
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

US-Byte: An Efficient Communication
Framework for Scheduling Unequal-sized Tensor

Blocks in Distributed Deep Learning
Yunqi Gao, Student Member, IEEE, Bing Hu, Senior Member, IEEE,

Mahdi Boloursaz Mashhadi, Senior Member, IEEE, A-Long Jin, Student Member, IEEE,
Pei Xiao, Senior Member, IEEE and Chunming Wu, Senior Member, IEEE

Abstract—The communication bottleneck severely constrains the scalability of distributed deep learning, and efficient communication
scheduling accelerates distributed DNN training by overlapping computation and communication tasks. However, existing approaches
based on tensor partitioning are not efficient and suffer from two challenges: (1) the fixed number of tensor blocks transferred in parallel
can not necessarily minimize the communication overheads; (2) although the scheduling order that preferentially transmits tensor
blocks close to the input layer can start forward propagation in the next iteration earlier, the shortest per-iteration time is not obtained.
In this paper, we propose an efficient communication framework called US-Byte. It can schedule unequal-sized tensor blocks in a
near-optimal order to minimize the training time. We build the mathematical model of US-Byte by two phases: (1) the overlap of
gradient communication and backward propagation, and (2) the overlap of gradient communication and forward propagation. We
theoretically derive the optimal solution for the second phase and efficiently solve the first phase with a low-complexity algorithm. We
implement the US-Byte architecture on PyTorch framework. Extensive experiments on two different 8-node GPU clusters demonstrate
that US-Byte can achieve up to 1.26x and 1.56x speedup compared to ByteScheduler and WFBP, respectively. We further exploit
simulations of 128 GPUs to verify the potential scaling performance of US-Byte. Simulation results show that US-Byte can achieve up
to 1.69x speedup compared to the state-of-the-art communication framework.

Index Terms—Distributed Deep Learning, Data Parallelism, Communication Scheduling, Tensor Partitioning, Tensor Fusion.

F

1 INTRODUCTION

A S the scale of DNNs grows and the amount of data
explodes, DNN training becomes increasingly time-

consuming. Data parallelism is widely used to accelerate
DNN training in distributed deep learning [1], [2], [3],
[4]. Data parallelism consists of three main components:
forward propagation, backward propagation, and gradi-
ent aggregation. In traditional data parallelism with syn-
chronous stochastic gradient descent (SGD), multiple nodes
simultaneously train a DNN, and the gradients are aggre-
gated to update the model parameters in each iteration [5],
[6]. There are various factors that limit the scaling efficiency
of data parallelism, such as energy consumption [7], [8],
dataset privacy [9], [10], [11], and imbalance of computing
resources [12]. In addition, with large-scale datasets, models,
and clusters, intensive data communication due to gradient
aggregation among nodes introduces a huge additional time

• Yunqi Gao Bing Hu and Chunming Wu are with Zhejiang Univer-
sity, Hangzhou 310027, China. E-mail: gaoyunqi1999, binghu, wuchun-
ming@zju.edu.cn.

• Mahdi Boloursaz Mashhadi and Pei Xiao are with 5GIC & 6GIC,
Institute for Communication Systems (ICS), University of Surrey, United
Kingdom. E-mail: m.boloursazmashhadi, p.xiao@surrey.ac.uk.

• A-Long Jin is with the University of Hong Kong, Hong Kong, China.
E-mail: ajin@eee.hku.hk.

This work was supported in part by the National Key Research and Develop-
ment Project under Grant 2022YFB2901600, in part by the General Program
of National Natural Science Foundation of China under Grant 61971377, and
in part by the Key Project of Natural Science Foundation of Zhejiang Province
under Grant LZ22F010008.
(Corresponding author: Bing Hu.)

overhead for data parallelism and limits its scalability [4],
[5], [13]. Consequently, communication performance has be-
come a significant bottleneck in distributed DNN training.

The DNN training process can generally be represented
as a dependent directed acyclic graph (DAG) in mainstream
deep learning engines, such as PyTorch [14], TensorFlow
[15], and MXNet [16]. In the all-reduce architecture, one
iteration of a worker mainly consists of two sets of layer-
wise computation operations (forward propagation and
backward propagation) and a set of communication op-
erations (gradient aggregation). Meanwhile, the execution
order of these operations is determined by the underlying
DAG. Since these two types of operations do not occupy the
same resources, researchers find that communication can be
overlapped with computation tasks in data parallelism to
reduce the time of one iteration without affecting the con-
vergence performance of the DNN [13]. Wait-free backward
propagation (WFBP) has been adopted in most deep learn-
ing frameworks [17]. WFBP transmits the gradient tensor of
each layer once it completes backward propagation.

Most recently, communication scheduling has been stud-
ied to improve the communication performance of dis-
tributed DNN training [4], [5], [18], [19], [20], [21]. The
main idea of communication scheduling is to change the
execution order of communication operations and better
overlap computation and communication tasks. A practical
method is tensor fusion [18], [22], which merges tensors
of multiple layers into one large tensor for transmission to
reduce the communication overheads. Notably, the commu-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

nication overhead is mainly caused by the synchronization
between nodes in the cluster at the beginning of gradient
aggregation (e.g., an all-reduce operation) [5]. It is related
to software and hardware latency, where software latency
is the latency of the communication libraries and proto-
cols used during synchronization, and hardware latency
comes from the latency of the network bandwidth, topol-
ogy, and devices during synchronization. Another popular
method is to prioritize tensor transmission for different
layers. ByteScheduler [19], the state-of-the-art communica-
tion scheduler, proposes tensor partitioning and priority
scheduling. In ByteScheduler, each layer’s tensor is parti-
tioned into multiple small tensor blocks according to a fixed
threshold (partition size), and small tensor blocks close to
the input layer are transmitted preferentially. This is because
forward propagation of the next iteration can be started
earlier if the tensor close to the input layer is aggregated
first.

However, there exist two challenges in the ByteSched-
uler. Firstly, when using the all-reduce architecture, the
transmission of each small tensor block requires an all-
reduce operation. Then, the communication overheads of
enabling the all-reduce operations results in low band-
width utilization when transmitting many small tensor
blocks. ByteScheduler hides the communication overheads
by transmitting tensor blocks in parallel (Sec. 2.3). Though
performant, the fixed number of tensor blocks being trans-
mitted in parallel does not necessarily result in the least
communication overheads. Secondly, when transmitting
tensors, tensor blocks close to the input layer have higher
priority. Although this scheduling order can start forward
propagation of the next iteration earlier, it does not nec-
essarily obtain the shortest per-iteration time. To address
the above two challenges, we argue that merging small
tensor blocks into one large tensor block for transmission
based on tensor fusion (i.e., changing the partition size
of tensor blocks) can significantly reduce the unnecessary
communication overhead. Meanwhile, we also find that
when transmitting tensor blocks with different partition
sizes, the communication overhead can be further reduced
by adjusting the scheduling order of each tensor block.

In this paper, we propose an efficient communication
framework called US-Byte. It can partition the tensor of each
layer using variable partition sizes and transmit the tensor
blocks with the near-optimal scheduling order. Specifically,
US-Byte first partitions each tensor into small tensor blocks
based on tensor partitioning and priority scheduling. Then,
US-Byte dynamically determines the number of neighboring
small tensor blocks from the same layer being merged and
the scheduling order of the merged tensor blocks to mini-
mize the time of one iteration. We build the mathematical
model of US-Byte by two phases: (1) the first phase is the
overlap between gradient communication and backward
propagation, and (2) the second phase is the overlap be-
tween gradient communication and forward computation.
Notably, we prove that sequential scheduling is optimal in
the second phase without considering tensor fusion across
layers. We efficiently solve the first phase with an algo-
rithm of complexity O

(
L3
)
, where L is the number of

layers in the DNN. Additionally, we implement the US-
Byte architecture on PyTorch frameworks and make it open-

source 1. To validate the effectiveness of our proposed US-
Byte, we evaluate its performance using six modern DNNs
on two GPU clusters with 10Gbps Ethernet and 100Gbps
bandwidth interconnects. On the Nvidia Tesla V100 GPU
clusters with 10GbE, US-Byte outperforms ByteScheduler by
11%-26% and WFBP by 21%-56% in terms of training speed.
On the Nvidia RTX 3090 GPU clusters, US-Byte outperforms
ByteScheduler by up to 24% when the bandwidth level
is limited to 20Gbps. To explore its scaling efficiency on
large-scale clusters, we conduct simulations (due to lim-
ited hardware resources) on a 128-node cluster. The results
in the simulation cluster show that US-Byte outperforms
ByteScheduler by 28%-69% and WFBP by 234%-332%.

The contributions of this paper are summarized as fol-
lows:

• We propose a communication framework (US-Byte)
that can schedule unequal-sized tensor blocks in a
near-optimal order to minimize the distributed train-
ing time of DNNs.

• We model US-Byte mathematically and efficiently
find its near-optimal solution.

• We implement US-Byte architecture on PyTorch
frameworks and make it open-source.

• We conduct extensive experiments on two GPU clus-
ters to evaluate US-Byte performance. Experimental
results demonstrate that US-Byte significantly accel-
erates the training of DNNs compared to state-of-the-
art communication frameworks.

The rest of the paper is organized as follows. We intro-
duce the background and motivation in Section 2. We build
the mathematical model of US-Byte in Section 3. We theo-
retically analyze the optimal solution of the second phase
of US-Byte and present an efficient algorithm to obtain
the scheduling order of the first phase in Section 4. The
system implementation of US-Byte is elaborated in Section
5. Section 6 evaluates the performance of US-Byte compared
to existing communication frameworks. We describe the
related work and make a discussion in Section 7. Finally,
we conclude Section 8.

2 BACKGROUND AND MOTIVATION

2.1 Distributed Deep Learning
DNN training is an iterative process of minimizing a loss
function over a large dataset. The iteration is repeated
until the prediction accuracy of the DNN converges to the
expected value.

Forward propagation and backward propagation. In
each iteration, the large dataset is partitioned into multiple
mini-batches. A mini-batch of data travels from the first
layer to the last layer of the DNN and generates a loss. This
process is called forward propagation. Then, the gradient
of the loss function with respect to the DNN parameters
is calculated from the last layer to the first layer. This
process is called backward propagation. Finally, the DNN
parameters are updated by stochastic gradient descent using
the calculated gradient. After that, a new mini-batch of
data is sent to the DNN, and the above process is repeated
iteratively.

1. https://github.com/ZJU-CNLAB/US-Byte

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

Fig. 1: Computation-communication dependency DAG in
distributed DNN training.

