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Abstract—Digital Twins (DTs), optimize operations and mon-
itor performance in Smart Critical Systems (SCS) domains like
smart grids and manufacturing. DT-based cybersecurity solutions
are in their infancy, lacking a unified strategy to overcome
challenges spanning next three to five decades. These challenges
include reliable data accessibility from Cyber-Physical Systems
(CPS), operating in unpredictable environments. Reliable data
sources are pivotal for intelligent cybersecurity operations aided
with underlying modeling capabilities across the SCS lifecycle,
necessitating a DT. To address these challenges, we propose
Security Digital Twins (SDTs) collecting realtime data from
CPS, requiring the Shift Left and Shift Right (SLSR) design
paradigm for SDT to implement both design time and runtime
cybersecurity operations. Incorporating virtual CPS components
(VC) in Cloud/Edge, data fusion to SDT models is enabled
with high reliability, providing threat insights and enhancing
cyber resilience. VC-enabled SDT ensures accurate data feeds
for security monitoring for both design and runtime. This
design paradigm shift propagates innovative SDT modeling and
analytics for securing future critical systems. This vision paper
outlines intelligent SDT design through innovative techniques,
exploring hybrid intelligence with data-driven and rule-based
semantic SDT models. Various operational use cases are discussed
for securing smart critical systems through underlying modeling
and analytics capabilities.

Index Terms—Security Digital Twins, Cybersecurity Opera-
tions, Smart Critical Systems

I. INTRODUCTION

Modern smart systems are composed of Operational Tech-

nology (OT), with increased integration of IT systems. These

systems are collectively referred to as Smart Critical Sys-

tems (SCS), and consist of multiple Cyber-Physical Systems

(CPS)1. The SCSs manage physical and operational processes

across domains like smart manufacturing, autonomous produc-

tion systems, and critical public infrastructures. Examples of

their applications include smart grids, transportation systems,

and water systems [1], [2]. SCS facilitate realtime monitor-

ing and control of industrial processes, ensuring safety and

operational efficiency in critical environments. The continued

convergence of IT/OT systems has significantly increased

cybersecurity threats. Specifically, SCSs have emerged as

1A CPS in SCSs has cyber and physical components integrated such as
Supervisory Control and Data Acquisition (SCADA), Programmable Logic
Controllers (PLCs)/Remote Terminal Unit (RTU) and Industrial Internet of
Things (IIoT).

primary targets for cyberattacks, capitalizing on vulnerabili-

ties amplified by the expanded connectivity between OT/IT

system components. Therefore, SCSs require cyber resilient

security solutions that can effectively protect these systems in

the next three to five decades. Recent reports [3], indicate

an escalating threat landscape for SCSs. This is attributed

to unpatched vulnerabilities and unpredictable software and

hardware supply chains and further compounded by inherent

system complexity, insecure design, and operational silos.

During a cyber attack system operators often remain un-

aware of these malicious activities [4] for a prolonged time.

Earlier detection and containment, can reduce the impact and

of an attack significantly. Cyber attacks on critical systems

are often carried out by Advanced Persistent Threats (APT)

groups. These APTs use ’pivoting’ tactics to successfully

breach networks across SCSs. For example, the 2021 Colonial

Oil Pipeline ransomware attack in the US [5], the 2020

SolarWinds software supply chain attack affecting numerous

businesses [6], and the 2017 Triton malware-driven attack

on a Saudi Chemical Plant [7] that disrupted safety systems

and forced operations to halt, all highlight the seriousness of

emerging security threats. These attack examples demonstrate

that SCSs are under constant threats [8], [9] by actors who suc-

cessfully target these systems and their complex interactions

and interdependencies.

International security standards, such as IEC 62443 [10]

and publications from the National Institute of Standards

and Technology (NIST), including the NIST Cyber Security

Framework (CSF) [11], emphasize the importance of integrat-

ing security throughout the entire lifecycle of systems, from

design to incident detection, response, and recovery. Despite

this emphasis on cybersecurity operations implementations and

compliance obligations, current security tools like Intrusion

Detection (ID) Systems and Security Incident and Event

Management Systems (SIEMS) often fall short in capturing

core assets, vulnerability scanning and identification, and

correlating incidents with threats and vulnerabilities. Con-

sequently, these tools struggle to safeguard critical systems

effectively or respond to cyber incidents promptly. While their

enabling technologies such as Artificial Intelligence (AI) or

knowledge-based systems alone are not capable enough to

manage cybersecurity operations effectively.

http://arxiv.org/abs/2309.13612v1


Fig. 1. Security Digital Twins based cybersecurity operations

Digital Twins (DTs), are promising technological solutions

which can effectively tackle the present and anticipated cy-

bersecurity challenges over the next three to five decades

of future critical systems. DTs hold the potential to risk

mitigation, providing platforms for security evaluation through

simulations and testing the efficiency of cybersecurity mea-

sures, and even predicting realtime security threats. A DT

is a virtual counterpart of a physical system that mirrors

their behaviors, synchronized with data connections, enabling

dynamic analysis, predictive insights, and informed decision-

making for enhanced operational efficiency and innovation

across industries [12]. A DT monitors the physical processes,

environmental, and operational parameters of a SCS with

simulations allowing optimization and predictive maintenance

analytics [13], [14]. DTs are commonly developed using rule-

based, semantic annotation, and Machine Learning (ML)/AI-

based approaches to facilitate advanced analysis and simula-

tions. We propose that just as DTs are effectively employed

across Industry 4.0, spanning tasks like asset monitoring

and product lifecycle management, involving automated and

human-assisted interventions, a similar cybersecurity opera-

tions strategy can be adapted for SCSs [15].

