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Abstract—In cloud computing environments with many virtual
machines, containers, and other systems, an epidemic of malware
can be highly threatening to business processes. In this vision
paper, we introduce a hierarchical approach to performing
malware detection and analysis using several recent advances in
machine learning on graphs, hypergraphs, and natural language.
We analyze individual systems and their logs, inspecting and
understanding their behavior with attentional sequence models.
Given a feature representation of each system’s logs using this
procedure, we construct an attributed network of the cloud with
systems and other components as vertices and propose an analysis
of malware with inductive graph and hypergraph learning
models. With this foundation, we consider the multicloud case,
in which multiple clouds with differing privacy requirements
cooperate against the spread of malware, proposing the use
of federated learning to perform inference and training while
preserving privacy. Finally, we discuss several open problems
that remain in defending cloud computing environments against
malware related to designing robust ecosystems, identifying
cloud-specific optimization problems for response strategy, action
spaces for malware containment and eradication, and developing
priors and transfer learning tasks for machine learning models
in this area.

Index Terms—Malware, Detection, Cloud Computing, Graph
Neural Networks, Federated Learning, Multicloud, Natural Lan-
guage Processing

I. INTRODUCTION

Malware is broadly defined as a malicious software program
that is intentionally designed to cause damage to a computer
by exploiting vulnerabilities in the system. Malware can cause
particularly significant disruptions incidents in cloud systems,
which contain many virtual machines, containers, and other
components, because the instances in these cloud computing
environments are often highly interconnected with high-risk
trust assumptions and protection mechanisms that are not
difficult to break. From a customer’s standpoint, this kind of
incident can be catastrophic, as malware attacks often lead
to the leakage of sensitive data and/or extended downtime
of services. The resulting damage is often highly costly and
sometimes impossible to fully recover from.

It has been observed that malware often spreads in a
behavior similar to that of a biological virus [1]. Once malware
infects a host, it is able to use it as a launchpad to other hosts
which it seeks to compromise. Hence, in environments with
multiple interacting hosts, the impact can be combinatorially
large. Identification of malware is currently largely manual,
with responses and tactical actions being slow due to the
bureaucratic nature of cloud management. Powerful, adaptive,

and predictive methods for analyzing the presence and spread
of malware in the cloud have yet to be proposed, especially
those which utilize knowledge from multiple disjoint and
nondisclosing clouds jointly.

In this paper, we propose several methods from the system
level up to the multicloud level that are designed to understand
and combat malware in an adaptive and holistic manner. Our
contributions are as follows:

1) We propose the use of attentional language models for
analysis of system logs to featurize their respective
systems in a standardized manner for downstream pro-
cessing.

2) We view the detection and analysis of malware in cloud
as a graph and hypergraph learning problem, proposing
several methods for performing inference in a useful way
with respect to scores such as risk, exploitability, and
impact for individual systems as well as for the cloud
as a whole. We also discuss potential approaches for
tactical decision-making for managing malware.

3) We consider the multicloud case, where multiple un-
trusting clouds may cooperate to learn about the state of
malware without divulging private or sensitive informa-
tion. We propose the use of federated learning to achieve
this objective.

4) We finally pose and discuss several important and dif-
ficult open problems related to combatting malware in
cloud ecosystems.

As this is a vision paper, we do not dive into great depth with
the proposed methods; rather, we offer suggestions for a class
of methods that can be used to solve the particular problem.
Method and ablation studies are left as future work.

The rest of the paper is organized as follows. In Section II,
we provide mathematical background on graphs and hyper-
graphs (the objects we study in the context of the cloud) as
well as transductive and inductive learning (important machine
learning strategies that we leverage in our approaches). In
Section III, we explore relevant related work as the foun-
dation from which we build our own. This work is broadly
categorized into general malware detection, graph-based and
hypergraph-based machine learning, natural language models,
and federated learning. In Section IV, we outline the problem
we aim to solve as well as an overview of how we envision
the solution. In Section V, we dive deeper technically into
how these problems are solved, organizing the overall problem
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statement into three levels: system-level, cloud-level, and
multicloud-level analysis. in Section VI, we pose and discuss
several open problems in this area. Finally, in Section VII, we
summarize and recapitulate the contributions of this work.

