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Abstract—Data provenance, or data lineage, describes the life cycle of data. In scientific workflows on HPC systems, scientists often
seek diverse provenance (e.g., origins of data products, usage patterns of datasets). Unfortunately, existing provenance solutions
cannot address the challenges due to their incompatible provenance models and/or system implementations.
In this paper, we analyze four representative scientific workflows in collaboration with the domain scientists to identify concrete
provenance needs. Based on the first-hand analysis, we propose a provenance framework called PROV-IO+, which includes an
I/O-centric provenance model for describing scientific data and the associated I/O operations and environments precisely. Moreover,
we build a prototype of PROV-IO+ to enable end-to-end provenance support on real HPC systems with little manual effort. The
PROV-IO+ framework can support both containerized and non-containerized workflows on different HPC platforms with flexibility in
selecting various classes of provenance. Our experiments with realistic workflows show that PROV-IO+ can address the provenance
needs of the domain scientists effectively with reasonable performance (e.g., less than 3.5% tracking overhead for most experiments).
Moreover, PROV-IO+ outperforms a state-of-the-art system (i.e., ProvLake) in our experiments.

Index Terms—Data provenance, high performance computing (HPC), workflows, HPC I/O libraries, scientific data management.

✦

1 INTRODUCTION

1.1 Motivation

Data-driven scientific discovery has been well acknowl-
edged as a new fourth paradigm of scientific innovation [1].
The shift toward the data-driven paradigm imposes new
challenges in data findability, accessibility, interoperability,
reusability (i.e., FAIR principles [2], [3]) and trustworthi-
ness [4], all of which demand innovative solutions for
modeling and capturing provenance, i.e., the lineage of data
life cycle.

Fig. 1: DASSA workflow. Solid arrows stand for write
operation and dashed arrows stand for read operation.

As an example, Figure 1 shows a simplified scientific
workflow which analyzes geophysical sensing data on high
performance computing (HPC) systems (i.e., DASSA [5]) .
The workflow takes geophysical data as input, which are
often stored in different file formats (e.g., “.tdms”, “.h5”). It
then converts non-HDF5 files into a uniform HDF5 format
(i.e., “.h5”). Depending on the analysis goals, the workflow

further applies a set of analysis programs (e.g., “Decimate”,
“X-Correlation-Stacking”) to process the files, the results of
which are stored as data products in HDF5 format.

Based on our survey, the domain scientists using DASSA
need the fine-grained origin of the data products (i.e.,
backward data lineage). For example, User A applies the
“Decimate” program with a number of HDF5 files as input
and generates a set of data products. Another User B may
query the origin of the datasets in the final data products to
understand which datasets in the input files contributed to
which portions of the final data products, or who initiated
the “Decimate” application to generate the data products
and when. Such provenance information is important for
ensuring the reproducibility, explainability, and security of
the DASSA data.

Nevertheless, the DASSA workflow involves multiple
programs accessing multiple files using different I/O in-
terfaces and operations (e.g., HDF5 and POSIX), which
makes tracking and deriving the data provenance non-
trivial. Moreover, as we will elaborate in Section §3, there
are other diverse needs of provenance for different scien-
tific workflows and data (e.g., I/O statistics, configuration
lineage). Such diversity, complexity, as well as the stringent
performance requirement in HPC environments call for a
practical solution beyond the state of the art.

1.2 Limitations of State-of-the-art Tools
Unfortunately, to the best of our knowledge, existing prove-
nance tools cannot address the grand challenge above suffi-
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ciently due to a number of limitations:
First, while the importance of provenance has been

well recognized across communities in general (e.g.,
databases [6]–[10], operating systems (OS) [11], [12],
eScience [13]–[17]), there is a lack of concrete understanding
of the exact provenance needs of domain scientists, largely
due to the variety of data and metadata that could be gen-
erated from HPC systems. As a result, existing solutions are
often too coarse-grained (e.g., whole file tracking without
understanding HPC data formats [11]) to help domain
scientists effectively, or too specific for one use case (e.g.,
Machine Learning [18]) to support general needs.

Second, in terms of provenance modeling, we find that
existing standards (e.g., W3C PROV [19]) are too vague to
describe the characteristics of scientific data provenance pre-
cisely. Scientists often seek a variety of information from sci-
entific workflows on HPC systems, including the origins of
data products, the configurations used for deriving results,
the usage patterns of datasets, and so on, which cannot be
described effectively using any existing provenance models.
Such ambiguity limits the capability of existing provenance
solutions for describing scientific data.

Third, in terms of usability, existing approaches often
require the users to identify the critical code sites in the
workflow software (e.g., loop structure [20]) and manually
insert API calls to track the desired information accordingly.
Moreover, they often rely on many external packages to
work properly, which make it difficult to deploy and use
them on different HPC platforms. The labor-intensive and
error-prone approaches, together with the portability and
compatibility issues, hinder the wide adoption of prove-
nance products and diminishes the potential benefits.

Note that the limitations highlighted above are corre-
lated. For example, the lack of understanding of prove-
nance needs and the ambiguity of the provenance model
are contributing to each other, which fundamentally limits
the usability of existing solutions in terms of granularity,
expressibility, etc., which in turn makes clarifying the ambi-
guity and real needs difficult.

1.3 Key Insights & Contributions
We tackle the grand challenge of provenance support for
scientific data on HPC systems in this paper.

First, we observe that for a provenance framework to
be practical and useful, inputs from the end users (i.e., do-
main scientists) is essential. Therefore, we collaborate with
domain scientists to analyze four representative scientific
workflows in depth. In doing so, we identify the unique
characteristics of the workflows studied (e.g., I/O interfaces,
data formats, access patterns) as well as the specific needs
for scientific data provenance (e.g., lineage at file, dataset, or
attribute granularity).

Second, we observe that I/O operations are critically
important in affecting the state of data that form the lineage
needed by the domain scientists. Therefore, different from
existing solutions [20]–[22], we introduce an I/O-centric
provenance model dedicated for the HPC environments.
The model enriches the W3C PROV standard [19] with a
variety of concrete sub-classes, which can describe both the
data and the associated I/O operations and execution envi-
ronments precisely with extensibility. Moreover, it enables

us to decouple the data provenance from specific executions
of a workflow and support the integration of provenance
from multiple runs naturally, which is important as work-
flows may evolve over time.

Third, based on the fine-grained provenance model, we
find that the rich I/O middleware already used by the
scientists provide an ideal vehicle for capturing the desired
provenance transparently. Therefore, we create a config-
urable and extensible library and integrate it with existing
I/O code paths (e.g., HDF5 I/O and POSIX syscalls) to cap-
ture necessary information without requiring the scientists
to modify the source code of their workflows. Moreover, to
further improve the usability, we persist the captured prove-
nance as standard RDF triples [23] and enable provenance
query and visualization.

Forth, through the communication with domain scien-
tists in the industry, we notice the increasing importance
of supporting containerization [24]. By wrapping the HPC
workflows together with their dependencies in containers,
the containerization techniques can effectively reduce the
burden of software maintenance and thus enable more de-
sired features including reproducibility, reusability, interop-
erability, etc. Therefore, a provenance framework should be
generic enough to handle provenance in both containerized
and non-containerized scenarios.

Based on the key ideas above, we build a framework
called PROV-IO+, which can provide end-to-end prove-
nance support for domain scientists with little manual effort
across platforms. We deploy PROV-IO+ on representative
supercomputers and evaluate it with realistic workflows.
Our experiments show that PROV-IO+ incurs reasonable
performance overhead and outperforms a state-of-the-art
provenance product (i.e., IBM ProvLake [20]) for the use
cases evaluated. More importantly, through the query and
visualization support, PROV-IO+ can address the prove-
nance needs of the scientists effectively.

In summary, we have made the following contributions:

• Identifying concrete provenance needs of domain sci-
entists based on four representative scientific work-
flows;

• Designing a comprehensive PROV-IO+ model to de-
scribe the provenance of scientific data precisely and
extensibly;

• Building a practical prototype of PROV-IO+ which
can support different HPC workflows with lit-
tle human efforts in both containerized and non-
containerized scenarios;

• Measuring the PROV-IO+ prototype in HPC envi-
ronments and demonstrating the efficiency and ef-
fectiveness;

• Releasing PROV-IO+ as an open-source tool to facil-
itate follow-up research on provenance in general.

1.4 Experimental Methodology & Artifact Availability
Experiments were performed on three state-of-the art plat-
forms, including LBNL Cori Supercomputer [25], Samsung
SAIT Supercomputer (SuperCom) [26], and Google Cloud
Platform (GCP) [27]. First, in terms of non-containerized
scenario, we applied PROV-IO+ to three scientific work-
flows (i.e., DASSA [5], Top Reco [28], and an I/O-intensive
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application based on H5bench [29]) on the Cori super-
computer. Second, in terms of containerized scenario, we
applied PROV-IO+ to analyze one deep learning workflow
(i.e., Megatron-LM [30]) on SuperCom. As will be discussed
in §3, these use cases cover diverse characteristics (e.g.,
various languages, file formats, I/O interfaces, metadata)
and provenance needs (e.g., file/dataset/attribute lineage,
metadata versioning, I/O statistics). We varied the criti-
cal parameters of the workflows to measure the run-time
performance and storage requirements under a wide range
of scenarios. Third, we examined container’s impact on
provenance tracking with Megatron-LM [30] on the Google
Cloud Platform where we can schedule both container-
ized and non-containerized workflows and perform a fair
comparision. In addition, we compared PROV-IO+ with
ProvLake [20] using the Python-based Top Reco work-
flow as ProvLake only supports Python at the time of
this writing. The PROV-IO+ prototype is open-source at
https://github.com/hpc-io/prov-io.