Data parallelism. Since training large-scale DNNs is a
time-consuming task on a single node, distributed training
via data parallelism has become a popular practice [3].
Data parallelism is one of the most prevalent methods to
accelerate distributed DNN training. In data parallelism,
each node contains a complete replica of the DNN and
is assigned a mini-batch of data in each iteration. Then,
multiple nodes perform DNN training simultaneously, and
the gradients are aggregated to update the parameters [5],
[6].

All-reduce architecture There are two common commu-
nication architectures used for gradient aggregation in each
iteration of data parallelism, including Parameter Server
[23] and All-reduce [22]. In this paper, we focus on the
all-reduce architecture. All-reduce is a centerless collective
operation that does not require central servers to update the
parameters. Each worker collects the others’ gradients and
disperses the averaged gradients to the others. There are
various algorithms to implement the all-reduce operation,
the most popular of which is ring-allreduce. Each tensor
(i.e., the gradient aggregated by the all-reduce operation) is
evenly chunked according to the number of workers, and
the gradient aggregation is completed when all the tensor
chunks have traveled through the ring. Ring-allreduce is
widely used in deep learning frameworks such as Horovod
[22] and PaddlePaddle 2, and it has also been shown to be
bandwidth-optimal [24].

2.2 Communication Scheduling

Dependency directed acyclic graph (DAG). The layer-wise
structure of the DNN enables it to be represented as a
dataflow graph in one iteration. The dataflow graph is usu-
ally a directed acyclic graph (DAG). Modern deep learning
framework engines execute the DAG to train DNNs. Every
operation in the DAG is executed immediately once its de-
pendent operations are completed. Fig. 1 shows an example
of a dependency DAG under the All-reduce architecture.
We define Fl, Bl, and ARl as forward propagation, back-
ward propagation, and all-reduce communication (gradient
aggregation) of layer l. Fl depends on Fl−1 and ARl, Bl
depends on Bl+1, and ARl depends on Bl [19].

Communication scheduling is commonly used to accel-
erate distributed deep learning, which reduces the time of
an iteration by overlapping communication and compu-
tation. Wait-free backward propagation (WFBP) has been
adopted in modern deep learning frameworks such as
PyTorch, TensorFlow, and MXNet. From Fig. 2a, WFBP
utilizes the layer-wise structure of DNN to overlap gradient

2. http://en.paddlepaddle.org/en

Fig. 2: An example of training a 5-layer network showing
one iteration time under three communication scheduling
framework.

aggregation and backward propagation. In WFBP, ARl is
executed immediately once Bl and ARl−1 are completed.

Currently, tensor fusion and tensor partitioning are two
prevalent communication scheduling strategies.

Tensor fusion. Since enabling an all-reduce operation
will introduce a portion of communication overhead, the
separate transmission of tensors (gradients) for each layer
in WFBP degrades bandwidth utilization. Therefore, ten-
sor fusion effectively reduces communication overhead by
merging tensors of multiple layers into one large tensor for
transmission. In the example from Fig. 2b, layer 4 and layer
5 are merged for transmission while layer 1, layer 2 and
layer 3 are merged for transmission. Compared to WFBP,
tensor fusion reduces the time of one iteration.

Tensor partitioning and priority scheduling. The back-
ward propagation of the DNN training determines that the
tensor of the layers close to the output layer is computed
earlier. However, the order of forward propagation is from
the input layer to the output layer. According to the de-
pendency DAG of the DNN in Fig. 1, Fl will be executed
earlier if ARl is completed earlier. Therefore, ByteScheduler
proposes tensor partitioning and priority scheduling, which
effectively overlap gradient aggregation and forward prop-
agation. From Fig. 2c, tensor partitioning slices the tensor
of each layer into multiple tensor blocks according to a
fixed threshold (partition size). Then, the priority scheduling
makes the tensor blocks of the layers close to the input layer
be transmitted first to ensure that the forward propagation
of the next iteration starts earlier. Meanwhile, we call this
scheduling order sequential scheduling.

2.3 Motivation
From the example in Fig. 2, although tensor partitioning and
priority scheduling achieve the shortest iteration time, we
observe that the total gradient aggregation time (including

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

Fig. 3: An example of training a 5-layer network showing
performance gain using tensor fusion and optimal schedul-
ing order under tensor partitioning.

communication overhead) in Fig. 2c is longer than the total
gradient aggregation time in Fig. 2a and Fig. 2b. This is
because the transmission of each tensor block needs to wait
for a portion of communication overhead, which results in
lower bandwidth utilization.

To reduce the communication overhead of transmitting
tensor blocks, ByteScheduler uses credit-based preemption,
which works like a sliding window mechanism. Credit-
based preemption allows multiple tensor blocks to be trans-
ferred in parallel by setting the credit size, and an exam-
ple with credit size = 2 is shown in Fig. 3b. However,
credit-based preemption breaks tensor priority in sequen-
tial scheduling. Although credit-based preemption reduces
communication overhead, it cannot guarantee that tensor
blocks with higher priority will be sent promptly. For ex-
ample, in Fig. 3b, due to the preemption of tensor blocks of
layer 5, tensor blocks of layer 4 cannot be transmitted in time
after being computed. Therefore, credit-based preemption
is only a suboptimal solution to reduce communication
overhead.

We find that neighboring tensor blocks from the same
layer can be merged for transmission to reduce unnec-
essary communication overhead. Comparing Figs. 3a and
3c, changing the partition size of the tensor block through
tensor fusion can shorten the total gradient aggregation time
without affecting sequential scheduling. Moreover, sequen-
tial scheduling is not optimal when the tensor blocks being
transmitted each time are not equal in partition size. Ad-

Fig. 4: An example to describe the mathematical model of
US-Byte.

TABLE 1: Summary of notations used in US-Byte

Name Description
N The number of nodes in the cluster.
a Communication overhead of an all-reduce operation.
b Transmission time per byte of all-reduce.
δ1 Number of all-reduce operations in the first phase.
δ2 Number of all-reduce operations in the second phase.
Sp Basic partition size.
O

(i)
num Number of basic tensor blocks transmitted in the i-th all-

reduce operation, where 1 ≤ i ≤ (δ1 + δ2).
O

(i)
lay Serial number of layer that the tensor block transmitted in

i-th all-reduce operation belongs to.
L The number of network layers.
M(l) The tensor size of layer l that needs to be transmitted in each

iteration.
m(l) Number of basic tensor blocks of layer l in each iteration.
m

(l)
re Number of basic tensor blocks remaining in layer l that have

been computed but not transmitted.
τ
(l)
b The timestamp when layer l begins the backward propaga-

tion.
t
(l)
b Time of the backward propagation of layer l in each iteration.
τ
(i)
ar The timestamp when the i-th all-reduce operation begins.
τ
(l)
f The timestamp when layer l begins the forward propagation.

t
(l)
f Time of the forward propagation of layer l in each iteration.

∆t Time error due to the fact that the size of the last basic tensor
block from the same layer may be smaller than Sp.

P
(l)
1 The priority of the tensor of layer l in the first phase. The

smaller the P1 value (1 ≤ P
(l)
1 ≤ L), the higher the priority.

P
(l)
2 The priority of the tensor of layer l in the second phase. The

smaller the P2 value (1 ≤ P
(l)
2 ≤ L), the higher the priority.

titer Time of one iteration.

justing the scheduling order of unequal-sized tensor blocks
can further reduce the communication overhead compared
to sequential scheduling. For example, in Fig. 3d, raising the
priority of tensor blocks of layer 4 above that of layer 3 can
shorten the iteration time compared to Fig. 3c.

Consequently, we optimize and adapt the partition size
and scheduling order of tensor blocks to effectively reduce
the communication overhead and obtain shorter time of one
iteration based on tensor partitioning.

3 MATHEMATICAL MODEL OF US-BYTE

In this section, we build the mathematical model of US-Byte.
Table 1 provides all notations used in US-Byte.

As shown in Fig. 4, we divide US-Byte into two phases
to model. These two phases are separated by the times-
tamp when layer 1 ends the backward propagation. The

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

first phase represents the overlapping process of gradient
aggregation and backward propagation. The second phase
describes the overlapping process of gradient aggregation
and forward propagation. The priorities of the tensor of
layer l are defined as P (l)

1 and P
(l)
2 in the first and second

phases, respectively, which determine the scheduling order
of the tensor. We define the partition size (the fixed thresh-
old) from tensor partitioning and sequential scheduling as
the basic partition size, denoted by Sp, and the tensor of
each layer is partitioned into multiple basic tensor blocks
according to the basic partition size. In the US-Byte’s model,
each tensor block is obtained by merging multiple basic ten-
sor blocks. Each all-reduce operation transmits one tensor
block. We denote an all-reduce operation by a two-tuple
< O

(i)
num, O

(i)
lay >, which means that in the i-th all-reduce

operation, the tensor block of the layer O(i)
lay is transmitted

and the tensor block consists of O(i)
num basic tensor blocks.

We first model the relationship between the time of an
all-reduce operation and the tensor block size (consisting of
multiple basic partition sizes) as follows:

Tar(O
(i)
num) =

{
0 O

(i)
num = 0

a+ b× Sp ×O(i)
num O

(i)
num > 0

, (1)

where a and b are two constants that are related to the
hardware cluster and are independent of O(i)

num. Then, we
formulate the mathematical model of US-Byte as follows:

The first phase. For simplicity, we define the time of one
iteration equal to the time difference between the timestamp
when layer L begins the backward propagation in iteration
J and the timestamp when layer L ends the forward com-
putation in iteration (J + 1) (see Fig. 1). Meanwhile, we
assume that the start timestamp of backward propagation
is 0, i.e., τ (L)b = 0. Then, in the first phase, the timestamp
when each layer begins the backward propagation, denoted
by τ (l)b , can be represented by

τ
(l)
b =

{
0 l = L

τ
(l+1)
b + t

(l+1)
b l < L

, (2)

where t(l)b represents the time of the backward propagation
of layer l in each iteration.

The i-th all-reduce operation in the first phase can start
if the following two conditions are satisfied: (1) the tensor of
layer O(i)

lay has been calculated; (2) the (i − 1)-th all-reduce
operation has finished. Therefore, the timestamp when the
i-th all-reduce operation (1 ≤ i ≤ δ1) begins, denoted by
τ
(i)
ar , can be represented by

τ (i)ar =

τ

(
O

(i)
lay

)
b + t

(
O

(i)
lay

)
b i=1

max

{
τ

(
O

(i)
lay

)
b +t

(
O

(i)
lay

)
b ,τ

(i−1)
ar +Tar(O

(i−1)
num)

}
i>1

,

(3)
where it is obvious that O(1)

lay = L.
As backward propagation proceeds, the two-tuples of

the all-reduce operations in the first phase can be calculated
according to the priority of tensor of each layer. Assume that
the i-th all-reduce operation will start during the backward
propagation of layer l, i.e., the tensor of layer O(i)

lay has the

(a) Case 1.