II. BACKGROUND

A. Graphs and Hypergraphs
A hypergraph H = (V,E) is comprised of a finite set of

vertices V = {v1, v2, . . . , vn} and a set of hyperedges E =
{e1, e2, . . . , em} ⊆ 2V . We consider connected hypergraphs
with |V | ≥ 2. A graph G is a hypergraph where |ei| = 2
for each ei ∈ E. Graphs are well-studied in the field of
machine learning, but are not capable completely representing
the information captured in hypergraphs generally. This fact
has practical implications as well: for instance, one cannot rep-
resent a multicloud environment with shared systems or hosts
using pairwise relationships, as the systems may function with
each other differently in different contexts. These hyperedges
are said to be indecomposable [2]. Hence, while the theory
built for studying graphs can be utilized to some capacity in
the hypergraph context, it is more effective to use hypergraph
learning approaches on problems involving hypergraphs.

B. Transductive and Inductive Learning
In transductive (or semi-supervised) inference tasks, one

often seeks to learn from a small amount of labeled training
data, where the model has access to labeled and unlabeled data
at training time. Formally, we have training instances {xi}n1
where {xi}l1 are labeled instances and {xi}l+ul+1 unlabeled
instances, and corresponding labels yi in {yi}n1 . Our aim
is to learn a function F : {xi}n1 → {yi}n1 ; xi 7→ yi.
Typically, in the case of transductive learning on graphs and
hypergraphs, we seek to leverage topological information to
represent the vertices in some continuous vector space Rd by
embeddings which capture the vertices’ or hyperedges’ context
(homophily and structural equivalence). As such, in the pre-
training procedure for finding vertex embeddings, we want to
find an embedding function Φ : V → Rd that maximizes the
likelihood of observing a vertex in the sampled neighborhood
N(v) of v given Φ(v):

max
Φ

∑
v∈V

logP(N(v) | Φ(v))

The procedure for finding contextual embeddings for hyper-
edges is similar. Once we’ve learned Φ, we can use the
embeddings Φ(v) to learn F in our transductive learning
procedure.

In inductive (or supervised) inference tasks, we are given a
training sample {xi}n1 ⊆ X to be seen by our model, and
we want to learn a function g : X → Y ; xi 7→ yi that
can generalize to unseen instances. This type of learning is
particularly useful for dynamic graphs and hypergraphs, when
we may find unseen vertices as time passes, or when we
want to apply transfer learning to new graphs and hypergraphs
altogether. Here, the representation learning function Φ is
typically dependent on the input features f(v) for a vertex
v.

III. RELATED WORK

A. Malware Detection

Malware spreading behaviors have been likened to viral
epidemics in [3], [1], lending intuition that informs our
own approach. Insight into tracking of API call sequences
recursively and understanding behavior to detect and unpack
malware samples present in the system was discovered in
[4]. A non-linear malware propagation paradigm and design
of control strategy based on Pontryagin’s maximum principle
was proposed in [5]. Various hardware implementations that
perform deep packet inspection to find malicious payloads
have also been proposed [6]. In [7], an SVM-based method for
performing anomaly detection was proposed for detecting mal-
ware in cloud. We extend this technique with more powerful
models and make use of network topology alongside system
logs and other metadata to perform inference.

In 2017, DeepLog, an LSTM-based architecture for per-
forming inference and other natural language tasks specifically
on system logs, was proposed in [8] by Du et al. DeepLog
captures potentially nonlinear dependencies among log entries
from training data that correspond to normal system execution
paths, and when a log is generated from a malware-infected
system, the hope is that the resulting representation will appear
far out of the distribution.

