow of the proposed discriminator 𝐷 .

3.3 FedHAP Framework and Algorithm
For all clients to learn the above hashing model collaboratively, we
propose FedHAP, which is shown in Fig. 2 and algorithm 3.3. The
general framework mainly consists of a central server and𝑚 clients.
First, each client 𝑖 trains the deep hashing model and discriminator
network with its local data and global prototypes, uploading the
local updated model parameters \𝐺𝑖 , \𝐷𝑖 and the locally generated
prototypical codes b̄𝑖 = {b̄𝑖,𝑐 }𝐶𝑐=1 to the central server. The central
server is responsible for coordinating clients in the model training
process by aggregating \𝐺𝑖 , \𝐷𝑖 and b̄𝑖 received from clients and
then delivering the aggregated models \𝐺𝑖 , \𝐷𝑖 and Ĥ to them for
the next training round.
Local training procedure. During each local training step, the
original input of data will be converted into low-dimensional fea-
tures by the convolutional neural network and the hash learning
module, which are then used to compute the similarity preserving
loss L𝑖

𝑡𝑙
with the guidance of global prototypes. Next, the feature

embedding will be converted into binary hash codes using the sign
function with quantization loss L𝑖𝑞𝑢𝑎𝑛 . Furthermore, the local and
global hash codes with their semantic labels will be simultaneously

FedHAP: Federated Hashing with Global Prototypes for Cross-silo Retrieval , ,

fed into the discriminator network to generate the corresponding
adversarial loss L𝑖

𝑑
. It is worth noting that the parameters of the

hashing network and discriminator network rely on each other
in the training process, and both of the two training phases will
update all model parameters.

Algorithm 1 FedHAP
Input: Image set X, Number of clients𝑚, Hashing model 𝐺 ,
Discriminator network 𝐷 , communication rounds 𝑇 , Local
training epochs 𝐸.

Initialize: Initialize \𝐺0 , \
𝐷
0 , Ĥ0

for 𝑡 = 0 to 𝑇 − 1 do
Server broadcasts global model parameters of \𝐺𝑡 , \𝐷𝑡 and
global prototypes Ĥ𝑡 to each client 𝑖 .
for each client 𝑖 in parallel do
for 𝑒 = 1 to 𝐸 do

Start training 𝐷𝑖
(
𝐺𝑖 (𝑥) , \𝐷𝑖

𝑡

)
.

Calculate adversarial loss L𝑖
𝑑
with Eq. (8)

Update \𝐷𝑖

𝑡 using back propagation
Start training 𝐺𝑖

(
𝑥, \

𝐺𝑖

𝑡

)
Calculate adversarial loss L𝑖

𝑑
, cosine triplet loss L𝑖

𝑡𝑙
,

quantization loss L𝑖𝑞𝑢𝑎𝑛
L𝑖
ℎ𝑎𝑠ℎ

= L𝑖
𝑡𝑙
+ ` ∗ L𝑖𝑞𝑢𝑎𝑛 + _ ∗ L𝑖𝑑

Update \𝐺𝑖

𝑡 using back propagation
end for
Send local model parameters \𝐺𝑖

𝑡 , \𝐷𝑖

𝑡 , and local proto-
types b̄𝑖 to the central server

end for

Server executes:
Update global hashing model \𝐺

𝑡+1 ←
1
𝑚

∑𝑚
𝑖=1 \

𝐺𝑖

𝑡

Update global discriminator \𝐷
𝑡+1 ←

1
𝑚

∑𝑚
𝑖=1 \

𝐷𝑖

𝑡

Update global prototypes Ĥ𝑡+1

end for

Privacy and Communication concerns. Our proposed FedHAP
requires the transmission of per-class prototypes between clients
and server. However, this does not raise higher communication
costs and privacy risks since the prototypes represent only an
averaged statistic over all local data of low-dimensional feature
representations, such as a 12-bit vector containing only -1 or 1.
Similar methods have also been investigated in the literature [25,
34], where some statistics or prior knowledge under the premise
of privacy protection are transmitted to facilitate the learning of
federated models.

