
Harpocrates: Privacy-Preserving and Immutable Audit Log for
Sensitive Data Operations

Mohit B. Thazhath

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science and Applications

Thang Hoang, Chair

Danfeng Yao

Kirk W. Cameron

May 9, 2022

Blacksburg, Virginia

Keywords: Blockchain; Immutable Logging; Record Anonymity; Zero-Knowledge Proofs

Copyright 2022, Mohit B. Thazhath

Harpocrates: Privacy-Preserving and Immutable Audit Log for Sen-
sitive Data Operations

Mohit B. Thazhath

(ABSTRACT)

The immutability, validity and confidentiality of an audit log is crucial when operating over

sensitive data to comply to standard data regulations (e.g., HIPAA). Despite its critical

needs, state-of-the-art privacy-preserving audit log schemes (e.g., Ghostor (NSDI ’20), Ca-

lypso (VLDB ’19)) do not fully obtain a high level of privacy, integrity, and immutability

simultaneously, in which certain information (e.g., user identities) is still leaked in the log.

In this work, we propose Harpocrates, a new privacy-preserving and immutable audit log

scheme. Harpocrates permits data store, share, and access operations to be recorded in the

audit log without leaking sensitive information (e.g., data identifier, user identity), while

permitting the validity of data operations to be publicly verifiable. Harpocrates makes use

of blockchain techniques to achieve immutability and avoid a single point of failure, while

cryptographic zero-knowledge proofs are harnessed for confidentiality and public verifiability.

We analyze the security of our proposed technique and prove that it achieves non-malleability

and indistinguishability. We fully implemented Harpocrates and evaluated its performance

on a real blockchain system (i.e., Hyperledger Fabric) deployed on a commodity platform

(i.e., Amazon EC2). Experimental results demonstrated that Harpocrates is highly scalable

and achieves practical performance.

Harpocrates: Privacy-Preserving and Immutable Audit Log for Sen-
sitive Data Operations

Mohit B. Thazhath

(GENERAL AUDIENCE ABSTRACT)

Audit logs are an essential part of data storage systems as they allow to check if the system

is working as intended. They are usually maintained on a server, a server with ill intentions

can easily modify records of the log and make it appear that the system is working correctly.

To store these records in an un-modifiable manner, prior works have leveraged special audit

log storing mechanisms for e.g., blockchain due to its immutable nature. However, these

works do not focus on the privacy of the records which is a crucial aspect for conforming to

certain data regulations like HIPAA.

In this work, we propose Harpocrates, an immutable and privacy-preserving audit log plat-

form that supports recording operations (share/access) on sensitive data. Harpocrates lever-

ages blockchain to achieve immutability of the audit log. Harpocrates use specific crypto-

graphic primitives to achieve public verifiability and confidentiality of the audit log. Real

world deployment of Harpocrates shows that it is practical and achieves strong security guar-

antees.

Acknowledgments

I would like to thank Dr. Thang Hoang for his invaluable help throughout my graduate school

journey. His active involvement in this work and patience to explain complex cryptographic

concepts were reassuring during challenging times. I would also like to thank my committee

members Dr. Danfeng Yao and Dr. Kirk Cameron for their feedback and comments on

this work. Finally, I would like to thank my family and friends who were supportive and

accommodative to my needs.

iv

Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Literature Review 4

2.1 Prior Works . 4

2.2 Use Cases . 5

2.2.1 E-Health Data Sharing . 5

2.2.2 Supply Chain . 6

2.2.3 Research Data Procurement . 6

3 Preliminaries 7

3.1 Notation . 7

3.2 Cryptographic Building blocks . 7

3.3 Blockchain . 12

4 Models 14

4.1 System Model . 14

v

4.2 Threat and Security Models . 16

5 Proposed Method 19

5.1 Overview . 19

5.2 Detailed Construction . 20

5.2.1 Initialization . 20

5.2.2 Data Store Protocol . 21

5.2.3 Assign Ownership Protocol . 24

5.2.4 Sharing Protocol . 26

5.2.5 Access Protocol . 28

5.2.6 Record Verification . 30

6 Security Analysis 32

7 Implementation 40

8 Experiments 42

8.1 Configuration . 42

8.2 Results . 43

8.2.1 Micro-Benchmark . 43

8.2.2 Macro-Benchmark . 45

9 Conclusion 49

Bibliography 50

List of Figures

3.1 High level idea of a commitment scheme . 8

3.2 Binding property . 8

3.3 Hiding property . 9

3.4 High level idea of an argument of knowledge scheme 10

3.5 Soundness property . 11

3.6 Hiding property . 12

3.7 High level idea of a blockchain . 12

4.1 System Model . 15

4.2 Threat Model . 16

5.1 Protocol initialization . 21

5.2 High level working of recording a store operation 21

5.3 Data store protocol. 23

5.4 High level working of recording an assign operation 24

5.5 Assign owner protocol . 26

5.6 High level working of recording a share operation 26

5.7 Data share protocol . 28

viii

5.8 High level working of recording an access operation 28

5.9 Data access protocol . 30

5.10 Transaction Verification . 31

8.1 Verification latency of each data operation 46

8.2 End-to-end delay per data operation with 30 blockchain nodes 47

8.3 Memory usage distribution across blockchain nodes 47

List of Tables

1.1 Comparison of Harpocrates with prior works. 3

8.1 Performance of each data operation . 43

x

Chapter 1

Introduction

Remote data storage systems have become predominant in the past decade due to the growth

of cloud computing. Cloud Service Providers (CSPs) have dedicated resources to store data,

and have developed a suite of services to support it such as AWS S3, Azure Blobs, GCP

Buckets. The widespread use of cloud data storage has made it easy to share/access remote

data.

Given that CSPs generally maintain a vast amount of user data, many of which can be

highly sensitive (e.g., personal, health), it is vital to maintain an audit log that records all

the data operations (e.g., sharing, access activities) to support system integrity inspection

and critical security assurances such as intrusion detection and problem analysis [46]. Many

data audit log schemes have been proposed to record fine-grained operations (e.g., read,

write, share) over sensitive data (e.g., Electronic Health Records (EHRs) [15, 24], supply

chains [22, 36, 38, 41]) in a tamper-resistant and immutable manner.

Despite their merits, achieving the immutability and integrity of the audit log may not be

sufficient to ensure security against active threats. This is because the audit log contains

all data operations (i.e., metadata), which can reveal significant sensitive information. By

analyzing the data log, the adversary can obtain the needed information without having

to access the actual data [47]. Such metadata leakage has become notorious in the related

area such as communication surveillance as a former NSA General Counsel generally said,

“Metadata absolutely tells you everything about somebody’s life” [32]. Due to the sensitiveness

1

of metadata, it is therefore vital to ensure not only the integrity but also the confidentiality of

audit logs as indicated in standard data regulations such as The Health Insurance Portability

and Accountability Act of 1996 (HIPAA) [42].

To enable both privacy and integrity, several privacy-preserving data audit log schemes have

been proposed. Preliminary constructions permit data operations to be logged in a single

server with privacy and integrity guarantees using cryptographic tools such as digital signa-

tures and symmetric encryption [26, 31]. Despite their merits, such centralized approaches

suffer from a single point of failure, in which the corrupted server can compromise the validity

and confidentiality of the audit log. To address single point of failure, several decentralized

privacy-preserving audit log approaches have been proposed using blockchain techniques

[7, 18, 21, 23, 27, 35, 44]. However, there are certain limitations to these techniques. For

example, Droplet [35] offers confidentiality but not anonymity. Ghostor [18] records data

sharing activities with anonymity, but the validity can only be verified privately by the data

owner. This requires all the users to participate in the audit process to verify the validity of

the data operations, thereby reducing the audit transparency. Calypso [21] achieves partial

anonymity (i.e., leaks data owner identity) and private verifiability.

Research gaps. Given that existing data logging techniques lack a certain degree of

anonymity, integrity, confidentiality and transparency, our objective is to design a new

privacy-preserving audit log scheme that can offer all desirable security properties for stan-

dard data regulations compliance.

Contribution. In this paper, we propose Harpocrates, a new privacy-preserving and im-

mutable audit log scheme for sensitive data operations. Harpocrates permits data operations

(i.e., store, share, access) to be recorded in the audit log with validity, confidentiality, and

public verifiability guarantees. Harpocrates makes use of blockchain technologies (e.g., dis-

tributed ledger) to achieve immutability and validity, while the confidentiality and public

verifiability are achieved using advanced cryptographic techniques such as zero-knowledge

proofs [10].

Table 1.1: Comparison of Harpocrates with prior works.

Scheme Audit Log
Confidentiality

Audit Log
Anonymity

Temporal
Access
Control

Validity Verifiability
Store Record Share Record Access Record

Calypso [21] ✓ Partial† 7 Private Private Private
Ghostor [18] ✓ ✓ 7 Private Private Private
Droplet [35] ✓ 7† 7 Not Verifiable Public Not Verifiable
Harpocrates ✓ ✓ ✓ Public Public Public
† Calypso and Droplet does not hide data owner identity.

Harpocrates achieves the following properties.

• Record Immutability: Meaning all data operation records cannot be modified by anyone.

• Full Anonymity: The identity of the data and the user(s) remain hidden all the time. This

security guarantee is stronger than existing works (e.g., [21, 35]).

• Publicly Verifiable Validity: In Harpocrates, the validity of the data operations (e.g., whether

the share/access is performed by an authorized user) can be publicly verified by anyone.

This improves audit transparency such that all the data users do not need to participate

during the audit process.

• Temporal Access Control: Harpocrates supports temporal access control, which restricts

the time for which the data can be accessed. This is useful when operating on highly

sensitive data like EHRs.

Table 1.1 compares Harpocrates with other techniques. We analyze the security of our pro-

posed technique and prove that it achieves standard security notions (non-malleability, in-

distinguishability). Finally, we implemented our technique and deployed it on Amazon EC2

to evaluate its efficiency. Experimental results showed that Harpocrates is highly scalable

(§8) and practical. Therefore, it can be used for sensitive data storage applications that

require privacy-preserving audit log such as EHRs [23, 44] or supply chains [7, 27].

Chapter 2

Literature Review

2.1 Prior Works

Centralized Audit Log. Traditional data sharing/access schemes record data operations

directly on the server that stores the data [39, 45]. Such records are needed for audit

purposes, where a third-party auditor determines whether any unauthorized access have

been made in the system [40, 46]. However, with the introduction of regulations like HIPAA

a secure logging mechanism [42] is needed. Secure logging primitives [31, 37] rely on a trusted

author whose signature is considered the root of trust for integrity or requires analyzing the

entirety of the audit log to detect tampering due to the privacy-preserving nature of the

records. Alternatively, prior works [19, 26] use secure hardware to achieve immutable and

privacy-preserving records. Since the audit log is maintained by the centralized server, it

is vulnerable to a single point of failure, where the corrupted server can compromise the

confidentiality and integrity of the audit log.