B. Learning from Graphs and Hypergraphs

In 2013, Mikolov et al. proposed an unsupervised learning
procedure, skip-gram, in [9] which uses negative sampling to
create context-based embeddings for terms given sentences
in a corpus of text. This procedure was used by Perozzi
et al. in DeepWalk [10] to treat random walks on a graph
as “sentences” and vertices as “terms”, which outperformed
existing spectral clustering and weighted vote-based relational
neighbor classifiers [11], [12], [13], [14], [15]. Similar random
walk-based approaches followed, such as random walks with
bias parameters [16], methods that utilize network attributes
as additional features [17], [18], [19] and approaches that
could be extended to perform inductive learning [17], [20].
Graph convolutions were formally defined by Bruna et al.
[21] and elaborated upon by Kipf and Welling in [22], who
proposed graph convolutional networks. Graph convolutions
have also been used in variational graph autoencoding in [23].
A number of other important graph neural network approaches
have very recently been proposed, including GraphRNN [24],
which gives a deep recurrent generative model for graph
generation; Graph Attention Networks [25], which incorporate
masked self-attentional layers which allow vertices to attend
to their neighbors’ features, specifying different weights to
different vertices in the neighborhood; and Graph Isomorphism
Networks [26], which replaces the MEAN aggregator over
nodes, such as the one in GCN, with a SUM aggregator, and
add more fully-connected layers after aggregating neigboring
node features. This idea is also applicable to hypergraphs. Hy-
pergraph learning is lesser-studied, but a variety of approaches
have nonetheless been proposed. In 2007, Zhou et al. proposed



methods for hypergraph clustering and embedding in [27], but
these methods incur high computational and space complexity.
Random walks on hypergraphs have been established, and
have likewise been demonstrated as useful in inference tasks
[28], [29], [30], but these methods do not directly account for
the set membership and contextual properties of hyperedges
simultaneously and efficiently. Very recently, hypergraph con-
volution and attention approaches have been proposed [31],
[32] which define a hypergraph Laplacian matrix and perform
convolutions on this matrix. Deep Hyperedges was recently
proposed as a unified framework for performing inference
on hyperedges and vertices using membership and contextual
properties jointly [33].

C. Language Models for System Log Analysis

LSTMs [34] (Long Short Term Memory) are a class of
recurrent neural network (RNN) which processes and creates
representations of sequential data. DeepLog [8] uses and
LSTM architecture to analyze system logs for abnormalities
and perform other tasks.

In 2018, BERT (Bidirectional Encoder Representations from
Transformers) [35] was demonstrated to outperform previous
language models such as LSTMs on a variety of tasks with
high efficiency. Other works also explore multi-task learning
on language models that leverage large amounts of cross-task
data, which also exhibit from a regularization effect that leads
to more general representations to help adapt to new tasks and
domains [36]. Moreover, recent work and tools have shown
that interpretability is tractable with BERT [37], [38].

BERT builds upon the encoder structure of the encoder-
decoder architecture of transformer, which uses multi-head
self attention [39], [40], [41]. Different techniques have been
developed to better interpret attention maps, such as attention
matrix heatmaps [39], [42], [43] and bipartite graph repre-
sentations [44], [45]. This can assist in explainability and
interpretability.

BERT has thus far been used primarily in natural language
tasks, and we propose its use in the domain of system logs,
specifically. This may simply require a fine-tuning task, or
could entail a retraining of BERT from scratch.

D. Federated Learning

Distributed machine learning is an important concept that
has been well-studied [46] and was an important factor in the
development of federated learning [47], [48], [49], a system
which imposes a more structured approach fitting to a specific
domain which has certain constraints such as much lower
bandwidth and reliability compared to federated/central nodes.
This protocol may not allow for arbitrary distributed compu-
tation. Moreover, federated learning can provide an important
guarantee of privacy of the training data—participating model
trainers may contribute to the training of the model without
needing to divulge specific information they have. Federated
learning has mostly thus far been explored in the context of
mobile devices; we instead propose its utility in the context
of cloud computing environments and clusters.

IV. PROBLEM DEFINITION AND VISION

Attackers are always developing new malicious software
[50]. Some common examples include:

1) DDoS attacks: a botnet is leveraged to make rapid
queries to a service, effectively shutting it down or
causing an increase in latency.

2) Hypercall attacks: an attacker uses a virtual machine to
exploit the victim’s Virtual Machine Manager (VMM)
hypercall handler, perhaps giving the attacker the ability
to run arbitrary code.

3) Hypervisor DoS: an attacker uses a large amount of the
hypervisors resources to exploit design flaws.