4 EXPERIMENTS
In this section, we conduct extensive experiments to verify the
effectiveness of our proposed approach and compare it with other
state-of-the-art methods in federated environments, considering
both IID and non-IID scenarios. We evaluate all methods on three
benchmark datasets, including NUS-WIDE [4], MIRFlickr25K [10]
and MS-COCO [20], which are widely used in the data retrieval

area. In addition, we design a set of ablation experiments to further
verify the individual efficacy of different loss components.
4.1 Datasets

1) NUS-WIDE contains 269,648 web images and we use the
images associated with the 21 most frequent concepts, where
each of these concepts associates with at least 5,000 images,
resulting in a total of 195,834 images. A total of 2,100 data
pairs in the dataset are selected randomly as the query set
and the remainder of the dataset is used as the retrieval
database.

2) MIRFlickr25K is a commonly used dataset consisting of
25000 images that were downloaded from the social photog-
raphy site Flickr.com. In our experiment, we select 20,015
data points in total, among which 10,000 pictures are ran-
domly selected for training. For the remaining data, 2000
data pairs are selected randomly as the query set and the
rest is used as the retrieval database.

3) MS-COCO2014 originates from theMicrosoft COCOdataset,
the 2014 release ofMS-COCO contains 82,783 training, 40,504
validation, and 40,775 testing images (approximately 1/2
train, 1/4 val, and 1/4 test). We randomly select 4992 pairs for
the query set and leave the remaining pairs as the retrieval
database. In addition, 10,000 pairs are randomly selected
from the retrieval database for training.

Table 1: Experiment settings of different databases.

Database Database Size Training Size Category Quantity

NUS-WIDE
IID 193734 10000 24

non-IID 193734 10000 24

MIRFlickr
IID 18015 10000 21

non-IID 18015 10000 21

MS-COCO
IID 112226 10000 80

non-IID 112226 10000 80

4.2 Baselines and Experimental Settings
We compare FedHAP with the following state-of-the-art deep hash-
ing methods: DCH [1], DPSH [18], Greedy Hash [28], and CSQ
[37]. To ensure a fair comparison with the previous works, the
abovementioned methods are deployed under the benchmark learn-
ing frameworks: FedAvg [17], FedProx [24]. We also compare our
method with existing federated hashing framework FedCMR [41]
and MOON [16] which is proposed to handle non-IID local data
distributions across clients. The state-of-the-art methods deployed
in four federated frameworks are regarded as our baselines and the
parameter settings are based on the original papers.

The feature extraction networks of the baselines are derived from
CNN-F [2], which has been pre-trained on the ImageNet dataset
[27] in order to extract a 4,096-dimensional representation vector
for each data point and the discriminator network is a two-layer
feed-forward neural network.

The experiments are conducted in both IID and non-IID scenar-
ios, where the training settings of each scenario are identical for all
baselines and our method. We consider a federated learning setup
with𝑚 = 20 participating clients. For the IID scenarios, we simulate
the IID data distributions by randomly and evenly partitioning the

, , Meilin Yang, Jian Xu, Yang Liu, Wenbo Ding

Table 2: mAP results for the retrieval task in the IID scenarios.

Model
NUS-WIDE MIRFlickr MS-COCO

12bit(%) 24bit(%) 48bit(%) 12bit(%) 24bit(%) 48bit(%) 12bit(%) 24bit(%) 48bit(%)