Decentralized Audit Log. Several works have proposed a decentralized audit log to

address the single point of failure vulnerabilities. Decentralized audit log schemes were

designed for medical data [15, 44], supply chain [7, 27], and financial applications [2, 8]. Some

schemes permit tamper resistant and access control to data objects being logged [12, 30].

However, these approaches do not hide the user identities (e.g., sender/receiver). Several

4

works attempted to achieve either full anonymity [18] or partially anonymous [21]. There

are several schemes that permit the validity of audit log to be verified publicly [35] or

privately [18, 21]. Private validity verifiability can be detrimental during an audit because

every user in the system will have to participate and prove the integrity of their records.

2.2 Use Cases

2.2.1 E-Health Data Sharing

Medical information sharing without violating patient rights has been a long studied topic.

Laws such as The Health Insurance Portability and Accountability Act of 1996 (HIPAA)

prohibit patient records from being disclosed without the patient’s consent or knowledge.

Compliance with HIPAA is a major concern for medical organizations as well as cloud data

service providers. Over the years, many medical organizations have relied on cloud storage

for their patient data. However, this has led to a number of privacy and security concerns

through the loss of data control to the patients [25]. Present day research has employed

blockchain as an access control mechanism for medical records which in turn give more

control to the patients of their data. A lot of such works [13, 15, 23, 24, 44] do not address

the anonymity concerns of patients and employ public blockchains for access control over

medical data. This can be a concern for patients as it makes them vulnerable to data

inference attacks. For example, a targeted marketing campaign could obtain information of

all patients who share their records to cardiologists and serve advertisements related to heart

diseases. Although blockchain systems have provided great amount of access control to the

patients, their identities are still not protected. This calls for the need of an anonymized

e-health data sharing and logging system.

2.2.2 Supply Chain

The supply chain industry is growing in complexity as multiple stakeholders want more

transparency. A transparent supply chain helps hold malicious stakeholders accountable for

their actions and helps establish trust in the supply chain. Many researchers have leveraged

the use of blockchain to store and share supply chain related data [22, 36, 38, 41]. However,

transparency in supply chain is not always possible and can be prohibited by law. The

Federal Acquisition Supply Chain Security Act of 2018 (FASCSA) gives the power to federal

agencies to issue removal orders to their suppliers [43]. In other words, supplier databases

are modified to remove information related to orders made by federal agencies. Although

done due to a matter of national security, this may cause issues for a supplier’s bookkeeping

and is not the best solution. Another approach to this problem is to anonymize entities in

the supply chain and ensure that all order related records do not identify the participants.

Therefore, there is a need to achieve transparency as well as maintain anonymity of all

participants in the supply chain.

2.2.3 Research Data Procurement

Although most of the data used for research is publicly available, lot of data providers are

concerned about the privacy of their data [20, 33]. This has lead to a rise in unethical means

of data procurement in some research communities [11]. A few data procurement organiza-

tions provide no guarantees of unauthorized access of personal identifiable information [1]

while others remove such information from data before publishing publicly. However, such

techniques are vulnerable to re-identification attacks [16]. Therefore, there is a need for a

system where users can share data securely while maintaining their anonymity and where

researchers can verify the integrity of the data.

Chapter 3

Preliminaries

3.1 Notation

We denote || as the concatenation operator. Let λ be a security parameter, negl be as

a negligible function, i.e., limn→∞(negl(n)) × nk ← 0 ∀ k > 0 : (n, k) ∈ R. We denote

H : {0, 1}∗ → {0, 1}λ as a collision-resistant hash function. r ← PRF(s) is a pseudorandom

function that outputs a pseudorandom r given a seed s. Let E = (Gen,Enc,Dec) be an

asymmetric public key encryption scheme, in which (pkadr, skadr) ← E .Gen(1λ) generates a

public and private key pair given a security parameter λ; c ← E .Enc(pkadr,m) encrypts a

plaintext m under public key pkadr; m← E .Dec(skadr, c) decrypts a ciphertext c with private

key skadr. Let Σ = (Gen, Sign,Verify) be a digital signature scheme, in which (pksig, sksig) ←

Σ.Gen(1λ) generates a public and private signing key pair under security parameter λ; σ ←

Σ.Sign(sksig,m) produces a signature σ for message m under private key sksig; {0, 1} ←

Σ.Verify(pksig,m, σ) verifies whether σ is a valid signature of m using public key pksig.

3.2 Cryptographic Building blocks

Commitment Scheme. A cryptographic commitment scheme allows to commit to a

secret with the ability to reveal the committed value later. A commitment scheme is a tuple

7

of PPT algorithms (Com.G,Com) defined as follows.

• pp← Com.G(1λ): Given a security parameter λ, it outputs public parameters pp.

• cmr ← Comr(m, pp): Given a message m and a trapdoor r, it outputs a commitment cmr.

Figure 3.1: High level idea of a commitment scheme

A commitment scheme satisfies the following properties.

• Binding: For any PPT adversary A, pp ← Com.G(1λ), (m0,m1, r0, r1) ← A(pp) it holds

that

Pr [Comr0(m0, pp) = Comr1(m1, pp) ∧m0 ̸= m1] ≤ negl(λ)

meaning that no adversary can reveal different openings to an already committed value.

Figure 3.2: Binding property

• Hiding: For any PPT adversary A, pp← Com.G(1λ), it holds that

∣∣∣∣∣∣∣Pr

 b = b′

∣∣∣∣∣∣∣
(m0,m1)← A(pp), b $←− {0, 1}, r $←− {0, 1}λ,

cm← Comrb(mb, pp), b′ ← A(cm)

− 1

2

∣∣∣∣∣∣∣ ≤ negl(λ)

meaning that no adversary can open the committed value until the committer reveals its

opening.

Figure 3.3: Hiding property

Merkle Tree. Merkle tree permits one to commit to a set of values with the ability to

reveal an element in the committed set later (proof of membership). The tree is built as

follows. Given m⃗ = (m1,m2,m3, . . . ,mn), It first initializes a binary tree T with n leaves,

and set H(mi) to the i-th leaf node. The tree T is built in the bottom-up manner, in which

each non-leaf node t of T is computed by computing the hash of its child nodes tl and tr,

i.e., t = H(tl||tr). To prove mi ∈ m⃗, it suffices to show the path path from rt to H(mi),

where rt is root of T and path is the set of sibling nodes along the path from mi to rt. This

can be done by having the prover to reveal, path, so that the verifier can recompute rt for

membership verification.

Given an updated set m⃗′, it is easy to update its commitment rt accordingly in logarithmic

time. Let mi ∈ m⃗′ be the updated value. The prover updates i − th leaf with H(m′
i) and

recomputes non-leaf nodes along the path from H(m′
i) to rt, and outputs the updated root

rt′.

Argument of Knowledge. An argument of knowledge for an NP relation R is a protocol

between a prover P and a verifier V , in which P convinces V that it knows a witness w for

some statement in an NP language x ∈ L such that (x,w) ∈ R.

Figure 3.4: High level idea of an argument of knowledge scheme

Formally speaking, a zero-knowledge argument of knowledge is a tuple of PPT algorithms

(zkp.G, zkp.P , zkp.V) as follows.

• pp← zkp.G(1λ): Given a security parameter λ, it outputs public parameter pp.

• π ← zkp.P(x,w, pp). Given a statement x and a witness w, it generates a proof π

indicating (x,w) ∈ R.

• {0, 1} ← zkp.V(x, π, pp). Given a statement x and a proof π, it outputs 1 if π is a valid

and (x,w) ∈ R, else it outputs 0.

A zero knowledge argument of knowledge satisfies the following properties

• Completeness. For any (x,w) ∈ R, π ← zkp.P(x,w, pp), pp← zkp.G(1λ) , it holds that

Pr [zkp.V(x, π, pp) = 1] = 1

meaning that a valid proof will always be verified.

• Soundness. For any PPT prover P∗, there exists a PPT extractor E such that, given

the entire execution and randomness of P∗, E can extract a witness w such that pp ←

zkp.G(1λ), w ← EP∗
(x, π∗, pp), π∗ ← P∗(x, pp) and

Pr [zkp.V(x, π, pp) = 1 ∧ (x,w) /∈ R] ≤ negl(λ)

meaning that an adversarial prover cannot generate a valid proof without knowledge of

the witness.

Figure 3.5: Soundness property

• Zero knowledge. There exists a simulator S such that for any PPT verifier V∗, (x,w) ∈ R,

it holds that

Pr

 zkp.V(x, π, pp) = 1

∣∣∣∣∣∣∣
pp← zkp.G(1λ)

π ← zkp.P(x,w, pp)

c
≈ Pr

 V∗(x, π, pp) = 1

∣∣∣∣∣∣∣
pp← S(1λ)

π ← S(x, pp)

meaning that an adversarial verifier cannot learn anything from the proof except its va-

lidity.

Figure 3.6: Hiding property

3.3 Blockchain

Blockchain is a distributed ledger that records all activities being performed between nodes in

a peer-to-peer network. To perform an activity, the node creates and broadcasts a transaction

to the network (e.g., via a gossip protocol), which contains basic information such as the

sender address, receiver address, the message/data from sender to receiver, and a sender’s

digital signature of the transaction.

A node in the network will collect several transactions, verify their validity (e.g., correct

signature, consistent format), and form a block to be included to the ledger. Upon achieving

a consensus between several nodes in the network, the block will be verified and appended to

the ledger. All the blocks in the ledger are linked together via cryptographic hash functions

and each node in the network maintain a replica of the ledger.

Figure 3.7: High level idea of a blockchain

Privacy-Preserving Blockchain. Since the ledger is public and maintained by multi-

ple nodes in the network, it may create security concerns given that the information in

the transaction is sensitive. Privacy-preserving blockchain permits some information in the

transaction (e.g., sender identity, receiver identity, message/data) to remain hidden against

the blockchain nodes. We recall Zerocash [5], a privacy-preserving blockchain, which har-

nesses cryptographic commitment and zero-knowledge techniques (zk-SNARK) to prove the

validity of transactions in the cryptocurrency context, without leaking any information (e.g.,

sender/receiver linkability, account balance) beyond the fact that the transaction is valid

(e.g., no double-spending, no money created out of thin air). In Zerocash, there are two

types of transactions: a mint transaction, which permits a participant to convert from their

(non-private) basecoin currency (e.g., bitcoin) to the zerocoin currency; a pour transaction,

which permits the participant to transact their zerocoin to the recipient without leaking the

transaction amount and the sender/recipient information. Each pour transaction consists of

a cryptographic proof indicating that the sender is the owner of the transacting coin, the

transacting coin is never spent previously, and the input and output balance is preserved.

