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Abstract

It is challenging to implement Kernel methods, if the data sources are distributed
and cannot be joined at a trusted third party for privacy reasons. It is even more
challenging, if the use case rules out privacy-preserving approaches that introduce
noise. An example for such a use case is machine learning on clinical data.
To realize exact privacy preserving computation of kernel methods, we propose
FLAKE, a Federated Learning Approach for KErnel methods on horizontally
distributed data. With FLAKE, the data sources mask their data so that a centralized
instance can compute a Gram matrix without compromising privacy. The Gram
matrix allows to calculate many kernel matrices, which can be used to train kernel-
based machine learning algorithms such as Support Vector Machines. We prove
that FLAKE prevents an adversary from learning the input data or the number
of input features under a semi-honest threat model. Experiments on clinical and
synthetic data confirm that FLAKE is outperforming the accuracy and efficiency of
comparable methods. The time needed to mask the data and to compute the Gram
matrix is several orders of magnitude less than the time a Support Vector Machine
needs to be trained. Thus, FLAKE can be applied to many use cases.

1 Introduction

Kernel methods are a prominent class of machine learning algorithms. However, in many real-world
scenarios, kernel methods such as Support Vector Machines (SVM) cannot be readily applied, because
the data sources are inherently distributed, but the data is private and cannot be shared freely. Consider
a machine learning scenario, where a Kernel method on medical data is to be used to develop effective
treatments, or to identify risk factors for certain diseases. The input data is collected from multiple
hospitals, and it carries sensible medical information that must be kept private. In this scenario it
is impossible to apply noise, because neither the patient nor the physician can accept stochastic
results. The delay due to processing strong cryptography on a large data set in multiple rounds of a
Secure-Multiparty Computation Protocol is also unacceptable.
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Existing work in the field of Secure-Multiparty Computation (Mugunthan et al., 2019; Zhang et al.,
2022) or Privacy-Aware Federated Learning (Pfitzner et al., 2021; Adnan et al., 2022; Malekzadeh
et al., 2021) can be categorized in three approaches based on (1) encryption (2) differential privacy or
(3) randomized masking (Monreale and Wang, 2016). The first two either apply strong cryptography
or add noise to private data which is a severe restriction for many use cases. In this paper, we focus
on the third approach using randomized masking. We present FLAKE, our Federated Learning
Approach for KErnel methods. FLAKE computes the Gram matrix over distributed data sources that
store horizontally partitioned data. The Gram matrix allows various kernel matrices to be computed
and kernel-based machine learning algorithm to be trained as if the training takes place on centralized
data. Examples for such algorithms include Support Vector Machines, Gaussian processes, kernel
k-means, and more. To ensure privacy, FLAKE masks the input data at the sources. FLAKE ensures
that the resulting Gram matrix is exact. In order to update the Gram matrix, only a fraction of the
values need to be re-calculated. Thus, inference and update are inexpensive operations. We make
three contributions:

1. We introduce the FLAKE protocol, which allows a function party to privately compute a
Gram matrix on masked input data from multiple input parties.

2. We prove that both the input data and the number of features is kept private, unless function
party and input parties collude and share unmasked data.

3. We evaluate FLAKE by experiments with medical and synthetic data.

Our formal analysis and our experiments confirm that FLAKE has the potential to open up new fields
of application for Kernel-based methods on horizontally partitioned data, that must be kept private,
but must be analyzed with an exact approach.

Paper structure: Section 2 reviews related work, followed by a description of FLAKE in Section 3.
Section 4 analyzes the privacy properties of the protocol. Section 5 contains the experimental
evaluation. Finally, Section 6 concludes.

