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Computer Systems Have 99 Problems, Let’s Not

Make Machine Learning Another One
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Abstract—Machine learning techniques are finding many ap-
plications in computer systems, including many tasks that re-
quire decision making: network optimization, quality of service
assurance, and security. We believe machine learning systems are
here to stay, and to materialize on their potential we advocate
a fresh look at various key issues that need further attention,
including security as a requirement and system complexity, and
how machine learning systems affect them. We also discuss
reproducibility as a key requirement for sustainable machine
learning systems, and leads to pursuing it.

I. INTRODUCTION

Over the past decade, machine learning has grown as

scientific and perhaps independent discipline for the study of

statistical models that can help in performing tasks, such as

classification, without relying on explicitly defined rules, and

rather on patterns and inferences made from data used for

building those “data models”. For example, samples of data

are typically used in machine learning algorithms to build a

model in a process called “model training”, which (the model)

then is used for making decisions concerning samples of the

same type as those used in building the model.

The applications of machine learning in computer and

networked systems are ubiquitous, with hundreds of appli-

cations and thousands of publications emerging every year.

Those applications include areas of computer networks and

simulation [1], pattern recognition [2], general designs [3],

data quality assurance [4], attack detection and security en-

hancement [5], [6], [7], [8], network and computer systems

optimization through forecasting and classification [9], user

behavior analysis for prioritization and optimization [10], [11],

among many others. Machine learning techniques, including

shallow and deep learning, have been widely utilized to prob-

lems in the computer and networked systems space, covering

fundamental problems such as congestion control [12], traffic

management [13], resource management [14], and quality of

service (QoS) management and assurance [15].

Some might argue that the use of machine learning in many

of those applications is unjustifiable, as is becoming apparent

in various of our community gatherings, arguing that the use

of machine learning is driven by the general hype surrounding

an emerging research area, and perhaps other alternatives and

existing approaches should be utilized, including model-based

(but not learning) algorithms that have been widely utilized

and shown to provide good results in the literature. Some

others have painted a different reality: machine learning is

the only approach ahead for most if not all problems.

In this paper, we take a middle ground: machine learning is

here to stay, and machine learning applications in many com-

puter systems in general and networked systems in particular

are perhaps justified, important, and necessary. However, in

order for a meaningful use of machine learning in this area

to materialize, various problems are certain, and addressing

those problems as a first step requires a significant attention

and effort from the community. More so, those problems

require a fresh look, for that they are forever new with the

particulars of machine learning systems. To instantiate our

position, we consider three dimensions: security, complexity,

and reproducibility. We highlight facets of those dimensions

that require attention so that the introduction, integration, and

utilization of machine learning algorithms into computer and

networked systems are useful and usable.

Organization. The rest of this paper is organized as follows.

In section II, we address security of machine learning systems.

In section III, we discuss various issues with the inherent

complexity of machine learning systems, and how they might

affect the operation of computer systems. In section IV we

draw attention to reproducibility, a central issue affecting the

sustainability of this domain and our views on how to partly

address it. Section V has concluding remarks.

II. SECURITY IS NOT A FEATURE

For long time, security and privacy have been considered

as a feature, and not as a core computer system requirement,

except when the computer system itself is built around security

(e.g., authentication systems). For example, in networked

systems, Distributed Denial of Service (DDoS) attacks are still

prevalent today [16], [17] in great part because the Internet

was first designed in principle as a medium of communication

between endpoints, taking into account the reliability of the

communication, and without any consideration for source

authentication. It was envisioned back then that security would

be addressed at the application layer, or incrementally by

employing upgrades to existing protocols.

A. Time for Experiential Learning: A Prologue

The past 30 years are a testimony of the failure of this argu-

ment. With a few exceptions, upgrades to insecure protocols,

such as IP, DNS, and BGP, to add security features through

alternatives, such as IPSec, DNSSEC, and BGPSec, have

been fiercely resisted for many reasons, including overhead

(e.g., computation overhead for signature verification) and trust
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(e.g., key certification). Where those new upgrades are not

resisted, the shift to utilizing them has been very slow for

the lack of incentives: utilizing those protocols in some cases

means utilizing new stacks of hardware, by replacing existing

infrastructure, which is quite expensive, with very little return

if such upgrades are to be done eventually.