Chapter 4

Models

4.1 System Model

In our system, we consider three types of participants: (i) The data owner(s) (denoted

O) who owns some data; (ii) The data user(s) (denoted U) who would like to access data

of some data owner; (iii) The storage provider S who offers storage facilities for the data

owners, as well as access facilities for the data users to access data shared by the owner. Our

system permits data storage, sharing and access between these participants while, at the

same time, recording all valid operations being performed on the data in a distributed audit

log. Formally speaking, a distributed privacy preserving and immutable audit log (PIAL)

scheme consists of PPT algorithms PIAL = (Init,Register, Store,AssignOwner, Share,Access)

as follows –

• (L, pp) ← Init(1λ, N) : Given a security parameter λ, and the maximum number of sup-

ported operations N , it outputs an initial distributed audit log L and public parameters

pp.

• (pkadr, skadr)← Register(1λ): Given a security parameter λ, it outputs an address-key pair

(pkadr, skadr) as an identifier for the participant.

• (tkstr, txstr) ← Store(D, skOadr, pkSadr, pp): Given data D, and a data owner private identifier

skOadr, a server public identifier pkSadr, it outputs a store token tkstr and a record txstr of the

14

Figure 4.1: System Model

store operation.

• (tkown, txown) ← AssignOwner(tkstr, skSadr, pkOadr, pp): Given a store request token tkstr, a

server private identifier skSadr, and a data owner public identifier pkOadr, it outputs an owner-

ship token tkown, which permits pkOadr to share their data stored on skSadr later, and a record

of ownership txown.

• (tkshr, txshr) ← Share(tkown, skOadr, pkUadr, ts, pp): Given a data owner token tkown, an owner

private identifier skOadr, a data user public identifier pkUadr, a share expiry timestamp ts > 0,

it outputs a data share token tkshr that is only valid up to ts, and a record of share txshr.

• (tkacc, txacc)← Access(tkshr, skUadr, pkSadr, pp): Given a data share token tkshr, a user identifier

skUadr, and a server identifier pkSadr, it outputs a data access token tkacc (if tkshr is not expired)

and a record of access txacc.

• {0, 1} ← VerifyRecord(pp, tx,L): Given a record entry tx, it outputs 1 if the record is valid

with respect to the current state of the audit log L, and 0 otherwise.

Figure 4.2: Threat Model

4.2 Threat and Security Models

Given that our system records all the data operations in a distributed audit log (realized

using blockchain), we consider all the participants in the blockchain to be distrusted against

each other in the sense that they can behave maliciously to the records created by other

participants that are not related to them. Specifically, the adversary is curious about the

record content, e.g., who is the owner of a particular data, whom the data is shared with

or accessed by, what data is being shared or accessed. The adversary may also attempt to

modify the record to compromise integrity or to gain access to unauthorized data.

To prevent these vulnerabilities, we aim to achieve integrity and confidentiality properties

for records, which can be formally defined via record non-malleability and audit ledger

indistinguishability as follows.

Definition 1 (Record Non-Malleability). Let Π be a candidate PIAL scheme. Consider

the following experiment NMGameΠ,A(λ) between the adversary A and the challenger C.

• Initialization. The challenger samples pp← Init(1λ) and sends pp to A. The challenger

initializes a PIAL oracle OPIAL using pp. Let L be the audit log of OPIAL.

• Query. At each time step, A adaptively specifies a query q ∈ {CreateAddress, Store,

AssignOwner, Share, Access} to C. The challenger forwards q to OPIAL and receives a

corresponding response r, which is then forwarded to A. The challenger also provides the

view of L to A.

• Challenge. A outputs a log tx∗, let T be the set of logs with the same type of tx∗ that

OPIAL generates during the query phase.

Case 1. If there exists a log txown ∈ T created in response to an AssignOwner query, A

wins and outputs 1 if and only if all the following conditions hold – (i) tx∗own ̸= txown; (ii)

VerifyLog(tx∗own, pp,L′) = 1, where L′ is the state of the audit log preceding txown; (iii) the

serial number sn in tx∗own is the same as in txown. Otherwise, it outputs 0.

Case 2. If there exists a log tx ∈ T created in response to any other query (i.e, one

of {Store, Share,Access}), A wins and outputs 1 if and only if all the following conditions

hold – (i) m∗ ̸= m; (ii) VerifyLog(tx∗, pp,L′) = 1, where L′ is the state of the audit log

preceding tx; Otherwise, it outputs 0.

Π is said to achieve record non-malleability if Pr[NMGameΠ,A(λ) = 1] ≤ negl(λ)

Definition 2 (Audit Log Indistinguishability). Let Π be a candidate PIAL scheme.

Consider the following experiment IndGameΠ,A(λ) between the adversary A and the chal-

lenger C.

• Initialization. The challenger first samples a random bit b
$←− {0, 1}, pp ← Com.G(1λ)

and initializes two PIAL oracles OPIAL
0 and OPIAL

1 , where each oracle OPIAL
i has a separate

audit log Li as well as internal variables.

• Query At each time step, A adaptively specifies two queries Q,Q′ of the same type (one

of Store,AssignOwner, Share,Access). C forwards Q to OPIAL
0 , Q′ to OPIAL

1 and receives the

corresponding answers R0, R1. C forwards (Rb, R1−b) to A. C also provides to A two

ledgers Lleft := Lb, Lright := L1−b, where Lb is the current audit log in OPIAL
b .

• Challenge. A outputs a bit b′ ∈ {0, 1}. A wins if b′ = b and outputs 1. Otherwise, it

outputs 0.

Π is said to achieve audit log indistinguishability if Pr[IndGameΠ,A(λ) = 1] ≤ negl(λ).

Out-of-scope assumption. In our system, we do not hide the access pattern against the

storage server. Specifically, the server sees which file is being accessed (but does not know

who is accessing it). Hiding the file access pattern is challenging in the context of multi-user

data access, which may require a costly primitive as multi-user ORAM [17]. We leave hiding

the access pattern against the adversarial storage server as future work.

Chapter 5

Proposed Method

5.1 Overview

We start with the intuition of our construction. Harpocrates offers three data operations

– store, share and access, wherein each operation is record in an immutable manner using

blockchain. Specifically, to store a data, the data owner creates a “store” request, which

serves both as a record and a request to the server indicating what data is to be stored.

The corresponding server handles the store request by creating an “ownership” record to

confirm that the data has been stored at a particular location, and provide a secret token

for the owner to share their data later. While sharing data, the data owner creates a “share”

record, which demonstrates their ownership and creates a token for the user to access their

data on the server. Harpocrates permits temporal access control in the sense that the user can

only access the data within a limited period of time. This is particularly useful for privacy-

preserving applications such as medical data sharing and federal supply chains. To access

data, the data user creates an “access” record, which indicates that his access is authorized

by the data owner. If the record is valid, the storage server generates a link for the data user

to retrieve the requested data off-chain.

In Harpocrates, all the data operations are recorded in a distributed audit log maintained

by multiple parties. To ensure all the records are confidential (e.g., hides party identity or

which data is being shared/accessed), while permitting verification of data operations, our

19

main idea is to use cryptographic commitment, encryption, and zero-knowledge techniques

drawing inspiration from Zerocash [5] to create all aforementioned records. We present the

detailed constructions for each phase of our scheme in the following section.

5.2 Detailed Construction

In detail, our scheme consists of two phases – i) initialization, where the audit log is

created ii) utilization, where participants interact with our scheme to store/share/access

data. Every time the participant performs an operation, they follow one of the protocols

Store,AssignOwner, Share,Access and record their operation.

5.2.1 Initialization

The initialization generates public parameters for NP-statements to be proven/verified in

zero-knowledge and the commitment scheme. In Harpocrates, there are four types of data

operations including store (denoted str), assign owner (denoted own), share (denoted shr),

and access (denoted acc). Therefore, we initialize four empty Merkle trees with roots

(rtstr, rtown, rtshr, rtacc), each storing the commitments of data operations with the same type.

For simplicity, we assume Harpocrates permits up to N number of operations per type.

Since Harpocrates operates in a distributed manner with multiple participants, each partici-

pant needs to create an address for communication and recording their data operations. The

address consists of two components as addr = (pkadr, skadr), where skadr
$←− {0, 1}λ is the pri-

vate key that is randomly sampled from a uniform distribution and pkadr = PRF(skadr) is the

public address (known by all parties) generated from skadr. In Harpocrates, since (pkadr, skadr)

is never revealed, each party only needs to generate a single address to perform multiple

operations. Figure 5.1 presents the initialization in detail.

(L, pp)← Init(1λ, N):

1. pp← {zkp.G(1λ),Com.G(1λ)}

2. Initialize four empty Merkle trees containing N nodes with roots (rtstr, rtown, rtshr, rtacc)

3. L ← {rtstr, rtown, rtshr, rtacc}

4. return (L, pp)

(pkadr, skadr)← CreateAddress(1λ):

1. skadr
$←− {0, 1}λ

2. pkadr ← PRF(skadr)

3. return (pkadr, skadr)

Figure 5.1: Protocol initialization

5.2.2 Data Store Protocol

Figure 5.2: High level working of recording a store operation

Figure 5.3 presents our data store protocol, which we elaborate as follows. Given a data D,

the data owner first creates a commitment that represents their store request. Specifically,

the commitment is formed by the hash of the data H(D), the designated server public address

pkSadr and a random value ρ as cmstr = Comr(H(D)||pkSadr||ρ) (Figure 5.3, line 3). The server

address is needed in cmstr to tie store request of D with a particular server. On the other

hand, the random ρ is used to ensure that the request can only be handled once (see §5.2.3

for further explanation).

To ensure integrity, the data owner generates a one-time unique signing key pair (pksig, sksig)

to sign their store request1 (line 4). To achieve non-repudiation and prevent malleabil-

ity attacks, such keys must be tied with the data owner identity. Thus, the data owner

creates a MAC tag h of the signing key pksig under their address private key skOadr as

h = PRF(skOadr, hsig), where hsig = H(pksig)
2 (line 5). For creating a store record, the owner

needs to show that the components of (cmstr, h) have been formed correctly under their se-

crets (pkSadr, r, ρ, v, skOadr, hsig). Specifically, the data owner creates a proof (using zkSNARK

circuits, more about this in §7) for the following statements in zero-knowledge (line 7).