2 Related Work

2.1 Kernel-based Methods

Kernel-based machine learning algorithms have a well-established mathematical background. They
are among the well-performing machine learning algorithms and are widely utilized in various
applications (Morota and Gianola, 2014; Haywood et al., 2021). They can learn non-linear patterns
in the data efficiently thanks to the kernel trick: the data is represented by a set of pairwise similarity
comparisons, the kernel values, instead of explicitly mapping them into higher dimensions, where
linear classification can be done. To compute these kernel values, one can use several different
kernel functions such as linear, polynomial, and radial basis function (RBF). Both polynomial
and RBF kernels can be computed by using the kernel matrix of linear kernel, which is the Gram
matrix. The Gram matrix is a positive semi-definite matrix and its entries indicate the dot product
of the corresponding samples’ feature vectors. Therefore, we can formulate both kernels such
that they are computable by using the entries of the Gram matrix. For instance, the polynomial
kernel can be written as k(x, y) = (xT y + v)p where v ≤ 0 is a trade-off parameter and p ∈
N is the degree of the polynomial. Similarly, the RBF kernel can be formulated as k(x, y) =

exp(−∥xTx− 2xT y + yT y∥2

2σ2
) where σ ≤ 0 is the similarity adjustment parameter. In FLAKE, we

will benefit from this observation to compute the desired kernel matrices from the Gram matrix.

2.2 Federated Learning

Introduced by (McMahan et al., 2017), Federated Learning (FL) allows users to reap the benefits of
modeling on rich yet sensitive data stored on distributed nodes. In conventional machine learning, a
model M is trained by the centralized data Dcent. However, due to privacy concerns, the data is not
allowed to leave the nodes. FL addresses this problem. Participating nodes N1, ...,Nn in FL aim to
collaboratively train the model M without revealing their data to other nodes. In FL, every node Ni

trains a local model Mi on its respective data set Di and subsequently shares the model parameters
with a central server. The central server then aggregates the received model parameters to obtain a
global model Mfed with an accuracy of accfed. As more data is collected, the process is repeated,
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with each node updating its local model and forwarding the updated parameters to the central server.
Thus, the data does not leave its origin at any time in the computation. At some point in the iteration
of FL, if |accfed − acccent| ≤ δ, then the Federated Learning framework is said to have δ-accuracy
loss. The goal in FL is to have less accuracy loss while maintaining efficiency and the data’s privacy.

The privacy of the aggregated models can be ensured in different ways. Approaches based on
encryption (1) like homomorphic encryption (HE) (Wibawa et al., 2022; Stripelis et al., 2021) aim to
protect the privacy of aggregated models by encrypting individual models, but HE is computationally
heavy and limited in functionality. Another cryptographic approach is secure multi-party computa-
tion (SMC) (Mugunthan et al., 2019; Zhang et al., 2022), which allows multiple parties to jointly
compute on private data without revealing it, but SMC still requires significant execution time due to
communication overhead.

FL studies utilizing methods based on differential privacy (2) (DP), protect the privacy of the
aggregated model by adding noise to the individual models, making it impossible to restore the
original model or to inference information about a data point’s membership. However, this usually
involves a cutback in accuracy (Pfitzner et al., 2021; Adnan et al., 2022; Malekzadeh et al., 2021).

The randomized masking approach (3) for FL was used by (Chen and Liu, 2005; Chen et al., 2007)
who propose a geometric perturbation approach to preserve data privacy in classification tasks by
hiding content while maintaining dot product and Euclidean distance relationships. To provide even
stronger security, (Lin et al., 2015) utilize a random linear transformation scheme that requires the
data owner to send perturbed data to the service provider for training SVM classifiers. Lin also applies
perturbation for clustering tasks using a randomized kernel matrix to hide dot product and distance
information (Lin, 2013). Another randomization technique using Bloom filters enables outsourcing
of mining association rules while protecting business intelligence and customer privacy, but only
supports approximate reconstruction of mined frequent item sets by the data owner (Qiu et al., 2008).
(Yu et al., 2006) introduce random kernels where the original data gets transformed using random
linear transformation. However, due to the nature of approximation and introduction of noise, they
all suffer from performance loss to provide privacy. (Ünal et al., 2021) provide an exact protocol and
is, therefore, the closest study to our approach. Here, the data sources first have to communicate with
each other to mask their data. Then they send these masked samples to enable the cloud so that it can
compute the desired kernel-based machine learning algorithm. However, due to the utilized encoding
technique in ESCAPED, one has to run the protocol from scratch whenever there is new data in any
party that needs to be integrated into the model or there is a new party involved in the computation.