Although not clearly visible yet, we expect the same sce-

nario to repeat itself with machine learning algorithms being

advocated today for every application. A natural question that

might become apparent in this context is the following: why

would we need to have security measures and an understanding

of the security capabilities of a machine learning algorithm

employed in a non-security application, e.g., resource man-

agement, queuing, quality of service, etc.? In other words,

what are the faces of similarity, if any, between machine

learning algorithms employed in computer systems and those

of Internet protocols? The answer is multi-fold.

First, while not apparent, security–broadly defined–is ar-

guably part of those applications’ basic guarantees. For exam-

ple, one possible expected non-security guarantee of certain

queuing algorithms is fairness. Allowing such an algorithm

through machine learning to efficiently and reliably ensure

fairness, while not explicitly stated as a security requirement,

as a core security requirement. Having a secure machine

learning algorithm, where the operating of the algorithm will

help ensure the final outcome of the application in which it is

employed, is essentially a requirement, not a feature.

Second, we believe that machine learning needs to be

viewed as part of the systems in which they are employed,

and not as a stand-alone and separate component that does

not influence the system. That is in fact the modus operandi

in many systems and their design utilizing machine learning.

To that end, a simple modification in the machine learning

algorithm might affect the performance of the system, causing,

among other outcomes, a violation of the very basic guarantees

of overall computer system. As demonstrated in the machine

learning literature, this change can be in the algorithm itself

or the input to the algorithm. Eventually, machine learning

algorithms are implemented as a software; e.g., as in the

widely used machine learning libraries, such as TensorFlow,

Keras, Theano, PyTorch, and Pandas, among many others.

Modifying the algorithms could be as simple as exploiting a

vulnerability (e.g., buffer overflow). Worse yet, machine learn-

ing algorithms are prone to adversarial examples: examples

are are not necessarily out of the training dataset, but that

once are slightly modified (or perturbed) they could be used

to cause misclassification by the machine learning algorithm

(e.g., labeling a malicious sample as benign).

Third, the community has been advocating translating ma-

chine learning algorithms used in systems into hardware for

performance reasons. Implementing those algorithms in hard-

ware, without having a clear understanding of their security

properties, nor of their resilience to manipulated input will

eventually raise the cost of reversal: employing a more secure

machine learning algorithm will require replacing the hard-

ware implementation of insecure machine learning algorithms.

Based on that, we envision various directions that are

worthwhile, including the following.

B. On Defining Realistic Threat Models

Understanding the security of machine learning algorithms

is only possible once we have a clear formulation of a threat

model (or models) outlining the capabilities and adversarial

goals. As a security community, we are very obsessed with

threat modeling, and less so for the machine learning and sys-

tems community as the community does not seem to agree on

the terms. Having those models is not an intellectual exercises,

but is of paramount importance for analysis, evaluation, and

comparison of systems. Moreover, standardized threat models

in a way would help indirectly affirm capabilities of different

systems based on the model they are analyzed within (as a

framework). A direct translation of threat models used for the

abstract analysis of machine learning algorithms is plausible

for that they are often theoretical in assuming unbounded

capabilities. Realistically defining and standardizing threat

models for machine learning systems would be a natural step

drawing on their use model.

A starting point towards this task would be by benefiting

from the existing literature on machine learning systems and

threat modeling in the adversarial machine learning commu-

nity, and by outlining – for a class of systems – capabilities of

users and adversaries, and objectives of the adversaries. Given

the decision making nature of most applications in which

machine learning is utilized, those objectives can be then

characterized, for example, as an intent to reduce confidence in

this decision, to lead to a totally wrong but arbitrary decision

(non-targeted misclassification), or to lead to a wrong decision

of a particular choice (i.e., targeted misclassification). We

note that the models, while might be general and encompass

multiple applications, the ramifications of outcome might be

application-specific. For example, with confidence reduction

being the objective of an adversary, the machine learning

model’s output might not necessarily be a wrong outcome

(e.g., imagine that the confidence of the model itself is

being used as the model outcome for classification using

thresholding). In such a case, understanding the operation of

the system will entirely change how realistic, significant, or

even meaningful is an attack of such nature.