4) Man in the Middle (MITM): an attacker eavesdrops upon
and perhaps modifies messages between two communi-
cators.

5) Hyperjacking: an attacker attempts to assume control of
the VM’s hypervisor, giving them access to the entire
machine.

6) Co-Location: an attacker attempts to find the host loca-
tion of a VM and place their own VM alongside it. Once
successful, the attacker can perform cross side-channel
attacks.

7) Live Migration Attack: when VMs are migrated between
cloud services, attackers can trick the service into cre-
ating multiple migrations, leading to DoS attacks.

Attackers are adaptive, and in order to compete, we must
have a system that can adapt in kind to resist malware. These
kinds of attacks have varying levels of sophistication and have
different characteristics of attack and spread. We’ve realized
that the infection and propagation of malware is inevitable in
many systems, and have concluded that in these cases it is
always best to contain malware to limited number of hosts
without disruption of business processes in the cloud.

Broadly, we want to propose a system that can detect
the presence of malware in one or more hosts or systems
in a cloud environment and take an action to prevent the
spread of malware. When an infected host has been detected
in cloud, we want to be able to build a profile of all the
connected hosts and devise a containment strategy. To most
effectively perform this containment, we need to be able
to identify nodes that are more influential in the spread of
malware and perform a preventative action that maximizes
the probability of completely containing the malware while
minimizing the negative effects of downtime, latency, etc. on
business processes.

Currently, to execute actions successfully, multiple stake-
holders need to be involved. Typically, these include a cloud
system administrator who may decide which port to shutdown
of an affected host, a network security administrator who may
decide which switch/router to shutdown, and a compliance
officer/client security focal who asses risk involved in shutting
down various parts of system. This work can be resource-
consuming, unreliable, and slow; hence there remains the need
for a platform that helps to codify policies in the form of rules
which automates resolution of intrusion incident.



To more concretely define our problem, we adopt the
scoring strategy proposed in [51]. Given a cloud of hosts and
systems and any additional knowledge about them (e.g., output
logs), we want to be able to compute scores that describe
the various security aspects of a cloud in the context of a
malware infection. Examples of these would be a risk score,
exploitability score, and impact score. Risk is meant to be
interpreted as a holistic measure of the security state of the
system, network, or cloud, which evaluates the confidential-
ity, integrity, and availability risks of the object’s potential
vulnerabilities. Exploitability is a measure of how difficult it
would be for an adversary to compromise the object. This can
be evaluated at the system level, or by looking at network
topology (how central is the vertex in the network?). Impact
is a measure of the level of harm or compromise an adversary
could inflict in the case of malware infection. Intuitively,
nodes with greater centrality or higher degree would have
higher risk scores, as well as those with sensitive or important
information.

Given these scores, we would like to perform actions that
contain the spread of malware in the most effective way
possible. Effectiveness is measured as a function of time-to-
implement for the decision, lowest negative impact on business
processes, and probability that malware is contained given an
implementation of the decision.

V. PROPOSED METHODS

We approach this problem hierarchically, starting from the
bottom (analyzing the systems themselves) and working our
way to the top (investigating structures that involve multiple
clouds, referred to as multicloud environments). At the lowest
level, we consider a single system or host. This is an object
that has certain properties from which we may draw inference
as to its security state and malware status. We will refer to
these systems as vertices. In the level above, we consider a
group of these devices, linked together in a network. This
may be considered as a single cluster, network, or cloud—
for our purposes, the algorithms proposed in this section will
apply to any of these. We consider the implications of dealing
with private, public, and hybrid clouds in this layer. At the
top layer, we consider a network of networks or collection of
clouds: the multicloud environment. Here, we observe multiple
cloud environments interacting with each other in an trusted
or untrusted manner, where systems and information may or
may not be shared between clouds.

A. Level I: System Analysis

Within a cloud infrastructure level we consider the elements
which are hardware servers that run hypervisors to host vir-
tual machines (VMs). There also exist network infrastructure
elements which provide the connectivity within cloud and to
external service users. We refer to each of these elements
as systems individually, or vertices when considering the rest
of the network. The first step to analyzing the presence and
spread of malware in the cloud is understanding the systems

contained within the cloud which may be infected by or
susceptible to malware.