(b) Case 2.

(c) Case 3.

Fig. 5: Three cases when executing the i-th all-reduce oper-
ation during the backward propagation of layer l.

highest priority at this point. From Fig. 5, the number of
basic tensor blocks that need to be merged for transmission
before layer l ends backward propagation can be calculated
in three cases.
Case 1. From Fig. 5a, the time difference between the end
timestamp of the backward propagation of layer l and the end
timestamp of the (i − 1)th all-reduce operation is less than the
communication overhead a.(

τ
(l)
b + t

(l)
b

)
− τ (i)ar < a. (4)

When Case 1 holds, the number of basic tensor blocks
that need to be merged in the ith all-reduce operation is
∆B = 1.
Case 2. From Fig. 5b, the time difference between the end
timestamp of the backward propagation of layer l and the end
timestamp of the (i − 1)th all-reduce operation is insufficient to
transmit all remaining tensor blocks of layer O(i)

lay .

a ≤
(
τ
(l)
b + t

(l)
b

)
− τ (i)ar < Tar(m

(
O

(i)
lay

)
re), (5)

where m
(l)
re represents the number of basic tensor blocks

remaining in layer l that have been computed but not
transmitted. When Case 2 holds, the number of basic tensor
blocks that need to be merged in the ith all-reduce operation
is ∆B, where ∆B can be calculated by

∆B =

(
τ
(l)
b + t

(l)
b

)
− τ (i)ar − a

b× Sp

 . (6)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Algorithm 1 Get < O
(i)
num, O

(i)
lay > in the first phase

Input: a, b, Sp, L, M [1...L], P1[1...L], tb[1...L]
Output: δ1, Onum[1...δ1], Olay[1...δ1], τar[1...δ1]

1: for l = 1→ L do
2: m[l] = dM [l]/Spe; mre[l] = 0;
3: τb[L] = 0;
4: for l = L− 1→ 1 do
5: τb[l] = τb[l + 1] + tb[l + 1];
6: Initialize τar[1]=τb[L]+tb[L], i=1,Lold = 0;
7: for l = L→ 1 do
8: while (τb[l]+tb[l])− τar[i] >0 do
9: Olay[i]=CALCULATE Olay(L,P1,mre);

10: if Olay[i] == 0 then
11: τar[i] = τb[l]+tb[l];
12: break;
13: else if Olay[i] == Lold then
14: i = i− 1;
15: if Case 1 then
16: ∆B = 1;
17: else if Case 2 then
18: ∆B=

⌈
(τb[l]+tb[l])−τar [i]−a

b×Sp

⌉
;

19: else if Case 3 then
20: ∆B = mre[Olay[i]];
21: Onum[i] = ∆B;
22: mre[Olay[i]] = mre[Olay[i]]−Onum[i];
23: ∆t=CALCULATE ∆t(b, Sp,M,m,mre, Olay, i);
24: τar[i+ 1] = τar[i] + Tar(Onum[i])−∆t;
25: Lold = Olay[i];
26: i = i+ 1;
27: mre[l] = m[l];
28: δ1 = i− 1;
29: return δ1, Onum[1...δ1], Olay[1...δ1], τar[1...δ1],mre[1...L];
30: procedure CALCULATE Olay(L,P1,mre)
31: layer = 0; P = L+ 1;
32: for l = L→ 1 do
33: if mre[l] > 0 and P1[l] < P then
34: layer = l; P = P1[l];
35: return layer;
36: procedure CALCULATE ∆t(b, Sp,M,m,mre, Olay, i)
37: if mre[Olay[i]] == 0 then
38: ∆t = (m[Olay[i]]−M [Olay[i]]/Sp)× b× Sp;
39: else
40: ∆t = 0;
41: return ∆t;

Case 3. From Fig. 5c, the time difference between the end
timestamp of the backward propagation of layer l and the end
timestamp of the (i − 1)th all-reduce operation can transmit all
remaining tensor blocks of layer O(i)

lay .(
τ
(l)
b + t

(l)
b

)
− τ (i)ar ≥ Tar(m

(
O

(i)
lay

)
re). (7)

When case 3 holds, the number of basic tensor blocks
that need to be merged in the ith all-reduce operation is

∆B = m

(
O

(i)
lay

)
re . Meanwhile, O(i)

num = m

(
O

(i)
lay

)
re .

However, the tensor of each layer is not always an
integer multiple of Sp, and the time error due to incomplete
basic tensor blocks (size < Sp) from layer l, denoted by ∆t,
can be calculated by:

∆t =
(
m(l) −M (l)/Sp

)
× b× Sp. (8)

where m(l) represents the number of basic tensor blocks of
layer l in each iteration, and M (l) represents the tensor size
of layer l that needs to be transmitted in each iteration.

Since new basic tensor blocks are continuously gener-
ated as the backward propagation goes, the basic tensor
blocks with the highest priority are constantly changing.

Fig. 6: The flowchart of Algorithm 1.

This makes it difficult to express the relationship between
the two-tuple of the all-reduce operation and tensor priority
by a fixed function. Thus, we introduce Algorithm 1 to
calculate < O

(i)
num, O

(i)
lay > in the first phase according to

P
(l)
1 . Algorithm 1 (line 1-2) first calculates the number of

basis tensor blocks of each layer and initializes the number
mre of basic tensor blocks remaining in each layer. Line 3-
5 obtains the layer-wise start timestamp of the backward
propagation according to Eq. 2. Then, line 6-28 calculates
the two-tuple of each all-reduce operation in the first phase.
Line 27 updates mre to simulate backward propagation.
When the i-th all-reduce operation can be executed during
the backward propagation of layer l (line 8), line 9 calculates
O

(i)
lay by finding basic tensor block with the highest priority

from all remaining basis tensor blocks, line 15-21 obtains
O

(i)
num according to Eqs. 4, 5, 6 and 7, and line 22 updates

mre. Three points are worth noting: (1) if all basic tensor
blocks have been transmitted, the i-th all-reduce operation
can only start when the backward propagation of layer l
ends (line 11-13); (2) if two consecutive all-reduce operations
transmit tensor blocks from the same layer, the parameter i
will not need to be updated (line 13-14); (3) the time error
∆t is calculated on line 23 according to Eq. 8 and used
to derive the start timestamp of each all-reduce operation
(line 24). Meanwhile, to help understanding, the flowchart
of Algorithm 1 is shown in Fig. 6.

The second phase. The i-th all-reduce operation in the
second phase can start as soon as the (i − 1)-th all-reduce
operation is completed, i.e. the timestamp when the i-th all-
reduce operation (δ1 + 1 ≤ i ≤ δ2) begins can be calculated
by

τ (i)ar =

max
{
τ
(1)
b +t

(1)
b ,τ

(δ1)
ar +Tar(O

(δ1)
num)

}
i=δ1+1

τ
(i−1)
ar +Tar(O

(i−1)
num) i>δ1+1

. (9)

Since all remaining tensor blocks will be transmitted in
the second phase, it is obvious that δ2 = L. Thus, we can
obtain the relationship between the i-th all-reduce operation

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

and the tensor priority in the second phase by

< O

(
δ1+P

(l)
2

)
num , O

(
δ1+P

(l)
2

)
lay >=< m(l)

re , l >, (10)

i.e., the remaining basic tensor blocks of layer l will be
transmitted through the (δ1 + P

(l)
2)-th all-reduce operation.

The forward propagation of layer l can start if the follow-
ing two conditions are satisfied: (1) the forward propagation
of layer (l − 1) has finished; (2) all tensor blocks of layer
l have been transmitted. Then, the timestamp when layer
l begins the forward propagation, denoted by τ

(l)
f , can be

calculated by

τ
(l)
f =

τ
(
δ1+P

(l)
2

)
ar +Tar(m

(l)
re)−∆t l=1

max{τ (l−1)f +t
(l−1)
f , τ

(
δ1+P

(l)
2

)
ar +Tar(m

(l)
re)−∆t} l>1

,

(11)
where the time error ∆t can be calculated in the same way
as in line 36-41 of Algorithm 1.

Finally, we would like to minimize the time of one
iteration, i.e.,

minimize: titer = τ
(L)
f + t

(L)
f − τ (L)b , (12)

where t(L)f represents the time of the forward propagation
of layer l in each iteration.

Among the parameters of the mathematical model of
US-Byte, t(l)b , t(l)f , a and b need to be actually measured.

t
(l)
b and t

(l)
f are obtained by averaging multiple iterations

before training. The measurement of a and b is described
in Section 6.2. In addition, the degree to which US-Byte’s
model accurately mirrors real-world system timings is also
evaluated in Section 6.2.

4 SOLUTION

In this section, we obtain the optimal scheduling order of the
second phase of US-Byte by theoretical analysis and propose
an efficient algorithm to find the near-optimal scheduling
order of the first phase.

4.1 Theoretical Analysis
Theorem 1. Sequential scheduling is the optimal scheduling
order for the second phase of US-Byte, i.e., P (l)

2 = l.
Proof. Theorem 1’s proof can be found in Appendix. �

According to Theorem 1, US-Byte is proven to be optimal
when overlapping gradient communication and forward
computation without tensor fusion across layers. However,
if either of the above two conditions is not satisfied, finding
the optimal scheduling order for tensor blocks will be an
NP-hard problem and cannot be solved in a reasonable time.

4.2 Algorithm
For a given DNN and a hardware cluster, the performance
gain of US-Byte is determined by P1 and P2. In the mathe-
matical model of US-Byte, both P1 and P2 have L! values.
Therefore, the complexity of finding the optimal scheduling
order for US-Byte is O

(
L!2
)
. Then, according to Theorem

1, we simplify the complexity to O (L!) without loss of
optimality.

Fig. 7: An example of the proposed greedy algorithm shows
the process of finding the near-optimal scheduling order
of the first phase. The black arrows with serial numbers
represent the execution process of the algorithm.