A second but equally important space for exploration would

be capabilities associated with adversaries we will have to

subject our machine learning systems to in order to analyze

them. There has been a great deal of efforts in the learning

(theory) community in general, and by the machine learning

community in particular, in outlining capabilities into models,

including white-box, gray-box, and black-box adversaries.

Having a clear definition of those adversaries, especially in

the context of machine learning systems as they are applied

to various applications, would be essential. For example,

while the white-box attack (whereby the adversary knows

everything) and the black-box (whereby the adversary has

an oracle-access to the model) are well understood, and are

perhaps easy to translate to machine learning systems and



applications, understanding which of those models is more

relevant to a given system/application (or class of class of

them) would be very important. With the potential difficultly

of translating models across applications, it seems reasonable

to annotate those broad classes of models into a hierarchy,

and understand their relationship for different learning tasks,

as those are going to eventually be of interest to analyze and

contrast. Finally, while the gray model is perhaps figurative, it

would be perhaps worthwhile to understand the degrees of gray

associated with this model for different settings, applications,

tasks, and contexts, and the relationships between them. Those

definitions would perhaps benefit from outlining capabilities

such as direct access to models and training data, oracle (or

indirect) access to the model, and sample access (i.e., pairs

of known sample input and the corresponding output). Using

that as a broad model would a first step, but weighing in on

how relevant each model is to a given application would cer-

tainly be essential, especially given the broad set of computer

systems and applications in which they are employed.

C. Understanding the Space of Robust Machine Learning

Per Google scholar, there are more than 13,000 publications

on adversarial machine learning in 2019 alone, not to mention

that the year is not over yet (this text was written in Novem-

ber). In other words, it is not the lack of work on understanding

the robustness of machine learning algorithms, but a) that

few works exist on developing more robust machine learning

algorithms that are easy to integrate in complex systems at

reasonable cost, and b) few works that actually examine the

robustness of machine learning algorithms in context. We

highlight our concern with with both issues.

Examining machine learning algorithms in context (partic-

ularly in computer systems) is a key element that is lacking

in the literature, and we (as a community) should pay more

attention to that exploration. For example, there has been

several studies in the literature on examining the robustness

of (deep and shallow) machine learning algorithms against

adversarial examples. In the context of computer vision, an

ideal example to highlight the idea is the physical world attack

on traffic signs: it was shown to be possible to launch a

targeted attack making a detector (in a self-driving car, for

example) detect the modified stop sign as a speed limit sign

(for 45 mph) [18]. While a clever attack, highlighting the

shortcomings of deep learning networks and how easy it is

to fool them by simple modifications, would only work in

that context. In essence, the input sample from which the

deep features are extract have no other purpose than the visual

representation, recognized by a human, in a human-driven car,

or by a sensor/classifier in self-driving cars. In most other

computer systems, that is never the case: samples ingested

by the machine learning algorithms embody an application-

level and system operation logic that is often very complex,

and inducing changes in the feature space would result in

manipulating this logic. Such manipulation would essentially

pronounce those adversarial examples useless. In the context

of machine-learning based systems for anomaly detection, for

example, modifying flows arbitrarily and independently may

corrupt those flows, invaliding the key objective of the adver-

sary: misclassification while keeping the sample intact [19].

Another example arise in the context of software clas-

sification, where the objective of the adversary is to force

the machine learning algorithm to misclassify a malicious

software (malware) as a benign one, for example [20], [21],

[22]. In that context, there has been several works that

provide involved approaches for such a task. Some of those

approaches, for example, start with the feature space (a vector

representation in the frequency domain; e.g., counts of bytes,

header information, and flags), add some noise on the features,

and force the machine learning system to misclassify the

sample for which the features are extracted into malicious.

This approach indeed works, except that it makes the strong

assumption that the adversary has access to the pipeline of

the operation of the machine learning algorithm/system [23].