NP-statement for Data Store. Given a store instance x = (cmstr, h), the witness

w = (pkSadr, r, ρ, v, skOadr, hsig) is a valid witness for x if the following holds:

• The commitment cmstr is well-formed: cmstr = Comr(pkSadr||ρ||v, pp).

• The MAC is computed correctly by the address secret key skOadr: h = PRF(skOadr||hsig) where

hsig = H(pksig).

The data owner then creates a store token tkstr = E .Enc(pkSadr, r||ρ||v||cmstr) containing the

openings of the commitment and encrypts it under the server address public key (line 8).

This token will be used by the storage server to respond the owner’s request appropriately.

The data owner forms a store record txstr, which contains the commitment cmstr, the MAC

1The key is only used one-time to ensure unlinkability between multiple requests from the same data
owner.

2Since pksig is generally a group element, which may be large, we “compress” it with the hash function to
reduce the circuit size of proving PRF evaluation. In fact, pksig is only required to be unique and used once.

tag h, the encrypted token tkstr, proof πstr, and the signature verification key pksig. We store

the token in the record for two main reasons - i) tokens need not be stored permanently

by the participants ii) During an audit, participants do not need to be trusted to provide

the right token for the transaction being audited. Finally, the data owner signs the record

with sksig, and appends it to the distributed audit log while sending the data D to the

storage provider. The server checks if the decrypted store token tkstr is consistent with the

commitment and the record is valid (i.e., valid signature and valid proof). If so, the storage

server stores the data in an appropriate location and creates a record to give the ownership

to the data owner, which will be described in the next section.

(tkstr, txstr)← Store(D, skOadr, pkSadr, pp):

1. v ← H(D)

2. ρ
$←− {0, 1}λ

3. cmstr ← Comr(pkSadr||ρ||v, pp)

4. (pksig, sksig)← Σ.Gen(1λ)

5. hsig ← H(pksig), h← PRF(skOadr||hsig)

6. x = (cmstr, h), w = (pkSadr, r, ρ, v, skOadr, hsig)

7. πstr ← zkp.P(x,w, pp)

8. tkstr ← E .Enc(pkSadr, r||ρ||v||cmstr)

9. m = x||hsig||πstr||tkstr

10. σ ← Σ.Sign(sksig,m)

11. txstr = (pksig, σ, cmstr, h, πstr, tkstr)

12. return (tkstr, txstr)

Figure 5.3: Data store protocol.

5.2.3 Assign Ownership Protocol

Figure 5.4: High level working of recording an assign operation

The storage server performs an assign ownership operation on receiving a txstr. The server

decrypts tkstr to identify which data needs to be assigned. A serial number (sn) is generated

using the seed ρ (Figure 5.5, line 1) in the store record. The serial number uses a collision-

resistant PRF function to ensure that only one assignment is created for the corresponding

store operation. Without this, the storage server can use a single txstr to maliciously perform

assign operations to multiple data owners. Subsequently, the server generates a commitment

cmown ← Comr′(pkOaddr||v′, pp) (line 2) to represent ownership assignment. To successfully

create an assign record, the storage server must generate a proof of ownership πown (line 7).

Verification of the proof shows that the storage server indeed received a store request for the

corresponding data. The proof is generated by the following NP statements:

NP-statement for Data Owner Assignment. Given an assign owner instance

x = (rtstr, sn, cmown, h), the witness w = (pathstr, skSadr, ρ, r, v, pkSadr, r
′, v′, pkOadr, hsig) is a valid

witness for x if the following holds:

• The commitment cmstr appears in the Merkle tree with root rtstr: rtstr =

H(. . . (H(H(cmstr)||pathd
str)||pathd−1

str)|| . . . ||path1
str)) where d is the height of the merkle tree

and pathi
str represents a node at height i in the merkle tree along the path from cmstr to

rtstr.

• The commitments cmstr and cmown are well-formed: cmstr = Comr(pkSadr||ρ||v, pp) and

cmown = Comr′(pkOadr||v′, pp).

• The serial number sn is computed correctly: sn = PRF(skSadr||ρ).

• Hashes of the data committed to cmstr and cmown are the same: v = v′.

• The address secret key skSadr ties hsig to h: h = PRF(skSadr||hsig).

We utilize merkle trees to prove set membership i.e, the statement to prove that cmstr ∈ rtstr.

The tree itself is stored locally by the nodes of the distributed audit log and only the root

is added to the record. This is because we want to capture the state of the tree when the

particular record was created. The server then creates an encrypted ownership token tkown

(line 8). In §5.2.4, we shall see how this token is used to share data with a data user. Finally,

the server creates a record txown, signs it using a one time signing key and appends it to the

distributed audit log. The server also sends the corresponding assignment token tkown to the

data owner off-chain.

(tkown, txown)← AssignOwner(tkstr, skSadr, pkOadr, pp):

1. sn← PRF(skSadr||ρ)

2. cmown ← Comr′(pkOadr||v′, pp) ▷ v′ = v

3. pathstr = Merkle path from cmstr to rtstr ▷ Obtain rtstr from L

4. (pksig, sksig)← Σ.Gen(1λ)

5. hsig ← H(pksig), h← PRF(skSadr||hsig)

6. x = (rtstr, sn, cmown, h), w = (pathstr, skSadr, ρ, r, v, pkSadr, r
′, v′, pkOadr, hsig)

7. πown ← zkp.P(x,w, pp)

8. tkown ← E .Enc(pkOadr, r
′||v′||cmown)

9. m = x||hsig||πown||tkown

10. σ ← Σ.Sign(sksig,m)

11. txown = (rtstr, pksig, σ, sn, cmown, h, πown, tkown)

12. return (tkown, txown)

Figure 5.5: Assign owner protocol

5.2.4 Sharing Protocol

Figure 5.6: High level working of recording a share operation

Given an ownership token tkown, a share expiry timestamp ts, data user’s public identity

pkUadr and private identity of the data owner skOadr a share operation generates a share token

tkshr to U and a record txshr. A commitment cmshr is created to hide the data user, share

expiry timestamp and the hash of the data being shared (Figure 5.7, line 1). Intuitively, the

data owner generates a proof, πshr, of the data they wish to share (line 6). To produce a

valid proof πshr, the data owner proves the following NP statements –

NP-statement for Data Sharing. Given a share instance x = (rtown, cmshr, h), the

witness w = (pathown, pkOadr, r, v, pkUadr, r
′, v′, hsig, skOadr) is a valid witness for x if the following

holds:

• The commitment cmown appears in the Merkle tree with root rtown: rtown =

H(. . . (H(H(cmown)||pathd
own)||pathd−1

own)|| . . . ||path1
own)).

• The commitments cmown and cmshr are well-formed, i.e., cmown = Comr(pkOadr||v, pp), and

cmshr = Comr′(pkUadr||ts||v′, pp).

• Hashes of the data committed to cmstr and cmown are the same: v = v′.

• The expiration timestamp committed to cmshr is valid: ts > 0.

• The address secret key skOadr ties hsig to h: h = PRF(skOadr||hsig).

Verification of this proof means that the data owner owns the corresponding data being

shared and is sharing it for a valid period of time. Once the proof is generated, all the

generated data is bundled into a record txshr and signed using skOsig (line 9). The record is

added to the distributed audit log for verification and the token tkshr is sent to the data user.

We note that the data owner can share their data multiple times. This can be done because

there is nothing preventing the data owner to re-use their token tkown more than once to

show their ownership. This is unlike the case in AssignOwner where the storage provider

reveals the opening of cmstr in tkstr through sn.

(tkshr, txshr)← Share(tkown, skOadr, pkUadr, ts, pp):

1. cmshr ← Comr′(pkUadr||ts||v′, pp) ▷ v′ = v

2. pathown ← path from cmown to rtown in Merkle tree ▷ Obtain rtown from L

3. (pksig, sksig)← Σ.Gen(1λ)

4. hsig ← H(pksig), h← PRF(skOadr||hsig)

5. x = (rtown, cmshr, h), w = (pathown, pkOadr, r, v, pkUadr, r
′, v′, hsig, skOadr)

6. πshr ← zkp.P(x,w, pp)

7. tkshr ← E .Enc(pkUadr, r
′||v′||ts||cmshr)

8. m = x||hsig||πshr||tkshr

9. σ ← Σ.Sign(sksig,m)

10. txshr = (rtown, pksig, σ, cmshr, h, πshr, tkshr)

11. return (tkshr, txshr)

Figure 5.7: Data share protocol

5.2.5 Access Protocol

Figure 5.8: High level working of recording an access operation

The data user uses the share token obtained from the data owner to perform an access oper-

ation. A commitment representing an access cmacc ← Comr′(pkSadr||v′, pp) is generated using

the storage provider’s public key and the hash of the data that needs to be accessed (Fig-

ure 5.9, line 1). The data user then creates a proof πacc by proving the following statements

–

NP-statement for Data Access. Given an access instance x = (rtshr, cmacc, h), the

witness w = (pathshr, pkUadr, r, v, pkSadr, r
′, v′, ts, curr, hsig, skUadr) is a valid witness for x if the

following holds:

• The commitment cmshr appears in the Merkle tree with root rtshr: rtshr =

H(. . . (H(H(cmshr)||pathd
shr)||pathd−1

shr)|| . . . ||path1
shr)).

• The commitments cmshr and cmacc are well-formed, i.e., cmshr = Comr(pkOadr||ts||v, pp), and

cmacc = Comr′(pkUadr||v′, pp).

• Hashes of the data committed to cmshr and cmacc are the same: v = v′.

• The timestamp committed to cmshr is not expired: ts− curr > 0.

• The address secret key skUadr ties hsig to h: h = PRF(skUadr||hsig).

A valid proof for the above statements can only be generated if the data user was given the

share token by the data owner and the share expiry timestamp is not expired. We note that

the data user can access the data as many times as they wish within the given time period

after which they will not be able to generate a valid πacc. Finally, the data user creates

an access record (line 10) and appends it to the distributed audit log. The data user also

sends the access token to the storage server to obtain the data shared with them. The server

responds with the data only if the record (i.e txacc) corresponding to the access token has

been validated by the distributed ledger.