However, finding the optimal scheduling order for the
first phase is still an NP-hard problem. To this end, we pro-
pose a greedy algorithm with low complexity to obtain an
approximate optimal solution. Fig. 7 illustrates the process
of this greedy algorithm with an example. We first initialize
the priority of the tensor of each layer based on sequential
scheduling. Then, we sequentially raise the priority of the
tensor of layer l from layer L to layer 2 by judging whether
prioritizing the transmission of the tensor of layer l can
shorten the time of one iteration. For example, from Fig.
7, prioritizing the transmission of layer 5’s tensor leads to
longer iteration time, however, prioritizing the transmission
of tensors of layer 4 and layer 2 can achieve a better
performance gain.

When prioritizing the transmission of the tensor of layer
l, if the basic tensor blocks of layer l is first transmitted
by the i-th all-reduce operation in the first phase, the rela-
tionship between the timestamp when all tensor blocks of
layer l have been transmitted in the first phase and the start
timestamp of the backward propagation of each layer can
be represented by

τ
(k)
b + t

(k)
b < τ (i)ar + Tar(m

(l))−∆t ≤ τ (k−1)
b + t

(k−1)
b . (13)

According to Eq. 13, the priority of the tensor of layer l
should be raised above that of layer k.

Assume that the N-node cluster is connected in a ring
topology, where each node has the same bandwidth and
computing power. Then, the greedy algorithm is designed in
Algorithm 2 to find the approximate optimal scheduling or-
der for the first phase. Algorithm 2 (line 1-2) first initializes
P1 and P2 based on sequential scheduling. Line 3 calculates
the iteration time titer based on P1 and P2. Then, line 4-22
updates P1 based on the greedy algorithm, which is mainly
divided into three stages. The first stage (line 6-10) finds
the all-reduce operation that first transfers the basic tensor
blocks of layer l. The second stage (line 11-19) raises the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

Algorithm 2 Find P1 for the first phase

Input: a, b, Sp, L, M [1...L], m[1...L], τb[1...L], tb[1...L], tf [1...L]
Output: P1[1...L]

1: for l = 1→ L do
2: P1[l] = l; P2[l] = l;
3: titer = CALCULATE titer(P1, P2);
4: l = L;
5: while l ≥ 1 do
6: Get δ1, Onum, Olay, τar from Algorithm 1;
7: for i = 1→ δ1 do
8: τ = 0;
9: if Olay[i] == l then

10: τ = τar[i] + Tar[m[l]]−∆t;
11: break;
12: if τ == 0 then
13: l = l − 1;
14: continue;
15: else
16: for k = l→ 1 do
17: if k == 1 then
18: P ∗

1 = ADJUSTPRIORITY(P1,l,1);
19: else if τb[k] + tb[k] < τ ≤ τb[k− 1] + tb[k− 1] then
20: P ∗

1 = ADJUSTPRIORITY(P1,l,k);
21: break;
22: t∗iter = CALCULATE titer(P ∗

1 , P2);
23: if t∗iter < titer then
24: titer = t∗iter ; P1 = P ∗

1 ; l = k;
25: l = l − 1;
26: return P1;
27: procedure ADJUSTPRIORITY(P1, l, k)
28: P1[l] = P1[k]
29: for j = k → l − 1 do
30: P1[j] = P1[j] + 1;
31: return P1;
32: procedure CALCULATE titer(P1, P2)
33: Get τf [1...L] from Eq. 11;
34: titer = τf [L] + tf [L];
35: return titer ;

priority of the tensor of layer l according to Eq. 13. Note that
line 11-12 skips layers that should not be considered since
all of their tensors are transmitted in the second phase. The
third stage (line 20-22) judges whether raising the priority
of the tensor of layer l can shorten titer and updates P1.

Algorithm 2 has a time complexity of O
(
L3
)
. It uses an

O (L) search to traverse each layer to determine whether the
priority should be adjusted while each priority adjustment
requires a time complexity ofO

(
L2
)
, so the time complexity

is O
(
L3
)
. In particular, Algorithm 2 only needs to be exe-

cuted once before training, so the overhead of finding the
near-optimal scheduling order for the first phase does not
affect the training performance.

5 SYSTEM IMPLEMENTATION

We implement the US-Byte architecture on the framework
of ByteScheduler and PyTorch. Fig. 8 shows the overview of
the US-Byte architecture. From top to bottom, it consists of
(1) user code that describes the DNN and submits DNN
training tasks, (2) the API interface of PyTorch frontend,
(3) ByteScheduler scheduler that executes communication
scheduling, (4) PyTorch engine that determines how to
perform the DNN DAG, (5) message-level communication
library for all-reduce framework (e.g., NVIDIA NCCL and
OpenMPI), and (6) network interface. At the user code level,
we design the profiling module. It calculates the priority of
the tensor of each layer according to Theorem 1 and Algo-
rithm 2 and converts it into the two-tuples of all all-reduce

Fig. 8: Overview of the US-Byte architecture. The blue part
is added by US-Byte.

operations in one iteration according to the mathematical
model of US-Byte. At the ByteScheduler scheduler level, we
embed the scheduling framework of US-Byte. In this section,
we first elaborate two key points when implementing the
US-Byte architecture: (1) the measurement of t(l)b , t(l)f in
the US-Byte model, and (2) the integration of the US-Byte
scheduling framework into the ByteScheduler framework.
Then, we theoretically compare the energy consumption
of US-Byte, ByteScheduler and WFBP during distributed
training.

5.1 Time Measurement of Backward Propagation and
Forward Propagation

Since the forward propagation process of DNNs is intu-
itively visible in the class of DNNs, the layer-wise for-
ward propagation time can be measured by Python’s time
measurement tool. In contrast, PyTorch does not save the
gradients of intermediate variables when performing back-
ward propagation (backward). Thus, backward propaga-
tion of each layer is not visible to the user. In addition,
due to the nature of cuda streams, PyTorch can perform
different operations on the GPUs simultaneously. There-
fore, the gradients of multiple variables in a tensor can
be calculated simultaneously when PyTorch performs back-
ward propagation, which makes it theoretically difficult
to estimate the layer-wise backward propagation time. To
accurately collect the backward propagation time, we use
register hook to access the computation of each tensor and
use torch.cuda.synchronize to synchronize the tensor after
it completes the gradient computation. Then, we can collect
the layer-wise backward propagation time by calculating the
interval between two tensor synchronizations. In addition,
to reduce the measurement error, the layer-wise forward
propagation and backward propagation time are obtained
by averaging the results of 50 measurements.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

Algorithm 3 The scheduling process in US-Byte Core

Input: Sp, δ1, δ2,Onum[1...δ2],Olay[1...δ2], queue (priority queue
of tensor blocks), Tensor (Tensor of each layer from backward
propagation)

1: /* Partition a tensor and enqueue tensor blocks. */
2: procedure PARTITION(Tensor,δ1,δ2,Onum,Olay)
3: for i = 1→ δ1 + δ2 do
4: if Olay[i] == Tensor.layer then
5: TensorBlock = Tensor.partition(Sp ×Onum[i]);
6: order = i;
7: queue.put(order, TensorBlock);
8: /* Waiting for tensor blocks to finish transmission. */
9: procedure FINISH(TensorBlock)

10: channel is busy = False;
11: /* Schedule tensor blocks in the queue. */
12: procedure SCHEDULE(δ1,δ2):
13: order = 0;
14: while True do
15: order, TensorBlock = queue.get();
16: if not channel is busy and order = order + 1 then
17: TensorBlock.comm();
18: channel is busy = True;
19: if order == δ1 + δ2 then
20: order = 0;
21: else
22: order = order + 1;
23: else
24: Wait until channel is busy = False;

5.2 Communication Scheduling Process in US-Byte
Core
We implement the communication scheduling framework
of US-Byte on the ByteScheduler framework. We first ob-
tain P1 and P2 by Theorem 1 and Algorithm 2. Then, we
calculate the two-tuples of all all-reduce operations through
the mathematical model of US-Byte and pass them to the
US-Byte core via the PyTorch API.

Algorithm 3 demonstrates the communication schedul-
ing process in the US-Byte core. As backward propagation
goes, the tensor of each layer becomes ready one by one.
The PARTITION procedure (line 2) partitions the tensor
(line 5) and enqueues the tensor blocks into a priority queue
(line 7), where the partition size of each tensor block can be
obtained through the number of basic tensor blocks merged
in each all-reduce operation, and the execution order of the
all-reduce operations will be the actual scheduling order of
the tensor blocks in the iteration (line 6). The SCHEDULE
procedure (line 12) polls the queue constantly (line 15) and
transfers each tensor block in order (line 16-22). The tensor
blocks can be transmitted when the transmission channel
is not busy (line 17). Meanwhile, the transmission channel
is released when the transmission of the tensor block is
completed (line 10).

Algorithm 3 has a computational complexity of
O ((L+ 2) · (δ1 + δ2)) in one iteration. Specifically, the
PARTITION procedure requires L searches of complexity
O (δ1 + δ2) to partition the tensors of each layer, while
the computational complexity of both the FINISH and
SCHEDULE procedures is O (δ1 + δ2). Overall, in a cluster,
each node needs to execute Algorithms 2 and 3. However,
Algorithm 2 only needs to be executed once before training.
In addition, Algorithm 3 needs to be executed once in each
iteration. Therefore, the total computational overhead of US-
Byte is acceptable.

TABLE 2: The Hardware and Software Settings of Clusters.

Cluster 1 Cluster 2
of Nodes 8 8
GPU (Nvidia) Tesla V100S PCIe RTX 3090
Network 10Gbps 100Gbps
CPU (Intel) Xeon (Skylake, IBRS) Xeon(R) Gold 6248R
Memory 256GB 192GB
OS Ubuntu 18.04 Ubuntu 20.04

Software

CUDA-9.0
OpenMPI-4.0.0
NCCL-2.3.7
PyTorch-1.0.0

CUDA-11.2
OpenMPI-4.0.1
NCCL-2.8.3.1
PyTorch-1.7.0

5.3 Energy consumption analysis
In distributed DNN training, energy consumption can be
divided into two primary components: computation energy
consumption and communication energy consumption. To
theoretically compare the energy consumption of US-Byte,
ByteScheduler and WFBP, we assume the same number of
iterations for training the same DNN model with the same
parameter encoding, dataset, and hardware cluster. By do-
ing so, we can focus on comparing the energy consumption
of the three frameworks in one iteration. Since the number
of floating-point operations in each forward and backward
propagation process remains constant, computation energy
consumption is the same across all three frameworks. How-
ever, despite the gradient data being transmitted (by the all-
reduce primitive in NCCL) remaining the same in each itera-
tion, communication energy consumption still varies among
the three frameworks due to differences in communication
overheads and scheduler overhead. In one iteration, the
numbers of communications in the three frameworks are:
δ1 + δ2 for US-Byte,

∑L
i=1m

(l) for ByteScheduler, and L for
WFBP. In particular, L ≤ δ1 + δ2 ≤

∑L
i=1m

(l). Furthermore,
while US-Byte incurs an additional scheduler overhead in
the PARTITION procedure of the US-Byte core compared to
ByteScheduler, as evaluated in Table 5, the energy consump-
tion of this overhead is negligible compared to the energy
saved by the reduced communication overheads. The actual
energy consumption of US-Byte during training is shown in
Section 6.6.