The main thrust here is to improve the cybersecurity oper-

ations of SCSs employing Shift Left and Shift Right (SLSR)

design paradigm at both design and runtime by developing

their security-driven DTs to cope with system dynamics and

complexities while improving cybersecurity operations en-

hancing system resilience and trustworthiness at scale. The

Security Digital Twin (SDT) is a software-driven solution

focused on solving SCSs cybersecurity tasks. A SDT can

ensure the separation of concerns by ensuring cybersecurity

operations are at first initialized and fixed in a virtual replica

and then later can be reflected in the SCS without interrupt-

ing core business and safety operations. A perspective SDT

with enabled cybersecurity operations following NIST CSF is

visualized in Figure 1.

Considering the attack on Saudi Chemical Plant [7] in

which attackers targeted plant safety systems by manipulating

OT systems through advanced malware, an SDT could be

used to emulate and monitor plant safety operations states,

sending them realtime instructions to maintain required safety

measures if certain events occurred in DT models of the plant.

An SDT could also help reveal an attacker’s presence in the

network early during the cyber breach, which might otherwise

remain undetected for many months.

The SDT ensures reliable and synchronized data flows

from the CPS to orchestrate behaviors for effective security

modeling and analysis. Therefore, physical control compo-

nents such as PLCs and IIoTs should have more reliable

connections and data streams for SDTs to model and sim-

ulate respective behaviors in a DT environment to orchestrate

cybersecurity operations. To overcome these challenges, we

explore the introduction of Virtual Components (VC) replacing

components of the CPS with virtualised counterparts2 directly

manipulating and controlling physical processes from Edge or

Cloud environments and feed reliable data to SDTs enabling

their seamless integration, design, deployment, and testing

for intelligent cybersecurity operations. The VCs in the SDT

as building blocks then support the cybersecurity of SCSs

throughout the lifecycle employing the Shift Left and Shift

Right (SLSR) design paradigm. The SLSR design paradigm

emphasizes the importance of security starting from the very

beginning of system design (Shift Left) and continuing as the

systems operate (Shift Right) using SDT. This ensures SCSs

are more resilient and dependable against emerging cyber

threats.

We propose innovative SDT-driven cybersecurity operations

of the future SCSs with a new design paradigm of SLSR

employing VCs. With this architectural shift in design, we

explore and discuss the enhancement of SDT modeling capa-

bilities incorporating a mix of state based modeling, semantic

technologies, Knowledge Graphs (KGs), and emerging ML

and generative AI approaches. We also identify research

challenges that need to be overcome for the implementation

of DT-driven cybersecurity of future systems.

The paper is organized as follows: Section II introduces the

concept of virtual twins using SDTs and the SLSR design

paradigm. In Section III, core aspects of security-driven DTs

are presented as SDTs for vital cybersecurity operations. Sec-

tion IV explores emerging modeling and simulation methods

for building advanced analytics capabilities for cybersecurity

using SDTs. Section V covers related techniques, and Section

VI outlines research challenges. Finally, Section VII concludes

with future research directions.

II. SHIFT LEFT AND SHIFT RIGHT DESIGN WITH VIRTUAL

COMPONENTS

This section introduces the concept of SLSR design

paradigm for SDTs using VCs as building blocks across the

SCS security lifecycle. We first establish the rationale for VCs

replacing components of the CPS, and then describe how the

SLSR design paradigm works with SDTs.

2Throughout this paper, a virtual CPS component (VC) represents different
critical components such as PLC/RTU and IIoTs



Fig. 2. Design Paradigm Shift: Virtual Components based on Security Digital Twins enabling cybersecurity operations with Shift Left and Shift Right

A. Virtual Components

Motivation: The existing class of SCSs consists of a variety

of diverse CPS hardware and software components. These

components function across different levels following Purdue

model [16] and as such consistent and reliable interaction

of these components as CPS to DTs is always at risk for

monitoring of core system properties during operations. For

example, consider a scenario involving a smart grid, where

CPS components such as PLCs play a pivotal role in oversee-

ing and controlling sub-stations. The primary responsibility of

these PLCs is the continuous monitoring and control of critical

system processes like voltage control, and power flows, while

communicating critical systems information and other related

factors where they work in a closed loop with DTs [17], [18].

When addressing the implementation of DTs in SCS, secu-

rity needs to be considered as the key driver to ensure system

resilience. DTs must have secure and consistent connectivity

to the CPS for effective monitoring and intelligence gathering.