3 FLAKE

This section explains FLAKE, our privacy-aware Federated Learning Approach for KErnel methods.

3.1 Scenario Definition

We assume a multi-party scenario consisting of multiple input parties (Alice, Bob, Charlie for
simplicity) and one function party. Alice, Bob and Charlie hold sensitive data that is horizontally
partitioned, i.e., each input party stores the same schema with different training data. The function
party performs Federated Learning iteratively on a (possibly large) set of input-data chunks.
We consider a fully untrusted setting where the input data must not leave their origin. Formally, we
assume an arbitrary subset of semi-honest input parties and function party where no party colludes
with another one. Note that this leaves aside extreme data distributions or all-zero cases where
properties of the training data of one or more input parties can be guessed, or where only one input
party exist. Therefore, FLAKE needs to deal with four requirements:

Privacy: The function party or an input party cannot learn the data of another input party, and
the number of features is kept private from the function party.

Accuracy: The accuracy of the federated model must be as good as that of the centralized one.
Updatability: It must be possible to update the model with new data.
Efficiency: Communication costs and execution time must be feasible for our scenario.
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Figure 1: Masking and Training with FLAKE: (1) Initially, each party has its own data. (2) A random
matrix N and its left inverse L are computed, based on a shared seed. (3) According to protocol, the
data gets masked. (4) Masked data is transferred. (5) The function party computes the dot products.
(6) The Gram matrix is formed by the dot products and their transposed values. (7) A kernel matrix is
computed from the Gram matrix. (8) Finally, a classifier is trained.

3.2 The FLAKE Protocol

FLAKE computes the Gram matrix of samples from different input parties to enable the training and
testing of kernel-based machine learning algorithms. This takes place in three stages Distribution of
Seed, Masking and Training and Inference and Updating.

Distribution of Seed FLAKE relies on a Public Key Infrastructure, which delivers each input party
the public signing keys for all other input parties. To initiate the process, one input party is randomly
selected as the leader and generates a random seed. The leader then shares this seed with the other
input parties using public-key encryption and digital signatures. The function party is a natural choice
for the task of the aggregator, which transmits encrypted messages between input parties, but cannot
decrypt or modify these messages. We assume a trusted third party for the distribution of public keys.
This is a common assumption in frameworks for privacy-preserving federated learning (Bonawitz
et al., 2017; Zhang et al., 2020).

Masking and Training The objective of this stage is to let the function party compute a Gram
matrix without learning the data from the input parties (Requirement Privacy). The Gram matrix G
of the data matrices A,B,C provided by Alice, Bob, and Charlie is the matrix of all possible inner
products ABT , ACT , CAT , .... For better understanding, we introduce the private calculation of
ABT given A ∈ RnA×f and B ∈ RnB×f where f > 1. The following protocol reveals ABT to the
function party while hiding the input data and the number of features:

First, Alice and Bob calculate a random full-rank matrix N ∈ Rk×f for some k > f , based on
a shared seed. Throughout all input parties and training iterations, N remains constant. Since
rank(N) = f , there exists a non-unique matrix L ∈ Rf×k such that LN = If×f , that can be
computed using the singular value decomposition (SVD) of N, and is called the Moore-Penrose
pseudoinverse. SVD allows us to write N as N = USV T with U, V being orthogonal matrices and S
being a diagonal matrix. The inverse of N can be determined from the SVD: L = N−1 = US−1V T .
Here, S−1 can be derived by taking the multiplicative inverse of every entry of S. Now, Alice
computes a independent left inverse LA such that LAN = I and Bob LB such that LBN = I . Then,
the data gets masked by Alice A′ = ALA(NNT )

1
2 ∈ RnA×k while Bob masks his data accordingly

B′ = BLB(NNT )
1
2 ∈ RnB×k. Figure 1 illustrates this.