(tkacc, txacc)← Access(tkshr, skUadr, pkSadr, pp):

1. cmacc ← Comr′(pkSadr||ts− curr||v′, pp) ▷ v′ = v

2. pathshr ← path from cmshr to rtshr in Merkle tree ▷ Obtain rtshr from L

3. (pksig, sksig)← Σ.Gen(1λ)

4. hsig ← H(pksig), h← PRF(skUadr||hsig)

5. x = (rtshr, cmacc, h), w = (pathshr, pkUadr, r, v, pkSadr, r
′, v′, ts, curr, hsig, skUadr)

6. πacc ← zkp.P(x,w, pp)

7. tkacc ← E .Enc(pkSadr, r
′||v′||curr||cmacc)

8. m = x||hsig||πacc||tkacc

9. σ ← Σ.Sign(sksig,m)

10. txacc = (rtshr, pksig, σ, cmacc, cmshr, ts, h, πacc, tkacc)

11. return (tkacc, txacc)

Figure 5.9: Data access protocol

5.2.6 Record Verification

The VerifyRecord algorithm is run on the distributed audit log in order to validate a record

received by the nodes of the network. Mainly, the verification of the zero knowledge proof

and the signature have to be done in this step. If either of the verification procedures fails,

the record is considered invalid and is discarded. If the record verification succeeds, the

audit log nodes update their local copies of the corresponding commitment tree. For e.g, if a

data user performs an access operation and generates a record txacc, the commitment cmacc

is appended to the global tree rtacc containing all access commitments.

{0, 1} ← VerifyRecord(tx,L, pp):

1. If tx = (pksig, σ, cmstr, h, πstr, tkstr) ▷ tx = txstr

2. x = (cmstr, h), m = x||hsig||πstr||tkstr

3. Else if tx = (rtown, pksig, σ, sn, cmstr, h, πown, tkown) ▷ tx = txown

4. If sn ∈ L, abort. ▷ Owner has been previously assigned

5. x = (rtstr, sn, cmown, h), m = x||hsig||πown||tkown

6. Else if tx = (rtshr, pksig, σ, cmshr, h, πshr, tkshr) ▷ tx = txshr

7. x = (rtown, cmshr, h), m = x||hsig||πshr||tkshr

8. Else if tx = (rtacc, pksig, σ, cmacc, h, πacc, tkacc) ▷ tx = txacc

9. x = (rtshr, cmacc, h), m = x||hsig||πacc||tkacc

10. return zkp.V(pp, x, π) ∧ Σ.Verify(pksig,m, σ)

Figure 5.10: Transaction Verification

Chapter 6

Security Analysis

Theorem 1. Harpocrates achieves record non-malleability by Definition 1.

Proof Overview. We show Harpocrates achieves record non-malleability by defining an ad-

versary who intercepts a record sent to the distributed audit log by an honest user. The

adversary then modifies the record and submits it to the audit log for verification.

However, by highlighting properties of cryptographic primitives used in the system, we show

that the adversary’s modified record will never be verified by the distributed audit log.

Hence, Harpocrates achieves record non-malleability

Proof. Case 1. Let QRegister = {1λ, 1λ, . . . } be the queries by A to Register and

RRegister = {(pkS,1adr , sk
S,1
adr), (pkS,2adr , sk

S,2
adr), . . . } be the response from C. QAssignOwner =

{(pp, tk1str, skS,1adr , pkO,1
adr), (pp, tk2str, skS,2adr , pkO,2

adr), . . . } be the queries created by A and

RAssignOwner = {(tk1own, tx1own), (tk2own, tx2own), . . . } be the response by C. A wins the Log-Entry

Non-Malleability game when it outputs a log tx∗own such that (i) m∗ ̸= m, where m is the

message in txown ∈ RAssignOwner; (ii) VerifyLog(pp, tx∗own,L′) = 1, where L′ is the state of the

audit log preceding txown; (iii) sn∗ revealed in tx∗own is same as in txown.

We assume that A successfully creates an ownership record tx∗own =

(rt∗str, pk∗sig, σ∗, sn∗, cm∗
own, h

∗, π∗
own, tk∗own) with proof instance x∗ = (rt∗str, sn∗, cm∗

own, h
∗)

and m∗ = x∗||h∗
sig||π∗

own||tk∗own.

32

Each of the above event captures all the possible modifications A makes to txstr to obtain

tx∗str such that m∗ ̸= m. E1 captures when m∗ ̸= m but pk∗sig = pksig. E2 captures when

m∗ ̸= m but h∗
sig = hsig. E3 captures when m∗ ̸= m but h∗ = h. E3 captures when m∗ ̸= m.

Note that sn∗ = sn applies to all event as it is the condition of the game.

Let E1 be the event that A wins and there exists pksig ∈ RAssignOwner such that pk∗sig = pksig.

E2 : A wins, E1 does not occur, and there exist pksig ∈ RAssignOwner such that h∗
sig = hsig.

E3 : A wins, (E1, E2) do not occur and h∗ = PRF(skS∗

adr||h∗
sig) for some skS∗

adr ∈ RRegister.

E4 : A wins, (E1, E2, E3) do not occur and h∗ ̸= PRF(skS∗

adr||h∗
sig) for all skS∗

adr ∈ RRegister.

Now we present the intuition to show that each event occurs with negligible probability.

E1 occurs iff A can forge a new signature σ∗ in tx∗ for the message m∗ that contain a new

serial number sn∗, under the same signing and verification key, which only happens with

negligible probability due to the SUF-CMA property of signature scheme.

E2 only occurs iff A can provide a new pk∗sig in tx∗ such that H(pk∗sig) = H(pksig), which only

happens with negligible probability due to the collision-resistant property of H

E3 occurs iff A can distinguish PRF from a random function, which happens with negligible

probability.

E4 occurs iff A can find a collision for the PRF used to generate sn, which happens only with

negligible probability.

• We show that Pr[E1] = negl(λ). Let σ∗ be the signature in tx∗own and σ be signature

in txown that has pksig. Because pksig = pk∗sig, both σ∗ and σ are the signatures created

from the same public key. Since A wins, by definition, there exists txown ∈ RAssignOwner

such that m∗ ̸= m and sn∗ = sn. To satisfy case this, A needs to produce σ∗ such

that Σ.Verify(pk∗sig,m∗, σ∗) = 1, m∗ ̸= m and pksig = pk∗sig. However, this happens with

negligible probability as it breaks the SUF-CMA property of the underlying signature

scheme. Also, as sn∗ = sn, this only happens with negligible probability given that the

serial number sn = PRF(skOadr||ρ) is generated by a PRF with a random seed ρ.

• We show that Pr[E2] = negl(λ). Let h∗
sig ← H(pk∗sig) be the hash of the signature verifica-

tion key pk∗sig in tx∗own and hsig = H(pksig) be the hash of the signature verification key pksig

in txown. Since A wins, there is a m∗ ̸= m such that h∗
sig = hsig. Now when pk∗sig = pksig, it

would be handled in E1. When pk∗sig ̸= pksig, due to the collision-resistant property of the

hash function, h∗
sig = hsig cannot hold true.

• We show that Pr[E3] = negl(λ) by contradiction. Assume ϵ = Pr[E3] is non negligible.

Now we construct an attacker B that distinguishes with a non negligible probability a

pseudorandom function PRF from a random function RAND by crafting tx†own. B follows

the same conditions that A follows to craft tx∗. To do so, B selects a random (pkS†

adr, skS
†

adr) ∈

RRegister. Then, B crafts h† = OPRF(skS†

adr||h
†
sig) or h† = ORAND(skS†

adr||h
†
sig) using either of

the two oracles OPRF or ORAND. B then invokes A which outputs tx∗own. Now, according

to conditions of E3, B outputs 1 (i.e, wins) iff h† = h∗ where h∗ is a part of tx∗own crafted

by A. B aborts and wins if it outputs h† = h∗ before A outputs tx∗own.

Now, we calculate the probability that B wins. Note that B wins when it aborts or if it

outputs 1 and does not abort. Recall that B aborts iff it outputs h† = h∗ before A outputs

a h∗. Then, when A finally outputs h∗, it would imply that pk∗sig = pk†sig and h∗
sig = h†

sig

which does not hold in E3 (when E3 occurs, E1 and E2 don’t occur). Hence, B aborts

with negligible probability. Therefore, to calculate the probability with which B wins, it

is sufficient to calculate the probability that B outputs 1 and does not abort.

Since B uses either of the two oracles, we have the following cases – i) h† is created using

ORAND. If h† is of one bit length, the probability that B wins and does not abort is 1
2
.

Since the output is of length |h†|, the probability that B wins and does not abort is (1
2
)|h

†|,

which is negligible.

ii) h† is crafted using OPRF. Since A performs the experiment independent of skS†

adr, proba-

bility that skS∗

adr = skS†

adr will be 1
|RRegister|

. Therefore, the probability that B wins and B does

not aborts is at least ϵ
|RRegister|

. Since ϵ is non negligible (by assumption), ϵ
|RRegister|

is also non

negligible.

Now to calculate the probability that B distinguishes between a pseudorandom and a

random function, we find the difference in probabilities when B wins in i) and ii). Since

in ii), B wins with a non negligible probability, the difference is non negligible.

We successfully crafted an attacker B that can distinguish between a PRF and a ran-

dom function with an overwhelming probability. However, this is a contradiction as a

pseudorandom function is indistinguishable from a random function.

• We show that Pr[E4] = negl(λ) by contradiction. We craft an algorithm B which finds

collisions in PRF used to compute sn with an overwhelming probability. B first runs A

to obtain tx∗own. Then, it runs a zero-knowledge extractor E to obtain a witness w. If w

is invalid, A aborts and returns 0. If w is valid, find tx ∈ RAssignOwner with sn∗ = sn. If

skS∗

adr ̸= skSadr and sn∗ = sn, B found a collision for PRF.

Now we show that skS∗

adr ̸= skSadr occurs with overwhelming probability. Since w is valid,

h∗ = PRF(skS∗

adr||h∗
sig). Now, if skS∗

adr = skSadr, it contradicts conditions of E4. Therefore, if

E4 occurs, skS∗

adr ̸= skSadr with overwhelming probability. This implies that B always finds a

tx ∈ RAssignOwner such that sn∗ = sn with an overwhelming probability.

We successfully created an algorithm B that finds a collision for PRF used to create sn

with an overwhelming probability. However, since the PRF used to create sn has to be

collision-resistant, this is a contradiction.

Case 2. We assume that A creates store operation record, however, the same proof ap-

plies if A creates share or assign operation records as well. Let QRegister = {1λ, 1λ, . . . }

be the queries by A to Register and RRegister = {(pkO,1
adr , sk

O,1
adr), (pkO,2

adr , sk
O,2
adr), . . . } be the re-

sponse from C. QStore = {(pp, D1, skO,1
adr , pkS,1adr), (pp, D2, skO,2

adr , pkS,2adr), . . . } be the queries cre-

ated by A and RStore = {(tk1str, tx1str), (tk2str, tx2str), . . . } be the response by C. A wins NMGameΠ

when it outputs a record tx∗str such that (i) m∗ ̸= m, where m is a part of txstr ∈ R; (ii)

VerifyRecord(pp, tx∗str,L′) = 1, where L′ is the state of the audit log preceding txstr.