In other words, the approach makes the strong assumption that

the adversary will be able to inject such noise in the pipeline

at a stage between the actual input of a functional malware

(or benign) sample and the execution of the machine learning

algorithm on the abstract representation of this sample into a

feature space. This is an unrealistic assumption.

To relax this assumption, one can perhaps advocate one of

two approaches: assuming a white-box model of an attack,

one can perhaps pursue a backpropagation approach, whereby

the noise itself is backpropagated from the feature space to

the sample representation, or a forward-propagation whereby

some modifications are introduced in the sample to generate a

feature representation of interest (that is, a feature representa-

tion the results in the misclassification). While that would only

relax the attack model, again, it would not necessarily guar-

antee a functioning sample. The backpropagation approach,

although might be impractical and expensive, may as well

corrupt the sample. On the other hand, the forward propagation

approach, while could possibly result in a functioning sample,

it may not result in a misclassification (given the constraints

on the perturbation in the raw sample space).

All in all, those issues call for further investigation into new

metrics beyond misclassification, particularly metrics that are

driven from the computer system application space to explain

the results; e.g., executability, consistency, quality, etc.

III. WATCH FOR THE COMPLEXITY

As aforementioned, machine learning has been considered

as an essential component in many systems and applications

and is being considered for solving many problems. However,

complexity is an intrinsic feature of many of those machine

learning algorithms [24], making it difficult to imagine how

such algorithms would fit in such systems without interfering

with their basic properties if they could fit at all.

Model Complexity. Deep learning algorithms—such as artifi-

cial neural networks (ANN), recurrent neural networks (DNN),

long short-term memory (LSTM), and convolutional neural

networks (CNN)—are proposed to aid the security or operation

(as an optimization subsystem) of various systems, including



enterprise networks, Internet of Things (IoT) networks [25],

[26], [27], Mixed Reality (MR) systems [28], etc. Models of

those machine learning systems are determined by the number

of parameters, and are often in the order of thousands of

parameters, amounting to 1-1000 Megabyte (e.g., the size

allowed by the Amazon Machine Learning (AML) platform).

While some of those computer systems might be appropriate

for hosting those models (e.g., enterprise [29]), some others

might not. For example, such machine learning systems are

unimaginable in the context of an on-device model in a

home network system (in the IoT application). Such restriction

calls for optimizations that should take into account reducing

the complexity of models to a minimal size, and perhaps

offloading the model on a dedicated hardware, thus indirectly

increasing the complexity of the system. Introducing such

components in the system, as a necessity due to introducing

the machine learning component, would affect multiple aspects

of the system, not the least of which the attack surface.

Latency, Software, and Hardware Footprints. An additional

concern to address is how to integrate such complex machine

learning subsystems into a computer system pipeline. A ma-

jority of the literature on machine learning systems considers

those systems in isolation, assuming a straightforward inte-

gration, which is rarely the case. We believe that particular

considerations when designing machine learning techniques

for computer systems should include, among other things,

latency, software footprint, and hardware footprint.

• Latency Networked systems designs nowadays aim to

reduce latency to sub-10 millisecond margins on the

Internet, often for application constraints. For example,

in MR/VR applications, having an end-to-end latency

of more than 15 milliseconds would pronounce such

systems unusable (i.e., such a latency would result in

poor experience, causing some users dizziness). The same

phenomenon is present in multiple applications, and is not

limited to MR/VR. To ensure such an end-to-end latency,

the impact of the machine learning algorithms needs

to be minimized. It is unclear, for example, with such

large models and latency constraints, how to integrate

machine learning algorithms in certain computer systems

with such a low latency. It is our prediction that machine

learning algorithms, eventually, would not be a viable

solution for that restriction alone.

• Software and Hardware Footprint While storing the

model would not require a lot of code representation

(since using the model would be as simple as repeated

multiplication operations, for example), it is sometimes

beneficial to store the training code in the pipeline of the

machine learning subsystem, e.g., for model retraining.