A′ and B′ are forwarded to the function party, which only reveals na and nb, respectively, and the
Gram matrix of A and B when A′B′T is computed. The function party computes the dot product
ABT , as shown in Figure 1. Then, the function party can compute the desired kernel matrix using
the Gram matrix and perform training and testing of the designated kernel-based machine learning
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algorithm. The remaining entries of the Gram matrix are masked analogously. When dealing with
more than three parties, the Gram matrix has to be extended correspondingly.

Inference and Updating To integrate new data without having to rebuild the model from scratch
(Requirement Updatability), FLAKE provides a protocol for inference and updating the Gram matrix.
We can distinguish two cases: First, one of the input parties may have received new input data.
Second, a new input party shall be integrated into the computation. For simplicity, we again explain
our protocol with three parties Alice, Bob and Charlie with their respective data sets A,B,C.

Assume C has new data X which must be integrated into the Gram matrix shown in Table 1. X is
the data set to be used for updating the model. To extend the gram matrix with the new values from
C, the function party only needs to have the entries in the dashed rectangles. The party C uses the
aforementioned masking and sending approaches for this purpose. Now assume that a new input
party needs to be added. In this case, the function party must calculate the values in the continuous
rectangles in Table 1. The remaining new entries can be computed locally by C. In both cases,
updating the Gram matrix means that the function party has to calculate only a small set of new
values. The vast majority of values need to be calculated just once, and a large share of the calculation
effort remains at the input parties. Note that X can be also a test data set.

When a party wants to leave the consortium the function party deletes all random components coming
from this party and gram matrix entries that are calculated using these random components. This is
important for compliance with legal regulations such as General Data Protection Regulation (GDPR)
(European Parliament and Council of the European Union, 2016). It can be seen as an application
of machine unlearning. In current FL methods, it is unclear and difficult how to eliminate a party’s
contribution to the collaboratively trained ML model.

Table 1: Gram matrix of three-input parties.
Input Parties A B C X

A AAT ABT ACT AXT

B BAT BBT BCT BXT

C CAT CBT CCT CXT

X XAT XBT XCT XXT

4 Analysis of Privacy Properties

4.1 Privacy Definition

We consider the semi-honest (or honest-but-curious) adversary model. In a multi-party scenario, a
semi-honest adversary (Evans et al., 2018) corrupts an arbitrary subset of the parties involved. The
corrupted parties follow the multi-party protocol as specified, i.e., the output of the protocol is correct.
The corrupted parties try to learn private data from the messages they receive from uncorrupted
parties. At the end of the protocol, the corrupted parties are allowed to share their information.

FLAKE consists of a function party and a number of input parties. From Requirement Privacy
follows that FLAKE needs to ensure two privacy properties: (i) the data of uncorrupted input parties
must kept private from any corrupted input party or the function party, and (ii) a corrupted function
party must not be able to learn the number of features.

If the function party and all input parties operate honestly, privacy properties (i) and (ii) are ensured.
If all input parties have been corrupted by a semi-honest adversary, privacy cannot ensured. Between
these extreme cases, we distinguish three cases for further analyses:

(1) A subset of the input parties is corrupted by a semi-honest adversary.
(2) The function party is corrupted by a semi-honest adversary.
(3) The function and a subset of input parties are corrupted by a semi-honest adversary.

Recall that we do not consider extreme scenarios. In particular, we exclude data distributions where
the number of features or the training data of one or more input parties can be guessed, and protocols
with only one input party. However, to make the guessing harder, the input parties generate a unique
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matrix L in each iteration. Therefore, the function party can not determine if an input party updates
their data in a subsequent iteration. Also, all-zero rows are not allowed; though these are usually
discarded as part of preprocessing anyway.

4.2 Privacy Analysis

Before we begin analysing the privacy of the protocol, we shall establish its correctness, which is
unaffected by the existence of a semi-honest adversary.

Proof. Without loss of generality, we assume there are two input parties Alice and Bob with individual
left inverses LA and LB of a common mask matrix N , whose outputs are A′ = ALA(NNT )

1
2 and

B′ = BLB(NNT )
1
2 . Then, the correctness of the protocol follows as below.