6 EVALUATION

In this section, we evaluate the performance of US-Byte by
real experiments on two 8-node GPU clusters and simula-
tions on a 128-node GPU cluster using six modern DNNs.

6.1 Methodology
Testbed setup. Our testbeds contain two GPU clusters. One
is an 8-node NVIDIA Tesla V100S cluster in which each
node contains an NVIDIA Tesla V100S GPU card, and the
8 nodes are connected with 10Gbps Ethernet (10GbE). The
other is an 8-node NVIDIA RTX 3090 cluster with each node
equipped with an NVIDIA GeForce RTX 3090 GPU card,
and the 8 nodes are connected with 100Gbps bandwidth.
The hardware and software settings of clusters are listed in
Table 2.

Benchmarks. We use three well-known datasets. (1) Ci-
far100 dataset [25], which contains 50,000 training images

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

TABLE 3: DNNs for Evaluation

Model # Tensors # Parameters Dataset Batch
Size

GoogleNet 59 ∼13.0M Cifar100 128
ResNet-50 161 ∼23.7M ILSVRC12 128
VGG16 32 ∼134.7M ILSVRC12 128
MobileNet-v2 158 ∼2.4M ILSVRC12 32
Inception-v3 292 ∼22.0M ILSVRC12 64
BERT-Base 283 ∼109.5M IMDb 64

TABLE 4: Error between the time of one iteration calculated
by US-Byte’s model and the actual time of one iteration

during training

Model Cluster 1 Cluster 2
GoogleNet 2.28% 2.69%
ResNet-50 3.55% 2.54%
VGG16 1.22% 1.75%
MobileNet-v2 1.63% 2.15%
Inception-v3 3.41% 4.07%
BERT-Base 4.75% 3.14%

and spans 100 classes; (2) ImageNet dataset (ILSVRC12)
[26], which contains 1.28 million training images on 1000
categories; (3) IMDb dataset [27], which contains a set of
25,000 highly polar movie reviews for training.

We select six modern DNNs, including five image clas-
sification CNN models (GoogleNet [28], ResNet-50 [29],
VGG16 [30], MobileNet-v2 [31], Inception-v3 [32]) and one
language processing Transformer model (BERT-Base [33]).
The training settings of DNNs are listed in Table 3.

Baselines. We compare US-Byte with two representative
baselines using the All-reduce architecture. (1) WFBP [17],
which is a default optimization implemented on most deep
learning frameworks and overlaps gradient aggregation
with backward propagation; (2) ByteScheduler [19], the
state-of-the-art communication scheduler, which uses tensor
partitioning and priority scheduling to overlap gradient
aggregation with forward propagation.

We focus on metrics that measure US-Byte performance,
such as training speed (images/sec or tokens/sec) and time
for one iteration. We compare the training speed of US-
Byte and other communication frameworks under different
nodes. In addition, we also explore the impact of band-
width and basic partition size on US-Byte performance. For
completeness, we show the non-overlapped communication
time and convergence when training ResNet-50 and VGG16.
All the reported numbers are averaged over 1000 iterations.

6.2 Measurement of All-Reduce Communication

To verify the model for calculating the time of an all-reduce
operation in Eq. 1, we measure the communication time of
an All-reduce operation with different size of parameters.
Figs. 9a and 9b show the measured time of all-reduce under
cluster 1 and cluster 2, respectively. From Fig. 9, we can
obtain a linear relationship between the time of an all-reduce
operation and the size of parameters. The vertical intercept
and slope of the fitted linear function correspond to the
values of the parameters a and b, respectively. In addition,

(a) Cluster 1 (b) Cluster 2

Fig. 9: The communication time of all-reduce along with the
size of parameters on two different clusters. (a) Cluster 1
with a = 910.5µs, b = 0.352 × 10−4µs/byte; (b) Cluster 2
with a = 1318.6µs, b = 2.406× 10−4µs/byte.

TABLE 5: Percentage of time overhead for tensor
partitioning in one iteration with different communication

scheduling frameworks

Model US-Byte ByteScheduler WFBP
GoogleNet 0.93% 0.51% 0%
ResNet-50 1.45% 0.55% 0%
VGG16 0.24% 0.69% 0%
MobileNet-v2 1.23% 0.47% 0%
Inception-v3 1.78% 0.59% 0%
BERT-Base 1.72% 0.66% 0%

parameters a and b can be calculated according to Eq. 14
under different numbers of nodes.

a = 2 (N − 1)α, b =
2 (N − 1)

N
β +

(N − 1)

N
γ, (14)

where α represents communication overhead between two
nodes, β represents transmission time per byte between two
nodes and γ represents summation time of two floating
point numbers in one node.

To evaluate the degree to which US-Byte’s model ac-
curately mirrors real-world system timings, we measured
the error between the time of one iteration calculated by
US-Byte’s model (theoretical value) and the actual time of
one iteration during training (actual value) when training
different DNN models with 8 nodes in two clusters, where

error =
|theoretical value− actual value|

actual value
, (15)

and the actual value is averaged over 1000 iterations. The
results are presented in Table 4. From Table 4, all errors are
less than 5% across six DNN models. Therefore, the degree
to which the model mirrors real-world system timings is
relatively accurate.

6.3 Worker Number vs. Speed
We train six DNNs on Cluster 1 with different numbers of
nodes. We obtain the basic partition sizes Sp in US-Byte and
ByteScheduler by Bayesian optimization from ByteSched-
uler. Moreover, we apply credit-based preemption in the
ByteScheduler’s baseline, and the credit size is also obtained
by Bayesian optimization. The training results are shown in
Fig. 10. From Fig. 10, US-Byte achieves the best performance
on six DNNs and has nearly linear scaling efficiency. US-
Byte outperforms ByteScheduler by 11%-26% and WFBP by
21%-56% across the six DNNs in speedup.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

(a) GoobleNet (14%-29%) (b) ResNet-50 (12%-27%) (c) VGG16 (26%-56%)

(d) MobileNet-v2 (11%-21%) (e) Inception-v3 (15%-26%) (f) BERT-Base (20%-41%)

Fig. 10: Training speed with different numbers of nodes in Cluster 1. The values in the brackets are the range of
improvements of US-Byte over ByteScheduler and WFBP.

(a) ResNet-50 (b) VGG16

Fig. 11: The time costs of non-overlapped communication
and computation in each iteration on Cluster 1. ‘WF.’, ‘B.S.’
and ‘U.B.’ represent WFBP, ByteScheduler and US-Byte
frameworks, respectively. ‘Comp.’ represents the computa-
tion time in each iteration and ‘Comm.’ represents the non-
overlapped communication time in each iteration.

(a) ResNet-50 (b) VGG16

Fig. 12: Loss vs. epochs for training ResNet-50 and VGG16
on Cluster 1.

We observe that the acceleration effect of US-Byte on
VGG16 and BERT-Base is more pronounced than that of
other DNNs. This is because VGG16 and BERT-Base are
communication-intensive networks (see Table 3), and the
gradient communication time is much longer than the com-
putation time, leaving more optimization space for commu-
nication scheduling and benefiting significantly from US-
Byte. In contrast, computation-intensive networks such as

(a) ResNet-50

(b) VGG16

Fig. 13: Training speed with the optimal scheduling order or
random scheduling orders in the second phase.

ResNet-50 will obtain better scalability from US-Byte, since
they have fewer parameters and the gradient communica-
tion time can be almost completely hidden.

To visualize the overlap of gradient communication and
gradient computation over different communication frame-
works, we measure the time costs of non-overlapped com-
munication and computation in each iteration on Cluster 1
when training ResNet-50 and VGG16 (the time cost of com-
putation = time of forward propagation + time of backward
propagation and the time cost of non-overlapped commu-
nication time = total time of an iteration - the time cost of
computation). The results are shown in Fig. 11. It can be seen
that US-Byte achieves better overlap of communication and
computing than ByteScheduler and WFBP. Compared with
US-Byte, ByteScheduler is difficult to obtain linear scaling

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

(a) ResNet-50 (b) VGG16 (c) BERT-Base

Fig. 14: Training speed with different bandwidth levels in Cluster 2.

efficiency because the priority scheduling mechanism is
destroyed. In addition, when the number of nodes increases,
the time costs of non-overlapped communication in WFBP
increase significantly due to the larger communication over-
head. For completeness, we count the convergence when
training ResNet-50 and VGG16 on Cluster 1. Fig. 12 shows
that ResNet-50 and VGG16 achieve almost linear statisti-
cal performance. Whether 2, 4, or 8 nodes, ResNet-50 can
achieve a loss of 1.0 in less than 45 epochs, while VGG16
can achieve a loss of 1.5 in less than 55 epochs.

Scheduler overhead. The US-Byte scheduler overhead
is mainly concentrated in the tensor partitioning process.
We measure the percentage of time overhead for tensor
partitioning in one iteration with different communication
scheduling frameworks. The results are shown in Table 5.
The time overhead of WFBP is 0 since no tensor partitioning
is used. Compared to ByteScheduler, US-Byte has higher
time overhead in tensor partitioning. This is because US-
Byte needs to search the two-tuples of all-reduce opera-
tions to partition each layer’s tensor into unequal-sized
tensor blocks while ByteScheduler only partitions all ten-
sors into basic tensor blocks based on the basic partition
size. Nonetheless, the percentage of scheduler overhead in
US-Byte remains negligibly small in one iteration, which
is acceptable considering the significant improvement in
training speed achieved by US-Byte.

Optimality of the second phase. To verify efficient
performance of the scheduling order in the second phased
of US-Byte, we compare the training speed when using our
proposed optimal scheduling order (based on Theorem 1)
and a random scheduling order in the second phase. Fig.
13 shows the measurement results when training ResNet-
50 and VGG16, where the blue dots indicate the training
speed with 10000 random scheduling orders in the sec-
ond phase and the red line represents the training speed
with our proposed optimal scheduling order in the second
phase. From Fig. 13, the training speed with the optimal
scheduling order in the second phase is always higher than
that with a random scheduling order in the second phase.
These experiments demonstrate the efficient performance of
our proposed scheduling in the second phase of US-Byte
to achieve faster training, and this is consistent with the
theoretical analysis in Theorem 1.