We assume that A successfully creates a store record tx∗str = (pk∗sig, σ∗, cm∗
str, h

∗, π∗
str, tk∗str)

with proof instance x∗ = (cm∗
str, h

∗) and m∗ = x∗||π∗
str||tk∗str.

Let E1 be the event that A wins and there exists pksig ∈ RStore such that pk∗sig = pksig.

E2 : A wins, E1 does not occur, and there exist pksig ∈ RStore such that h∗
sig = hsig.

E3 : A wins, (E1, E2) do not occur and h∗ = PRF(skO∗

adr, h
∗
sig) for some skO∗

adr ∈ RRegister.

Each of the above event captures all the possible modifications A makes to txstr to obtain

tx∗str such that m∗ ̸= m. E1 captures when m∗ ̸= m but pk∗sig = pksig. E2 captures when

m∗ ̸= m but h∗
sig = hsig. E3 captures when m∗ ̸= m but h∗ = h. Note that we don’t have E4,

like in Case 1, which captures m∗ ̸= m and sn∗ = sn since the response to a query to one of

the functions {Store, Share,Access} does not include sn.

Now we show that each event occurs with a neglible probability.

• We show that Pr[E1] = negl(λ). Let σ∗ be the signature in tx∗ and σ be signature in tx

that has pksig. Because pksig = pk∗sig, both σ∗ and σ are the signatures created from the

same public key. Since A wins, by definition, there exists txstr ∈ RStore such that m∗ ̸= m.

To craft m∗ ̸= m, A needs to produce σ∗ such that Σ.Verify(pk∗sig,m∗, σ∗) = 1, m∗ ̸= m and

pksig = pk∗sig. However, this happens with negligible probability as it breaks the SUF-CMA

property of the underlying signature scheme.

• We show that Pr[E2] = negl(λ). The proof outline follows the same as that shown for E2

in Case 1. Basically, we show that the A will have to find a collision of a hash function

to win this event. However, this only occurs with negligible probability.

• We show that Pr[E3] = negl(λ). Similar to how we prove E3 occurs with negligible prob-

ability in Case 1, we construct an attacker B that uses A as a subroutine. The attacker

is constructed such that it distinguishes between a PRF function and a random function

with an overwhelming probability. However, due to the indistinguishability property of

the PRF function, this happens with a negligible probability.

Theorem 2. Harpocrates achieves audit log indistinguishability by Definition 2

Proof Overview. We show Harpocrates achieves audit log indistinguishability by defining an

adversary who can issue records of any type. The record is sent to a challenger who does

the verification before appending to the audit log.

We define a set of “games” where the challenger modifies one part of the record and show that

the modification provides no added advantage to the adversary to distinguish between the

records issued by him. This means that the audit log is indistinguishable. Finally, we show

that the modifications we suggest is computationally equivalent to the original experiment,

hence proving audit log indistinguishability of the original experiment.

Proof. We deduce the proof by showing that the queries (Q,Q′) answered by the challenger

C is independent of bit b. C creates a simulation IndGameSim of IndGameΠ by performing the

following modifications to the original functions before answering the queries (Q,Q′) –

• To answer AssignOwner queries, C modifies AssignOwner to create sn and h randomly.

cmown ← Comr2(k2, pp) is computed using random inputs k2, r2. The encrypted token

tk∗own ← Enc(e1, p1) is generated using a random plaintext p1 and key e1. Finally, the proof

π∗
own ← S(x, pp) is computed using a simulator.

• To answer Share queries, C replaces h with a random value. The commitment is created

as cm∗
shr ← Comr3(k3, pp) where k3, r3 are random inputs. tk∗shr is created using a random

plaintext p2 and key e2. Lastly, π∗
shr is generated similar to how π∗

own is generated.

• To answer Access queries, C replaces h with a random value. C creates cm∗
acc ←

Comr4(k4, pp) where k4, r4 are random inputs and creates tk∗acc using a random plaintext

p3 and key e3. Finally, π∗
acc is generated in a similar fashion as π∗

own.

In all the above cases, the simulated functions compute Q and Q′ independent of bit b -

Pr[b = b′] =
1

2

Therefore, A has negligible advantage in IndGameSim. Now, to show that IndGameSim is

indistinguishable from IndGameΠ, we define a sequence of hybrid games as follows –

• G0 – This is the original protocol, where the challenger C executes protocols in §5 to answer

A queries.

• G1 – G1 is the same as G0, except that to answer queries from A, C uses a zero-knowledge

simulator to generate a proof π∗ = S(pp, x) with an arbitrary witness. Due to the zero-

knowledge property of the underlying proof system, we say that IndGame1 is indistinguish-

able from IndGame0.

• G2 – G2 is same as G1 except that C generates the encrypted tokens differently to answer

queries from A. In particular, C generates tk∗str, tk∗own, tk∗shr, tk∗acc (depending on the query)

using Enc(e, p) where p is a random plaintext and e is a random public encryption key.

Due to the IND-CCA property of the underlying encryption scheme, A cannot distinguish

between a ciphertext generated from a random plaintext or a particular plaintext. Also,

due to the IK-CCA property, A cannot distinguish between a ciphertext generated from a

random public key or a particular public key. Due to the IK-CCA and IND-CCA property

of the underlying encryption scheme, G2 is indistinguishable from G1.

• G3 – G3 is the same as G2, however, C substitutes PRF generated values with random

strings to answer queries from A. Due to the indistinguishability property of the PRF func-

tion from a random function, this modification gives no added advantage to A. Therefore,

G3 is indistinguishable from G2.

• G4 – G4, equivalent to simulation IndGameSim, is identical to G3 except that C computes

cm∗
str, cm∗

own, cm∗
shr, cm∗

acc (depending on the query) as Comr(k, pp) where r and k are ran-

dom inputs. Due to the hiding property of the underlying commitment scheme, G4 is

indistinguishable from G3. Note that all modifications are independent of bit b.

We can see that IndGameΠ = G0
c
≈ G1

c
≈ G2

c
≈ G3

c
≈ G4 = IndGameSim and this completes

the indistinguishability proof.

Chapter 7

Implementation

We fully implemented our proposed techniques in Rust consisting of around 3,100 lines of

code. Our implementation used Hyperledger Fabric [4] to build up a generic blockchain

platform to deploy the distributed audit log to record all data operations. For the signature

scheme used to sign data operation records, we implemented Schnorr signature scheme [34].

For the encryption scheme used to encrypt tokens, we implemented ECIES with AES-GCM

as the underlying encryption scheme [28]. We implemented four Merkle trees, each of which

records and verifies the existence of a data operation (i.e., store, assign, share, access) being

performed in our system. For the commitment scheme, we used Pedersen commitment

[29]. We used Poseidon as the Merkle tree hash function because it can efficiently compute

hashes of 2 elements at once [14]. We implemented MiMC as the primary hash function

as well as PRF due to its low multiplicative complexity [3]. Finally, our implementation

used Bulletproofs [10] as the back-end zero-knowledge proof due to its small proof size and

transparent setup.

Proving Gadgets. In our implementation, we first build up the following gadgets to

implement our audit log functionalities.

• Pedersen Opening Gadget. We constructed gadget PedG based on proof of exponen-

tiation in [9] to prove and verify the opening of a Pedersen commitment cm. Specifically,

given a commitment cm, the prover creates a proof π demonstrating its knowledge of (v, r)

40

such that cm = Comr(v, pp).

• Membership Proof Gadget. We implemented a membership proof gadget MemG,

which permits to prove and verify the membership of a committed value cm in a set of

commitments C using Merkle proof. Specifically, given a Merkle tree of C with root rt,

the prover creates a proof π demonstrating its knowledge of cm such that cm ∈ C.

• MiMC Hash Pre-image Gadget. We implemented the hash pre-image proof gadget

HshG in [3] to prove and verify knowledge of the pre-image of a MiMC hash digest. Specif-

ically, given a public hash h, the prover creates a proof π to demonstrate its knowledge of

w such that h = MiMC(w).

• Range Proof Gadget. We used a bounded range gadget RgeG described in [10] to

ensure that a given value lies within a certain range of values. Given a value b and a range

[a, c], the prover uses this gadget to create a proof π to demonstrate its knowledge of b

such that a ≤ b ≤ c. We used this to check the validity of timestamps.

Now we look at how we used these gadgets to prove the statements in data operation records.

Store. We implemented a circuit with one PedG and one HshG gadget to prove/verify NP

statements needed to create a store record.

AssignOwner. To generate a valid assign record, we implemented a circuit with one

MemG, two PedG and two HshG.

Share. We implemented a circuit with one RgeG, one HshG, one MemG and two PedG

gadgets to create a valid share operation record.

Access. To prove and verify NP statements of an access operation, we implemented a

circuit with RgeG, one HshG, one MemG and two PedG gadgets.

Chapter 8

Experiments

We evaluate the performance of Harpocrates using a micro benchmark and a macro bench-

mark. The micro benchmark is used to observe the overhead for creating records of each

data operation using Harpocrates. The macro benchmark is used to evaluate how well our

system performs when implemented on a blockchain platform.

8.1 Configuration

Hardware. We use up to 50 AWS EC2 t3.medium instances to deploy our private

blockchain network based on Hyperledger Fabric with 50 nodes. Each instance has 4GB

RAM with 2-core 3.1 GHz CPU (Intel Xeon Platinum 8000) and a dedicated network band-

width of 4.3 Gbps. All the nodes were deployed within the us-east-1 region.

Parameter Setting. We use standard parameters for underlying cryptographic building

blocks being used in our scheme to achieve 128-bit security. Specifically, we use Ed25519

curve of order 2255 − 19 for zero-knowledge proofs based on Bulletproofs. We use standard

Poseidon Hash parameters for the Merkle tree including width t = 6, full rounds RF = 8 and

partial rounds Rp = 130 [14]. We use MiMC hash function with rate 512 and capacity 513.

The Schnorr signature scheme used produces a 512-bit signature. The ECIES encryption

scheme uses a 256-bit public and secret key. Both the encryption and signature scenes use

42

Table 8.1: Performance of each data operation

Data Circuit Complexity Delay (s) Memory (MB) Bandwidth
Operation # const. # mult. Prove Verify Prove Verify (KB)
Store 2,389 644 1.8 1.5 40.1 39.3 1.1
Assign 87,315 37,640 23.2 8.6 165.6 94.7 1.4
Share 86,067 37,014 23.0 8.5 159.3 89.8 1.4
Access 86,068 37,014 23.1 8.5 159.4 89.8 1.4

the same Ed25519 curve as used by Bulletproofs.