A′B′T = ALA(NNT )
1
2 (BLB(NNT )

1
2 )T ,

= ALA(NNT )
1
2 (NNT )

1
2LT

BB
T ,

= ALA(NNT )LT
BB

T ,

= A(LAN)(LBN)TBT ,

= ABT = (BAT )T .

Analogously, correctness follows for AAT and BBT .

We analyze Case (1) first. Since the input parties know the number of features, we only have to prove
Property (ii), i.e., a corrupted function party cannot learn the number of features.

Theorem 4.1. FLAKE is secure against a semi-honest adversary who corrupts a subset of the input
parties.

Proof. Let SU be the set of all input parties involved in the computation. While executing FLAKE
protocol, an input party P ∈ SU has access only to the common mask N, the common seed used to
generate N and the left inverse LP of N generated by P. At any point in FLAKE protocol, the input
party P gets neither the masked data of other input parties nor the computed Gram matrix using the
masked data of all input parties. Thus, A semi-honest adversary corrupting a subset of input parties
SC ⊂ SU cannot learn the data of non-corrupted input parties SH ⊂ SU where SC ∩ SH = ∅.

FLAKE is, therefore, secure against the semi-honest adversary corrupting a subset of input parties.
Because a semi-honest adversary follows the protocol, the data provided by the corrupted input
parties do not affect the result of the computation.

Regarding Case (2), we need to prove that FLAKE does not allow a semi-honest function party to
learn (i) input data nor (ii) the number of features.

Theorem 4.2. FLAKE is secure against a semi-honest adversary who corrupts the function party.

Proof. A semi-honest function party is only the receiver of the masked data from the input parties,
and follows the protocol as intended. Without loss of generality, let there be two input parties Alice
and Bob with input data A ∈ RnA×f and B ∈ RnB×f , respectively, where nx is the number of
samples in the corresponding party and f is the number of features. The semi-honest function
party receives the masked input matrices of them, which are A′ = ALA(NNT )

1
2 ∈ RnA×k and

B′ = BLB(NNT )
1
2 ∈ RnB×k where k > f . Then, it computes A′B′T = ABT ∈ RnA×nB ,

A′A′T = AAT ∈ RnA×nA and B′B′T = BBT ∈ RnB×nB . The data that the function party has
access to then includes

(a) A′ and analogously, B′.

(b) ABT = (BAT )T , AAT and analogously BBT .

6



Regarding (a), it is trivial that A′ does not reveal the number of features of A. We now show that
A′ is not produced by a unique matrix A. Given an orthogonal matrix O ∈ Rf×f with f > 1, for
Ã = AO and LÃ = OTLA, we have A′ = Ã(LÃ(NNT )

1
2 . Further, since we require that not all

entries of any one sample is full of zeroes, the function party cannot deduce anything about A from A′.

Regarding (b), the matrices that produce these Gram matrices are not unique, since for any
orthogonal matrix O ∈ Rf×f where f > 1, labeling Ã = AO and B̃ = BO, we have

ÃÃT = AAT , B̃B̃T = BBT , ÃB̃T = ABT .

In consequence, the function party only learns the singular values and singular vectors of the matrices,
i.e., it can find U and S from the singular value decomposition A = USV T by eigen-decomposing
AAT . However, these values are insufficient to solve for A since we can generate countless number
of different orthogonal matrices (Aguilera and Pérez-Aguila, 2004). The function party learns neither
(i) input data nor (ii) the number of features.

Although the function party obtains the Gram matrix, it cannot deduce the samples used to compute
this Gram matrix, which was shown by (Ünal et al., 2021). Details can be found in the supplementary
material.

Case (3) means that not only the function party, but also a subset of the input parties has been
corrupted by a semi-honest adversary. In this case, since the adversary knows N , the privacy of the
data of the other parties is compromised since for data from a non-corrupt party Charlie of the form
C ′ = CLC(NNT )

1
2 , the adversary can obtain C by multiplying the data with (NNT )

1
2LT .

5 Experiments

5.1 Implementation

In this section, we evaluate the performance of FLAKE and provide a run-time analysis.