Each system some level of information associated through
it—for example, its hardware infrastructure, operating system
(OS), indegree and outdegree neighborhood (other systems it
sends and receives messages to and from), and system logs. We
can represent some of these properties easily in standardized
vectors; however, system logs in particular are information-
rich and are not easy to represent uniformly as a sequence of
low-dimensional vectors. In 2017, Du et al. [8] proposed an
LSTM-based model for anomaly detection to record system
states and significant events at various critical points and to
help debug system failures and perform root cause analysis.
This system, DeepLog, automatically learns log patterns from
normal execution detects anomalies when log patterns deviate
from the model trained from log data under normal execution.
Naturally, this idea can be extended to malware detection:
when devices are infected with malware, the system logs
should demonstrate abnormalities that can be identified by
a natural language sequence model. Around the same time,
a novel natural language architecture called the Transformer
was proposed [41] which outperformed LSTMs and RNNs on
many benchmark tasks, making use of an attentional layer.
BERT was introduced a year later, adding a pretraining task
which involves masking some percentage of the tokens and
creating context-capturing representations by defining loss on
the prediction of these masked tokens.

We propose the use of BERT or other attentional model for
creating a consummable representation of system logs. For-
mally, let v be a vertex, or system, in our cloud. This element
has associated with it a sparse token sequence representation
of logs logs(v), taken from the set of tokens T which we
would like to represent compactly and meaningfully as a vector
r ∈ Rd, for d small. An initial, efficient approach to generate
a representation of the logs of a system would be to average
the representations of its tokens generated by BERT or other
sequence model:

r =
1

|logs(v)|
∑

t∈logs(v)

fNL(t)

where fNL : T → Rd is a function learned by pretraining via
masking on logs, as well as optionally fine-tuning on some
downstream task. Details can be found in [35]. Fine-tuning
tasks may include malware-infected system logs determination
if the datasets are available; operating system category for
better differentiation based on OS, latency regression, et cetera.

There exist more expressive and computationally intensive
methods for representing the logs as a standardized vector r.
Two such approaches are Doc2Vec [52] and Doc2VecC [53].
In Doc2Vec, one can use the distributed bag-of-words model,
where a single word is to be predicted from its context and
context words are the preceding words, or distributed memory,
where the task is to predict a single context word using only
the document vector. In Doc2VecC, the document is corrupted;
that is, some percentage of words are removed, making the
task more challenging but also reducing the training runtime.



An initial, bottom-level approach to analyzing malware
would be to perform inference simply on the document rep-
resentation of the logs of a system. This is essentially what
DeepLog proposes, but with the use of an attentional model,
as opposed to an LSTM. This, however, we propose to be
simply a component of a more powerful method for detecting
malware in cloud and networked structures.

B. Level II: The Cloud: Networks and Malware Paths

Now that we have latent representations of system logs,
we can apply them in a wider context of a network. In this
discussion, we have a single cloud with multiple interlinked
VMs and other components, all of which we refer to as
elements. Let V be the set of elements in the cloud, and let E
be the set of edges, where an edge exists between two elements
in the cloud if and only if there exists some relationship that,
directly or indirectly, has a possible effect on malware spread.
Each edge may have information associated with it (e.g.,
conditions that must be met for malware to spread from one
vertex to another, temporal information, bandwith, latency)
which can be represented as a real vector. Each vertex likewise
may have information associated with it, as discussed in the
previous subsection (i.e., system log information, metadata).

We would like to perform several types of tasks at this stage.
1) We would like to estimate the probability of a vertex

being infected with malware given the topology of the
network and the feature information of the vertices and
edges.

2) We would like to predict the spread of malware through-
out the cloud at given timesteps, given a state and
sequence of actions.

3) We would like to discover actions that maximize the
effectiveness of malware containment while minimizing
the negative effects of system downtime and malware
impact on the service capabilities of the cloud.

We will investigate each of these tasks in this subsection. In
general, we propose the use of graph neural network (GNN)
architectures for capturing topological signal that may indicate
the presence and characterize the behavior of malware in the
cloud. We postulate that some clouds may have subnets or
groups of systems with some shared characteristic (a hybrid
cloud may have groups with different access privileges, some
subset of the systems my have some library, etc.), and we
pose this new construction as a hypergraph problem to which
hypergraph learning may be applied. We also identify an
open problem of discovering optimal actions that optimize
certain criteria, and give an initial reinforcement learning-
based approach.

