
Membership Inference Attack on Graph Neural
Networks

Iyiola E. Olatunji
L3S Research Center,
Hannover, Germany.

iyiola@l3s.de

Wolfgang Nejdl
L3S Research Center,
Hannover, Germany.

nejdl@l3s.de

Megha Khosla
L3S Research Center,
Hannover, Germany.

khosla@l3s.de

Abstract—Graph Neural Networks (GNNs), which generalize
traditional deep neural networks on graph data, have achieved
state-of-the-art performance on several graph analytical tasks.
We focus on how trained GNN models could leak information
about the member nodes that they were trained on. We introduce
two realistic settings for performing a membership inference (MI)
attack on GNNs. While choosing the simplest possible attack
model that utilizes the posteriors of the trained model (black-
box access), we thoroughly analyze the properties of GNNs and
the datasets which dictate the differences in their robustness
towards MI attack. While in traditional machine learning models,
overfitting is considered the main cause of such leakage, we
show that in GNNs the additional structural information is the
major contributing factor. We support our findings by extensive
experiments on four representative GNN models. To prevent
MI attacks on GNN, we propose two effective defenses that
significantly decreases the attacker’s inference by up to 60%
without degradation to the target model’s performance. Our code
is available at https://github.com/iyempissy/rebMIGraph.

I. INTRODUCTION

Graph neural networks (GNNs) have gained substantial
attention from academia and industry in the past few years with
high-impact applications ranging from the analysis of social
networks, recommender systems to biological networks. One of
the most popular tasks is that of node classification in which the
goal is to predict the unknown node labels. These models differ
from the traditional machine learning (ML) models, in that they
use additional relational information among the node instances
to make predictions. In fact, the graph convolution-based model
[7] which is the most popular class of GNNs embeds graph
structure into the model itself by computing representation
of a node via recursive aggregation and transformation of
feature representations of its neighbors. We take the first step
in exposing the vulnerability of such models to membership
inference (MI) attacks. In particular, we ask whether the trained
GNN model can be used to identify the input instances (nodes)
that it was trained on.

To motivate the importance of the problem for graphs,
suppose a researcher has a list of patients infected with
COVID19. The researcher is interested in understanding the
various factors contributing to the infection. To account for the
factors such as their social activity, she might want to utilize
knowledge of friendship/social connection known among the
patients. She then trains a GNN model on the graph induced on
the nodes of interest and uses the trained node representations
as additional input for her disease analysis models. A successful

MI attack on the trained model would reveal the list of infected
persons even though the model might have not used any disease-
related sensitive information.

The goal of MI attack [12, 14] is to distinguish between the
target model’s behavior for the inputs it encountered during
training from the ones which it did not. The inputs to the attack
model are the class probabilities (posteriors) or the confidence
values output by the target model for the corresponding data
point. Thus, the attacker or adversary only requires black-box
access to the model where she can query the model on her
desired data record and obtain the model predictions (output
class probabilities).

While membership inference has been well studied in the
context of traditional ML models [13, 14] like convolution
neural networks (CNNs) and multilayer perceptron (MLP),
GNNs has so far escaped attention. Much of the success of
MI attacks in traditional ML models has been attributed to
the model’s tendency to overfit or memorize the dataset [20].
Overfitting leads to the assignment of high confidence scores
to data records seen during training as compared to new data
it encountered during testing, making it possible to distinguish
between the instance types from the prediction scores. We ask
if overfitting in GNNs is also the main contributing factor for
successful membership inference. We discover that even if a
GNN model generalizes well to unseen data, it can still be
highly prone to MI risks. The encoding of the graph structure
into the model is what makes a GNN powerful but it is exactly
this property that makes it much more vulnerable to privacy
attacks. Therefore, unlike other models, reducing overfitting
might not alone lead to higher robustness against privacy risks.

While we showed that all GNN models are vulnerable to
MI attack, we observed differences in attack success rate. We
explain these differences in terms of differing dataset and model
properties using insights from our large scale experimental
analysis. We further develop defense mechanisms based on
output perturbation and query neighborhood perturbation
strategies. Our empirical results show that our defenses can
effectively defend against MI attacks on GNNs by reducing
the attacker’s inference by over 60% with negligible loss in
the target model’s inference.

To summarize, our key contributions are as follows.