Establishing and maintaining an uninterrupted connection and

synchronization of data between the physical and digital

counterparts can be a significant challenge. The criticality

of meaningful data ingestion by the DT is vital for its

operational resilience. These challenges persist from the early

stages of design, development, testing, and security analysis

through to deployment and operationalization. With the advent

of increased WiFi performance connectivity using 5G/6G,

available protocols3 [19], the Physical CPS components can be

replaced with a Virtual Component of similar functionalities

and has the ability to integrate with SDTs and SCSs. These

VCs hosted in edge or cloud computing environments reside

closely with SDTs and send operational data to DTs based

upon reference architectures such as the Purdue model [16].

3Communication and Security protocols in use between control devices and
field devices i.e., (OPCU UA, Modbus) for PLCs/RTUs and (HTTPS/MQTT)
for IIoTs when interacting with sensors and actuators

A VC is a programmed software component to replicate the

logic and behavior of CPS and is integrated with physical

components (sensors and actuators) at the device level to

directly interact and control physical processes, refer to Figure

2. The introduction of VCs into SCSs such as smart grids from

constrained sensors and actuators, enable data capture at the

Edge environment [20], [21] address interoperability issues for

data exchange between the SCS and SDT, delivering a more

structured data framework providing advanced analytics for

improved security operations.

With VCs, the likelihood of data loss for SDT is minimized,

and a more reliable source of truth is enabled with increased

availability of data to an SDT. The scalability of security

operations using VCs is more flexible and easy to manage as

additional components can be added to enrich SDT features

to efficiently monitor and support SCS functionality. A VC

supporting interactions with these devices and software com-

ponents can gather contextual information about vulnerabilities

and threats, which can be fed into the SDT for improved

security operations, otherwise not available for collection from

the traditional CPS.

Advantages: (1) More reliable data integration to SDTs

enables constant information feeds to build SDT behaviors

with the ability to store historical and realtime data in the

edge and cloud platforms enhancing the scalability of SDTs

for application in various security use cases which otherwise

would not have been possible.

(2) The SDT can seamlessly intervene VCs when certain

changes or conditions for normal operations are violated and

indicated in SDTs. Respective business safety and security

operations can be managed by re-adjusting VC parameters

and program logic with minimal impacts. This reduces overall

downtime in case of anomalous behaviors in field devices and

physical equipment failures during operations.

(3) Remote security operations with VCs can be achieved

where each VC receives alerts and recommendations from



an SDT regarding security incidents with an intervention

functionality to improve upon security controls through im-

plementation of identity and access management, minimizing

security threats, and improving incident response reaction time

as compared to a SCS where cyber incursions may remain

undetected for months.

B. Shift Left and Shift Right Design Paradigm

Figure 2 outlines the SLSR paradigm for cybersecurity

operations in SDTs. Shift left design based on SDT ensures

the integration of security design tasks at design time en-

suring early SCSs security testing, simulation, identification

and mitigation of vulnerabilities. In rare cases, the shift left

design approach is used for evaluating functional correctness

and performing certain simulations and validation using DTs,

while the shift left design for cybersecurity brings together new

opportunities for security teams to evaluate system security

aspects using SDTs early at design time. Shift left approach

only suffices design time security using SDTs while SCSs

need to be secured, monitored, and analyzed for their security

throughout the lifecycle after they go into the production

phase. To this end, we propose the use of shift right ensuring

runtime/operational cybersecurity of SCSs employing SDT

modeling capabilities with various operational cybersecurity

use cases. Security testing, monitoring, simulation, and anal-

ysis are considered for shift right SDT-based cybersecurity of

critical systems.

We discuss the potential of SDT-supported, shift left and

shift right cybersecurity capabilities in the next section.

III. DIGITAL TWINS FOR CYBERSECURITY OPERATIONS

Cybersecurity operations for SCSs require the presenta-

tion of diverse perspectives from overall system security.

This facilitates evaluating and preparing for potential threats,

vulnerabilities, and attacks, particularly when these systems

operate in complex environments. Current SIEMs, together

with endpoint detection and IDS tools, offer either limited in-

trusion detection/prevention capabilities or a very basic ability

to monitor specific SCS components in networks. Moreover,

these security tools and other state-of-the-art security modeling

solutions are not able to augment and analyze for timely

incident response in case of security incidents. An SDT

capability offers many opportunities and features for security

teams and researchers to mitigate security risks early in the

security design phase while ensuring resilience to cyber attacks

at runtime.

In an SDT, the fusion of historical data with realtime

data offers various multi-dimensional features such as sim-

ulation/testing of critical assets, various types of security

analytics, security controls optimization, and interventions,

depending upon security incident severity and context. Figure

3 depicts VCs integrated with field devices (sensors and actu-

ators) to enable the availability of different types of data states

for security-driven DTs. These are used to design intelligent

and robust security models supporting broad security use cases

by delivering protection, detection, response, and recovery at

both the design and runtime of SCSs.