1) Inferring Malware Infection: We are given a cloud
that can be represented as a graph G = (V,E) where
each system v in V has an associated system log/metadata
feature representation rv associated with it. A key intuition we
leverage is that malware spread often displays characteristics
of probabilistic epidemic/contagion models such as SIR [54].
Some malware programs may not attack immediately and
instead lie inactive but present on infected systems, leading to

the compartment-based susceptible (S), delitescent (D) (not yet
infective), infected (I), recovered (R) model proposed in [55].
Dynamic contact models such as these are useful heuristics,
but each cloud is different and we would like to find a solution
that captures the signal of a specific cloud to more effectively
detect malware.

Here we draw on ideas from graph neural networks [56],
[22], [20], [25] and anomaly detection mechanisms on graphs
[57], [58]. Letting R be the matrix of features for vertices rv ,
A be the adjacency matrix of G, D be the diagonal matrix
where Di,i =

∑
j(A+ I)i,j , and f(R,A) be the function we

would like to find that we would like to learn, the l+1st graph
convolutional layer is defined as

H(l+1) = σ
(
D−

1
2 (A+ I)D−

1
2H(l)W (l)

)
where H(0) = R. This model captures the (l + 1)-hop
neighborhood topology of a vertex when thinking about it
in a message-passing sense. Variations, such as sampling and
aggregation found in GraphSAGE or multi-headed attention
found in Graph Attention Networks, can also be used. This
model is used to create effective embeddings that represent the
vertices with respect to the network’s topology and features,
which make it ideal for understanding malware infections.

If training data is available (for instance, one may be able to
pretrain on and gather priors from the DARPA IDS evaluation
dataset [59]), then one of these GNN models could be trained
to evaluate the state of each vertex in the network. The task
could be, for instance, an indicator of whether or not the
system has been infected (y ∈ {0, 1}), a different categorical
task identifying the type of malware present, or a regression
task evaluating the Risk, Exploitability, and/or Impact scores
of each system.

If training data is not available, malware detection is still
tractable as an anomaly detection problem. Previously, the loss
function is defined with respect to some task using squared-
error (or similar) loss on the labels. Anomaly detection in
attributed networks can performed without having access to
labels, however, as was demonstrated in [58]. The loss function
is instead based on a reconstruction of the structure of the
network or attributes. In particular, the task is to rank all the
nodes according to the degree of abnormality, such that the
nodes that differ singularly from the majority reference nodes
should be ranked highly. We now adopt a new reconstructive
loss function, with Â the estimated adjacency matrix, R̂ is the
estimated attribute matrix, and α is a hyperparameter:

L := (1− α)||A− Â||2F + α||R− R̂||2F .

This directly gives us a means of determining the anomaly
score of a vertex, given its neighborhood topology and its
features:

anomaly(vi) = (1− α)||ai − âi||2 + α||xi − x̂i||2

This procedure is, intuitively, used to find vertices that are
out of the standard distribution of normally-operating (non-
infected) systems. From this we can create a heatmap to



Fig. 1. A deep graph autoencoder model is used in conjunction with
reconstruction loss to find systems with anomalies in the cloud.

discover areas of high vulnerability. In certain cases, it may
be more useful to perform inference on sets of systems rather
than on systems or links between them. For instance, say that
we’d like to ascertain the risk score of a particular subnet,
in which many shared systems exist, the impact score of a
specific library, which is present on several systems (along
with other libraries), or the privacy level of a sector of a hybrid
cloud, which shares devices with other sectors of differing
privacy levels. In this case, we have not a graph problem but a
hypergraph problem on our hands—permutation-invariant sets
form hyperedges (the subnet, the library, etc.) while vertices
still map to systems. For brevity, we note that the methods
proposed for hypergraphs [2], [33], [31], [32] are similar to
those proposed for graphs, and the above discussion applies
here as well. In this case we can perform classification or
regression tasks to find, for instance, the probability that a
subnet has been infected by malware, or the exploitability
score of a specific library given the hypergraph topology
and features of the systems within the hyperedge (using the
library).