1) We introduce two realistic settings for carrying out MI
attack on GNNs.

ar
X

iv
:2

10
1.

06
57

0v
3

 [
cs

.L
G

]
 1

8
D

ec
 2

02
1

https://github.com/iyempissy/rebMIGraph

2) We perform an extensive experimental study to expose
the risks of privacy leakage in GNN models. We further
attribute the differences between the model’s robustness
towards MI attack to the dataset properties and the model
architecture.

3) Contrary to popular belief, we show that for GNNs,
lack of overfitting does not guarantee robustness towards
privacy attacks.

4) We propose two defense mechanisms (based on output
and query neighborhood perturbation) against MI attacks
in GNNs that significantly degrade attack performance
without compromising the target model’s utility.

II. BACKGROUND AND RELATED WORKS

A. Graph Neural Networks

Graph Neural Networks popularized by graph convolutional
networks (GCNs) and their variants, generalize the convolution
operation for irregular graph data. These methods encode
graph structure directly into the model. In particular, the
node representation is computed by recursive aggregation and
transformation of feature representations of its neighbors.

Let x(`)
i denote the feature representation of node i at layer

` and Ni denotes the set of its 1-hop neighbors. Formally, the
`-th layer of a general graph convolutional operation can then
be described as

z
(`)
i =AGGREGATION(`)

({
x
(`−1)
i ,

{
x
(`−1)
j | j ∈ Ni

}})
(1)

x
(`)
i =TRANSFORMATION(`)

(
z
(`)
i

)
(2)

Finally, a softmax layer is applied to the node representations
at the last layer (say L) for the final prediction of node classes,

yi ← softmax(z
(L)
i W), (3)

where yi ∈ Rc, c is the number of classes and W is a
learnable weight matrix. Each element yi(j) corresponds to
the (predicted) probability (or posterior) that node i is assigned
to class j.

We focus on four representative models of this family which
differ either on one of the above two steps of aggregation
and transformation. In the following, we briefly describe these
models and their differences.

Graph Convolutional Network (GCN) [7]. Let di denote the
degree of node i. The aggregation operation in GCN is then
given as

z
(`)
i ←

∑
j∈N (i)∪i

1√
didj

x
(`−1)
j . (4)

GCN performs a non-linear transformation over the aggregated
features to compute the representation at layer `.

x
(`)
i ← ReLU

(
z
(`−1)
j W(`)

)
. (5)

Simplifying Graph Convolutional Networks (SGC) [18].
The authors in [18] argue that the non-linear activation

function in GCN is not critical for the node classification
task and completely skips the non-linear transformation step.
In particular, in an L layer SGC model, L aggregation steps
are applied as given by (4) followed by final prediction (as in
(3)).

Graph Attention Networks (GAT) [16]. GAT modifies the
aggregation operation in (4) by introducing attention weights
over the edges. In particular, the p-th attention operation results
in the following aggregation operation, where

z
(`,p)
i ←

∑
j∈Ni∪i

αp
ijx

(`−1)
j , (6)

where αp
ij are normalized attention coefficients computed by

the p-th attention mechanism. In the transformation step, the
P intermediate representations corresponding to P attention
mechanisms are concatenated after a non-linear transformation
as in (5) to obtain the representation at layer `.

x
(`)
i = ||Pp=1 ReLU

(
z
(`,p)
i W(p`)

)
, (7)

where || denotes concatenation operator and W(p`) is the
corresponding weight matrix at layer `. For more details of
the attention computations, we refer the reader to [16].

GraphSage (SAGE) [3]. GraphSage generalizes the graph
convolutional framework by proposing several aggregation op-
erations. To achieve scalability, rather than using the complete
1-hop neighborhood of the node, it samples a fixed number
of neighbors randomly at each layer for each node. Let Ñ (i)
denote the set of sampled neighbors for node i. The aggregation
(we use mean aggregation in this work) operation as applied
in SAGE is given as follows.

z
(`)
i ← CONCAT

x
(`−1)
i ,

1

|Ñ (i)|

∑
j∈Ñ (i)

x
(`−1)
j

 . (8)

The transformation operation stays the same as in (5).
Our approach is the first work to compare different graph

convolution-based models with respect to their vulnerability
to MI attack. More precisely, we ask if the differences in
the aggregation and transformation operations of the graph
convolution-based models lead to differences in privacy risks.