As visualized in Figure 3, the VC obtains the physical

process operational information through sensor outputs from

field devices and feeds this data to the SDTs for cyberse-

curity operations monitoring. The current process state of

various physical processes is captured through VCs, which

then defines their functional behavior as a collection of states

over a period of time within SDTs. The data and process

states contain information about critical systems, their sub-

systems, and interactions (what type of sensor data VCs read

and what inputs they send to actuators as well as SCADA

and HMIs) to carry out physical/business processes. The

data can be specified in XML/JSON formats such that it

describes the CPS business operations conditions, process

controls logic, and threshold values for certain operations,

such as voltage values and power flow in a smart grid for

a power generation device should not cross certain threshold

values to ensure safe operations. All this information from

VCs and their physical counterparts is used to enrich SDT

models. The SDT models are further leveraged with ML

and Large Language Models (LLMs) capabilities to provide

various cybersecurity operations use cases. Similarly, semantic

models, knowledge representation, and reasoning capabilities

enable hybrid intelligence, see Figure 3 for SLSR SDT-based

modeling capabilities.

In the following, we discuss various cybersecurity SLSR

operations using SDTs-driven capabilities.

A. Security Digital Twins-Enabled Systems Security with Shift

Left and Shift Right Design Paradigm

1) Protection: The protection of SCSs is vital to safeguard

against rising threats and attacks. The protection use cases

enabled through SDTs are described in detail aligned with

SLSR paradigm

Addressing Security Misconfigurations: The SCS, with

diverse components and interconnections, face many security

misconfigurations such as software, hardware and network-

related misconfigurations. Since SDTs are virtual replicas

of exact system components, they can easily simulate and

mimic the component’s configuration details. For example, a

virtual component of a CPS with SDT can provide network

connection details, and communication protocols, and present

the way internal components, such as virtual PLC perform in-

teractions with Sensors and actuators. This way SDT can sim-

ulate network configurations that are specified and compared

with baseline configurations. If network or hardware/software

configurations have gone through certain changes, then these

can be detected in SDT simulated environment to identify

misconfigurations and fix those providing security teams with

the opportunity to address these issues early in the lifecycle

[22]. Within the SDT environment, CPS configurations vital to

system security can be tested by generating multiple security

scenarios verifying and evaluating each configuration against

certain attacks and exploitable vulnerabilities both at design

and runtime to further enhance the security posture of systems.



Fig. 3. Security Digital Twins: Cybersecurity Design time and Runtime Modeling Capabilities with Shift Left and Shift Right (SLSR) for Smart Critical
Systems. Virtual components work closely with SDTs while providing realtime and historical data about SCSs CPS components. Modeling capabilities for
SDTs can be replicated from design time to runtime for improving the cybersecurity of SCSs

Threat Modeling: Threat modeling of SCSs is a vital

cybersecurity feature for SDT. An SDT can model and simu-

late internal and external interfaces of CPS through VCs for

malicious actor’s entry points to the system, helping to identify

system vulnerabilities and associated risks, especially at design

time. This way threat modeling can help explore various

interactions between interdependent system components of

complex SCSs at early stages of development. For example,

threat modeling techniques such as STRIDE and DREAD [23]

can be applied to identify vulnerabilities at each interface

both internal (between VCs to field devices and HMIs/SCADA

systems) and external (OT systems providing access to third-

party users and applications). The vulnerabilities can then be

analyzed and mapped to CVE4 for multi-stage attacks on SCS

where each CVE can be assigned to different attacks. Take

the example of PLC related vulnerabilities found in program

logic which can be mapped to CVEs and CWE5 entries for

risks rating and their severity levels. The analytics capability

in a SDT employing ML [24] in a simulation environment

can help visualize asset threats and their interdependencies

for addressing associated risks at various stages of critical

systems. Both at design and runtime SDTs can leverage se-

mantic models and KGs for effectively building threat models

showing relationships about potential threats, vulnerabilities,

and their origins.

Vulnerabilities Fixing: At Design time SDTs can help fix

and patch vulnerabilities through threat modeling and security

testing of SCS components early in the lifecycle. This helps

security teams to minimize potential threats with less number

4Common Vulnerabilities and Exposures, https://cve.mitre.org/
5Common Weakness Enumeration, https://cwe.mitre.org/

of vulnerabilities when the system eventually goes into the

operational phase.

Intrusion Prevention: With the shift right perspective for

operational security, SCSs can be protected against attacks at

runtime by employing SDTs. The existing DTs with behavior-

specific security patterns using data-driven and semantic tech-

nologies [25], [26] provide certain ID capabilities; however, ID

alone is not sufficient for the protection of CPS and related

components with increased convergence of IT/OT systems.

In relation to SDT right shift approach, Intrusion Prevention

(IP) models must be designed to observe system dynamic

states capturing system physical properties such as CPS sate-

space-based methods for behavior change prediction. With

these predictions, the SDT can determine if particular physical

process-related sensor values violate threshold values and

reach unsafe or undesired states [27]. With the advanced

prediction of unwanted behaviors, certain security incidents

can be avoided. The SDT can identify relevant assets from

these predictions to activate security countermeasures, such

as improving security controls around PLCs/HMIs for unau-

thorized access to safeguard against false data injection and

Man-in-the-middle types of attacks.