6.4 Bandwidth vs. Speed
We investigate the performance gains of US-Byte at different
bandwidth levels. We train different DNNs using 8 nodes on

Fig. 15: The execution time of Algorithm 2 with different
basic partition sizes.

Cluster 2 and vary the communication bandwidth between
the nodes via the Linux tc tool. The results are presented in
Fig. 14. We observe that the training speed remains stable
when the network bandwidth is between 60-100Gbps. This
is because when the bandwidth is higher and the computing
power of the nodes remains constant, the communication
time of tensor blocks is reduced, and the communication
performance is no longer the bottleneck that limits the scal-
ing efficiency of distributed training. Especially for ResNet-
50 with low communication traffic, the communication can
be almost completely hidden in the computation time only
when the bandwidth is above 40Gbps. US-Byte tends to
achieve its highest speedup at a smaller bandwidth level
than other frameworks, which benefits from its more effi-
cient overlap of communication and computation.

US-Byte outperforms ByteScheduler by up to 24% for
VGG16 at 20Gbps network bandwidth and 21% for BERT-
Base at 20Gbps. Even for ResNet-50, US-Byte outperforms
ByteScheduler by up to 20% at 10Gbps. When the band-
width is higher, the speedup by US-Byte, compared to the
baselines, may become smaller. US-Byte only outperforms
ByteScheduler by 4%-7% and WFBP by 9%-15% at 60Gbps.
The time cost of communication is less when the band-
width level is higher, especially for computation-intensive
networks, leaving little room for optimization of US-Byte.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

(a) ResNet-50 (b) VGG16 (c) BERT-Base

Fig. 16: Training speed with different basic partition sizes in Cluster 1.

(a) ResNet-50 (b) VGG16 (c) BERT-Base

Fig. 17: Power usage during training in Cluster 1.

6.5 Partition Size vs. Speed

We further examine the execution time of Algorithm 2 and
US-Byte performance gains with different basic partition
sizes. We train different DNNs with different Sp from 0.1Mb
to 8Mb using 8 nodes on Cluster 2. Figs. 16 and 15 show the
results. From Fig. 15, we observe that the execution time
of our proposed greedy algorithm remains stable (less than
10s) when Sp changes and only depends on the number of
layers of the DNN.

In Fig. 16, the training speed of WFBP remains constant
since it is not affected by the change of Sp. However,
we observe that the training speed of both US-Byte and
ByteScheduler drops significantly when Sp is smaller. This is
because when Sp is smaller, the number of tensor blocks is
so large that the communication overhead of transmitting
tensor blocks cannot be reduced only by communication
scheduling. In addition, since US-Byte can adapt to different
Sp by merging basic tensor blocks, US-Byte is less affected
by the change of Sp than ByteScheduler. On the contrary, al-
though ByteScheduler can increase the credit size to reduce
communication overhead, it expands the destruction of the
priority scheduling mechanism, which prevents ByteSched-
uler from obtaining a better performance gain with smaller
Sp.

6.6 Energy Consumption

We measure the power usage during distributed training
using 8 nodes in Cluster 1 to compare the energy consump-
tion of different communication scheduling frameworks. We
monitor the power of node 0 every 5 milliseconds when
training three different DNN models and the results are
illustrated in Fig. 17.

From Fig. 17, we observe that US-Byte, ByteScheduler
and WFBP experience regular peaks and valleys in power

usage, and the duration of the cycle is the time of one train-
ing iteration. Among the three frameworks, WFBP has the
lowest energy consumption, while ByteScheduler consumes
the most due to the differences in the number of commu-
nication overheads. Furthermore, the energy consumption
of US-Byte is much less than that of ByteScheduler and
very close to that of WFBP. This is because US-Byte reduces
significant communication overheads through tensor fusion
as analyzed in Section 5.3.

6.7 Numerical Simulations
Due to the limitation of hardware resources, we conduct
simulations to explore the scaling efficiency of US-Byte on
a large-scale cluster. The simulation cluster is based on
the real single-node GPU and the network performance
model. The specific settings of the simulation cluster are
as follows: (1) The topology of the simulation cluster is a
logical ring, and each node has the same bandwidth. (2) the
layer-wise forward propagation and backward propagation
time is measured using a real V100 GPU. (3) The values
of parameters a and b are obtained through Fig. 9a and
Eq. 14 in Cluster 1. (4) We set Sp = 4Mb in US-Byte and
ByteScheduler, and set credit size = 2 in ByteScheduler.
Then, we simulate US-Byte, ByteScheduler, and WFBP from
8 to 128 nodes.

Overall Performance. Fig. 18 shows the performance
comparison of different communication frameworks on the
simulated V100 cluster. It is evident that US-Byte has bet-
ter scaling efficiency than the other two communication
frameworks. In the 128-node cluster, US-Byte outperforms
ByteScheduler by 28%-69% and WFBP by 234%-332% across
the three benchmark models. In particular, US-Byte achieves
approximately linear scaling efficiency in ResNet-50. More-
over, the scalability of ByteScheduler is limited by the
conflict between credit-based preemption and sequential

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 14

(a) ResNet-50 (b) VGG16 (c) BERT-Base

Fig. 18: The performance comparison on the simulated V100 cluster connected with a 10Gbps Ethernet. Baseline of the
speedup is on a single V100.

scheduling, which results in the inferior performance of
ByteScheduler. WFBP exhibits the worst scaling efficiency
among the three communication frameworks. This is be-
cause WFBP has a suboptimal bandwidth utilization. When
the number of nodes is small (8-32 nodes), the communica-
tion overhead is small and can be overlapped in the gradient
computation. However, when the number of nodes is large
(64-128 nodes), the communication overhead increases so
that it cannot be hidden, which makes the scalability of
WFBP deteriorate significantly. Instead, US-Byte reduces
communication overhead and efficiently overlaps computa-
tion and communication by merging the basic tensor blocks
and adjusting the scheduling order.

7 RELATED WORK AND DISCUSSION

7.1 Related Work

There are various designs to alleviate communication bot-
tlenecks in distributed deep learning. We summarize some
related works from two aspects of communication accelera-
tion and communication scheduling.

Communication acceleration: Existing communication
acceleration techniques include, but are not limited to: (1)
leveraging high throughput and low latency communica-
tion links, such as RDMA [34], [35], [36], InfiniBand, Intel
Omni-Path, and NVIDIA’s NVLink 3; (2) utilizing message
passing interface (MPI) and MPI-like implementations like
OpenMPI 4 and Gloo [37]; (3) using high-performance com-
munication collectives, such as NCCL 5 and BLink [38],
which support efficient communication between GPUs and
many popular deep learning frameworks; (4) reducing data
communication during synchronization process, such as
gradient quantization, compression and sparsification [39],
[40], [41], [42], [43], [44]; (5) using stale parameter up-
dates to reduce the number of synchronization parameters,
such as parameter freezing [45], [46], [47], Round-Robin
Synchronous Parallel [48] and Bounded Staleness Parallel
[49]; (6) tuning deep learning hyper-parameters, such as
AutoByte [50]; (7) minimize user-level overhead by con-
ducting parameter aggregation at the transport layer [13];
(8) improving network-layer performance, such as network-
level flow scheduling [51], [52] and congestion control [53].

3. https://www.nvidia.com/en-us/design-visualization/nvlink-
bridges

4. https://www.open-mpi.org/
5. https://developer.nvidia.com/nccl

US-Byte is orthogonal to the above approaches and can be
combined with them.

Communication scheduling: Due to the layer-wise and
tensor-wise structure of DNNs, some works continuously
explore to maximize the overlap of communication and
computation. In addition to WFBP [17] and ByteScheduler
[19], we list some other works. MG-WFBP merges gradient
according to the time of backward propagation and commu-
nication of each layer to improve communication efficiency
[2], [18]. ASC-WFBP utilizes the simultaneous communi-
cation of gradients to improve the utilization of network
bandwidth [5]. P3 parallelizes gradient communication and
computation in MXNet framework with granularity-based
priority scheduling [20]. TicTac finds the fixed schedul-
ing order of the tensor with critical-path analysis [21].
PACE transmits tensors based on preemptive communica-
tion scheduling and directed acyclic graph of DNN training
[4]. Instead, US-Byte schedules unequal-sized tensor blocks
in an approximately optimal order, improving bandwidth
utilization and minimizing the time of one iteration.

7.2 Discussion
Strengths and limitations. Our proposed US-Byte is an
efficient solution to maximize the overlap of communica-
tion and computation in distributed deep learning, and the
strengths of US-Byte are: (1) dynamically merging a variable
number of basic tensor blocks into unequal-sized tensor
blocks to reduce communication overheads, (2) schedul-
ing unequal-sized tensor blocks in a near-optimal order to
minimize per-iteration time, and (3) adopting the optimal
scheduling order of unequal-sized tensor blocks in the sec-
ond phase.

Despite its strengths, there are still two limitations in
US-Byte. First, we model US-Byte to schedule unequal-sized
tensor blocks in units of layers, and the basic tensor blocks
transmitted at each all-reduce operation are from the same
layer. However, we can consider a new model that models in
units of basic tensor blocks and merges basic tensor blocks
from different layers for transmission. Then, the time of
an iteration in the new model will depend on the priority
of each basic tensor block. Compared to US-Byte, the new
model may further reduce the communication overhead and
shorten the time of one iteration. However, the complex-
ity of the new model will be O

(
(
∑L
l=1m

(l))!
)

while the
complexity of US-Byte is only O (L!). In summary, although
modeling in units of basic tensor blocks may achieve better

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 15

performance, its complexity is much higher than US-Byte.
As a result, we choose to model US-Byte in units of layers.
Second, the scheduling order of unequal-sized tensor blocks
and the number of basic tensor blocks in each unequal-sized
tensor block (i.e., the two-tuples of all-reduce operations) are
determined only once, which depends on a stable cluster
environment (including the computing power of nodes and
the bandwidth between nodes). Instead, when the cluster
environment changes (e.g., new computation or communi-
cation tasks are added), automatically updating the two-
tuples of all-reduce operations may result in shorter training
time.