DPSH (FedAvg) 73.78 75.14 76.29 76.92 78.71 79.32 56.48 57.86 59.54
DPSH (FedProx) 76.71 78.25 78.32 79.94 82.35 82.97 59.65 62.18 63.94
DPSH (FedCMR) 76.87 78.21 78.64 79.45 81.36 83.41 61.41 64.13 65.75
DPSH (MOON) 77.52 78.32 78.89 78.74 79.54 80.32 56.78 59.42 61.73
DCH (FedAvg) 70.94 73.97 75.39 76.93 79.62 80.09 55.46 57.89 58.96
DCH (FedProx) 74.28 75.98 76.53 78.97 80.90 81.42 55.54 57.31 58.99
DCH (FedCMR) 74.61 76.17 76.57 79.91 81.10 81.84 56.63 58.65 59.65
DCH (MOON) 72.58 75.76 77.19 77.67 79.92 81.35 55.14 57.80 60.21

GreedyHash (FedAvg) 73.56 75.83 77.38 69.37 72.64 75.82 52.65 58.79 62.64
GreedyHash (FedProx) 72.45 76.17 78.02 68.72 74.86 75.05 50.92 55.98 61.06
GreedyHash (FedCMR) 73.28 76.02 77.81 69.40 74.48 75.96 53.17 59.82 62.94
GreedyHash (MOON) 75.87 77.82 79.43 72.56 76.89 79.24 50.83 55.79 60.31

CSQ (FedAvg) 75.61 78.02 78.94 77.56 78.53 80.85 56.86 61.13 67.31
CSQ (FedProx) 76.43 78.42 78.96 73.17 74.16 74.54 57.46 60.33 67.64
CSQ (FedCMR) 76.71 78.74 79.05 70.56 72.29 73.91 57.05 60.57 67.26
CSQ (MOON) 73.87 75.69 76.91 71.45 73.76 75.43 57.42 60.75 68.54

FedHAP (ours) 78.59 80.31 81.55 86.07 86.17 87.78 66.70 70.14 72.18

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ec
isi

on
CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

(a) Precision v.s. Recall

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ec
isi

on
CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

(b) Recall v.s. Retrieved samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

(c) Precision v.s. Retrieved samples

Figure 5: The precision and recall results of DCH (FedAvg), DPSH (FedAvg), Greedyhash (FedAvg), CSQ (FedAvg) and our
method FedHAP onMIRFlickr25K in IID scenarios: (a) Precision-recall curves (PR) @ 48 bits. (b) Recall curves with respect to
different numbers of top retrieved samples. (c) Precision curves with respect to different numbers of top retrieved samples.

shuffled training sets into 20 clients, and thus each client is assigned
with data from a uniform distribution. For the non-IID scenarios, as
previous works [17, 24], the data are sorted by class and each client
receives a data shard that contains samples belonging to a randomly
selected set of classes. It is worth noting that this partition method
can result in a deeper heterogeneity of data samples across clients
than Dirichlet distribution based partition as in [16].

In our experiments, the numbers of global training rounds and
local training epochs are set to 100 and 5, respectively. In non-IID
scenarios, the data category owned by each client is set to 3. Adam
[11] is employed as the local optimizer, and the initial learning rate
is set to 0.005. The detailed settings of each dataset are summarized
in Table. 1. To find a better combination of hyper-parameters in our
method, we conduct sensitivity analysis of these hyper-parameters
and achieve high results with ` = 0.05 and _ = 0.1.

4.3 Evaluation Metric
Hamming ranking is a kind of classical retrieval method that is
used to evaluate the performance of the image retrieval task. In
our experiments, we evaluate the retrieval quality based on Mean
average precision (mAP). As an intuitive illustration, the standard
evaluation metrics, including precision-recall curves (PR), recall
curves with different numbers of top retrieved samples and pre-
cision curves with different numbers of top retrieved samples on
MIRFlickr25K dataset, are also provided. For a fair comparison, all
methods use the identical training and testing sets.

4.4 Performance Comparison
We validate the effectiveness of data retrieval in federated envi-
ronments as well as the generality of our approach in different
databases. Our approach is compared with the baselines mentioned
above using mAP results, precision-recall curves (PR), precision

FedHAP: Federated Hashing with Global Prototypes for Cross-silo Retrieval , ,

Table 3: mAP results for the retrieval task in the non-IID scenarios.