2) Detection: Intrusion and anomaly detection using SDTs

show promise for accurate and reliable detection of security

anomalies across physical and virtual components of critical

systems [25].

Intrusion Detection: By utilizing realtime and historical

data repositories from physical and virtual components, intelli-

gent solutions are created to enhance the features of ID system

using SDTs, enabling malware and unauthorized access de-

tection at different levels of the system. For instance, specific

unusual patterns, such as changes in system configurations in



SDT, can be observed using knowledge-based detection with

static data (historical data) [28] from sensor devices, system

logs, and network traffic. The SCS behavior models within

SDT can be updated with ongoing changes in SCSs complex

environment to simulate malicious activities and perspective

attacks. Similarly, certain rules can be applied to oversee

the behavior of Virtual Components for security and safety

incidents. By employing ML techniques [29], [30], dynamic

ID can be facilitated using both historical and realtime data by

behavior refinement. This allows for continuous monitoring of

unusual activities from DTs to CPS.

Digital Twins-based Security Tools: Shift right security

operations features from SIEM and Extended Detection and

Response (XDR) tools can be simulated and tested for SCSs

before such systems are actually implemented to assess their

suitability for various security use cases. Deployment and

testing SIEM tools directly on critical systems are quite

expensive and cumbersome, especially testing their correctness

of incidents detection, alert generation and response. SIEM

and XDR systems can gradually be tested with critical CPS

components within SDTs with complete life cycles of events

indigestion, pre-processing to detection, and mitigation test-

ing in SDTs [31] for better configuration and performance.

Selected security functions with SDT against selected CPS

components are validated and passed through scenarios, then

the gradual deployment of SIEM/XDR can be carried out

across real-world SCSs. This enables the correction of security

functions’ applicability and avoids security failures in produc-

tion.

3) Response and Recovery: Business and safety-related

operations delayed response and recovery seriously effects an

organization’s reputation and financial revenues in the eve of

cybersecurity incidents. From an SCS perspective, response

and recovery to cyberattacks are not straightforward. Take the

example of the Solarwinds attack, which is believed to have

started in 2020 [6], which was discovered in late December

2020, and initial response and recovery procedures started in

mid-2021. Security Orchestration, Automation, and Response

(SOAR) aided with ML and rule-based advanced analytics

are used for incident response activities. However, SOAR

applicability for critical systems has challenges with additional

OT components, IT/Enterprise systems, impacted stakeholders,

and business function differences and operational silos, adding

technical complexities leading to delays in security incidents

response and recovery. One way to overcome these challenges

is to test and evaluate incident response and recovery in

actual CPS environments across OT/IT landscape, which is

usually very expensive and nearly impossible. SDTs allow

security teams and security analysts to test/simulate various

response scenarios [26]. The SDTs with enough data from CPS

can be used as effective incident response training platforms

for critical systems. A digital twin-based SOAR for critical

systems provides innovative ways to respond and recover from

advanced and complex attacks [22].

Response Scenarios Simulations: Cyber attack incident

response scenarios can be simulated within SDTs, before

implementing them in the real world. Penetration testing of

CPS is conducted in SDTs to evaluate the impact of various

attacks on actual systems and their tailored responses. During

the attack, the impacted IT/OT system components can be

isolated or quarantined to verify the spread of malicious code

or artifacts within the SDT. Security teams can effectively

test various containment, remediation and mitigation strategies

within SDT before these strategies in case of such incidents

can be implemented in actual critical systems environments.

During response simulations, discovered security vulnerabili-

ties can be prioritized and fixed through digital twin automated

recommendations early in the lifecycle.

IV. TOWARDS INTELLIGENT AND RELIABLE SECURITY

DIGITAL TWINS

The SDT driven cybersecurity operations elaborated in

the above section use a variety of modeling techniques to

bring intelligent, security analysis capabilities for smart crit-

ical systems. The modeling capabilities of SDTs mostly rely

on rule-based, physics-based, and machine-learning method-

ologies [24], [32], [33]. However, these methodologies are

often explored and implemented independently within DTs

without cohesive support for various cybersecurity operations

in the context of SLSR design. Consequently, the security

use cases commonly lack centralized analytics employing

integration and automation of SDTs, which is essential for

providing comprehensive support to cybersecurity operations.

Security researchers and practitioners should adopt innovative

approaches for designing the architecture of physical/Digital

Twins, enhancing the security intelligence capabilities of

SDTs, and enabling dependable and seamless automated sup-

port for decision-making throughout the systems lifecycle.

Integrated and Automated Cybersecurity: An inte-

grated and automated approach leveraging intelligent modeling

paradigms such as AI/ML, rule-based, knowledge-based, and

ontological approaches can be combined to enable innovative

cybersecurity operations use cases within SDTs. Following

such an approach integrated security modeling within SDTs

can be proven useful where each SDT model can use a variety

of CPS-generated data to augment cybersecurity operations.