We experiment with three clinical data sets which contain medical records and, thus, have strong
privacy concerns (Wolberg et al., 1992; Ünal et al., 2019; Center for Machine Learning and Intelligent
Systems, 2023). All of them are suitable for classification tasks. For the run-time analysis, we
experimented with a synthetic data set with {500, 1000, 2000, 4000, 8000} data points (dp) for each
input party. Details about their statistics can be found in the supplementary material.

Before starting with the run-time experiments, we want to compare FLAKE to other methods
for randomization-based kernel computation for horizontally shared data. For this purpose, we
implemented a 5-fold cross validation with FLAKE, ESCAPED (Ünal et al., 2021), PPSVM (Yu
et al., 2006), RSVM (Lin et al., 2015) and a naive SVM classifier in Python. Our experiments
show that FLAKE, ESCAPED and the naive classifier produces the same results as they are exact
solutions. Because of the introduced stochasticity, RSVM and PPSVM have a performance almost
as good as the naive classifier, but they are not exact. Furthermore, the overhead associated with
the various methods was measured for a single node and 1000 data points. The overhead for all
methods was found to be extremely low, to the point of being negligible. Therefore, the subsequent
experiments will primarily focus on scaling up the number of data points and input parties for FLAKE
and ESCAPED, the two exact methods. For further details see the supplementary material.

We implemented FLAKE for a scenario with three input parties and one function party. To mimick
the network communication between input parties and function party, we have implemented each
party as an isolated process that communicates with others via TCP connections. Our four data
sets are divided into three disjoint partitions. Each partition is assigned an input party. Each input
party then masks its data according to the FLAKE protocol, and splits the masked data into chunks.
After that, each input party compresses the chunks by zlib’s Deflate-algorithm, and forwards the
compressed chunks to the function party. The function party deflates the chunks, computes the Gram
matrix and a polynomial kernel. Finally, a SVM is trained with a 5-fold cross-validation. A grid
search optimizes the corresponding hyperparameters C ∈ {2−4, ..., 210} (misclassification penalty)
and p ∈ {1, ..., 5} (degree).

7



(a) Masking Time (b) Gram-Computation Time (c) Training Time

Figure 2: Run times of FLAKE masking data sets of 1000 - 8000 dp for three input parties each. a)
Time to mask the data for one input party. b) Time for computing the Gram matrix from the masked
data. c) Training time of SVM

All experiments were executed on a host with an AMD 7713 with 2.0GHZ and 512 GB of memory,
which is a typical stand-alone server configuration for a small datacenter. We have used a single-
threaded implementation. We repeated each experiment 10 times.

5.2 Run-time Analysis

We want to confirm that training time, masking time, communication time, gram-computation time
and update time do not limit the applicability of FLAKE. As known from literature, SVMs typically
do not scale readily to very large data sets. In a centralized scenario, it is the training time for the
SVM that limits the size of the input data. We declare success, if we can show that the run-times of
the stages of FLAKE in a federated scenario are negligible, compared to the stages required for the
federated training of a SVM without masking.

Training Time The training takes place at the function party. Figure 2c shows the training time for
varying numbers of dp in our synthetic data set. As expected, the longest takes the training of the
data set with 8000 dp with 516.62 (± 2.45) on average. Recall that 8000 dp means that each of our
three input parties sends a masked data set of this size to the function party.

Masking Time To find out how much masking burdens the input parties, we ran a series of
experiments, again with the synthetic data set. We varied the number of dp and measured the time for
masking. Figure 2a reports the masking time measured for one input party. Even with 8000 dp per
input party, the execution takes less than 0, 003 (± 0.0001) seconds on average. This masking time is
negligible, compared to the time to train the SVM model, and does not restrict the applicability of
FLAKE.