A final note with these methods is that they are inductive
by nature; that is, we can learn on one graph and be able to
generalize this knowledge to another unseen graph effectively.
This is particularly important here, as the topology of the
network would likely change over time as connections are
created and broken between systems.

2) Predicting Malware Spread: We’ve discussed several
methods for identifying vertices that have a high probability
of being infected with malware in a network. How can we use
this approach to predict how malware will spread? This is an
important step in the containment of malware in the cloud.
We propose the use of a recurrent or attention-based model
for temporal networks. More specifically, given the vertex
embeddings at time 1, 2, . . . , t, we would like to determine
a vertex embedding at time t+ 1, t+ 2, . . . , t+ k, effectively
predicting how the malware will spread.

Direct methods for temporal embedding have been defined,
which we do not go into detail for here. Another approach
would be to embed the graph using the above methods, and
apply a sequence completion task on these embeddings via an
LSTM, Transformer, or other sequence model.

Recurrent and temporal models for graph behavior are still
an active area of research, so any new advances will likely

Fig. 2. An LSTM is used as a sequence model on graph embeddings to
predict future embeddings which indicate the spread of malware in the cloud.

improve the capabilities of this system to predict the spread
of malware. The task specifically will be to “color” the graph
based on the Risk, Exploitability, or Impact scores as a result
of malware spread at future timesteps.

3) Strategic Actions for Containment: Once we’ve been
able to evaluate the current state of the cloud with respect to
malware and have predicted possible spreading patterns with
the above models, our next task is to optimally contain it.
Particularly, we need to minimize the cost incurred by taking
an action (such as removal) on a vertex while minimizing
impact of malware and observing the hard constraints imposed
by the cloud. This definition is extremely broad; intention-
ally so, as different clouds have many different objectives,
parameters, and priorities. The action space and method for
selection is a difficult problem that we leave as future work
largely. One initial approach would be to formulate it as a
reinforcement learning problem, where the reward function is
dense and defined by the above optimization problem. If the
network is small enough and the actions are well-defined, a
combinatorial optimization approach using the above objective
function would suffice.

C. Level III: Multicloud

Many organizations and services rely on multiple clouds
for various subservices and components. However, most com-
monly, the clouds and systems within them are not accessible
to every participant in the multicloud. Organizations often
prefer to keep their information, systems, and broader cloud
private while still participating in the multicloud. How can we
detect and contain malware effectively within the multicloud
in a way that effectively draws knowledge and signal from the
participating clouds without divulging specific non-disclosable
information from these clouds?

We propose the use of federated learning in order to collect
signal characterizing the presence and spread of malware from
multiple individual clouds without creating the need to reveal
specific network or system log information.

Suppose we have an end-to-end model M that we want
to use to perform some inference related to malware in a



Fig. 3. Federated learning for privacy-preserving malware detection and
containment. Green vertices represent the path propagation of malware.
Formula shown is a step in the Federated Averaging algorithm [49].

cloud (this inference task can be, for instance, malware de-
tection, malware spread prediction, or containment/eradication
decision-making). The goal of federated learning, in this case,
is to learn the parameters of M from system data stored across
some number of clouds. In round t ≥ 0, the server distributes
the current model Mt to a subset St of nt clients. These clouds
independently update Mt based on their local data. Let the
updated local models be M1

t ,M
2
t , . . . ,M

nt
t . The update of

cloud i can be written as Hi
t := M i

t −Mt for i ∈ St.
The authors of [48] note that these updates could be a single

gradient computed from the cloud, but typically will be the
result of a more complex calculation, such as multiple steps
of stochastic gradient descent taken on the cloud’s network.
In any case, each selected cloud then sends the update back
to the central aggregation service, where the global update
is computed by aggregating all the clouds’ updates using
an aggregation algorithm such as the Federated Averaging
algorithm [49]. This procedure is illustrated in Figure 3.