B. Privacy attacks on Machine Learning

Several attacks on machine learning models have been pro-
posed including membership inference attack [1, 9, 13, 14, 19]
where the adversary aims to infer whether a data sample
was part of the data used in training a model or not. In the
attribute inference attack, the attacker’s goal is to reconstruct
the missing attributes given partial information about the data
record and access to the machine learning model [5, 19, 21].
In model inversion attack [2, 8, 10], the model’s output is used
to extract features that characterize one of the model’s classes.
The goal of model extraction and stealing attack is to steal
model parameters and hyperparameters to duplicate or mimic
the functionality of the target model [15, 17]. However, little
attention has been paid to the privacy risks of GNNs. Recently,

privacy preserving learning algorithms for GNN models have
been proposed [11, 22]. However. their proposed solutions
are not directly applicable in overcoming the risk incurred
by MI attacks. After our work, a recent paper on node-level
membership inference attack for GNN was proposed [4]. Their
work is different from our work in that we focus on analyzing
the properties of GNNs and dataset properties that determines
the differences in their robustness. Moreover, as indicated by
the authors, their proposed defenses limits the target model’s
utility whereas our proposed defenses does not affect model’s
utility.

III. OUR APPROACH

A. Problem Description

1) Notations: Let G = (V,E) represents the graph dataset
with |V | nodes and |E| edges. Let the nodes be labeled. We
denote by target graph, Gt = (Vt, Et), the induced graph on
the set of sensitive or the member nodes Vt which is used to
train the target model, M.

Problem Statement. Let a GNN model M be trained using
the graph Gt = (Vt, Et). Given a node v and its L-hop
neighborhood, determine if v ∈ Vt. Note that even if v was
in the training set, the L-hop neighborhood known to the
adversary might not be the same as the one used to train the
model M.

2) Our Proposed Settings: We propose two realistic settings
for carrying out MI attack on GNNs: (i) in the first setting
which we call the TSTF (train on subgraph, test on full) setting,
in which the whole graph G is available to the adversary but
she is not aware of the subgraph Gt used for training the target
model. This implies that the attacker has access to the links (if
any) between the member nodes and non-member nodes (ii) in
our second setting TSTS (train on subgraph, test on subgraph)
setting, the target graph Gt is an isolated component of G,
i.e., the member and non-member nodes are not connected.
The adversary has access to G but does not know which of its
component is used for training the target model.

B. Attack Methodology

We model the problem of membership inference as a binary
classification task where the goal is to determine if a given
node v ∈ Vt. We denote our attack model by A.

We organize the adversary’s methodology (also shown in
Figure 1) into three phases, shadow model training, attack
model training, and membership inference.

1) Shadow model training: To train the shadow model, we
assume that the adversary has access to the graph with vertex
set Vs that comes from the same underlying distribution as Vt
(the assumption which we also relax in Section V-D4). Then the
adversary trains the shadow model using the shadow model’s
training split, V Train

s ⊂ Vs. To replicate the behavior of the
target model, we use the output class probabilities of the target
model (when V Train

s is used as input) as the ground truth
for training the shadow model. This would result in querying
the target model for each vertex in V Train

s . We later relax

Fig. 1: Attack methodology for membership inference on GNN
models. The training nodes and neighbor information used for
training the shadow GNN model are labeled as Member. We
also query the shadow model with nodes from a test graph and
labeled the predictions as non-Member. These predictions are
used to train the attack model. The attacker then queries his
trained attack model with posteriors obtained from the target
model (target predictions) to infer membership.

the number of queries required to 0 by directly training the
shadow model on the original ground truth labels of V Train

s .
We observe there is no significant change in attack success
rate (c.f. Section V-D1). We also find that we do not need to
know the exact target model. In fact, we show that using GCN
as the shadow model, irrespective of the actual target model
already results in good attack performance (c.f. Section V-D3).

2) Attack model training: To construct the attack model,
we use the trained shadow model to perform predictions over
all nodes in V Train

s and V Out
s = Vs \ V Train

s and obtain the
corresponding output class posterior probabilities. For each
node, we take the posteriors as input feature vectors for the
attack model and assigns a label 1 if the node is in V Train

s

and 0 if the node is from V Out
s . These assigned labels serve

as ground truth data for the attack model. All the generated
feature vectors and labels are used in training the attack model.