Model
NUS-WIDE MIRFlickr MS-COCO

12bit(%) 24bit(%) 48bit(%) 12bit(%) 24bit(%) 48bit(%) 12bit(%) 24bit(%) 48bit(%)

DPSH (FedAvg) 42.57 43.72 44.16 74.52 75.01 78.30 54.76 57.39 59.65
DPSH (FedProx) 44.86 45.81 45.86 74.85 75.07 78.64 56.77 59.63 60.37
DPSH (FedCMR) 48.41 53.52 50.21 75.01 76.21 77.74 55.73 60.57 62.31
DPSH (MOON) 42.67 47.74 49.75 74.87 76.13 78.69 54.65 57.53 62.11
DCH (FedAvg) 38.67 39.45 40.23 70.11 70.74 77.65 51.94 56.35 58.64
DCH (FedProx) 38.42 39.25 40.98 70.81 70.81 77.82 53.18 53.28 59.25
DCH (FedCMR) 40.69 43.47 44.09 69.65 69.92 73.86 53.42 57.61 58.94
DCH (MOON) 39.5 43.21 44.11 74.64 75.08 77.85 53.89 57.80 58.92

GreedyHash (FedAvg) 53.68 55.82 55.94 69.93 71.21 76.60 48.57 52.16 57.25
GreedyHash (FedProx) 49.29 48.41 48.90 67.59 69.62 73.56 46.57 56.80 60.41
GreedyHash (FedCMR) 51.06 63.42 63.59 65.57 69.76 70.23 48.15 55.80 55.86
GreedyHash (MOON) 50.92 56.79 61.28 72.15 73.46 76.23 48.74 56.51 57.98

CSQ (FedAvg) 51.87 52.18 53.09 66.37 68.45 73.54 56.37 58.76 61.42
CSQ (FedProx) 54.08 55.29 55.73 69.64 72.11 73.23 50.63 58.84 62.14
CSQ (FedCMR) 59.45 60.72 60.88 66.78 68.14 72.09 50.42 58.17 62.07
CSQ (MOON) 48.76 53.84 55.72 65.52 68.92 72.31 56.71 58.95 61.79

FedHAP (ours) 67.74 69.09 70.28 77.34 78.67 80.49 57.65 61.89 63.37

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ec
isi

on
CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

(a) Precision v.s. Recall

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Pr

ec
isi

on
CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

(b) Recall v.s. Retrieved samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

0 250 500 750 1000 1250 1500 1750 2000
The number of retrieved samples

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

CSQ(FedAvg)
DCH(FedAvg)
DPSH(FedAvg)
GreedyHash(FedAvg)
FedHAP

(c) Precision v.s. Retrieved samples

Figure 6: The precision and recall results of DCH (FedAvg), DPSH (FedAvg), Greedyhash (FedAvg), CSQ (FedAvg) and our
method FedHAP on MIRFlickr25K in non-IID scenarios: (a) Precision-recall curves (PR) @ 48 bits. (b) Recall curves with
respect to different numbers of top retrieved samples. (c) Precision curves with respect to different numbers of top retrieved
samples.

curves and recall curves, which are shown in Table. 2, Table. 3,
Fig.5 and Fig. 6. In terms of the mAP results, it can be found that
regardless of the IID or non-IID scenarios, our approach achieves
the best performance in all three databases.
Results in the IID scenarios. Compared with the existing meth-
ods, our method further improves the mAP results by approxi-
mately 1-2%, 4-6% and 5-7% under the constraints of hash codes
with different bits on NUS-WIDE, MIRFlickr25K and MS-COCO, re-
spectively. Moreover, it is noticeable that the improvement of mAP
on MS-COCO is much larger than that on the other two datasets.
Considering that MS-COCO has the largest data categories and
thus the average amount of per-class samples at each client is much
less, it can be concluded that our proposed method can overcome

the scarcity of local data by leveraging global prototypes and re-
duce the local over-fitting risks, thus achieving improved model
performance.
Results in the non-IID scenarios. In the non-IID scenarios, we
also achieve significant improvements of 8-9%, 2-4% and 1-2% in
average mAPs for different bits on the above three datasets, respec-
tively. An interesting phenomenon is that the performance boost
on MS-COCO in the non-IID scenario is slightly reduced. This may
be caused by the fact that the total number of data categories in
MS-COCO exceeds the total number of data categories of the other
two datasets, which will lead to an increased non-IID degree across
clients.