Greedy Algorithm v.s. Brute Force Search. We have
tried to find the optimal scheduling order of unequal-sized
tensor blocks for DNNs by brute force search compared
to the greedy algorithm. However, the execution time is
intolerable. For example, the solution space of VGG16 is
32! ≈ 2.6e35, and according to the actual calculation results,
it takes about 1.25s to traverse 1e4 sets of solutions. We
thus cannot solve the optimal scheduling order by brute
force search. In contrast, our proposed greedy algorithm can
obtain a near-optimal solution in less than 1s for VGG16.

Generalizability and portability for different transport
protocols. US-Byte has good generalizability and portabil-
ity for different transportation protocols and significantly
outperforms ByteScheduler and WFBP. First, US-Byte is
transparent to the transport layer and is generic to different
transport protocols. This is because we implement the US-
Byte architecture (see Fig. 8) at the user code level and the
ByteScheduler scheduler level, which does not depend on
specific message-level communication libraries or transport
protocols.

Second, US-Byte is more adaptable to different transport
protocols. We analyze the impact of changes in latency,
throughput and packet loss on different frameworks when
using different transport protocols as follows:

(1) Higher latency will result in higher communica-
tion overhead. The performance of ByteScheduler will be
severely affected due to communication overheads intro-
duced when transmitting basic tensor blocks. Compared to
ByteScheduler, US-Byte reduces communication overheads
and improves bandwidth utilization by merging basic ten-
sor blocks. Furthermore, the gain gap between US-Byte and
WFBP is reduced due to less communication overheads
in WFBP. When latency → ∞, the gains from the three
frameworks are US-Byte=WFBP�ByteScheduler. On the
contrary, lower latency will lead to lower communication
overhead. The gain gap between US-Byte and ByteSched-
uler will be narrowed as massive communication overheads
are no longer a major bottleneck. However, The performance
of WFBP is still limited by new iteration not being started
earlier. When latency → 0, the gains from the three frame-
works are US-Byte = ByteScheduler > WFBP.

(2) Lower throughput results in higher transmission time
per byte. The performance of WFBP will be severely deteri-
orated since a lot of time is spent waiting for tensors close
to the output layer to be transmitted and new iterations
cannot be started. Compared to WFBP, US-Byte schedules
unequal-sized tensor blocks in a near-optimal order to begin
new iterations earlier, which improves communication effi-
ciency. Meanwhile, since the transmission rate has become

the main bottleneck, the gain gap between US-Byte and
ByteScheduler has become smaller. When the throughput
approaches 0, the gains from the three frameworks are
US-Byte=ByteScheduler>WFBP. Instead, higher through-
put provides lower transmission time per byte. At this
point, the gain gap among the three frameworks is reduced
because gradient communication can be almost completely
overlapped by gradient computation. When the throughput
tends to infinity, the gains from the three frameworks are
US-Byte=ByteScheduler=WFBP.

(3) Since we used TCP in our evaluation, it is clear that
when packet loss = 0, the gains from the three frame-
works are US-Byte>ByteScheduler>WFBP. In addition, if
packet loss>0, the transmitted gradient information may be
lost, which will affect the model convergence regardless of
which communication framework is used. However, SGD-
based training has a certain tolerance for packet loss, and
packet loss belows a certain fraction (typically 10%-35%)
will do little harm to the final model convergence and
training time [54], [55]. Therefore, transportation protocols
with acceptable packet losses will have a negligible effect
on US-Byte or other communication frameworks. When the
packet loss becomes higher and seriously affects the model
convergence, the gains from the three frameworks are US-
Byte=ByteScheduler=WFBP.

8 CONCLUSION

In this paper, we proposed an efficient communication
framework called US-Byte, for scheduling tensor blocks
with different partition sizes in a near-optimal order. We
built the mathematical model of US-Byte by two phases.
We obtained the optimal solution of the second phase by
theoretical analysis and designed a low-complexity greedy
algorithm to find the approximate optimal solution of the
first phase. We implemented US-Byte on PyTorch frame-
work and make it publicly available. US-Byte achieves better
scaling efficiency and faster training speed than ByteSched-
uler and WFBP on extensive experiments with six modern
DNNs across two real GPU clusters and a simulation GPU
cluster.

APPENDIX

PROOF OF THEOREM 1
When P

(l)
2 = l, without considering ∆t, τ (l)f can be calcu-

lated by

τ
(l)
f =

{
τ
(δ1+l)
ar +Tar(m

(l)
re) l=1

max{τ (l−1)
f +t

(l−1)
f ,τ

(δ1+l)
ar +Tar(m

(l)
re)} l>1

.

(16)
We use proof by contradiction to prove Theorem 1. We

swap the priority of the tensor of layer i and that of layer k
based on P (l)

2 = l, i.e., P (i)
2 = k and P (k)

2 = i, where layer i
and layer k are two random layers and satisfy 1 ≤ i < k ≤
L. We use the sign ∗ to indicate the new start timestamp for
each all-reduce operation and the forward computation of
each layer, and no sign ∗ for the original timestamp based
on P (l)

2 = l.
From the example in Fig. 19, we find that after swapping

the priority of the tensor of layer i and that of layer k, (1) the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 16

(a) Using sequential scheduling (P (l)
2 = l).

(b) Swapping the priority of the tensor of layer i and that of
layer k based on P (l)

2 = l.

Fig. 19: An example showing the performance gain of the
second phase when using different scheduling orders.

scheduling of the tensor from layer 1 to layer (i − 1) does
not change, i.e.,

τ
∗(l)
f = τ

(l)
f (1 ≤ l ≤ i) ; (17)

(2) all basic tensor blocks of layer i is transmitted in the
(δ1 + k)-th all-reduce operation, and

τ∗(δ1+k)ar ≥ τ∗(δ1+i)ar = τ (δ1+i)ar ; (18)

(3) the start timestamp of the (δ1+k+1)-th to the (δ1+L)-th
all-reduce operation remains unchanged, i.e.,

τ∗(δ1+i)ar = τ (δ1+i)ar (k + 1 ≤ i ≤ L) . (19)

Then, according to Eq. 16, 17 and 18, we can derive

τ
∗(i)
f = max{τ∗(i−1)

f + t
(i−1)
f , τ∗(δ1+k)ar + Tar(m

(i)
re)}

≥ max{τ (i−1)
f + t

(i−1)
f , τ (δ1+i)ar + Tar(m

(i)
re)} = τ

(i)
f

,

(20)
i.e., the start timestamp of the forward propagation of layer
i is lagged. Meanwhile, all basic tensor blocks of layer
(i + 1) to layer k have been transferred before τ∗(i)f . Thus,
according to Eq. 17, for layer (i−1) to layer (k−1), we have

τ
∗(l)
f = max{τ∗(l−1)

f + t
(l−1)
f , τ∗(δ1+l)ar + Tar(m

(l)
re)}

= τ
∗(l−1)
f + t

(l−1)
f

≥ τ (l−1)
f + t

(l−1)
f = τ

(l)
f

, (21)

and for layer k, we have

τ
∗(k)
f = max{τ∗(k−1)

f +t
(k−1)
f , τ∗(δ1+i)ar +Tar(m

(k)
re)}

= τ
∗(k−1)
f + t

(k−1)
f

≥ τ (k−1)
f + t

(k−1)
f = τ

(k)
f

. (22)

Then, according to Eq. 18 and 21, for layer (k + 1) to
layer L, we can obtain

τ
∗(l)
f = max{τ∗(l−1)

f + t
(l−1)
f , τ∗(δ1+l)ar + Tar(m

(l)
re)}

≥ max{τ (l−1)
f + t

(l−1)
f , τ (δ1+l)ar + Tar(m

(l)
re)} = τ

(l)
f

.

(23)
Eventually, according to Eq. 12 and 23, the time of one

iteration will become longer due to τ
∗(L)
f ≥ τ

(L)
f . As a

consequence, swapping the priorities of the tensor of two
random layers based on P (l)

2 = l will result in a longer titer ,
and sequential scheduling is the optimal scheduling order
for the second phase. Theorem 1 is proved.

REFERENCES

[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. a. Mao,
A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large Scale
Distributed Deep Networks,” in Adv. neural inf. proces. syst., 2012,
pp. 1232–1240.

[2] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient data communica-
tion for distributed synchronous SGD algorithms,” in Proc. IEEE
Conf. Comput. Commun., 2019, pp. 172–180.

[3] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: Training imagenet in 1 hour,” arXiv:1706.02677, 2017.

[4] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce
scheduling for expediting distributed DNN training,” in Proc.
IEEE Conf. Comput. Commun., 2020, pp. 626–635.

[5] S. Shi, X. Chu, and B. Li, “Exploiting simultaneous communica-
tions to accelerate data parallel distributed deep learning,” in Proc.
IEEE Conf. Comput. Commun., 2021.

[6] S. Shi, Q. Wang, and X. Chu, “Performance modeling and evalu-
ation of distributed deep learning frameworks on GPUs,” in Proc.
IEEE 16th Int. Conf. Dependable Autonomic Secure Comput., 16th Int.
Conf. Pervasive Intell. Comput., 4th Int. Conf. Big Data Intell. Comput.
Cyber Sci. Technol., 2018, pp. 949–957.

[7] L. L. Pilla, “Scheduling Algorithms for Federated Learning With
Minimal Energy Consumption,” IEEE Trans. Parallel Distributed
Syst., vol. 34, no. 4, pp. 1215–1226, 2023.

[8] Z. Quan, Z. Wang, T. Ye, and S. Guo, “Task Scheduling for
Energy Consumption Constrained Parallel Applications on Het-
erogeneous Computing Systems,” IEEE Trans. Parallel Distributed
Syst., vol. 31, no. 5, pp. 1165–1182, 2020.

[9] Y. Guo, F. Liu, T. Zhou, Z. Cai, and N. Xiao, “Privacy vs. Effi-
ciency: Achieving Both Through Adaptive Hierarchical Federated
Learning,” IEEE Trans. Parallel Distributed Syst., vol. 34, no. 4, pp.
1331–1342, 2023.

[10] Y. Zhou, Q. Ye, and J. Lv, “Communication-Efficient Federated
Learning With Compensated Overlap-FedAvg,” IEEE Trans. Paral-
lel Distributed Syst., vol. 33, no. 1, pp. 192–205, 2022.

[11] A. Li, L. Zhang, J. Wang, F. Han, and X. Li, “Privacy-preserving
efficient federated-learning model debugging,” IEEE Trans. Parallel
Distributed Syst., vol. 33, no. 10, pp. 2291–2303, 2022.