3) Membership inference: To perform the inference attack
on whether a given node v ∈ Vt, the adversary queries the
target model with v and its known neighborhood to obtain
the posteriors. Note that even if v was part of training data,
the adversary would not always have access to the exact
neighborhood structure that was used for training. Then she
inputs the posteriors into the attack model A to obtain the
membership prediction.

IV. EXPERIMENTS

We compare four popular GNN models: (i) graph convolution
network (GCN)[7], (ii) graph attention network (GAT) [16] (iii)
simplified graph convolution (SGC) [18] and (iv) GraphSage (
SAGE) [3] as explained in Section II-A. We ran all experiments
for 10 random data splits (i.e., the target graphs, shadow graphs
as well as test graphs were generated 10 times) and report the
average performance along with the standard deviation.

A. Dataset and Settings

To conduct our experiments, we used 5 different datasets
commonly used as a benchmark dataset for evaluating GNN

TABLE I: Dataset Statistics. |V | and |E| denote the number
of vertices and edges in the corresponding graph dataset. |Vt|
denotes the number of vertices in the target/shadow (train)
graph. deg is the average degree of |Vt| calculated for the
training graph of target model. The average degree for trainset
for shadow model |Vs| is approximately the same as for the
target model.

Cora CiteSeer PubMed Flickr Reddit

|V | 2708 3312 19,717 89,250 232,965
|E| 5429 4715 44,338 449,878 57,307,946
features 1433 3703 500 500 602
classes 7 6 3 7 41
|Vt| 630 600 4500 10,500 20,500
degTSTS 1.111 0.41 1.102 1.638 70.383
degTSTF 3.898 2.736 4.496 10.081 491.987

performance. The properties of the datasets are shown in Table
I.

B. Model Architecture and Training
We used a 2-layer GCN, GAT, SGC, and SAGE architecture

for our target models and shadow models. The attack model is
a 3-layer MLP model. All target and shadow models are trained
such that they achieve comparable performance as reported by
the authors in the literature. We vary the learning rates between
0.001 and 0.0001 depending on the model and dataset.

Evaluation Metrics. We report AUROC scores, Precision, and
Recall for the attack model as done in [13, 14]. For the target
GNN models, we report train and test accuracy. Due to space
constraints we show in the main paper summarized results using
mostly the AUROC metric. The detailed results are shown on
our GitHub page 1.

C. Research Questions
Here, we summarize the main research questions that we

investigate in this work.

RQ 1. How do different GNN models compare with respect
to privacy leakage of training data? What factors lead to
differences in vulnerability of GNN models towards MI attack?
(c.f. Sections V-A and V-B)

RQ 2. How does overfitting influence the performance of MI
attacks in GNNs? (c.f. Section V-C)

RQ 3. How does the number of queries for shadow model
training, absence of knowledge of similar data distribution,
target model architecture and hyperparameter settings affect
the attack performance? (c.f. Section V-D)

RQ 4. How could we defend against the blackbox MI attack
without compromising the model performance? (c.f. Section
VI)

V. ANALYSING THE MI ATTACK ON GNNS

A. Overall Attack Performance
In this section, we answer the first part of RQ 1.

1https://github.com/iyempissy/rebMIGraph

GCN GAT SGC SAGE
GNN models

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Cora
CiteSeer

PubMed
Flickr

(a) TSTF Setting

GCN GAT SGC SAGE
GNN models

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C

Cora
CiteSeer
PubMed

Flickr
Reddit

(b) TSTS Setting

Fig. 2: Mean AUROC scores of attack model against different
GNN models. All target models except SAGE encountered
memory issues for the REDDIT in TSTF setting. Therefore, we
only provide results for REDDIT in the TSTS setting.

a) TSTF Setting: The AUROC scores for the attack model
on all datasets except Reddit are shown in Figure 2a. For the
models GCN and SGC, the attack model obtains similar scores.
Note that the difference between SGC and GCN is that SGC does
not use a non-linear transformation after the feature aggregation
step. The feature aggregation scheme employed in both models
is exactly the same.