The extensive retrieval performance results on MIRFlickr25K
with regard to precision-recall curves (PR), precision curves and
recall curves with respect to different numbers of top returned

, , Meilin Yang, Jian Xu, Yang Liu, Wenbo Ding

samples in Fig.5 and Fig. 6 show that FedHAP outperforms baseline
methods impressively, which is desirable for practical precision-
first retrieval. Specifically, FedHAP achieves higher precision when
the recall levels are low or the number of retrieved samples is
small. In conclusion, these results demonstrate that learning the
hash function using our proposed method can boost the retrieval
performance remarkably in federated environments.

4.5 Analysis on Ablation Experiments
To better demonstrate our contributions, we design a set of ablation
experiments to verify the utility of different components in our
FedHAP framework. The ablation experiment is defined as:

FedHAP-1: FedHAP-1 is designed based on FedHAP without
the participation of global prototypes, which means that the process
of discriminator network training and the global prototypes’ par-
ticipation in similarity preserving loss calculation are all removed.
The remainder of the method is the same as FedHAP.

FedHAP-2: FedHAP-2 is built based on the design of FedHAP,
in which the global prototypes do not participate in the calculation
of similarity preserving loss but still participates in the training
process of the discrimination network, which means we only apply
the global prototypes to the adversarial module.

FedHAP-3: FedHAP-3 is designed based on FedHAP. Contrary
to FedHAP-2, global prototypes only participate in the calculation
of similarity preserving loss and the module of the discriminator
network is removed in the framework.

Table 4: mAP results of the ablation experiments (IID).

Method NUS-WIDE MS-COCO

12bit(%) 24bit(%) 48bit(%) 12bit(%) 24bit(%) 48bit(%)

FedHAP-1 74.67 75.83 76.44 62.23 63.77 68.37
FedHAP-2 75.43 77.93 78.78 65.42 68.09 71.71
FedHAP-3 76.74 78.09 80.02 65.63 68.29 71.19
FedHAP 78.59 80.31 81.55 66.70 70.14 72.18

Table 5: mAP results of the ablation experiments (non-IID).

Method NUS-WIDE MS-COCO

12bit(%) 24bit(%) 48bit(%) 12bit(%) 24bit(%) 48bit(%)

FedHAP-1 57.16 59.66 60.56 55.60 58.59 60.85
FedHAP-2 64.27 65.60 66.51 56.31 60.22 61.89
FedHAP-3 65.61 67.99 68.18 56.80 60.63 61.86
FedHAP 67.74 69.99 70.28 57.65 61.89 63.37

The results of ablation experiments in IID and non-IID scenarios
are reported in Table. 4 and Table. 5. Two points can be concluded
from the results. First, comparing the results of FedHAP-1 and Fed-
HAP, it can be found that themodel performancewill degrade signif-
icantly in the absence of global prototypes, which demonstrates the
efficacy and importance of global prototypes in promoting retrieval
performance. Second, each component in the framework can play a
significant role in improving the model performance independently.

The optimal results are achieved through the mutual promotion
between different components in the FedHAP framework.

4.6 Effect of The Number of Clients
To analyze the performance of our proposed method when the
client number varies, we further test the above-mentioned baselines
and our method with different numbers of clients from 20 to 100,
where the data samples are randomly distributed and the length of
hash code is 48 bits. The mAP results are reported in Table 6, from
which we can see that our method still consistently outperforms
all baselines under different system sizes. We also notice that as
the number of clients increases, the performance of the model will
decrease slightly. This is not surprising since the amount of data per
client will decrease when the number of clients increases and the
total amount of data remains the same, which will result in enlarged
distribution discrepancy of local data and higher probability of local
model over-fitting.