We use default parameters of Hyperledger Fabric. Specifically, we set block size to 10, and

the number of transaction confirmations is 1.

Evaluation Metrics. We measure the performance of our techniques based on the circuit

complexity, end-to-end delay, memory usage, and bandwidth overhead.

8.2 Results

8.2.1 Micro-Benchmark

Table 8.1 presents the processing overhead of our techniques to record each data operation

in terms of circuit complexity, processing latency, memory usage and bandwidth overhead.

Circuit Complexity. Recording Store operations incur least circuit complexity, com-

pared with other operations such as Assign, Share and Access. This is because the Store

operation only invokes one opening gadget and one hash pre-image gadget (see §7), while

other operations invokes a set membership gadget along with other gadgets. The constraint

system for checking set membership is more complicated compared to that of the other gad-

gets. Specifically, it requires proving and verifying (in zero-knowledge) d = 64 Poseidon

hash pre-images, each of which incurs 3× t× RF + 3× Rp = 534 number of multiplication

constraints [14]. Assign operation incurs a little higher circuit complexity than Share and

Access because of an extra hash gadget (for sn) used to verify an Assign operation. Share

has one number of constraints over Access as it requires an additional constraint to calculate

difference between the current timestamp, curr and the share expiry timestamp, ts.

Processing Latency. The processing delay for each data operation depends on the its

circuit complexity, especially the number of multiplication gates. A Store operation incurs

a small latency compared with other operations because it does not require checking set

membership, which attributes to a large circuit complexity. In our benchmark, all the

reported delays include the time to load the Common Reference String (CRS) component

that is needed for the backend zero-knowledge proof (i.e., Bulletproofs), which takes around

1.5 seconds in total. Without CRS, the proving and verification time for Store operation is

0.35 seconds and 85 milliseconds, respectively, which are about 60 times lesser than Assign,

Share and Access. This matches the difference in multiplicative complexity between the

circuits.

Memory Usage. Similar to the processing delay, the memory usage also depends on the

circuit complexity to prove each data operation. The CRS component takes approximately

32 MB. Proving incurs more memory usage than verification, due to the space needed to

store the witness.

Bandwidth. Since Bulletproof only incurs a polylograthmic proof size, the bandwidth

overhead for each data operation is small. Specifically, the proof size produced by Bullet-

proofs is 2⌈log2(m)⌉+ 13 group elements where m is the number of multiplication gates. In

data store operation, m = 644 so that its proof size contains 2⌈log2(644)⌉ + 13 = 33 group

elements, which results in a total of 32 · 33 = 1, 056 bytes (B). For Assign, Share and Access

operations, m ≈ 37, 000 and thus, their proof size is 1,440 B.

8.2.2 Macro-Benchmark

We now measure the actual performance of our scheme when integrated with a blockchain

platform. As discussed, we used Hyperledger Fabric to deploy 50 blockchain nodes on Ama-

zon EC2. We develop Hyperledger Fabric chaincodes for verifying each data operation. The

user first creates a transaction using one of the algorithms described in §7 based on the data

operation the user wishes to perform. The transaction, which serves as a record for the data

operation, is then submitted to the blockchain network. The nodes in the network calls the

corresponding chaincode to verify the transaction. Finally, the transaction gets verified and

is added to the blockchain.

Overall delay. Figure 8.1 presents the latency to verify a data operation with different

numbers of concurrent operations and blockchain nodes. Specifically, given 25 concurrent

data operations, it takes around 17 seconds to verify a record of Assign, Share, and Access

operations with 10 blockchain nodes (Figure 8.1a). We can see that the verification delay

reduces when increasing the number of blockchain nodes. In particular, it reduces to around

11 seconds for 20 nodes, and 9 seconds for 30 nodes, and after which, we observe no further

improvement. This is because, at 30 nodes, every node only verifies one operation at a time.

One may notice that verifying an ownership assignment should only take 8.5 seconds (from

micro-benchmark), rather than 9 seconds as shown in Figure 8.1 (when n ≥ k). This is due

to the delay caused by Hyperledger Fabric implementation of about 0.5 seconds. The same

trend is observed for data store operation, where it takes 4.13 seconds to verify a record

with 10 nodes, and reduces to 2.51 seconds and 2 seconds with 20 nodes and 30 nodes,

respectively.

As can be seen in Figure 8.1b and Figure 8.1c, increasing the number of concurrent data op-

erations increase the workload of blockchain nodes, thereby impacting the overall verification

10 20 30 40 50
0

10

20

30

of nodes

T
im

e
(s

ec
) Store Assign

Share Access

(a) k = 25

10 20 30 40 50
0

10

20

30

40

of nodes

T
im

e
(s

ec
)

(b) k = 50

10 20 30 40 50
0

20

40

60

of nodes

T
im

e
(s

ec
)

(c) k = 75

Figure 8.1: Verification latency of each data operation

latency. We observe that when doubling the number of concurrent operations, the latency

does not doubly increase, but around 2 - 1.5 times. This is due to the implementation of

Hyperledger Fabric, which attempts to exploit all the CPU resources (e.g., 2 cores in our

setting) to verify all transactions submitted to it. The speedup is not observed when n = 10

because the load per node is 5 (when k = 50) or 7.5 (when k = 75). The 5/7.5 verifications

happen at the same time across 2 CPU cores. This requires the CPUs to constantly switch

between tasks which incurs a large delay.

Figure 8.2 presents the end-to-end processing delay for each data operation in our system

with n = 30 blockchain nodes, starting from when the operation is initialized to the time

when its record appears in the blockchain. The end to end delay captures the proving

time, time for forming a record, verification time and consensus agreement time. In this

experiment, we consider that there are upto 100 users who perform the same data operation

at the same time.

Memory Usage. We report the distribution of memory usage across the blockchain nodes

in our system when verifying the log of each data operation. Figure 8.3 presents (peak) mem-

ory used by every node during the verification with different numbers of concurrent data

operations and blockchain nodes. As shown in Figure 8.3a, with 25 concurrent data requests

and 10 nodes, the inter-quartile range of memory usage to verify a Store/Assign/Share/Ac-

1 25 50 75 100
0

10

20

30

of concurrent data operations

T
im

e
(s

ec
)

Store Assign
Share Access

Figure 8.2: End-to-end delay per data operation with 30 blockchain nodes

10 20 30 40 50

1

2

3
·102

nodes

M
em

or
y

(M
B

)

Store Assign
Share Access

(a) k = 25

10 20 30 40 50
1

2

3
·102

nodes

M
em

or
y

(M
B

)

(b) k = 50

10 20 30 40 50
1

2

3
·102

nodes

M
em

or
y

(M
B

)

(c) k = 75

Figure 8.3: Memory usage distribution across blockchain nodes

cess operation is about 171/279/271/271 MB, respectively. Similar to latency, we can see

that the memory used by nodes to verify data operations reduces when increasing the num-

ber of blockchain nodes. For example, the inter-quartile range of memory usage when n = 20

and k = 25 for a Store operation is 130-151 MB with a median of 132 MB. This is because

majority of the nodes verifies 1 Store operation and some handle 2 as seen by the maximum

value of 172 MB. When n = 50 and k = 25, half the nodes verifies one Store operation and

the other half are idle, therefore, we observe an inter-quartile range of 92-131 MB with a

median of 110 MB. The lower quartile of 92 MB shows the memory needed to run a Hy-

perledger Fabric node. The upper quartile of 131 MB shows the memory needed to verify

one store request. We can see that there is a 92 MB memory usage difference between

micro-benchmark and macro-benchmark, which entirely attributes to the memory needed to

deploy a Hyperledger Fabric node as can be confirmed by the lower quartile.

As shown in Figure 8.3b and Figure 8.3c, increasing k increases the memory usage by the

blockchain nodes as observed by the tighter inter-quartile range. However, the maximum

memory used, regardless of k, is about 174/282/272/271 MB for Store/Assign/Share/Access

operations which is equivalent to verifying 2 operations at a time. This is because even though

Hyperledger Fabric populates all pending transactions to the CPU, the peak memory usage

will be equivalent to verifying 2 transactions at a time since every node only has 2 CPUs.

Chapter 9

Conclusion

We proposed Harpocrates, a privacy-preserving and immutable audit log scheme.

Harpocrates achieved immutability and resistance to single point of failure by leveraging

blockchain, and achieved public verifiability of record validity using zero-knowledge proofs.

We fully implemented Harpocrates and evaluated its performance by using Hyperledger Fab-

ric and Amazon EC2.

As part of future work, we plan to allow access revocation through our system as the current

system only permits time based loss of access. Also, since our system does not hide access

patterns against the storage provider, there could be a potential side channel attacks if

the storage provider is malicious. Analyzing attacks in such a scenario can help develop

a stronger scheme and has been left as future work. Another aspect left as future work

is the possibility to replace merkle tree with a more efficient data structure to prove set

membership. Proving set membership using merkle trees induces the most overhead in our

system. RSA accumulators have been shown to be good candidates [6] and may be a good

replacement for merkle trees to prove set membership.

49

Bibliography

[1] Geneyouin - terms and conditions, Oct 2019. URL https://www.geneyouin.ca/

terms-conditions/.

[2] Hamed Al-Shaibani, Noureddine Lasla, and Mohamed Abdallah. Consortium

blockchain-based decentralized stock exchange platform. IEEE Access, 8, 2020. doi:

10.1109/ACCESS.2020.3005663.

[3] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge Tiessen.

Mimc: Efficient encryption and cryptographic hashing with minimal multiplicative com-

plexity. In IACR ASIACRYPT, 2016. ISBN 978-3-662-53887-6.

[4] Elli Androulaki et al. Hyperledger fabric: A distributed operating system for per-

missioned blockchains. In ACM EuroSys, 2018. ISBN 9781450355841. doi: 10.1145/

3190508.3190538.

[5] Eli Ben Sasson et al. Zerocash: Decentralized anonymous payments from bitcoin. In

IEEE S&P, 2014. doi: 10.1109/SP.2014.36.

[6] Daniel Benarroch, Matteo Campanelli, Dario Fiore, Kobi Gurkan, and Dimitris Kolone-

los. Zero-knowledge proofs for set membership: Efficient, succinct, modular. In Springer

FC, 2021. ISBN 978-3-662-64321-1. doi: 10.1007/978-3-662-64322-8_19.

[7] Federico Matteo Benčić, Pavle Skočir, and Ivana Podnar Žarko. Dl-tags: Dlt and

smart tags for decentralized, privacy-preserving, and verifiable supply chain manage-

ment. IEEE Access, 2019.