Communication Time Because our implementation runs on a data-center host, we estimate the
communication time needed to send masked data from the input parties to the function party. The
communication time T can be estimated as shown in Equation 1:

T =
Datasize

Bandwidth
+ Latency × (1 + Packetloss) (1)

Our largest data set consists of 8000 points, which adds up to a Datasize of 1.31 MB for each
input party. A typical VPN has a Bandwidth of 1.25MBps, with an average Latency of 0.1s and a
Packetloss of 2% (Ookla, 2022). For this set of parameters, the estimated the communication time
is 1.05 seconds. Without Latency and Packetloss, it is 1.048 seconds. Recall that our experiments
are executed on a single data-center host, i.e., the actual data transfer takes place as inter-process
communication in the main memory of the host and virtually requires no time.

Gram-Computation Time We also measured the time the function party needs to compute the
Gram matrix from the masked data from the input parties. Figure 2b shows that the computation time
increases slightly more than linearly with the size of the data set, with no outliers. For 8000 dp, it
took 0.99 (± 0.0083) seconds on average to compute the Gram matrix. Again, 8000 dp means the
function party receives 3x8000 masked data sets from our three input parties. In summary, we have
confirmed that the Gram-computation time does not contribute much to the total computation time.
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Update Time Having shown that the time required to mask the data, send them to the function
party, and compute the Gram matrix is several orders of magnitude below the time to train the model,
we now consider updating the model. To mimick a typical Federated Learning use case, where the
training data increases due to dynamic data collection after the initial training, the data sets were
updated with additional data in multiple training iterations.

In particular, we performed multiple training itera-
tions starting with a synthetic data set with 1000 dp
for each input party. Figure 3 reports the run-times
for masking the data and computing the Gram ma-
trix for a three party scenario. We compared four
training iterations of FLAKE and ESCAPED (Ünal
et al., 2021), where 1000 dp are added in each it-
eration. The experiment is measured in the same
way as for the other diagrams. The figure confirms
that FLAKE outperforms ESCAPED. In particu-
lar, masking with ESCAPED takes much more
time. We conclude that updating the training data
in FLAKE is an inexpensive operation and, thus,
can be successfully applied in a FL setting.

E1 F1 E2 F2 E3 F3
E4 F4

T
im

e
 (

s
)

Training Iteration 

10 -

1 -

0.1-

0.01 -

0.001 -

Figure 3: Run-times (s) for calculation of
Gram matrix (red) and for masking of data
(blue) with FLAKE (F) and ESCAPED (E).

5.3 Discussion

Many privacy-preserving machine learning methods ensure privacy by adding stochasticity, which
decreases the result quality (privacy ∼ utility trade-off) (Chen and Liu, 2005; Chen et al., 2007; Lin
et al., 2015; Lin, 2013). In contrast, the function party in FLAKE obtains an exact Gram matrix
(Requirement Accuracy), that can be used to compute any desired kernel matrix and later train any
kernel-based machine learning algorithm, as if it was centralized data. ESCAPED, which provides
an accurate solution as well, requires more communication between the parties, which results in
longer execution times (Ünal et al., 2021). As shown in section 5, FLAKE is more efficient due
to less communication rounds. Also, FLAKE allows input parties to update the Gram matrix with
new samples independently of the previous samples. In ESCAPED, updating the Gram matrix with
new samples is not supported. Instead, the Gram matrix must be recomputed using all the samples
that the input parties have. After all, FLAKE has various advantages over preceding work using the
randomized masking approach.

6 Conclusion

Federated learning is an essential aspect of distributed machine learning, particularly when data
privacy is a primary concern. However, when implementing both Federated Learning and privacy-
preserving methods, the quality of model training can suffer as a result. In this work, we have proposed
FLAKE, a Federated Learning Approach for KErnel methods, as a solution to that challenge. Our
approach allows for the efficient and private computation of the Gram matrix from data that is
distributed on multiple sources, enabling the training of kernel-based machine learning algorithms
without any trade-offs in utility. Initially, four requirements were formulated, of which we have
shown that FLAKE satisfies them: Privacy, Accuracy, Updatability and Efficiency. We showed,
that FLAKE is both correct and private with regard to the considered threat models. We conducted
various experiments on benchmark data sets to show FLAKE meets the accuracy and correctness of
centralized models. Besides conducting experiments on well-known data sets, we also replicated the
experiments of (Ünal et al., 2019) on HIV V3 Loop Sequence data. While other privacy-preserving
techniques can be computationally expensive, FLAKE is quite efficient. An analysis of FLAKE
and comparable approaches shows, that FLAKE is not as computationally expensive. In order to
expand the capabilities of the framework, additional common machine learning operations could be
incorporated as future developments. Also, the masking and processing of vertically shared data
could be included in FLAKE.