Table 6: mAP results under different numbers of clients.

Method 20 clients 40 clients 60 clients 100 clients

DPSH
FedAvg 79.32 79.18 78.93 78.42

FedProx 82.97 82.80 82.54 82.21

CSQ
FedAvg 80.85 79.81 79.46 79.10

FedProx 74.54 73.28 72.91 72.65

Our method 87.78 87.25 87.16 86.83

4.7 Effect of Distance Metrics
Here, we compare the results of our FedHAP using two different
distance metrics in computing triplet loss, including the Euclidean
distance and cosine distance, reporting the results in Table 7. We
can observe that both Euclidean distance and cosine distance can
significantly improve the performance compared to the baselines in
Table 3, and the cosine distance outperforms the Euclidean distance.
We consider the reason is that the cosine distance could eliminate
the influence of different norms of output feature vectors.

Table 7:mAP results under different distancemetrics in non-
IID scenarios over 48 bits.

Distance Metric NUS-WIDE MIRFlickr MS-COCO

Euclidean Distance 69.41 79.23 62.78

Cosine Distance 70.28 80.49 63.37

5 CONCLUSION
In this paper, we propose a novel federated hashing approach Fed-
HAP for efficient cross-silo retrieval, which aims to collectively train
the hashing models from decentralized data. Besides the general
federated manner, we innovatively introduce the global prototypes
to maintain the distribution alignment of the locally generated and
globally generated hash codes, achieving a significant improvement
in the model effectiveness. Since the global prototypes are com-
posed of fixed-length (12-48 bits) binary hash codes and the number

FedHAP: Federated Hashing with Global Prototypes for Cross-silo Retrieval , ,

of the hash codes does not exceed the number of data categories,
which guarantees almost negligible communication cost and does
not raise data privacy issues. Comprehensive experimental results
on three widely used databases have demonstrated the superiority
of FedHAP compared with other baselines in both IID and non-IID
scenarios.

REFERENCES
[1] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. 2018. Deep cauchy

hashing for hamming space retrieval. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 1229–1237.

[2] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Return of the devil in the details: Delving deep into convolutional nets. arXiv
preprint arXiv:1405.3531 (2014).

[3] Lianhua Chi and Xingquan Zhu. 2017. Hashing techniques: A survey and taxon-
omy. ACM Computing Surveys (CSUR) 50, 1 (2017), 1–36.

[4] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao
Zheng. 2009. Nus-wide: a real-world web image database from national university
of singapore. In Proceedings of the ACM international conference on image and
video retrieval. 1–9.

[5] Venice Erin Liong, Jiwen Lu, GangWang, Pierre Moulin, and Jie Zhou. 2015. Deep
hashing for compact binary codes learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2475–2483.

[6] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2012.
Iterative quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE transactions on pattern analysis and machine
intelligence 35, 12 (2012), 2916–2929.

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[9] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects
of non-identical data distribution for federated visual classification. arXiv preprint
arXiv:1909.06335 (2019).

[10] Mark J Huiskes and Michael S Lew. 2008. The mir flickr retrieval evaluation. In
Proceedings of the 1st ACM international conference on Multimedia information
retrieval. 39–43.

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[12] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[13] Weihao Kong and Wu-Jun Li. 2012. Isotropic hashing. Advances in Neural
Information Processing Systems 25 (2012), 1646–1654.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in Neural Information
Processing Systems 25 (2012), 1097–1105.

[15] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. 2015. Simultaneous feature
learning and hash coding with deep neural networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 3270–3278.

[16] Qinbin Li, Bingsheng He, and Dawn Song. 2021. Model-contrastive federated
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 10713–10722.

[17] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020), 429–450.

[18] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2015. Feature learning based
deep supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855
(2015).