50

https://www.geneyouin.ca/terms-conditions/
https://www.geneyouin.ca/terms-conditions/

[8] Alex Biryukov, Dmitry Khovratovich, and Sergei Tikhomirov. Findel: Secure derivative

contracts for ethereum. In Springer FC, 2017. ISBN 978-3-319-70278-0.

[9] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumulators

with applications to iops and stateless blockchains. In Springer CRYPTO, 2019. ISBN

978-3-030-26948-7.

[10] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and more. In

IEEE S&P, 2018. doi: 10.1109/SP.2018.00020.

[11] Emil Chiauzzi and Paul Wicks. Digital trespass: Ethical and terms-of-use violations

by researchers accessing data from an online patient community. J Med Internet Res,

21(2), Feb 2019. ISSN 1438-8871. doi: 10.2196/11985. URL https://www.ncbi.nlm.

nih.gov/pubmed/30789346. PMC6403524.

[12] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. A blockchain based ap-

proach for the definition of auditable access control systems. Computers & Security,

2019. ISSN 0167-4048. doi: https://doi.org/10.1016/j.cose.2019.03.016.

[13] Kai Fan, Shangyang Wang, Yanhui Ren, Hui Li, and Yintang Yang. Medblock: Efficient

and secure medical data sharing via blockchain. Journal of Medical Systems, 42(8), Jun

2018. ISSN 1573-689X. doi: 10.1007/s10916-018-0993-7.

[14] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus

Schofnegger. Poseidon: A new hash function for Zero-Knowledge proof systems. In

USENIX Security, August 2021. ISBN 978-1-939133-24-3.

[15] Hao Guo, Wanxin Li, Mark Nejad, and Chien-Chung Shen. Access control for electronic

https://www.ncbi.nlm.nih.gov/pubmed/30789346
https://www.ncbi.nlm.nih.gov/pubmed/30789346

health records with hybrid blockchain-edge architecture. In IEEE Blockchain, 2019. doi:

10.1109/Blockchain.2019.00015.

[16] Jane Henriksen-Bulmer and Sheridan Jeary. Re-identification attacks—a systematic

literature review. International Journal of Information Management, 36(6, Part B),

2016. ISSN 0268-4012. doi: https://doi.org/10.1016/j.ijinfomgt.2016.08.002. URL

https://www.sciencedirect.com/science/article/pii/S0268401215301262.

[17] Thang Hoang, Ceyhun D. Ozkaptan, Attila A. Yavuz, Jorge Guajardo, and Tam

Nguyen. S3oram: A computation-efficient and constant client bandwidth blowup oram

with shamir secret sharing. In ACM CCS, 2017. ISBN 9781450349468.

[18] Yuncong Hu, Sam Kumar, and Raluca Ada Popa. Ghostor: Toward a secure Data-

Sharing system from decentralized trust. In USENIX NSDI, feb 2020.

[19] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. Sgx-record: Securing

system logs with sgx. In ACM Asia CCS, 2017. ISBN 9781450349444. doi: 10.1145/

3052973.3053034.

[20] Katherine K. Kim, Pamela Sankar, Machelle D. Wilson, and Sarah C. Haynes. Factors

affecting willingness to share electronic health data among california consumers. BMC

Medical Ethics, 18(1), Apr 2017. ISSN 1472-6939. doi: 10.1186/s12910-017-0185-x.

URL https://doi.org/10.1186/s12910-017-0185-x.

[21] Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Linus Gasser, Philipp Jovanovic, Ewa

Syta, and Bryan Ford. Calypso: Private data management for decentralized ledgers.

Proc. VLDB Endow., 14(4), December 2020. ISSN 2150-8097. doi: 10.14778/3436905.

3436917.

[22] Wang Fat Lau, Dennis Y. W. Liu, and Man Ho Au. Blockchain-based supply chain

https://www.sciencedirect.com/science/article/pii/S0268401215301262
https://doi.org/10.1186/s12910-017-0185-x

system for traceability, regulation and anti-counterfeiting. In IEEE Blockchain, 2021.

doi: 10.1109/Blockchain53845.2021.00022.

[23] Jingwei Liu, Xiaolu Li, Lin Ye, Hongli Zhang, Xiaojiang Du, and Mohsen Guizani. Bpds:

A blockchain based privacy-preserving data sharing for electronic medical records. In

IEEE GLOBECOM, 2018. doi: 10.1109/GLOCOM.2018.8647713.

[24] Xiaoguang Liu, Ziqing Wang, Chunhua Jin, Fagen Li, and Gaoping Li. A blockchain-

based medical data sharing and protection scheme. IEEE Access, 7, 2019. doi: 10.1109/

ACCESS.2019.2937685.

[25] Theo Lynn, Lisa van der Werff, and Grace Fox. Understanding Trust and Cloud

Computing: An Integrated Framework for Assurance and Accountability in the Cloud.

Springer International Publishing, Cham, 2021. ISBN 978-3-030-54660-1. doi: 10.1007/

978-3-030-54660-1_1. URL https://doi.org/10.1007/978-3-030-54660-1_1.

[26] Di Ma and Gene Tsudik. A new approach to secure logging. ACM Trans. Storage, 5

(1), mar 2009. ISSN 1553-3077. doi: 10.1145/1502777.1502779.

[27] Mourad El Maouchi, Oğuzhan Ersoy, and Zekeriya Erkin. Decouples: A decentralized,

unlinkable and privacy-preserving traceability system for the supply chain. In ACM

SAC, 2019. ISBN 9781450359337.

[28] Mihir Bellare Michel Abdalla and Phillip Rogaway. Dhaes: An encryption scheme based

on the diffie-hellman problem. IACR Cryptology ePrint Archive, Report 1999/007, 1999.

[29] Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable

secret sharing. In CRYPTO, 1992. ISBN 978-3-540-46766-3.

[30] Otto Julio Ahlert Pinno, Andre Ricardo Abed Gregio, and Luis C. E. De Bona. Con-

https://doi.org/10.1007/978-3-030-54660-1_1

trolchain: Blockchain as a central enabler for access control authorizations in the iot.

In IEEE GLOBECOM, 2017. doi: 10.1109/GLOCOM.2017.8254521.

[31] Indrajit Ray, Kirill Belyaev, Mikhail Strizhov, Dieudonne Mulamba, and Mariappan

Rajaram. Secure logging as a service—delegating record management to the cloud.

IEEE Systems Journal, 2013.

[32] Alan Rusbridger. The Snowden leaks and the public. In The New York Review of

Books—NYR Daily, 2013.

[33] Francesco Sardanelli, Marco Alì, Myriam G. Hunink, Nehmat Houssami, Luca M.

Sconfienza, and Giovanni Di Leo. To share or not to share? expected pros and

cons of data sharing in radiological research. European Radiology, 28(6), Jun 2018.

ISSN 1432-1084. doi: 10.1007/s00330-017-5165-5. URL https://doi.org/10.1007/

s00330-017-5165-5.

[34] C. P. Schnorr. Efficient identification and signatures for smart cards. In Springer

CRYPTO, 1990. ISBN 978-0-387-34805-6.

[35] Hossein Shafagh, Lukas Burkhalter, Sylvia Ratnasamy, and Anwar Hithnawi. Droplet:

Decentralized authorization and access control for encrypted data streams. In USENIX

Security, August 2020. ISBN 978-1-939133-17-5.

[36] Affaf Shahid et al. Blockchain-based agri-food supply chain: A complete solution. IEEE

Access, 8, 2020. doi: 10.1109/ACCESS.2020.2986257.

[37] Y. Shen, T.C. Lam, J.-C. Liu, and W. Zhao. On the confidential auditing of distributed

computing systems. In IEEE ICDCS, pages 600–607, 2004.

[38] Qun Song, Yuhao Chen, Yan Zhong, Kun Lan, Simon Fong, and Rui Tang. A supply-

https://doi.org/10.1007/s00330-017-5165-5
https://doi.org/10.1007/s00330-017-5165-5

chain system framework based on internet of things using blockchain technology. ACM

Trans. Internet Technol., 21(1), jan 2021. ISSN 1533-5399. doi: 10.1145/3409798.

[39] Smitha Sundareswaran, Anna Squicciarini, and Dan Lin. Ensuring distributed account-

ability for data sharing in the cloud. IEEE TDSC, 9(4), 2012. doi: 10.1109/TDSC.

2012.26.

[40] Hui Tian et al. Public audit for operation behavior logs with error locating in

cloud storage. Soft Computing, 23(11), Jun 2019. ISSN 1433-7479. doi: 10.1007/

s00500-018-3038-8.

[41] Kentaroh Toyoda, P. Takis Mathiopoulos, Iwao Sasase, and Tomoaki Ohtsuki. A novel

blockchain-based product ownership management system (poms) for anti-counterfeits

in the post supply chain. IEEE Access, 5, 2017. doi: 10.1109/ACCESS.2017.2720760.

[42] United States Department of Health. The Health Insurance Portability and Account-

ability Act of 1996.

[43] United States Federal Register. The Federal Acquisition Supply Chain Security Act of

2018 (FASCSA).

[44] Qi Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin Gao, Xiaojiang Du,

and Mohsen Guizani. Medshare: Trust-less medical data sharing among cloud service

providers via blockchain. IEEE Access, 5, 2017. doi: 10.1109/ACCESS.2017.2730843.

[45] Zhen Yang, Wenyu Wang, and Yongfeng Huang. Ensuring reliable logging for data

accountability in untrusted cloud storage. In IEEE ICC, 2017. doi: 10.1109/ICC.2017.

7997109.

[46] Jiawei Yuan and Shucheng Yu. Public integrity auditing for dynamic data sharing with

multiuser modification. IEEE TIFS, 10(8), 2015. doi: 10.1109/TIFS.2015.2423264.

[47] Rui Zhou, Mohammad Hamdaqa, Haipeng Cai, and Abdelwahab Hamou-Lhadj. Mo-

bilogleak: A preliminary study on data leakage caused by poor logging practices. In

2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengi-

neering (SANER), pages 577–581. IEEE, 2020.

	Titlepage
	Abstract
	General Audience Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Prior Works
	Use Cases
	E-Health Data Sharing
	Supply Chain
	Research Data Procurement

	Preliminaries
	Notation
	Cryptographic Building blocks
	Blockchain

	Models
	System Model
	Threat and Security Models

	Proposed Method
	Overview
	Detailed Construction
	Initialization
	Data Store Protocol
	Assign Ownership Protocol
	Sharing Protocol
	Access Protocol
	Record Verification

	Security Analysis
	Implementation
	Experiments
	Configuration
	Results
	Micro-Benchmark
	Macro-Benchmark

	Conclusion
	Bibliography