The privacy implications of this procedure have been studied
formally as random noise Z is added to the updates [60], [61],
[62]. Much of this analysis relies on work done in differential
privacy [63]. Let M be a randomized mechanism mapping
from a domain D to a range R. M satisfies (ε, δ)-differential
privacy if for any two adjacent inputs d, d′ ∈ D and for any
subset of outputs S ⊆ R:

P[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ.

To hide a single clients contribution within the aggregation,
the authors of [61] introduced new central model Mt+1 is
allocated by adding this approximation to the current central
model Mt.

Mt+1 = Mt+
1

mt

( nt∑
k=0

4Mk/max(1,
‖4Mk‖2

S
)+N (0, σ2S2)

)
To achieve (ε, δ)-differential privacy in federated learning,

the authors made use of the moments accountant as proposed

in [60]. Each time the central aggregator allocates a new
model, an accountant evaluates δ given ε, σ, and mt. Training
is then stopped once δ reaches a certain threshold, the choice
of this threshold depending on the total number of clouds.

This is a particularly important guarantee for clouds that
are private but vulnerable to malware. Cooperation and buy-
in from more clouds in a multicloud environment is highly
important in well-understanding the spread of malware in the
ecosystem.

VI. OPEN PROBLEMS

We’ve discussed several approaches in detecting and con-
taining malware in cloud environments. However, a number
of open and difficult problems remain, which we identify
and discuss here. It’s important to note that the proposed
approaches to solving these open problems are only at their
most nascent stage; these are very much “blue sky” problems.
However, they’re important problems that if solved could
have a significant impact on malware detection and cloud
computing in general.

1) Autonomous architecture of malware-resistant clouds:
we’ve been able to analyze the spread of malware within
a cloud. Can we then use this knowledge to make
design decisions in cloud infrastructure, connectivity,
and behavior which optimize certain properties while
remaining robust against malware? An initial approach
would be to again formulate this as a graph learning
problem. One could use the GraphRNN [24] model to
generate a graph that meets these criteria and optimizes
the desired properties. This is a difficult and wide-open
problem.

2) Objective functions for optimal decision-making: we
defined a very broad objective function for penalizing
actions taken on systems while also penalizing the
presence of malware in these systems, subject to con-
straints imposed by the cloud requirements. This was
left intentionally general, as requirements and objectives
may vary widely among clouds, with the commonalities
being a penalty on actions taken on devices and the
presence of malware. We leave the in-depth definitions
of this objective function for specific clouds as an open
problem.

3) Action space definition and subsequent action selection:
given the state of a cloud, how can we act optimally so as
to contain or eradicate malware inside? We proposed a
reinforcement learning problem with a reward function
defined by the objective function aforementioned, but
this is somewhat of a “placeholder” solution, as a
supervised approach would be more tractable and well-
defined. Identifying actions and the mechanisms for
deciding which action to take given a cloud’s state is
left as an open problem.

4) Open protocols and data for learning priors: cloud data is
often sensitive and private, and for organizations without
access to large clouds or multicloud environments, any



sort of supervised learning approaches would be diffi-
cult to implement. One example for prior-learning we
mentioned was system log data from the DARPA IDS
evaluation dataset [59]. Do there exist examples from
the internet graph or other publicly available data that
can assist in pretraining the models proposed? This is
left as an open problem.

VII. CONCLUSION

In this paper, we introduced a hierarchical approach to
performing malware detection and management using several
recent advances in deep learning. We analyzed individual
systems, inspecting and understanding their behavior by learn-
ing natural language understanding functions on their system
logs via attention-based models such as the Transformer and
BERT. Given a feature representation of each systems’ logs
using this procedure, we constructed an attributed network
of the cloud with systems and other components as vertices
and proposed an analysis of malware presence and spread
through this network with inductive graph and hypergraph
neural network models such as Graph Convolutional Net-
works, GraphSAGE, Graph Attention Networks, and Deep
Hyperedges. We also proposed a general optimization problem
which is used to discover optimal actions to take in handling
malware within the cloud. With this foundation laid, we
considered the multicloud case, in which multiple clouds with
privacy requirements cooperate against the spread of malware,
proposing the use of federated learning to perform inference
and training while preserving the clouds’ individual privacy.
Finally, we discussed several open problems that remain in
defending cloud computing enviroments against malware.
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