[19] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
distillation for robust model fusion in federated learning. Advances in Neural
Information Processing Systems 33 (2020), 2351–2363.

[20] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva
Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common
objects in context. In European Conference on Computer Vision. Springer, 740–755.

[21] Wei Liu, CunMu, Sanjiv Kumar, and Shih-Fu Chang. 2014. Discrete graph hashing.
(2014).

[22] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Su-
pervised hashing with kernels. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE, 2074–2081.

[23] Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. 2017. Data-free knowl-
edge distillation for deep neural networks. arXiv preprint arXiv:1710.07535 (2017).

[24] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[25] Xutong Mu, Yulong Shen, Ke Cheng, Xueli Geng, Jiaxuan Fu, Tao Zhang, and
Zhiwei Zhang. 2021. FedProc: Prototypical Contrastive Federated Learning on
Non-IID data. arXiv preprint arXiv:2109.12273 (2021).

[26] Mohammad Rastegari, Ali Farhadi, and David Forsyth. 2012. Attribute discovery
via predictable discriminative binary codes. In European Conference on Computer
Vision. Springer, 876–889.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[28] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. 2018. Greedy hash:
Towards fast optimization for accurate hash coding in cnn. In Proceedings of the
32nd International Conference on Neural Information Processing Systems. 806–815.

[29] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[30] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. 2020. Federated learning with matched averaging. arXiv
preprint arXiv:2002.06440 (2020).

[31] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. 2020.
Tackling the objective inconsistency problem in heterogeneous federated opti-
mization. arXiv preprint arXiv:2007.07481 (2020).

[32] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. 2006. Distance metric
learning for large margin nearest neighbor classification. In Advances in Neural
Information Processing Systems. 1473–1480.

[33] Yair Weiss, Antonio Torralba, Robert Fergus, et al. 2008. Spectral hashing.. In
Nips, Vol. 1. Citeseer, 4.

[34] Jinze Wu, Qi Liu, Zhenya Huang, Yuting Ning, Hao Wang, Enhong Chen, Jinfeng
Yi, and Bowen Zhou. 2021. Hierarchical personalized federated learning for user
modeling. In Proceedings of the Web Conference 2021. 957–968.

[35] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. 2014. Super-
vised hashing for image retrieval via image representation learning. In Twenty-
eighth AAAI conference on artificial intelligence.

[36] Jie Xu, Zhenxing Xu, PeterWalker, and FeiWang. 2020. Federated patient hashing.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 6486–6493.

[37] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and
Jiashi Feng. 2020. Central similarity quantization for efficient image and video
retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 3083–3092.

[38] Chengyuan Zhang, Lei Zhu, Shichao Zhang, and Weiren Yu. 2020. TDHPPIR: an
efficient deep hashing based privacy-preserving image retrieval method. Neuro-
computing 406 (2020), 386–398.

[39] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang. 2015.
Bit-scalable deep hashing with regularized similarity learning for image retrieval
and person re-identification. IEEE Transactions on Image Processing 24, 12 (2015),
4766–4779.

[40] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. 2015. Deep semantic
ranking based hashing for multi-label image retrieval. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 1556–1564.

[41] Linlin Zong, Qiujie Xie, Jiahui Zhou, Peiran Wu, Xianchao Zhang, and Bo Xu.
2021. FedCMR: Federated Cross-Modal Retrieval. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1672–1676.

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Deep Hashing
	2.2 Federated Learning
	2.3 Federated Hashing

	3 THE PROPOSED METHOD
	3.1 Problem Formulation
	3.2 Learning the Hashing Model
	3.3 FedHAP Framework and Algorithm

	4 Experiments
	4.1 Datasets
	4.2 Baselines and Experimental Settings
	4.3 Evaluation Metric
	4.4 Performance Comparison
	4.5 Analysis on Ablation Experiments
	4.6 Effect of The Number of Clients
	4.7 Effect of Distance Metrics

	5 Conclusion
	References