We believe that FLAKE has the potential to improve healthcare outcomes and reduce costs while
addressing the privacy concerns associated with machine learning on clinical data. We also think that
it may find many use cases in other application domains that handle sensitive, distributed data.
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7 Supplementary Material

7.1 Privacy Proof

The following proof is based on a proof by Ünal et al. (2019).
Theorem 7.1. FLAKE provides security against a malicious function party A, assuming A is either
semi-honest or malicious and does not collude with any input parties. In this scenario, A is unable to
deduce the data of the input parties from the Gram matrix G that is generated as a result.

Proof. Although the number of features are hidden by FLAKE, we assume now the full Gram matrix
G = DDT with the data of the input parties D = [A,B,C] and the number of features are known
to the function party. We show, that an attacker could not obtain any data since it there are multiple
matrices that result in the Gram matrix.

Assume that there is a rotation matrix R ∈ RN×N where N = 2(na + nb + nc) with nx is the
number of samples in the corresponding party. Then, there is a matrix E which can be computed by
E = R−1D. From that, we can say that D = RE. Then, due to the rotation property of R−1 = RT ,
the the following holds:

K = DTD

= (RE)T (RE)

= ETRTRE

= ETR−1RE

= ETE

Since Aguilera and Pérez-Aguila (2004) showed, that countless rotation matrices can be generated, we
cannot obtain a unique matrix resulting in Gram matrix G: For every new rotation matrix θ ∈ RN×N ,
there exists a new matrix β = θ−1D satisfying G = βTβ. Thus, A is unable to deduce the input
parties’ data D = (A,B,C) from G = DDT .
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7.2 Supplementary Experiments

All methods employed a polynomial kernel and identical hyperparameter settings. For this imple-
mentation, Sequential Minimal Optimization (libsvm) provided by scikit-learn was used Zeng et al.
(2008). Since the Pima Indian diabetes data set, HIV and Breast Cancer data set have an unbalanced
distribution of classes, we have applied Macro Averaging. Correspondingly, for the balanced synthetic
data set, Micro Averaging.

Table 2: statistics of data sets used in the experiment section

NAIVE FLAKE

DATA SET NUMBER OF DATA POINTS NUMBER OF FEATURES BINARY/MULTI - LABEL DISTRIBUTION

DIABETES 768 8 BINARY IN-BALANCED
CANCER 569 10 BINARY IN-BALANCED
HIV 766 924 BINARY IN-BALANCED
SYNTHETIC 500-8000 20 MULTI CLASS BALANCED

Table 3: ROC AUC with standard deviation for Naive SVM, FLAKE, ESCAPED, RSVM, PPSVM
on various data sets.

NAIVE FLAKE ESCAPED RSVM PPSVM

DIABETES 0.97± 0.04 0.97± 0.04 0.97± 0.04 0.95± 0.02 0.94± 0.04
CANCER 0.97 ± 0.03 0.97 ± 0.03 0.97 ± 0.03 0.96 ± 0.02 0.97 ± 0.04
HIV 0.78± 0.03 0.78± 0.03 0.78± 0.03 0.65± 0.17 0.64± 0.10
SYNTHETIC 0.97± 0.01 0.97± 0.01 0.97± 0.01 0.83± 0.04 0.95± 0.01

Table 4: Overhead (Masking time + Gram time) for FLAKE, ESCAPED, RSVM, PPSVM for three
input parties with 1000 dp each.

FLAKE ESCAPED RSVM PPSVM

MASKING TIME FOR ONE IP 0.00146 1.23610 0.00201 0.02257
TIME TO COMPUTE GRAM 0.02071 0.03156 0.00530 0.01121
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