As visualized in Figure 3, realtime and historical data are fed

to digital wins for developing SDT models. The data types

ingested through physical and VCs can be further catego-

rized into static descriptive data, dynamic critical assets data,

dynamic operational environments data, and semantic data.

Each of these data categories is aligned with SDT modeling

capability for cybersecurity operations. These modeling capa-

bilities can be categorized into state-based behavioral security

models, ML-based Security models, and knowledge-based

hybrid security models. These security models potentially

add advanced analytics, simulation, and descriptive security

capabilities for cybersecurity operations within SDTs.

In the sections below, we explore and discuss the develop-

ment and enrichment methods of these modeling capabilities

for digital twin-driven cybersecurity operations.



A. AI Capability for Security Digital Twins

Digital Twins based on AI/ML modeling techniques are

suitable to leverage big data for advanced analytics, opera-

tional intelligence, and optimization. Enhancing SDT-driven

cybersecurity operations involves leveraging various ML/DL

algorithms and design strategies like anomaly detection, se-

curity prediction modeling, and attack forecasting with state-

based and historical data [34]. While several research endeav-

ors have focused on designing DTs for specific security tasks,

many techniques primarily rely on static data states, using

historical data to train ML models for identifying security

anomalies and intrusion detection. Instead of these techniques,

we require a bottom-up approach. Here, ML/DL models for

SDTs receive realtime and historical data from SCSs, which

helps establish baseline behaviors for CPS. During model

training, this data is correlated to detect outliers and predict

potential threats and malicious activities, see details in Figure

3. For critical systems, SDTs can collect large amounts of data

from CPSs for training AI/ML models which can be tailored to

particular cybersecurity operations by combining classification

algorithms i.e., Support Vector Machine (SVM), Artificial

Neural Network (ANN), Generative Adversarial Networks

(GANs) and Gradient Boost (GB) for intrusion and anomaly

detection related cybersecurity tasks [29], [30].

The underlying SDTs models can take advantage of AI

models to improve security risk management through threat

modeling, incident response management, and similar use

cases implementing the SLSR approach.

B. Generative AI-based Security Digital Twins

Attacks Simulations through Generative AI: Generative

AI-based attack scenario generation using GANS for testing

and evaluation of CPS security can assist in determining

their ability to resist sophisticated attacks and improve the

overall cybersecurity posture. An SDT using Generative AI

can generate attack simulations representing real-world at-

tackers’ tactics. For example, a simulation of a cyber attack

targeting CPS components such as HMI/Engineering Work

Station can reveal the tactics, techniques, and procedures

used to breach OT systems and can assist security teams

in proactively formulating an effective response strategy to

mitigate cybersecurity threats and incidents. As depicted in

Figure 3, Large Language Models (LLM) are an emerging

type of generative AI [35] used in combination with traditional

ML/DL models to evaluate and support security operations

using DT technology. The malicious code and its infiltration

within the CPS support meaningful impact analysis of AI-

generated code exploiting system vulnerabilities. As a result,

gaps/weaknesses in current security controls of SCSs, policies

and vulnerabilities can be preemptively addressed through the

utilisation of the SDT.

Generative AI for Incident Response and Recovery:

By employing LLM-based pre-trained models such as Open

AI ChatGPT [36] and Microsoft Security co-pilot fine-tuned

6 models into the SDT landscape, security researchers can

leverage the intelligence and agility of LLM agents for cy-

bersecurity operations augmentation. This enhances security

team agility by simplifying security operations through LLM

SDT agents to interpret and relate to the context of security

incidents, including VCs and the physical environment. LLM-

based simulated behaviors of SCSs are supported by large

dataset feeds of realtime and historical observations from

physical and virtual counterparts see Figure 3.

Furthermore, these LLM-based SDT agent datasets seam-

lessly incorporate security appliance data sourced from CPS,

encompassing data from firewalls, network logs, SIEM, and

EDR logs. This holistic approach provides a comprehensive

insight into system architecture and the flow of information

traffic, empowering incident response efforts. At scale, secu-

rity teams can effectively pinpoint and comprehend potential

threats by employing natural language queries to inquire LLMs

about security vulnerabilities, threats, and the overall security

stance of critical systems. This, in turn, equips them with

the knowledge needed to proactively prepare and respond to

potential attacks. SDTs, powered by LLM security agents,

enable concurrent investigation of ongoing attacks for quicker

containment, remediation, and mitigation, reducing the mean

time to protect, detect, respond, and recover critical systems.

C. Semantic Technologies Capability for Security Digital

Twins

Semantically enriched ontologies and KGs [37] can be

leveraged to create an intelligent and context-aware SDT

modeling capability through the integration of metadata feeds

from the CPS devices, sensors, and actuators. Semantically

enriched SDT modeling capability is used to analyze and

simulate the behavior of the system under different operational

circumstances and facilitate meaningful predictions for critical

system security concerns.