2 BACKGROUND

2.1 W3C Provenance Standard

The PROV family of specifications, published by the World
Wide Web Consortium (W3C), is a set of provenance stan-
dard to promote provenance publication on the Web with in-
teroperability across diverse provenance management sys-
tems [31]. One key specification is PROV-DM, an extensible
relational model which describes provenance information
with a graph representation. As shown in Figure 2, a W3C
provenance graph abstracts information into classes of En-
tity, Activity, Agent, and Relation between the first three
classes. Another critical specification is PROV-O which de-
scribes the mapping of PROV-DM classes to RDF triples. In
PROV-O, Entity, Activity and Agent are mapped to subjects
and objects, while Relation is mapped to predicates. We
follow the W3C PROV standard in the PROV-IO+ design.

Fig. 2: The W3C Provenance Model [31].

2.2 HPC I/O Libraries

I/O libraries (e.g., ADIOS [32], HDF5 [33], and NetCDF [34])
play an essential role in scientific computations. Many
workflows leverage the library I/O to manipulate data files.
For example, HDF5 (i.e., Hierarchical Data Format version
5) is one of the the most wildly used I/O libraries for
scientific data [35]. It is developed to be a parallel data
management middleware to bridge the gap between HPC

applications and the complicated, low-level details of under-
lying file systems, and has grown to a popular data format
and management system.

In this work, we integrate our solution with the HDF5
library besides the classic POSIX I/O operations. This is
based on the observation that HDF5 has evolved with a
Virtual Object Layer (VOL) which can intercepts object-level
API operations to functional plugins, called VOL Connec-
tors [36]. VOL connectors allow third-party developers to
add desired storage functionalities, which can be loaded
dynamically at runtime. We leverage such extensibility for
tracking the provenance of HDF5 I/O data.

3 CASE STUDIES

In this section, we discuss four real-world use cases to mo-
tivate the I/O-centric provenance further. For each case, we
describe its semantics and characteristics, the provenance
need of the domain scientists, and the associated challenges.

3.1 Top Reco - Lineage of configurations

Workflow Description. Top Reco [28] is a Machine Learning
(ML) workflow in high-energy physics data analysis, which
uses Graph Neural Network (GNN) models for top quark
reconstruction. Top quarks are the elementary particles with
the most mass that may decay quickly and are not detectable
directly due to their mass. By representing particles and
their relationships as graphs, the GNN-based workflow can
help reconstruct top quarks more accurately and efficiently,
which is important for physics discoveries.

In Figure 3, we show the key steps of the Top Reco
workflow. First, the workflow takes two types of files as
input, including the “.root” file for input event and the “.ini”
file for configuration. Second, it generates “.tfrecord” files
which stores the training dataset and test dataset based on
the input events. Third, it trains a GNN model with the
training dataset and tests the model with the test dataset
by accessing the “.tfrecord” files. Fourth, a range of scores
of edge and nodes are generated as the output of the
model. Finally, a reconstructor component runs a simulation
of reconstructing the top quarks based on highest scores.
As summarized in Table 1, the Top Reco workflow uses
the POSIX I/O interface, and involves multiple programs
accessing multiple files.

Fig. 3: Top Reco workflow. Solid arrows stand for write
operation and dashed arrows stand for read operation.

Provenance Need. In the Top Reco case, the domain sci-
entists are interested in the impact of GNN configurations
on the model performance. Specifically, they would like to
know which combination of model hyperparameters and
dataset preselections result in the best training accuracy. In
other words, they would like to have fine-grained version

https://github.com/hpc-io/prov-io
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TABLE 1: Four Real Use Cases with Different Characteristics and Provenance Needs.
Use Case Description I/O Interface Provenance Need
Top Reco training GNN models for top quark reconstruction; multi-program, multi-file; POSIX metadata version control & mapping
DASSA parallel processing of acoustic sensing data; multi-program, multi-file; HDF5 & POSIX backward lineage of data products

H5bench simulating typical I/O patterns of HDF5 app; multi-program, single-file; HDF5 I/O statistics & bottleneck
Megatron-LM parallel transformer model for NLP; multi-program, multi-file; POSIX Checkpoint-configuration consistency

control of the metadata (e.g., hyperparameters, preselec-
tions) as well as the correlation between the metadata and
the result to ensure the explainability and reproducibility.

Challenges. Essentially, the Top Reco case requires auto-
matic version control management on the machine learning
model. However, a typical version control system (e.g.,
Git) cannot meet the requirements because it cannot au-
tomatically track the model performance and maps the
performance to the model configuration. In practice, the
scientists may need to execute the workflow for multiple
times with different configurations, and each execution may
take multiple hours or more. Due to lack of provenance
support, the scientists have to manually make a new copy
of configuration when they start a new run, and record
the corresponding result later. Such common practice is
time-consuming and not scalable. In other words, a new
provenance framework is urgently needed.

3.2 DASSA - Lineage of Data Products

Workflow Description. As mentioned in Section §1.1,
DASSA [5] is a parallel storage and analysis framework for
distributed acoustic sensing (DAS). It uses a hybrid (i.e.,
MPI and OpenMP) data analysis execution engine to sup-
port efficient and automated parallel processing of geophys-
ical data in HPC environments, which has been applied for
accelerating a variety of scientific computations including
earthquake detection, environmental characterization, and
so on. The overall workflow is described in Figure 1.

Provenance Need. As discussed in Section §1.1, the domain
scientists need the backward data lineage to understand the
origin of the data products and to ensure the data repro-
ducibility, explainability, and security, among others.

Challenges. The DASSA workflow may involve multiple
different programs, file formats, I/O interfaces, and end
users, which is representative for large-scale scientific work-
flows in HPC environments. Moreover, both the file level
and the sub-file level (e.g., inner hierarchies of the HDF5 for-
mat) information is needed. To the best of our knowledge,
none of the existing provenance models or systems can
handle the complexity to meet the comprehensive needs.

3.3 H5bench - Data usage and I/O performance

Workflow Description. H5bench [29] is a parallel I/O
benchmark suite for HDF5 [37] that is representative of
various large-scale workflows. It includes a default set of
read and write workloads with typical I/O patterns in
HDF5 applications on HPC systems, which enables creating
synthetic workflows to simulate diverse HDF5 I/O opera-
tions in HPC environments. The benchmark also contains
‘overwrite’ and ‘append’ operations that allow modifying
data or metadata of existing files and appending new data,
respectively. We collect an H5bench-based workflow which
contains a combination of ‘write’, ‘overwrite’, ’append’ and
‘read’ workloads operating on HDF5 files via MPI. This
workflow simulates the typical scenarios where a single

file may be accessed concurrently by HPC applications and
multiple versions of a dataset may be generated accordingly.
As shown in Table 1, the H5bench-based workflow mainly
uses the HDF5 I/O interface, and involves multiple pro-
grams accessing a single file.
Provenance Need. Understanding frequently accessed data
in large datasets leads to optimizing I/O performance by
improved data placement and layout. Scientists typically
use the H5bench-based workflow to collect I/O statistics
and identify potential bottlenecks on HPC systems. While
I/O profiling tools, such as Darshan [38] and Recorder [39]
collect coarse-grained statistics of I/O performance, there
are no tools to extract data access information and the cost
of those operations. Fine-grained information such as the
total number of each type of HDF5 I/O operations incurred
during the workflow, the accumulated time cost for each
type of operations, the distribution of operations and time
overhead, the HDF5 APIs invoked at a specific time point,
etc. would be critically important for understanding the
system behavior and fine-tuning the performance.
Challenges. The H5bench use case involves handling HDF5
datasets concurrently and measuring diverse fine-grained
metrics at the HDF5 API level, which requires deep un-
derstanding of the semantics and internals of HDF5. Since
existing solutions are largely incompatible with HDF5, they
are fundamentally inapplicable for this important category
of use cases.