Such a model, if made available in the system, needs to

be integrated with system code (e.g., network buffers in

the case of network optimization applications). Having a

complex code would potentially expose the system in its

entirety to vulnerabilities, and call for reducing the code

to the minimal functional components, while utilizing

best practices and approaches for ensuring its security and

reliability. Similarly, where hardware implementation is

pursued for implementing machine learning subsystems,

similar attention needs to be paid to how the increase in

complexity affects the operation of the overall system,

including energy consumption (see section II for more

details on how security needs to be considered as a first

citizen to reduce the cost of upgrades).

IV. ADDRESSING THE REPRODUCIBILITY CRISIS

In 2016, more than 1,500 scientists (including engineers;

https://tinyurl.com/y7bdswpj were surveyed on the repro-

ducibility of scientific work and more than 70% of them have

pointed out that they failed to reproduce another scientist’s

experiments. What is more alarming is that 52% of the

surveyed scientists pointed out that they failed to reproduce

their own work! Machine learning is no exception, either. A

recent study surveying 30 research papers on machine learning

approaches for texting mining has found that 27 (90%) of

them did not provide the raw data, 13 (43%) did not provide

sufficient details on data pre-processing, 9 (30%) did not

provide sufficient details on the feature representation and 19

(63%) did not provide sufficient details on feature selection.

Almost all of them did not provide code, 12 (40%) did not

provide algorithm details, and 15 (50%) did not provide an

executable file. All of them did not provide link to data

partitions, data indices, or seed values, while 29 (97%) of them

did not provide appropriate version of the software used. The

list goes on and on, and the state of affair in the world of the

reproducibility is quite ugly.

In major machine learning and system conferences, various

initiatives have emerged around artifacts collection and eval-

uation, whereby a committee of selected researchers is tasked

with checking the availability of artifacts, and evaluating them

as functional or reusable. Upon that, a badge of available arti-

facts, function, or reusable is assigned to the work. However,

to the best of our knowledge, those efforts are still optional,

and a small minority of authors opt-out to submitting those

artifacts. While a step in the right direction, sharing those

artifacts with the evaluating committee a) does not necessarily

mean that the results are reproducible, and b) does not mean

that the artifacts would be accessible to the community beyond

the evaluation committee or the evaluation time.

In computer systems, as highlighted earlier, reproducibility

depends on a lot of interdependent pieces, and not only the

machine learning algorithms developed for a certain task. For

example, performance evaluation and validation taking into

account model complexity, measured by the time it takes to

train or test the model, would depend on the used hardware,

optimization parameters, settings, etc., and having those “pa-

rameters” standardized would be essential. Moreover, for a

class of applications (e.g., QoS, QoE, energy optimization,

anomaly detection, etc.), having standard traces addressing

various aspects of the computer system and representative of

the various use scenarios would be essential. Data alone is

not sufficient to addressing reproducibility, but essential. Other

components include software, configurations, and libraries.

https://tinyurl.com/y7bdswpj


One approach to facilitating reproducibility would to share

those settings as lightweight containers or fully-fledged virtual

machines with those installed in them. It is ideal to share the

machine learning system in a form or another. For example,

when developed as a software, the code should be made

accessible, and if not accessible, perhaps a detailed description

of the main building block should be made available for

reproducibility. Even when not being able to share their code

with others for reproducing results (e.g., for intellectual prop-

erty or privacy constraints), they can still aid reproducibility

by running their code/system on standardized settings and

benchmark datasets.

We believe addressing reproducibility is in an essence a core

requirement for the sustainability of scientific endeavor, and

a close attention must be paid to facilitating this requirement

by ensuring that machine learning systems are shared in the

public space in standard format that improve reproducibility.

V. CONCLUDING REMARKS

Machine learning systems are here to stay. They might not

be the solution to every problem in computer systems, given

the heterogeneity of those systems and their requirements, but

they promise various capabilities and optimizations in many

others, thus are beneficial. To materialize the potential of

machine learning systems, and not add to an already complex

systems space, we advocate that more effort needs to be paid

to at least three directions in the machine learning systems

community: security, complexity, and reproducibility.
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