[12] R. Saha, S. Misra, A. Chakraborty, C. Chatterjee, and P. K. Deb,
“Data-Centric Client Selection for Federated Learning Over Dis-
tributed Edge Networks,” IEEE Trans. Parallel Distributed Syst.,
vol. 34, no. 2, pp. 675–686, 2023.

[13] Q. Duan, Z. Wang, Y. Xu, S. Liu, and J. Wu, “Mercury: A Simple
Transport Layer Scheduler to Accelerate Distributed DNN Train-
ing,” in Proc. IEEE Conf. Comput. Commun., 2022, pp. 350–359.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Adv.
neural inf. proces. syst., vol. 32, 2019.

[15] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: a system for
Large-Scale machine learning,” in Proc. USENIX Symp. Oper. Syst.
Des. Implement., 2016, pp. 265–283.

[16] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems,”
arXiv:1512.01274, 2015.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 17

[17] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei,
P. Xie, and E. P. Xing, “Poseidon: An efficient communication
architecture for distributed deep learning on GPU clusters,” in
Proc. USENIX Conf. Usenix Annu. Tech. Conf., 2017, pp. 181–193.

[18] S. Shi, X. Chu, and B. Li, “MG-WFBP: Merging gradients wisely
for efficient communication in distributed deep learning,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 8, pp. 1903–1917, 2021.

[19] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed DNN
training acceleration,” in Proc. ACM Symp. Oper. Syst. Princ., 2019,
pp. 16–29.

[20] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhi-
menko, “Priority-based Parameter Propagation for Distributed
DNN Training,” in Proc. Conf. Machin. Learn. Syst., 2019, pp. 132–
145.

[21] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “TicTac: Accel-
erating Distributed Deep Learning with Communication Schedul-
ing,” in Proc. Conf. Machin. Learn. Syst., 2019.

[22] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed
deep learning in TensorFlow,” arXiv:1802.05799, 2018.

[23] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B. Su, “Scaling Distributed
Machine Learning with the Parameter Server,” in Proc. USENIX
Symp. Oper. Syst. Des. Implement., 2014, pp. 583–598.

[24] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algo-
rithms for clusters of workstations,” J. Parallel Distrib. Comput.,
vol. 69, no. 2, pp. 117–124, 2009.

[25] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of
features from tiny images,” 2009.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2009, pp. 248–255.

[27] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning Word Vectors for Sentiment Analysis,” in Proc. Conf. N.
Am. Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol., 2011,
pp. 142–150.

[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2015, pp. 1–9.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[30] A. Z. K. Simonyan, “Very Deep Convolutional Networks for
Large-Scale Image Recognition,” in Int. Conf. Learn. Represent.,
2015.

[31] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[32] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Conf. N. Am. Chapter Assoc. Comput. Linguistics:
Hum. Lang. Technol., 2019.

[34] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lip-
shteyn, “RDMA over commodity ethernet at scale,” in Proc. ACM
Conf. Special Interest Group Data Commun., 2016, pp. 202–215.

[35] B. Yi, J. Xia, L. Chen, and K. Chen, “Towards zero copy dataflows
using RDMA,” in Proc. SIGCOMM Posters Demos, 2017, pp. 28–30.

[36] K. Taranov, R. Bruno, G. Alonso, and T. Hoefler, “Naos:
Serialization-free RDMA networking in Java,” in USENIX Annu.
Tech. Conf., 2021, pp. 1–14.

[37] “Gloo,” https://github.com/facebookincubator/gloo.
[38] G. Wang, S. Venkataraman, A. Phanishayee, N. Devanur, J. Thelin,

and I. Stoica, “Blink: Fast and Generic Collectives for Distributed
ML,” in Proc. Conf. Machin. Learn. Syst., 2020, pp. 172–186.

[39] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-Efficient SGD via Gradient Quantization and En-
coding,” in Adv. neural inf. proces. syst., 2017.

[40] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Tern-
grad: Ternary gradients to reduce communication in distributed
deep learning,” in Adv. neural inf. proces. syst., vol. 30, 2017.

[41] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gra-
dient compression: Reducing the communication bandwidth for
distributed training,” arXiv:1712.01887, 2017.

[42] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu,
“A distributed synchronous SGD algorithm with global top-k
sparsification for low bandwidth networks,” in Proc. 39th IEEE
Int. Conf. Distrib. Comput. Syst., 2019, pp. 2238–2247.

[43] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A Convergence
Analysis of Distributed SGD with Communication-Efficient Gra-
dient Sparsification,” in Int. Joint Conf. Artif. Intell., 2019, pp. 3411–
3417.

[44] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Conf. Empir. Methods Nat. Lang. Process., 2020,
pp. 172–186.

[45] C. Chen, H. Xu, W. Wang, B. Li, B. Li, L. Chen, and G. Zhang,
“Communication-Efficient Federated Learning with Adaptive Pa-
rameter Freezing,” in Proc. 41st IEEE Int. Conf. Distrib. Comput.
Syst., 2021, pp. 1–11.

[46] W. Luping, W. Wei, and L. Bo, “CMFL: Mitigating communication
overhead for federated learning,” in Proc. 39th IEEE Int. Conf.
Distrib. Comput. Syst., 2019, pp. 954–964.

[47] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-Distributed Machine
Learning Approaching LAN Speeds,” in Proc. USENIX Symp.
Networked Syst. Des. Implement., 2017, pp. 629–647.

[48] C. Chen, W. Wang, and B. Li, “Round-robin synchronization:
Mitigating communication bottlenecks in parameter servers,” in
Proc. IEEE Conf. Comput. Commun., 2019, pp. 532–540.

[49] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A.
Gibson, G. Ganger, and E. P. Xing, “More Effective Distributed
ML via a Stale Synchronous Parallel Parameter Server,” in Adv.
neural inf. proces. syst., 2013.

[50] Y. Ma, H. Wang, Y. Zhang, and K. Chen, “AutoByte: Automatic
Configuration for Optimal Communication Scheduling in DNN
Training,” in Proc. IEEE Conf. Comput. Commun., 2022, pp. 760–769.

[51] S. Wang, D. Li, J. Zhang, and W. Lin, “Cefs: compute-efficient flow
scheduling for iterative synchronous applications,” in Proc. Int.
Conf. Emerg. Netw. EXp. Technol., 2020, pp. 136–148.

[52] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating distributed cnn
training by network-level flow scheduling,” in Proc. IEEE Conf.
Comput. Commun., 2020, pp. 1678–1687.

[53] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao,
M. Zhang, F. Kelly, M. Alizadeh et al., “HPCC: High precision
congestion control,” in Proc. Conf. ACM Spec. Interest Group Data
Commun., 2019, pp. 44–58.

[54] J. Xia, G. Zeng, J. Zhang, W. Wang, W. Bai, J. Jiang, and K. Chen,
“Rethinking transport layer design for distributed machine learn-
ing,” in Proc. Asia-Pacific Workshop on Networking, 2019, pp. 22–28.

[55] Z. Chen, L. Shi, X. Liu, X. Ai, S. Liu, and Y. Xu, “Boosting
distributed machine learning training through loss-tolerant trans-
mission protocol,” arXiv:2305.04279, 2023.

Yunqi Gao (Student Member, IEEE) received
the BEng degree in Electronic Information En-
gineering from the Northeastern University of
China, in 2021. He is currently pursuing the
Ph.D. degree with the College of Information Sci-
ence and Electronic Engineering, Zhejiang Uni-
versity, Hangzhou, China. His research interests
include parallel computing, distributed systems
and machine learning.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 18

Bing Hu (Senior Member, IEEE) received the
BEng and MPhil degrees in Communications
Engineering from the University of Electronic
Science and Technology of China, in 2002 and
2005, respectively, and the PhD degree from
the Department of Electrical and Electronic En-
gineering, University of Hong Kong, in 2009. In
2010, he joined the College of Information Sci-
ence and Electronic Engineering, Zhejiang Uni-
versity, where he is currently an associate pro-
fessor. His research interests include datacenter

networks, AI networks, deterministic networks, and 6G.

Mahdi Boloursaz Mashhadi (Senior Member,
IEEE) is a Lecturer at the 5G/6G Innovation Cen-
tre (5G/6GIC) at the Institute for Communica-
tion Systems (ICS), University of Surrey (UoS),
UK. Prior to joining ICS, he was a postdoctoral
research associate at the Intelligent Systems
and Networks (ISN) Research Group, Imperial
College London, 2019-2021. He received B.S.,
M.S., and Ph.D. degrees in mobile telecommuni-
cations from the Sharif University of Technology
(SUT), Tehran, Iran, in 2011, 2013, and 2018,

respectively. He was a visiting research associate with the University of
Central Florida, Orlando, USA, in 2018, and Queen’s University, Ontario,
Canada, in 2017. He has more than 40 peer-reviewed publications and
patents in the areas of wireless communications, machine learning,
and signal processing. He received the Best Paper Award from the
IEEE EWDTS 2012 conference, and the Exemplary Reviewer Award
from the IEEE ComSoc in 2021 and 2022. He has served as a panel
judge for the International Telecommunication Union (ITU) to evaluate
innovative submissions on applications of AI/ML in 5G and beyond
wireless networks since 2021. He is an associate editor for the Springer
Nature Wireless Personal Communications Journal.

A-Long Jin (Student Member, IEEE) received
his Ph.D. degree from the Department of Electri-
cal and Electronic Engineering, The University of
Hong Kong, in 2023. Before that he received the
B.Eng. degree in communications engineering
from Nanjing University of Posts and Telecom-
munications, China, in 2012, and the M.Sc. de-
gree in computer science from University of New
Brunswick, Fredericton, Canada, in 2015. His
research interests include computer networks,
distributed systems, and machine learning.

Pei Xiao (Senior Member, IEEE) is currently
the technical manager of 5GIC/6GIC, leading
the research team in the new physical layer
work area, and coordinating/supervising
research activities across all the work
areas (https://www.surrey.ac.uk/institute-
communication-systems/5g-6g-innovation-
centre). Prior to this, he worked at Newcastle
University and Queen’s University Belfast. He
also held positions at Nokia Networks in Finland.
He has published extensively in the fields of

communication theory, RF and antenna design, signal processing for
wireless communications, and is an inventor on over 15 recent 5GIC
patents addressing bottleneck problems in 5G systems.

Chunming Wu (Senior Member, IEEE) received
the Ph.D. degree in computer science from Zhe-
jiang University, Hangzhou, China, in 1995.

He is currently a Professor with the College
of Computer Science and Technology, Zhejiang
University. His research interests include soft-
ware defined networks, proactive network de-
fense, network virtualization, and intelligent net-
works.