3.4 Megatron-LM - Checkpoint Consistency
Workflow Description. Megatron-LM is based on Mega-
tron, which is a powerful transformer (i.e., a type of
deep learning models) developed by NVIDIA [30], [40],
[41]. Megatron supports training large transformer lan-
guage models at scale, which is achieved by providing ef-
ficient, model-parallel (tensor, sequence, and pipeline), and
multi-node pre-training of transformer-based models (e.g.,
GPT [42], BERT [43], and T5 [44]) using mixed precision.
Megatron-LM scales the transformer training by supporting
data parallelism and model parallelism further. Specifically,
the data parallelism is achieved by splitting the input
dataset across specified devices (e.g., GPUs); on the other
hand, the model parallelism is implemented by splitting
the execution of a single transformer module over multiple
GPUs working on the same dataset. Both data parallelism
and model parallelism features can be optionally configured
in the workflow, and they are both enabled in this study for
completeness. Figure 4 shows a simplified overview of the
Megatron-LM workflow. First, a training corpus (“.json”)
is preprocessed by the data processing module, which
generates a binary file (“.bin”) and an index file (“.idx”).
The preprocessed data become the input of the pretraining
transformer models. A trained model (i.e., checkpoint) will
be generated at the end of pretraining, and it can be used
in the follow-up evaluation or text generation. Users may
also skip the pretraining step if they already have a trained
model available.
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Provenance Need. In the Megatron-LM workflow, the con-
sistency between pretraining models’s checkpoint and the
corresponding configuration is important. The checkpoint
mainly records the metadata of the previous pretraining
process, such as micro/global batch size and state of opti-
mizer/scheduler, which are dependent on the configuration
parameters. Blindly modifying configuration parameters in
the next pretraining could easily result in various types
of errors (e.g., network errors, test code errors). Moreover,
many configuration parameters are tightly correlated with
each other, changing configuration parameters without pre-
serving the correlation may also lead to failures. In addition,
adjusting pretraining hyperparameters incautiously may af-
fect the model quality negatively (e.g., result in overfitting).
Therefore, in the Megatron-LM use case, the domain scien-
tists want to track the checkpoint and configuration prove-
nance to ensure the checkpoint-configuration consistency.

Challenges. The challenge for the Megatron-LM workflow
is two-fold. First of all, the workflow involves hundreds of
configuration entries and checkpointed statuses which are
difficult to track or reason by human. Due to the lack of tool
support, the domain scientists cannot manage checkpoints
generated by multiple training processes conveniently and
identify a qualified checkpoint and the associated configu-
rations consistent with new training processes.

Moreover, with the growing popularity of container
technologies [45], [46], HPC systems have started to be
integrated with container-based job runtime tools [24]. In
such HPC systems, large-scaled parallel pretraining models
are executed in a containerized environment, which largely
avoids tedious efforts in resolving installation or runtime
dependencies (e.g, PyTorch [47] and nccl [48]). Besides the
challenge of the Megatron-LM workflow itself, the domain
scientists using the workflow would like to execute the
workflow in a containerized HPC environment. Since a
container is an isolated environment by design where ap-
plication cannot directly interactive with the host system,
how to containerized Megatron-LM and track provenance
information of the containerized workflow at scale on HPC
systems is another major challenge in this use case.

Data
Preprocessing

Training Corpus 
[.json]

Preprocessed
Data 
[.bin]

Preprocessed
Data 
[.idx]

BERT

Vocabulary
[.json/.txt]Pretraining

GPT

T5 Checkpoint
[.bin]

Evaluation

Text
Generation

Valid Data 
[.txt]

Merge Table
[.txt]

Valid Data
[.txt]

Fig. 4: Megatron-LM Workflow. Solid arrows stand for write
operation and dashed arrows stand for read operation.

Note that both Megatron-LM and Top Reco ( §3.1) belong
to deep learning provenance use cases. However, Megatron-
LM has two major differences compared to Top Reco.
First, in Megatron-LM, the provenance need is checkpoint-
configuration consistency, while Top Reco’s provenance
need is configuration version control. Second, Top Reco
is a traditional single thread workflow, while Megatron-
LM is a containerized parallel workflow, which introduces

more challenges in terms of both provenance tracking and
provenance storage.

3.5 Summary
By analyzing the four cases in depth and consulting with the
domain scientists, we find that there is a big gap between
the provenance needs and existing solutions. The variety of
the workflow characteristics (e.g., different I/O interfaces
and file formats) as well as the diversity of scientists’ needs
motivates us to design a comprehensive provenance frame-
work to address the challenge, which we elaborate in the
following sections.

4 PROV-IO+ DESIGN

In this section, we introduce the design of PROV-IO+.
We focus on the provenance model (§4.1) and its system
architecture (§4.2), which are two fundamental pillars of
PROV-IO+. We defer additional implementation details to
the next section (§5).

4.1 PROV-IO+ Model
Figure 5(a) shows an overview of the PROV-IO+ model,
which is derived based on the W3C standard (§2.1) as
well as the characteristics of typical workflows and the
provenance needs of domain scientists (§3).

Following the W3C specification, we classify information
into five PROV-IO+ super-classes: Entity (yellow boxes in
Figure 5(a)), Activity (purple boxes), Agent (orange boxes),
Extensible Class (green boxes) and Relation (text on arrows).
Moreover, we introduce a variety of concrete sub-classes to
enrich the model, which can capture the data with different
granularity as well as the associated I/O operations and ex-
ecution environments for deriving the data. We summarize
the definitions of the sub-classes in Table 2 and highlight the
main concepts added to each super-class as follows:

4.1.1 Entity
This PROV-IO+ super-class includes seven specific Data Ob-
ject sub-classes (i.e., Directory, File, Group, Dataset, Attribute,
Datatype, Link). Together, these sub-classes cover common
I/O structures and file formats. For example, Attribute is
a combined sub-class that can map to both the HDF5 at-
tributes and the extended attributes of an inode in a POSIX-
compliant Ext4 file system [49].

4.1.2 Activity
This super-class includes six specific I/O API sub-classes
(i.e., Create, Open, Read, Write, Fsync, Rename). These sub-
classes cover a wide range of commonly used I/O opera-
tions in HPC environments. For example, Read can map to
HDF5 read-family operations (e.g., “H5Gread”, “H5Dread”,
“H5Aread”, “H5Tread”) and POSIX system call “read” and
its variants. Note that these operations are applicable to
other I/O libraries too (e.g., NetCDF [34]).

4.1.3 Agent
This super-class includes a set of sub-classes representing
the operator of a series of activities, such as Thread, User,
Rank, and Program. This fine-grained representation is neces-
sary because HPC applications are typically multi-threaded
and are executed in parallel (e.g., a group of MPI processes
with different ranks running on a cluter of nodes).
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(a) PROV-IO+ model. (b) A Provenance Snippet.

Fig. 5: (a) PROV-IO+ Model Overview. The PROV-IO+ model classifies information into five super-classes: Entity (yellow
boxes), Activity (purple boxes), Agent (orange boxes), Extensible Class (green boxes) and Relation (text on arrows). The new
concepts introduced by PROV-IO+ are highlighted with blue color. (b) A Provenance Snippet based on PROV-IO+.

4.1.4 Extensible class
This super-class contains properties pertained by entities,
activities and agents. It is designed to be extensible be-
cause valuable information is often workflow-specific. In the
current prototype, we define four generic sub-classes (i.e.,
Checkpoint, Type, Configuration, Metrics) to cover a variety of
valuable information that cannot be described precisely in
the native W3C specification (e.g., hyperparameters of ML
models, checkpoints of AI model training).

4.1.5 Relation
This super-class describes the diverse relations among
other classes. We inherit the basic W3C provenance
relations between entity & entity (prov:wasDerivedFrom),
entity & agent (prov:wasAttributedTo), activity
& agent (prov:AssociatedWith), agent & agent
(prov:actedOnBehalfOf). Moreover, we introduce new
relations between entity & activity to precisely describe
the relations between various I/O API and Data Object
sub-classes (e.g., provio:wasCreatedBy, provio:wasReadBy,
provio:wasWrittenBy, provio:wasModifiedBy).

To make the description more concrete, we show an
example snippet of provenance captured by PROV-IO+ in
Figure 5(b). The provenance snippet contains five records
pertained by different subjects. Each subject can be an Agent
(e.g., “Bob”, “MPI rank 0”), an Activity (e.g., “H5Dcreate2–
b1”), or an Entity (e.g., “/Timestep 0/x”). Each record is
a series of triples starting with a unique subject, where
the triples describe provenance information of a subject.
Note that the record length may vary depending on
the provenance information associated with the subject.
Given this snippet, we can derive complex provenance
information (e.g., dataset “/Timestep 0/x” was created by
I/O API “H5Dcreate2–b1” associated with program “vpi-
cio un h5.exe–a1” on thread “MPI rank 0”, which was
started by user “Bob”).

4.2 PROV-IO+ Architecture

Figure 6 shows the architecture of the PROV-IO+ frame-
work, which supports two usage modes: Mode #1 (Fig-

ure 6a) provides provenance support for traditional non-
containerized workflows on HPC systems; Mode #2 (Fig-
ure 6b) supports containerized workflows. There are five
components in total, including: (1) the PROV-IO+ model
(yellow) to specify the provenance information §4.1; (2) a
provenance tracking engine (blue modules) which captures
I/O operations from multiple I/O interfaces; (3) a prove-
nance store (green) which persists captured provenance into
RDF triples; (4) a user engine (red) for users to query and
visualize provenance information; (5) a containerizer engine
(purple) to support other components in containerized en-
vironments.

Among the five components, the PROV-IO+ model (yel-
low) has been discussed in details in §4.1. We introduce the
other three common components used in both modes (i.e.,
provenance tracking, provenance store, and user engine)
one by one in §4.2.1, and then discuss the containerizer
engine for supporting containerized workflows in §4.2.2.