Knowledge Representation and Security Modeling: From

a security Digital Twins perspective, ontological reasoning and

KGs can further facilitate the execution of complex security

analysis using entity resolution, clustering, and classification.

Machine reasoning in support of cybersecurity operations can

be implemented using rulesets and inference techniques. New

threats are identified from the existing knowledge base, which

can further be used for in-progress attack detection and a

greater understanding of attack paths and pivot points. For

security ontologies development, ontology languages such as

Resource Description Framework (RDF) and (Web Ontology

Language (OWL) are commonly used [37]. The SDTs en-

rich the contextual data of CPS with underlying ontologies

attributes against threats and vulnerabilities for developing

situation aware cybersecurity operations. Data models with

different types from CPS, including physical and virtual assets,

network logs, and incident reports, can be aggregated to

develop multiple security ontologies, each with a specific

objective for cybersecurity operations [33].

6https://www.bleepingcomputer.com/news/microsoft/microsoft-brings-gpt-
4-powered-security-copilot-to-incident-response/



Knowledge Graphs for Cybersecurity Operations: Con-

structing KGs for SDTs in the context of cybersecurity oper-

ations involves combining metadata from various sources to

create a structured representation of the relationships, entities,

and attributes within the DT environment. Incident detection

can be intelligently done through KGs capabilities. Detected

cyber incidents within SDTs can be co-relations to inference

and track the origin of attacks and vulnerabilities discovery

and their paths with inner-related components using KGs

data models. The KGs enriched with CPS states and asset

specifications data with underlying ontologies can be used for

incident response and management. In this regard, KG-based

annotations aided with MITRE ATT&CK framework provide

valuable insights into cyber threat techniques and respective

Indicators of Compromise (IoC) for IT/OT systems attacks

mapping7. This mapping can be aligned to attack vectors for

building automated attack paths to enable automated IoCs

identification against each attack tactic employing Semantic

modeling and KGs within SDT capability. These MITRE

ATT&CK-based models can then be used in incident play-

books for devising better response and mitigation strategies.

V. RELATED TECHNIQUES

In this section, we evaluate the commonalities and differ-

ences of techniques with their pros and cons for the cyberse-

curity operations of critical systems in relation to digital twins.

Closely related to SDTs, hardware and software-based em-

ulators and simulators are used for CPS testing and validating

cybersecurity operations [38]. However, cybersecurity mod-

eling and simulation methods similar to this do not have

the capability to monitor system security operations with

realtime synchronization. The SDT with shift left and shift

right security testing using intelligent modeling capabilities,

are both flexible in implementation and effective in operation,

remaining consistent throughout the system lifecycle.

Cyber ranges are useful platforms for training, identifying

system vulnerabilities, associated threats, and attacker’s tactics

for exploitation of vulnerabilities using tailored scenarios

[39], [40]. Security defenders can test and validate security

hardening techniques by utilizing different security appliances,

including EDRs, SIEMs, and firewalls designed to detect and

protect against bespoke attacks. In comparison to SDTs-based

security operations, cyber ranges operate mostly with hybrid

system components, only offering security testing and training

capabilities, which are mostly manually simulated. In contrast,

SDT technology offers such automated features as security-

driven behavior state modeling, simulation, replication and

advanced support diagnostic analytics. Security system design,

prototyping, deployment, commissioning and standards com-

pliance phases are each the recipient of increased capabilities

when using SDTs. The use of SDT technology enhances

routine security administrative tasks when performing system

security testing and analysis activities.

7https://attack.mitre.org/

A number of AI/ML modeling approaches [29], [30], [34]

have been developed as standalone prototypes as well as

integrated into existing security appliances. As discussed in

Section IV, these techniques have a certain level of intelli-

gence for security incident prediction and detection. However,

unlike an SDT, they do not possess the essential contextual

knowledge and situational awareness necessary for the mean-

ingful visualization of cybersecurity incidents, the tracking

of incursion sources, and the interaction activity between

system critical components. Moreover, standalone AI/ML-

based security tools and appliances are not integrated in a way

to streamline security operations with design and operational

scenarios to test and evaluate the cybersecurity of SCSs.

The SDTs do not necessarily replace existing security

appliances and tools, but they do enhance their existing

ability to understand the complexities of SCSs with state-based

and semantically enriched KGs improving understanding the

context of security incidents through simulated analytical

techniques which conventional security modeling tools alone

cannot achieve.

VI. RESEARCH CHALLENGES

While Digital Twins show promise for driving cybersecurity

operations, there are challenges in their design, architecture,

and enabling technologies. These issues require attention from

security researchers and practitioners. In the following, we

highlight some of the challenges that demand further explo-

ration and research endeavors from academic and industry

practitioners:

Virtual Components Security: The addition of VCs sug-

gests many significant security benefits but also introduces

associated risks and security architecture challenges. The

perspective VCs, embedded in either Edge or Cloud environ-

ments, may expose particular security weaknesses and provide

entry points for attackers to gain access to the SCSs if not

designed securely. In this regard, security architecture patterns,

both for Edge and cloud-hosted DTs should be designed to

cater for security controls incorporation at various levels [21].