4.2.1 Mode #1: Support for Classic Workflows

To provide provenance support for the classic, non-
containerized workflows (i.e., Mode #1), PROV-IO+ lever-
ages three major components based on its provenance
model (§4.1) as follows:

Provenance Tracking. As shown in Figure 6a, a scientific
workflow is typically started on compute nodes. The work-
flow may consist of several parallel applications with mul-
tiple threads running concurrently. During the workflow
execution, all I/O operations (e.g., POSIX and HDF5) are
monitored by PROV-IO+ for provenance collection.

Specifically, the Provenance Tracking component con-
tains two thin modules (i.e., PROV-IO+ Lib Connector and
PROV-IO+ Syscall Wrapper) for monitoring the library I/O
and POSIX I/O operations respectively. In case of the HDF5
library, the PROV-IO+ Lib Connector monitors the I/O
requests within the HDF5 Virtual Object Layer (VOL). In
case of POSIX, the I/O syscalls are monitored through the
PROV-IO+ Syscall Wrapper which is configurable via envi-
ronmental variables. In both cases, PROV-IO+ let the native
I/O requests pass through and invoke the core PROV-IO+
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Fig. 6: The Architecture of PROV-IO+ Framework. There are two usage modes: (a) Mode #1 provides provenance support
for non-containerized workflows; (b) Mode #2 supports containerized workflows. The framework includes five major
components in total: the PROV-IO+ model (yellow), a provenance tracking engine (blue modules), a provenance store
(green), a user engine (red), and a containerizer engine (purple).

Library for collecting the provenance defined by the PROV-
IO+ model without changing the original I/O semantics.

Note that both the library I/O and POSIX I/O operations
can be tracked in a transparent and non-intrusive way from
the workflow’s perspective, which is important for usability.

In addition, to achieve extensibility, we provide a
set of PROV-IO+ APIs which enables users to con-
vey user/workflow-specific semantics and requirements to
PROV-IO+ (i.e., Extensible Class in PROV-IO+ model). Sim-
ilar to ProvLake [20], users can instrument their workflows
with PROV-IO+ APIs as needed (e.g., tracking a specific
hyperparameter of a ML workflow). By providing such
flexibility, additional provenance needs can be satisfied by
PROV-IO+ conveniently.

Provenance Store. The Provenance Store component main-
tains the provenance information as RDF graphs durably on
the underlying parallel file system to enable future queries.
We choose an RDF triplestore instead of a traditional SQL
database for two main reasons: (1) W3C PROV-DM already
has a well-defined ontology (i.e., PROV-O[19]) to map the
model to RDF, so using RDF makes PROV-IO+ compatible
with other W3C-compliant solutions; (2) To answer path
queries in provenance use cases, SQL queries with repeated
self-joins are necessary to compute the transitive closure,
which often leads to worse performance when the prove-
nance grows [50].

More specifically, the Provenance Store component pro-
vides an interface for the PROV-IO+ Library to manipu-
late provenance records and maintain provenance graphs
efficiently, which includes creating a new provenance RDF
graph in memory, loading an existing graph, inserting new
records to an existing graph, etc. To minimize the perfor-
mance impact on the workflow, the in-memory provenance
graph is serialized to the Provenance Store asynchronously.
And depending on the need of the user, the serialization
operation may be triggered either periodically or by the end
of the workflow.

PROV-IO+ User Engine. The provenance information

could be enormous due to the complexity of scientific work-
flows. To avoid distraction and help users derive insights,
the PROV-IO+ User Engine component allows users to
enable/disable individual sub-classes defined in the PROV-
IO+ model, which also enables flexible tradeoffs between
completeness and overhead.

Moreover, the engine provides a query interface to allow
the user to issue queries on the provenance generated by
PROV-IO+. Moreover, it includes a visualization module
to visualize the provenance (sub)graphs requested by the
user. Note that both the query and the visualization need to
follow the PROV-IO+ model, which enforces a uniform way
to represent the rich provenance information.

Note that in the preliminary version of the proto-
type [51], the user engine only provides a basic query
interface to users. As a result, users have to issue query
preimitives one by one to achieve a complicated prove-
nance query. In the current prototype, PROV-IO+ is further
equipped with a set of high-level integrated query APIs for
answering typical provenance needs, which can simplify the
query complexity and improve the usability for end users
further. For example, in the DASSA use case, to track the
backward lineage of an output file, an user only needs to
provide the name of the file and the level of predecessor
through the integrated query APIs, which will retrieve the
provenance information conveniently.

4.2.2 Mode #2: Support for Containerized Workflows

To provide provenance support for containerized work-
flows, PROV-IO+ includes an additional component called
containerizer besides the components discussed above.

The containerizer engine provides two main functionali-
ties. First, it assembles the target workflows (including their
dependencies) as well as the PROV-IO+ common modules
(§4.2.1) into container images to be executed on container
platforms. For example, on an HPC system using Singu-
larity/Apptainer [24], the containerizer engine first creates
the Docker image for the workflow and then converts the
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TABLE 2: Description of PROV-IO+ Model.
Super-
class Sub-class Description

<<Data
Object>>
Directory

POSIX file system directory.

<<Data
Object>> File

POSIX file system file.

<<Data
Object>>
Group

I/O library interior group structure (e.g.,
HDF5 group).

Entity <<Data
Object>>
Dataset

I/O library interior dataset structure (e.g.
, HDF5 dataset).

<<Data
Object>>
Attribute

POSIX Inode extended attribute and I/O
library interior attribute structure (e.g.,
HDF5 attribute).

<<Data
Object>>
Datatype

I/O library interior datatype structure
(e.g., HDF5 datatype).

<<Data
Object>>
Link

POSIX file system hard/soft link.

<<I/O
API>> Create

POSIX syscall “open” and I/O library
“Create” APIs (e.g., H5Acreate).

<<I/O
API>> Open

I/O library “Open” APIs (e.g.,
H5Aopen).

<<I/O
API>> Read

POSIX syscall “read” (and variants) and
I/O library “Read” APIs (e.g., H5Aread).

Activity <<I/O
API>> Write

POSIX syscall “write” (and variants)
and I/O library “Write” APIs (e.g.,
H5Awrite).

<<I/O
API>> Fsync

POSIX syscall “fsync” (and variants) and
I/O library “Flush” APIs (e.g., H5Flush).

<<I/O
API>>
Rename

POSIX syscall “rename” (and variants)
and I/O library “Rename” APIs.

User Workflow user.
Agent Rank Individual MPI rank.

Program Program instance.
Thread A thread of a program.
Checkpoint Checkpoint information of a

program/workflow (e,g, checkpoint
path, checkpoint status).

Extensible
Class Type Type of a program/workflow (e.g., Ma-

chine Learning (Top Reco), Acoustic
Sensing (DASSA)).

Configuration Workflow configurations (e.g., hyperpa-
rameter in Top Reco).

Metrics Evaluation metrics of the workflow. E.g.,
model accuracy in Top Reco.

provio:
wasCreatedBy

The relation between a <<I/O API>>
Create and a <<Data Object>>.

provio:
wasOpenedBy

The relation between a <<I/O API>>
Open and a <<Data Object>>.

Relation provio:
wasReadBy

The relation between a <<I/O API>>
Read and a <<Data Object>>.

provio:
wasWrittenBy

The relation between a <<I/O API>>
Write and a <<Data Object>>.

provio:
wasFlushedBy

The relation between a <<I/O API>>
Fsync and a <<Data Object>>.

provio:
wasModifiedBy

The relation between a <<I/O API>>
Rename and a <<Data Object>>.

Docker image into a Singularity/Apptainer image for exe-
cution on compute nodes.

Second, the containerizer engine establishes the map-
ping between the directory namespace within the container
and the namespace outside the container on the HPC
storage nodes, and re-directs the relevant provenance I/O
activities to the provenance store for persistency, as shown
in the “Directory Mapping Layer” and the purple dash
lines in Figure 6b). In this way, PROV-IO+ can support

containerized workflows on HPC systems automatically
with little additional efforts. More implementation details
will be discussed in the next section.

5 PROV-IO+ IMPLEMENTATION

In this section, we discuss additional implementation details
of the major components in the PROV-IO+ framework.
Provenance Tracking. To support HDF5 I/O, we implement
the PROV-IO+ Lib Connector in C and integrate it with
the native HDF5 VOL-provenance connector, which follows
a homomorphic design in which each HDF5 native I/O
API has a counterpart API [36]. Upon each invocation of
an HDF5 native API, the counterpart API adds the corre-
sponding virtual data object to a linked list. PROV-IO+ Lib
Connector leverages the linked list with locking support
to achieve concurrency control on I/O operations on the
same data object. To collect provenance, the PROV-IO+

Library APIs are invoked. We collect Agent information at
the initialization stage of the native HDF5 VOL-provenance
connector. Entity and Activity classes are tracked at each
homomorphic API during the workflow runtime.

Similarly, to support POSIX I/O, we use GOTCHA [52]
to build a C wrapper layer for POSIX syscall and invokes
the PROV-IO+ Library internally. Additionally, the current
PROV-IO+ APIs support invoking the PROV-IO+ Library
from workflows written in multiple languages including
Python, C/C++, and Java.

Moreover, to support large-scale ML/AI workflows, we
further instrument PyTorch, one of the most popular ma-
chine learning framework, with the PROV-IO+ library. This
enables PROV-IO+ to provide more transparency in sup-
porting ML/AI workflows by capturing specific provenance
information needed by this category of workflows (e.g.,
checkpointing information).
Provenance Store. The Provenance Store is implemented
based on Redland librdf [53] to serve as the durable
backend of the PROV-IO+ Library. We choose Redland
because based on our experiences, many other existing RDF
solutions are not directly usable in our HPC environments
due to compatibility issues in dependent packages and/or
operating system (OS) kernels [54]–[58].

We utilize Redland’s in-memory graph representation
and its support for serializing in-memory graph to multiple
on-disk RDF formats (e.g., Turtle [59], ntriples [60], etc.).
Redland librdf also supports the integration of multiple
databases as the storage backend (e.g., BerkeleyDB, MySQL,
SQLite). In the current prototype, we store provenance
information in the Turtle format directly for simplicity.

To avoid potential data races when serializing from mul-
tiple processes to the Provenance Store, PROV-IO+ main-
tains an in-memory sub-graph for each process and lets the
process serialize its own sub-graph to a unique RDF file
on disk. The sub-graph files are then parsed and merged
into a complete provenance graph. Since every node in the
graph has a globally unique ID (GUID), merging the sub-
graphs does not cause unnecessary duplication. Note that
this strategy also help performance because no extra inter-
process communication or synchronization is needed dur-
ing workflow execution, and the merging can be performed
after workflow execution.
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PROV-IO+ User Engine. The user engine supports query-
ing RDF triples with SPARQL, which is a semantic query
language to retrieve and manipulate data stored in RDF [61].
We use Python scripts as the SPARQL endpoint. Note that
depending on different use case scenarios, the query can
vary a lot, as will be demonstrated in Section §6.7. Note
that PROV-IO+ provides highly integrated query APIs for
scientists to conveniently retrieve provenance based on their
needs. For instance, in DASSA workflow, to query the back-
ward data lineage, the scientists only need to specify the
output data object and the level of its predecessor (i.e., how
many steps back) to the query API, and the user engine will
return the target information if applicable. Similarly, highly
integrated and customized query APIs are developed for
remaining workflows based on their provenance use cases.
In the current prototype, we utilize Graphviz [62] for RDF
graph visualization.
Containerizer Engine. The Containerizer Engine is imple-
mented as a set of scripts to enable the provenance sup-
port in the containerized environment conveniently. For
example, to support containrized Megatron-LM workflow
on the Singularity/Apptainer platform, the Containerizer
Engine first creates a Docker image by using the NGC’s
PyTorch 21.07 as the parent image. Besides the Megatron-
LM workflow itself, the image also contains the PROV-IO+

library and related dependencies. After the Docker image is
created, it is further converted to a Singularity/Apptainer
image in order to run it in the containerized HPC environ-
ment. Moreover, the directory namespace in the container
image is mapped to the PROV-IO+ provenance store on the
storage nodes for for data persistence.

Also, since Singularity/Apptainer provides three run-
ning modes (i.e., ”run”, ”exec” and ”shell”) for different
execution scenarios (e.g., interactive jobs and batch jobs),
the Containerizer Engine includes different sets of scripts to
support different modes. For example, to support running
containerized workflows in the batch mode with the IBM
Spectrum LSF [63] job scheduler, the Containerizer Engine
includes scripts to ensure that the configuration parameters
of the PROV-IO+ supported containers are consistent with
the LSF batch scripts.

6 EVALUATION

In this section, we evaluate the prototype of the PROV-IO+

framework in representative HPC environments.
First of all, we introduce the experimental methodology

and HPC platforms for non-containerized and containerized
workflows, respectively (§6.1). Next, we evaluate PROV-
IO+ with three non-containerized workflows (i.e., Top Reco,
DASSA and H5Bench) from two perspectives including the
tracking performance (§6.2) and the storage requirement
(§6.3). Similarly, we evaluate PROV-IO+ with one container-
ized workflow (i.e., Megatron-LM) and measure both the
tracking performance and the storage requirement (§6.4).
Moreover, we analyze the impact of containerization on
provenance tracking by comparing the tracking overhead
in two versions (i.e., with and without containerization) of
Megatron-LM (§6.5).

In addition, we compare PROV-IO+ with a state-of-the-
art provenance product (i.e., ProvLake [20]) (§6.6), and eval-

TABLE 3: Major Experimental Platforms

Cori SAIT SuperCom
Processor Intel Xeon Phi AMD EPYC
Cores 622,336 204,160
OS Cray Linux Redhat 8
PFS Lustre Lustre
Scheduler Slurm LSF
Container Runtime – Singularity/Apptainer

uate the query effectiveness of PRVO-IO for all workflows
from the end user’s perspective (§6.7).

Overall, our experimental results shows that PROV-
IO+ can support both non-containerized and containerized
workflows effectively. Its tracking overhead is less than 3.5%
in more than 95% of our experiments, and it outperforms
ProvLake in terms of both tracking and storage overhead.

6.1 Experimental Methodology
Non-Containerized Workflows. We have evaluated the
PROV-IO+ framework for non-containerized workflows on
a state-of-the-art supercomputer named Cori, which is a
Cray XC40 supercomputer deployed at the National Energy
Research Scientific Computing Center (NERSC) with a peak
performance of about 30 petaflops. As shown in Table 3,
Cori uses the Slurm job scheduler and do not use container
runtime by default. We conduct experiments on Cori using
64 Intel Xeon “Haswell” processor nodes and up to 4096
cores, unless otherwise specified. The storage backend is a
Lustre parallel file system (PFS) with stripe count of 128 and
stripe size of 16MB.

We apply PROV-IO+ to three representative non-
containerized workflows including Top Reco [28],
DASSA [5], and an H5bench-based workflow [29].
As mentioned in §3, the three use cases exhibit
diverse characteristics (e.g., various file formats, I/O
interfaces, metadata) and provenance needs (e.g.,
file/dataset/attribute lineage, I/O statistics, metadata
versioning). We summarize the information tracked by
PROV-IO+ in the experiments to meet the provenance
needs in Table 4 and elaborate them in detail in the
following subsections.
Containerized Workflow. Besides experimenting with the
classic workflows, we have evaluated the PROV-IO+ frame-
work for one containerized workflow on a supercomputer
deployed at Samsung Advanced Institute of Technology
(SAIT), which is an HPE Apollo 6500 Gen10 Plus System.
For simplicity, we call the system SuperCom in the rest
of the paper. Similar to Cori, SuperCom uses Lustre as
the parallel file system. Different from Cori, SuperCom’s
job management is based on a combination of IBM LSF
scheduler and Singularity/Apptainer, which is a container
runtime designed for HPC environments [24]. A detailed
comparison between the two platforms (i.e., Cori and Su-
perCom ) is summarized in Table 3.

We apply PROV-IO+ to the representative deep learn-
ing workflow Megatron-LM [30], which exhibits unique
characteristics and provenance needs as discussed in §3.4
and summarized in Table 4. We containerize the workflow
through the PROV-IO+ containerizer engine and leverage
eight NVIDIA A100 GPUs on SAIT SuperCom to accelerate
the training. For clarity, we present the evaluation results on
SAIT SuperCom in §6.4.
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TABLE 4: The provenance needs and the information tracked by PROV-IO+ for three workflows.
Workflow Provenance Need Information Tracked Komadu? ProvLake? PROV-IO+?
Top Reco
(Python) metadata ver. control & mapping hyperparameter, preselection, training accuracy No Yes Yes

file lineage program, I/O API, file
DASSA dataset lineage program, I/O API, dataset No No Yes
(C++) attribute lineage program, I/O API, attr

scenario-1 I/O API
H5bench scenario-2 I/O API, duration No No Yes
(C) scenario-3 user, thread, program, file
Megatron-LM
(Python) ckpt-config consistency checkpoint info, loss, model configuration No Yes Yes
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Fig. 7: Performance of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c -
e) H5bench-based workflow under three I/O patterns (i.e., write+read, write+overwrite+read, write+append+read)

Containerization Impact Analysis. In addition to exper-
imenting on Cori and SuperCom, we have used Google
Cloud Platform (GCP) to study the impact of container-
ization on provenance tracking. We use GCP because Cori
and SuperCom are customized for supporting LBNL’s and
Samsung’s missions respectively, and we cannot modify
their runtime environment (e.g., adding or removing Sin-
gularity/Apptainer) conveniently. By leveraging GCP, we
can build the necessary system environments for running
both non-containerized and containerized workflows and
conduct a fair comparison on the same infrastructure.

More specifically, we use the GCP Deep Learning virtual
machines (VMs) with 32 vCPUs, 120 GB DRAM, and 4
NVIDIA T4 GPUs for the comparison experiments. And
we apply PROV-IO+ in two different modes for prove-
nance tracking on two versions of Megatron-LM (i.e., non-
containerized and containerized) respectively. We discuss
the comparison results in §6.5.