Specialized security verification and validation methods should

be used to evaluate the security of VCs and their environments.

Data transfers from field devices to Edge, pre-processing, and

further distribution to cloud and SDTs require the exploration

of new data encryption methods across the channels while the

shared responsibility models between edge and cloud should

be analyzed and understood by stakeholders.

Digital Twins Security: The SLSR integration of SDTs

into SCSs introduces certain risks as the left and right in-

teractions increase the opportunities for adversaries. One of

the heightened security risks that an SDT introduces to the

CPS is that of additional attack vector vulnerabilities. The

result of its digitalization of the physical hardware, the SDT

digital hardware, and software components adds to the security

exploitation opportunities for malicious actors. For example,

by unauthorized access through the SDT of a smart grid, an

attacker can gain full visibility of core grid functions and

then pivot into access to critical assets. Exploiting security



weaknesses in SDT, a malicious actor could potentially launch

advanced attacks on the smart grid leading to the disruption of

essential services, and compromising the safety and security of

the system. To address these issues, security researchers and

system architects should review methods of system security

and modeling integration with a view to the development of

secure cybersecurity frameworks with the implementation of

multi-layer protocols prioritizing cybersecurity [15]. Emerging

technologies such as Blockchains [41] can be employed for

SDT identity and access management across SLSR interfaces

to overcome such issues.

Interoperability and Communication Issues: The inter-

acting twins, i.e. SDTs and CPS physical counterparts, use dif-

ferent data formats, and protocols, for communication. Integra-

tion of both twins is a complex and challenging task due to the

non-existence of standardized interfaces and governance. This

adds to performance overheads and delays in data processing

and system response times, potentially affecting control and

decision making in CPS via SDTs. To address these challenges

researchers should focus on developing standardized commu-

nication protocols and data representation formats, as well as

semantic data integration techniques, to facilitate a common

understanding of data. The design of dynamic protocols and

middleware solutions can bridge the gap in realtime data

synchronization to facilitate better CPS-SDT integration.

Data and Modeling issues in Digital Twins: Using diverse

CPS data with SDTs adds data complexity and heterogeneity

for training AI/ML and semantic models. In this regard, data

curation, i.e. data labeling and distribution with sampling bias,

have security implications. The integration of sensor source

data and synthetic data should be used with techniques such

as transfer learning and active learning to minimize false

positives/false negatives resulting in more robust models [42].

To address the constraints of limited labeled data, automated

methods can be used effectively. This involves generating

additional simulated data based on existing labeled data,

and introducing variations, noise, or anomalies to increase

the diversity of data. The AI/ML models’ robustness should

be enhanced with emerging semantic and knowledge-based

integration enabling context-aware models. These models en-

compass basic detection and prediction techniques to include

increased refinement of machine learning using ML and ma-

chine reasoning technologies. Tailoring techniques to meet

the specific requirements of cybersecurity within the digital

twin operational environment can meaningfully contribute to

the efficient handling of data and improved robust model

development.

Trustworthy Modeling for Digital Twins: The absence of

transparency and interpretability (Blackbox) in current AI/ML

algorithms when used in Digital Twins erodes the trust of

security teams in the models employed to counteract cyberat-

tacks. Foundational models utilized for prediction, detection,

and analysis need to instil a measurable level of confidence

among stakeholders regarding their relevance, reliability, and

accuracy. However, most of these AI/ML models function

as black boxes, offering limited insight into the reasoning

behind their output. To address this shortcoming, Explainable

AI (XAI) methods [43] should be developed and integrated

into cyber defense, attack analysis, and cybersecurity incident

response stages. SDTs, empowered by XAI methods, should

offer unambiguous transparency, interpretability, and clarity

of understanding at each phase of automated cybersecurity

operations.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this vision paper, we present innovative concepts for

crafting intelligent security DTs, poised to enhance cyberse-

curity operations by applying the SLSR design paradigm for

securing systems. These security-focused Digital Twins aim

to bolster trust and resilience within critical smart systems,

encompassing IT/OT in critical infrastructure and Industry 4.0

operational domains. Future systems cybersecurity is envi-

sioned with virtual components and the SLSR design paradigm

enabling reliable monitoring of CPS, fostering robust security

twins model development across the system lifecycle. The

future security-driven DTs shall have integrated support for

diverse cybersecurity use cases employing AI/ML, semantic

structures, and KGs with continuous automation and integra-

tion. By harnessing generative AI combined with KGs and

modeling strategies, SDTs shall pave the way for innovative

cybersecurity solutions for critical systems of the future.

For future research, a number of issues are identified for

exploration and development, as outlined in the research chal-

lenges sections. Data curation, management, and processing

for SDT consumption require further application refinement

and extensive research. The integration of generative AI

for cybersecurity within the context of DT holds significant

promise. However, the trustworthy and responsible design of

these AI/ML models requires additional research before they

can be seamlessly integrated into security Digital Twins.
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