6.2 Performance of Provenance Tracking
In case of Top Reco, the scientists need the mapping be-
tween configurations and the training performance. There-
fore, PROV-IO+ tracks three domain-specific items (e.g.,
model hyperparameters, dataset preselections, and training
accuracy) based on the extensible class defined in the PROV-
IO+ model. To track the mapping between workflow con-

figuration and training accuracy, we instrument the work-
flow’s training loop with PROV-IO+ APIs and record the
training accuracy at the end of each epoch, and add the
training accuracy to the provenance graph as a property of
configurations. In addition, we vary the number of training
epochs to see how the performance scales. Note that Top
Reco is a single process workflow.

Figure 7(a) shows the performance for Top Reco. The y-
axis is the normalized completion time (starting with 0.998),
while the x-axis is the number of training epoch (roughly
equivalent to training time). The grey bars are the baseline
without provenance, and the green bars show the perfor-
mance with PROV-IO+ enabled. We can see that the tracking
overhead is negligible overall with a maximum of 0.02%.
The overhead with a shorter training time is relatively high,
which is mostly caused by the latency of Redland. As the
number of training epoch increases, the overhead of PROV-
IO+ decreases almost linearly because PROV-IO+ tracks a
constant amount of information.

In case of DASSA, the scientists need the backward
lineage of data products in different granularity. As shown
in the second column of Table 4, PROV-IO+ tracks the
information of user, program, file, dataset, or attribute for
different lineage needs based on the PROV-IO+ model
(§4.1). We follow a similar configuration as the domain
scientists’ by using 32 compute nodes and up to 2048 input
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files (1.35TB in total).
Figure 7(b) shows the tracking performance for DASSA.

The x-axis means the number of input files; the y-axis on the
left and right sides show the normalized completion time
and the raw completion time (in second), respectively. The
grey bars represent the normalized baseline without PROV-
IO+, and the red, green and blue bars represent the nor-
malized completion time under three usage scenarios (i.e.,
“File Lineage”, “Dataset Lineage” and “Attribute Lineage”)
where different provenance granularity are enabled (e.g., for
“File Lineage” we enable “program”, “I/O API” and “file”
tracking). The solid grey line means the average baseline
completion time (in second) without provenance tracking,
while the dashed blue line represents the worst case raw
completion time with PROV-IO+ under all scenarios.

We can see the max overhead occurred when tracking
the attribute lineage of the entire 2048 files, which is about
11%. This is because DASSA heavily relies on HDF5 at-
tributes. To access an attribute, the program first needs to
open the file and the dataset containing it, which incurs
more I/O operations to track. But overall, PROV-IO+ incurs
reasonable overhead in DASSA (from 1.8% to 11%). This
is expected because DASSA does not require heavy I/O
API tracking. In other words, PROV-IO+ is efficient for
tracking the backward lineage in file, dataset, and attribute
granularity.

In the H5bench based workflow, the scientists need the
data usage and I/O statistics in general. We consider three
different usage scenarios with different needs. As summa-
rized in Table 4, scenario-1 tracks the total number of I/O
APIs; scenario-2 tracks both the I/O API count and their du-
ration for bottleneck analysis; scenario-3 tracks the users and
threads that modify the file. Moreover, for each scenario,
we consider three different I/O patterns including: write-
read, write-overwrite-read, and write-append-read. In (c) and
(d), we run the workflow with 128 to 4096 MPI processes.
In (e), since the append operations from a large amount
of MPI processes can easily overwhelm the memory buffer
for appending and lead to out-of-memory (OOM) errors,
we reduce the number of MPI processes ( 2 to 64). Also,
based on the observation that the computation time of many
HPC applications may vary from dozens to thousands of
seconds per I/O operation, we introduce a relatively modest
computation time of 25 seconds per step in the experiments.

Figure 7 (c) (d) (e) show the tracking performance
under three different I/O patterns (i.e., “write+read”,
“write+overwrite+read”, “write+append+read”). The x-axis
stands for the number of MPI ranks. The left y-axis is the
normalized completion time and the right y-axis is the raw
completion time in second. The grey bars represent the
baseline while the three types of colored bars stand for the
performance of different provenance usage scenarios men-
tioned in Table 4(red for “scenario 1”, green for “scenario
2”, blue for “scenario 3”). The grey solid line is the average
baseline completion time, while the blue dash line is the
worst-case raw completion time with PROV-IO+ enabled.

Overall, we find that PROV-IO+ incurs reasonable
amount of overhead (i.e., ranging from 0.5% to 4%) even
under heavy I/O operations (3.9TB data with 4096 MPI
ranks). In particular, the PROV-IO+ overhead under the
“write-append-read” I/O pattern (Figure 7 (c)) is minimal

(around 0.5%). This is because the HDF5 I/O operation
under this pattern takes more computation time than under
the other two patterns to determine the append offset and
memory range, which makes the PROV-IO+ overhead more
negligible. Also, by comparing scenario-1 and scenario-2,
we find that tracking the I/O API duration introduce little
additional overhead. This is reasonable because the timing
information can be piggybacked with the I/O API tracking
which dominates the overall tracking time.

6.3 Storage Requirements

The storage requirement of PROV-IO+ is directly related to
the amount and the class of information tracked. Specifi-
cally, the storage overhead may increase in two ways: (1)
the size of a single provenance record may increase (e.g.,
adding timing information will increase size of an I/O API
record); (2) the total number of records in a provenance file
may increase (e.g., tracking thread information will create a
number of thread records). We summarize the storage per-
formance of PROV-IO+ for the three workflows in Figure 8.

Figure 8(a) shows the Top Reco case. The x-axis repre-
sents the number of epochs and the y-axis is the provenance
size (KB). We can see that the provenance size is negligible.
This is because PROV-IO+ allows users to specify the target
provenance precisely without incurring unnecessary over-
head. It also scales linearly since the number of new nodes
added to provenance graph is the same as the increment in
training epochs.

Figure 8(b) shows the DASSA case. The x-axis is the
number of input files while the y-axis represents the prove-
nance size (MB). Lines in three different colors represent
File Lineage, Dataset Lineage and Attribute Lineage, respec-
tively. We can see that the storage requirement varies from
40 MBs (with 128 input files) to about 800 MBs (with 2048
files) with linear scalability (note that the x-axis increases
by a multiple of 2). Although DASSA heavily relies on
attributes, the storage overhead in the three usage scenarios
is similar. This is because I/O API is still the dominant
part in all scenarios. Even though the number of file and
dataset is far less than attribute in DASSA input data, when
compared to number of APIs involved in the workflow, their
contribution to storage overhead is insignificant.

Figure 8 (c)(d)(e) shows the H5bench-based workflow
with three different I/O patterns. The x-axis represents
number of MPI ranks and the y-axis stands for provenance
size in MBs. Note that x-axis also increases by a multiple of
2. Lines in three different colors represents three different
provenance usage scenarios (Table 4). We can see the prove-
nance size varies from a few KBs to 168 MBs. Among the
three I/O patterns, “write+overwrite+read” has the highest
storage overhead under usage scenario 2. This is because the
pattern includes one more I/O application (i.e., overwrite)
than “write+read” and has much more MPI processes con-
tributing to provenance graph than “write+append+read”.
Moreover, scenario 2 also has the largest amount of tracked
information (I/O API and their duration). Note that the
storage overhead in this workflow also scales linearly.

In summary, because of the flexibility of the fine-grained
PROV-IO+ model, PROV-IO+’s storage overhead is reason-
able for all the use cases evaluated.
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Fig. 8: Storage of Provenance Tracking. (a) Top Reco. (b) DASSA (with File, Dataset, Attribute Lineages tracked). (c - e)
H5bench-based workflow under three I/O patterns (i.e., write+read, write+overwrite+read, write+append+read)

6.4 Experiments with Containerized Workflow
In this section, we introduce our experiments with a con-
tainerized workflow (i.e., Megatron-LM [30]) on the Sam-
sung supercomputer (SuperCom).

Megatron-LM supports multiple pretraining models
(§3.4), and we configure Megatron-LM to use GPT-2 as
the pretraining model in this set of experiments based on
the need of the domain scientists. The training dataset is
WikiText103 [64] which is provided by the Megatron-LM
authors [30]. We enable both model parallelism and data
parallelism (§3.4) in the workflow for experiments.

As mentioned in §3.4, the major provenance need in the
Megatron-LM use case is to ensure the consistency between
the checkpoint and the workflow configurations. Therefore,
we track detailed checkpoint information pertaining to a
pretraining process (e.g., the path of the checkpoint file)
as well as a variety of relevant configuration parameters
(e.g., the number of GPUs, the batch size). The configuration
information is tracked once at the beginning of workflow
execution as the information remains invariant throughout
the workflow execution, while the checkpoint information is
tracked transparently by instrumenting PyTorch at the end
of the workflow execution. In addition, we record the GPT-2
training loss at the end of each training iteration. We change
the number of training iterations in the experiments to mea-
sure how the tracking performance and storage requirement
scales. We report the measurement results as follows.

Figure 9a shows the provenance tracking performance.
The y-axis is the normalized workflow completion time,
and the x-axis is the number of training iteration. We use
the grey bar to represent the baseline without provenance
tracking, and the blue bar stands for workflow completion
time with provenance enabled. For each experiment, we

repeat it five times and calculate the average performance
value. The result shows that the maximum tracking over-
head is about 0.6% when the training iteration is set to
50. When the number of iteration increases, PROV-IO+’s
tracking overhead tends to be negligible, which implies that
PROV-IO+ is scalable in terms of tracking performance.

Figure 9b shows the storage requirement of tracking
Megatron-LM with PROV-IO+. The y-axis is the provenance
size (KB), and the x-axis is the number of training iteration.
The result shows that, to track the checkpoint-configuration
consistency information, the provenance size is negligible
in general (e.g., less than 15 KB in all experiments). The size
of the provenance information scales almost linearly as the
number of training iterations increases, mainly because the
training loss is recorded at the end of each training iteration.

In summary, to track the necessary provenance for main-
taining the checkpoint-configuration consistency in con-
tainerized Megatron-LM, PROV-IO+ introduces small track-
ing and negligible storage consumption.
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Fig. 9: Performance of PROV-IO+ on Megatron-LM with
checkpoint path, training loss and configuration tracked.
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6.5 Impact of Containerziation on Provenance Tracking

In this section, we analyze the impact of containerization
on PROV-IO+’s provenance collection. As mentioned in
§6.1, we leverage the GCP platform for the comparison
experiments because we can setup different runtime en-
vironments for both containerized and non-containarized
workflows on GCP. We apply PROV-IO+ in two different
modes for tracking two versions of Megatron-LM (i.e., non-
containerized and containerized) on GCP respectively.

To validate the impact of containerization, we execute
the non-containerized version of Megatron-LM workflow
and the containerized version separately on different GCP
VMs. This is to ensure that there is no interference between
the executions of the two versions. The provenance informa-
tion tracked is the same as described in §6.4. We reduce the
scale of the workflow to meet the VM’s resource constraints
(e.g., vCPUs and memory).

The performance of PROV-IO+ on non-containerized
Megatron-LM and containerized Megatron-LM are shown
in Figure 10a and Figure 10b, respectively. In both cases, the
y-axis is the normalized workflow completion time, and the
x- axis is the number of training iteration. By comparing
Figure 10a and Figure 10b, we can see that in both cases
PROV-IO+ incurs little overhead, especially when the num-
ber of iterations is large. This suggests that containerization
has little impact on PROV-IO+, and both modes of PROV-
IO+ can support provenance tracking efficiently.

In conclusion, our experiments on three different plat-
forms (i.e., Cori in §6.2, SuperCom in §6.4, and GCP §6.5)
shows that PROV-IO+’s provenance tracking performance
has little dependence on the platforms, and the overhead is
consistently low across different execution platforms.
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Fig. 10: A Comparison of PROV-IO+ tracking overhead in
non-containerized and containerized Megatron-LM.

6.6 Comparison with Other Frameworks

In this section, we compare PROV-IO+ to state-of-the-art
provenance systems. Table 5 shows the basic characteristics
of Komadu [65], ProvLake [20], and PROV-IO+. We can see
that all three frameworks are derived from the base PROV-
DM model, which makes the comparison fair. On the other
hand, Komadu only supports Java programs and ProvLake
only supports Python, which makes them incompatible
with many C/C++ based scientific workflows (e.g., DASSA
and H5bench). Note that PROV-IO+’s C/C++ interface is
designed for integration with major HPC I/O libraries.
Once the I/O library is integrated with PROV-IO+ (e.g.,
HDF5), the provenance support is mostly transparent to the
workflow users, i.e., users can control the rich provenance

features through a configuration file without manually mod-
ifying their source code with APIs. Neither Komadu nor
ProvLake support such capability or transparency.

TABLE 5: Basic Characteristics of Three Frameworks.
Komadu ProvLake PROV-IO+

Base model PROV-DM PROV-DM PROV-DM
Language Java Python C/C++,Python,Java
Transparency No No Hybrid

Since ProvLake has outperformed Komadu based on
a previous study [17], we focus on the comparison with
ProvLake. Because ProvLake does not support C/C++
workflows, we cannot apply it to DASSA and H5bench.
Therefore, we compare the two provenance tools using
Python-based Top Reco in the rest of this section.

Different from PROV-IO+ which is I/O-centric,
ProvLake is ’process-oriented’. Specifically, ProvLake cre-
ates records based on the execution steps of a workflow, and
the provenance data are maintained as attribute or property
of individual steps. On the contrary, PROV-IO+ is not lim-
ited to the execution steps of the workflow. For example, it
can track a task in the workflow, an I/O operation invoked
by a task, a data object involved in the I/O operation, etc.,
all of which are further correlated via the relations defined
by the PROV-IO+ model (§4.1). Such flexibility and richness
is not available in ProvLake.

To make the comparison with ProvLake fair, we use
the same instrument points in the Top Reco workflow for
both tools. Specifically, we instrument Top Reco at its GNN
training loop and track the training accuracy at the end of
each epoch to corresponding provenance records. Since the
workflow configuration is never changed during the entire
workflow, we only add it to ProvLake’s record once at the
beginning of the workflow. In addition, to be representative,
we track three different numbers of configurations (i.e., 20,
40, and 80).

Figure 11(a),(b),(c) compares the provenance tracking
performance of the two systems where y-axis is normalized
completion time. Figure 11 (d),(e),(f) shows the storage
overhead where y-axis is size in KB. In all figures x-axis is
the number of configurations. In (a)(b)(c), grey bars stand for
the baseline without provenance tracking, green bars show
the normalized performance with PROV-IO+, and red bars
show the performance with ProvLake. In (d)(e)(f), green
lines stand for PROV-IO+ provenance file size and red lines
stand for ProvLake provenance file size.

As shown in Figure11(a)(b)(c), both frameworks incur
negligible tracking overhead (e.g., less than 0.025%) and the
PROV-IO+ overhead is even lower than ProvLake for most
cases. Similarly, as shown in Figure11(d)(e)(f), PROV-IO+

always incurs less storage overhead, regardless of the num-
ber of configuration fields tracked. This is mainly because
ProvLake has to track more irrelevant workflow information
not needed in the use case.

6.7 Query Effectiveness
As mentioned in §5, PROV-IO+ supports provenance query
with visualization. Table 6 summarizes the queries used to
answer the diverse provenance needs of the three workflow
cases. We can see that the provenance can be queried effec-
tively and efficiently using a few simple SPARQL statements
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Fig. 11: A performance comparison between PROV-IO+ and ProvLake.

TABLE 6: Example Queries. The diverse provenance needs can be satisfied by a few simple queries effectively.
Workflow Provenance Need Query Statement (SPARQL) # of Statements in Query

1: data object a prov:wasAttributedTo ?program. 3*N
DASSA file/dataset/attribute lineage 2: ?data object prov:wasAttributedTo ?program; (where N is backward

3: provio:wasReadBy ?IO API. propagation steps)
scenario-1 4: ?IO API prov:wasMemberOf prov:Activity; 1
scenario-2 5: ?IO API prov:wasMemberOf prov:Activity; 2

H5bench 6: provio:elapsed ?duration.
7: file a prov:wasAttributedTo ?program.

scenario-3 8: ?program prov:actedOnBehalfOf ?thread. 3
9: ?thread prov:actedOnBehalfOf ?user.

Top Reco metadata version control & mapping 10: ?configuration ns1:Version ?version; 2
11: provio:hasAccuracy ?accuracy.

Megatron-LM ckpt-config consistency 12: ?batch size ns1:hasValue 256; 2
13: prov:influenced ?checkpoint path

in general. Since the number of queries involved is small,
the query time overhead is negligible in our experiments.
We discuss each case in more details below.

In DASSA, to get the backward lineage of a data product,
we can start with the program which generated the data
product and look for its input data. The same procedure
can be repeated as needed. For example, DASSA may
convert “WestSac.tdms” into “WestSac.h5” with program
“tdms2h5”, and then use “decimate” to process “West-
Sac.h5” into data product “decimate.h5”. To get the back-
ward lineage of “decimate.h5”, in the query, we first re-
trieve with keywords “decimate.h5 prov:wasAttributedTo
?program” to locate program “decimate”. Next, in the same
query, we add statement “?file wasAttributedTo ?program”
to retrieve that program’s input file “WestSac.h5” which is
the first level predecessor of “decimate.h5”. We can further
expand the query by adding similar statements to locate
“decimate.h5”’s earlier predecessors (e.g., “WestSac.tdms”).

As summarized in Table 6, for each backward step, we
only need three query statements. Figure 12 shows the
visualization of this example, which follows the PROV-IO+

provenance model (§4.1) and highlights the queried data
lineage in blue. Other types of lineages (e.g., dataset and
attribute) can be queried and visualized in the same way.

WestSac.tdms

WestSac.h5

decimate.h5

tdms2h5

provio:DataObject:File

decimate

provio:Program

prov:wasMemberOf

prov:wasMemberOf

prov:wasMemberOf

prov:wasAttributedTo

prov:wasAttributedTo

prov:wasAttributedTo

prov:wasAttributedTo

prov:wasMemberOf

prov:wasMemberOf

1st Level  
Predecessor

2nd Level  
Predecessor

Fig. 12: An Example of DASSA Data Lineage by PROV-
IO+. The graph follows the PROV-IO+ model; the data
lineage is highlighted in blue.

Similarly, in H5bench, we have three types of prove-
nance needs (i.e., the scenarios described in §6.2) which
can be answered using 1, 2, 3 SPARQL statements respec-
tively. In Top Reco, the metadata versioning and mapping
information can be queried in 2 statements. Note that the
provenance needs are diverse across the real use cases,
but the number of queries needed is consistently small.
This elegant result suggests that PROVI-IO+ is effective for
scientific data on HPC systems.
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In case of Megatron-LM, users want to identify the
checkpoint which is consistent with the configuration for
the follow-up training process. Figure 13 shows a scenario
where there are two different batch sizes used during
the previous pretraining (i.e., “Batch Size A” is 128, and
“Batch Size B” is 256), and there are three checkpoints gen-
erated based on the two batch sizes (i.e., “Checkpoint 1”,
“Checkpoint 2”, “Checkpoint 3”). Assume the user wants
to continue a GPT pretraining process which has a batch
size of 256 with one of the existing checkpoints (i.e., “Check-
point 3”), s/he can query the provenance with as few as 2
lines of SPARQL statements, as shown in the last row of Ta-
ble 6. Moreover, the user can also add advanced conditions
to the query to filter out the feasible checkpoint with the
best quality (e.g., a checkpoint with certain training loss).
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Checkpoint_1128

Checkpoint_3
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Fig. 13: An Example of Megatron-LM query by PROV-IO+.
The graph follows the PROV-IO+ model; the query path is
highlighted in blue.

7 DISCUSSION

The design of the PROV-IO+ tool is driven by the needs
of the domain scientists using four scientific workflows.
Given the diversity of science, it is likely that the prototype
cannot directly address the unique provenance queries of
all scientists. We plan to collaborate with more domain
scientists to identify additional needs and refine PROV-IO+

accordingly. For example, researchers from INRIA [66] are
interested in porting PROV-IO+ on their edge devices with
limited hardware resource. Similarly, HPE [67] researchers
are interested in integrating PROV-IO+ to their provenance
solutions. We are in communication with the researchers to
extend the real-world impact of PROV-IO+ further.

Similarly, while the current prototype supports POSIX
and HDF5 I/O transparently and is extensible by de-
sign, there are other popular I/O systems in HPC (e.g.,
ADIOS [32]) which we have not integrated yet. We leave
the integration with other I/O libraries as future work.

In addition, there are other important aspects of prove-
nance (e.g., security [68]) which cannot be ignored in prac-
tice. We hope that our efforts and the resulting open-source
tool can facilitate follow-up research in the communities and
help address the grand challenge of provenance support for
scientific data in general.

8 RELATED WORK

Database Provenance. Historically, provenance has been
well studied in databases to understand the causal rela-
tionship between materialized views and table updates [6],
[69]. The concept has also been extended to other us-
ages [8], [70]. In general, database provenance may leverage
the well-defined relational model and the relatively strict

transformations to capture precise provenance within the
system [71], which is not applicable for general software. On
the other hand, some query optimizations (e.g., provenance
reduction [72]) could potentially be applied to PROV-IO+.
Therefore, PROV-IO+ and these tools are complementary.

OS-Level Provenance. Great efforts have also been made to
capture provenance at the operating system (OS) level [11],
[12], [50]. For example, PASS [11], [12] intercepts system
calls via custom kernel modules for inferring data depen-
dencies. Similarly to these efforts, PROV-IO+ recognizes the
importance of I/O syscalls. But different from PASS, PROV-
IO+ is non-intrusive to the OS kernel. Moreover, PROV-IO+

leverages the unique characteristics of HPC workflows and
systems to meet the needs of domain scientists, while PASS
is largely inapplicable in this context. More specifically, we
elaborate on five key differences as follows:

(1) Provenance Model: PROV-IO+ follows the W3C spec-
ifications to represent rich provenance information in a
relational model (§4.1). In contrast, PASS follows the con-
ventional logging mechanism without a general relational
model, which limits its capability of capturing and describ-
ing complex provenance. For example, PASS has to establish
the dependencies among events via a kernel-level logger
(i.e., ‘Observer’ [12]) which cannot interpret the semantics
or relations of HPC I/O library events. Consequently, PASS
can only answer relatively limited queries (e.g., ancestor of
a node [12]) instead of the rich lineage defined in W3C.

(2) System Architecture: PROV-IO+ is a user-level solution
designed for the HPC environment (§4.2). In contrast, PASS
heavily relies on customized kernel modules to achieve its
core functionalities. This kernel-based architecture makes
PASS incompatible with modern HPC systems. For exam-
ple, neither the PASTA file system (in PASS [11]) nor the
Lasagna file system (in PASSv2 [12]) is compatible with the
Lustre PFS dominant in HPC. In other words, translating the
core functionalities of PASS to HPC systems would require
substantial efforts (if possible at all), and the implications on
performance and scalability is unclear.

(3) Granularity: PROV-IO+ can handle fine-grained I/O
provenance which is critical for understanding HPC work-
flows (e.g., the lineage of an attribute of an HDF5 file), while
PASS collects relatively coarse-grained events (e.g., access to
an entire file).

(4) Tracking APIs: By embedding in popular HPC I/O
libraries, PROV-IO+ does not require modifying the source
code to track I/O provenance. In contrast, to use PASS,
users must consider how to apply six low-level calls (e.g.,
pass_read, pass_mkobj [12]) to the target applications.

(5) Storage & Query: Based on the well-defined model,
PROV-IO+ stores provenance as RDF triples backed by the
parallel file system. In contrast, PASS relies on its own local
file system to generate provenance as local logs. The storage
representation directly affects the user query capability. For
example, PROV-IO+ supports querying RDF triples via
SPARQL [61], while PASS only supports a special Path
Query Language which is much less popular today.

In summary, while PROV-IO+ is partially inspired by
the seminal PASS designed more than a decade ago, the two
works are different due to the different goals and contexts.
Therefore, we view PASS and PROV-IO+ as complementary.
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Workflow & Application Provenance. Provenance models
or systems for workflows and/or applications have also
been explored [18], [20], [21], [73]. For example, Karma [21]
describes a model with a hierarchy of ‘workflow-service-
application-data’. However, the model is designed for the
cloud environment and cannot cover diverse HPC needs
(e.g., HDF5 attributes, MPI ranks). PROV-ML [18] is a series
of well-defined specifications for machine learning work-
flows. Different from PROV-ML, PROV-IO+ is designed for
general HPC workflows. IBM ProvLake [20] is a lineage data
management system capable of capturing data provenance
across programs. Unlike PROV-IO+, ProvLake always re-
quire users to modify the source code using its special APIs,
which severely limits its usage and scalability for compli-
cated HPC workflows.Similar to PROV-IO+, there are a few
provenance capturing tools using DBMS to store queriable
provenance data, but they do not follow any widely used
provenance models [74]–[76].
Other Usage of Provenance. Provenance has been applied
to other venues. For example, MOLLY uses lineage-driven
fault injection to expose bugs in fault-tolerant protocols
[77]. There have been a multitude of domain-specific or
application-specific provenance and ontology management
implementations. However, they do not capture the I/O
access information that PROV-IO+ manages. We believe the
comprehensive provenance information enabled by PROV-
IO+ can also be leveraged to stimulate several data quality
and storage optimizations, which we leave as future work.
Non-Provenance Tools. In addition, great efforts have been
made to manage workflows [78], [79] or log I/O events
for various purposes [38], [39], [80]–[94]. While they are
effective for their original goals, they are insufficient to
address provenance needs in general due to a number
of reasons: (1) no relational model to support tracking or
querying rich provenance (e.g., various relations defined
in W3C PROV-DM [31]); (2) agnostic to the fine-grained
semantics in HPC I/O libraries (e.g., HDF5 attributes); (3)
little portability across different I/O libraries or workflow
environments; (4) no programmable interface to specify
customized provenance needs.

9 CONCLUSION & FUTURE WORK

We have introduced a provenance tool called PROV-IO+ for
scientific data on HPC systems. Experiments with represen-
tative HPC workflows show that PROV-IO+ can address
diverse provenance needs with reasonable overhead. We
believe that PROV-IO+ represents a promising direction
toward ensuring the rigorousness and trustworthiness of
scientific data management. In the future, we will address
the limitations mentioned in §7. Moreover, in the Top Reco
case studied in this paper, the domain scientists would like
to identify the best configurations across multiple runs of
the workflow. In other words, there is a need of provenance
across multiple executions of the same workflow. Similar
cross-workflow provenance may be needed when multiple
different workflows cooperate to process shared datasets,
which requires additional modeling and interface to bridge
the semantic gap between workflows. We would like to
investigate such complex multi-workflow scenario as well.
In addition, we observe that diagnosing the correctness

and performance anomalies in HPC systems is increasingly
challenging due to the complexity (e.g., a single SSD fail-
ure may cause the “blast radius” problem due to system
dependencies), and we will apply PROV-IO+ to address
such open challenges in the future. Overall, we believe
that PROV-IO+ represents a promising direction toward
ensuring the rigorousness and trustworthiness of scientific
data management.
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