GAT is the most robust towards the attack. GAT also
differs from the models in that it uses a weighted aggregation
mechanism. SAGE employs a mean aggregation over the
neighborhood’s features. Unlike the other models, for the
aggregation step, it samples a fixed number of neighbors rather
than using the complete neighborhood. Though it shows similar
results for 3 citation networks, the attack is less successful for
the larger graph FLICKR (when compared to GCN and GAT).
We attribute the reason for such an observation to the induced
noise in the neighborhood structures because of the random
sampling of neighbors. Obviously, the effect is more prominent
in denser graphs like FLICKR as compared to CORA where
the average degree is less than 2.

b) TSTS Setting: Unlike in the TSTF setting, the train and
test sets in this setting are disconnected. This implies that any
node v ∈ Vt and its exact neighborhood used during training
is known to the adversary. We also see a huge reduction in test
set performance implying that the model is not generalizing
well to the test set. Intuitively, it would be much easier to
attack in this setting.

The AUROC scores for the corresponding attack are shown
in Figure 2b. Precision and recall of the attack model along
with the train-test set performance of the target model are
provided in Table VI on Github (1). We observe that for CORA
and CITESEER the attack has a similar success rate as in TSTF
setting, for FLICKR on the other hand, the attack performance
degrades. For the larger dataset REDDIT, the attack is successful
for GCN and SGC models with a mean precision of 0.81 and
0.74 respectively. GAT and SAGE shows more robustness with
AUROC scores close to 0.5 (implying that the attack model
cannot distinguish between member and non-member nodes
better than a random guess) for datasets: PUBMED, FLICKR,
REDDIT.

 https://github.com/iyempissy/rebMIGraph

B. Effect of Model and Dataset Properties
To answer the second part of RQ 1, we analyse the differ-

ences in the aggregation operation of models and three dataset
properties to explain the differences in attack performance.

1) Which model is more robust towards MI attack and Why?:
To summarize the above results, we found GAT to be most
robust towards membership inference attacks. The reason can
be attributed to the learnable attention weights for different
edges. The above fact implies that instead of the original graph
model, a distorted one dictated by supervised signals of class
labels is embedded in the model. This is in contrast with SGC
and GCN where the actual graph is embedded with equal edge
weights. Also, in SAGE, which uses neighborhood sampling
before the aggregation operation, does not use the complete
information of the graph during training. The effect is more
prominent in denser graphs in which only a small fraction of
the neighborhood is used during a training epoch.

Another interesting observation is the attack behavior
changes with datasets. While GAT is overall less vulnerable
than other models, the percentage drop in attack performance
(as compared to, for example, GCN) for FLICKR (32%) is
much larger than for CORA (9%).

2) How do dataset properties affect attack performance?:
To investigate the differences in the behavior of the attack
model on different datasets we consider three properties of
the datasets (i) average degree which influences the graph
structure and the effect of aggregation function of the GNN
(ii) the number of input features that influence the number of
model parameters and (iii) the number of classes that decides
the input dimension/features for the attack model.

First, note that for very low average degree graphs the effect
of aggregation operation is highly decreased as there would
be very few or no neighbors to aggregate over. From Table
I, we observe that CITESEER has the lowest average degree
(both in the TSTF and TSTS settings) leading to similar attack
vulnerability of all GNN models. REDDIT, on the other hand,
with the highest average degree exhibits a high vulnerability to
the attack when GCN and SGC are the target models whereas fpr
GAT and SAGE attack performance drastically reduces owing
to reasons discussed in the last section. Similar observations
can be made for FLICKR which has the second-highest average
degree. Differences in attack performance for FLICKR are
smaller as compared to REDDIT. This is expected as REDDIT
has an average degree which is around 50 times the average
degree of FLICKR for TSTF setting and around 70 times for
TSTS setting.

Second, for the three datasets CORA, CITESEER, and
PUBMED, which exhibit similar average degrees, attack perfor-
mance is highest for CITESEER followed by CORA. The trend
stays the same for different target models. The same pattern is
also observed in the number of input features. While CITESEER
has the highest number of features, PUBMED has the least. Note
that the number of input features leads to an increase in the
number of parameters (the number of parameters corresponding
to the first hidden layer will be p×h where p is the number of
input features and h the hidden layer dimension). The higher

number of parameters, in turn, leads to better memorization
by models, which explains the above-observed trend in low
average degree datasets.

Third, we recall that the output posterior vector is the input
feature vector for the attack model. As the dimension of
the posterior vector is equal to the number of classes, more
information is revealed for datasets with larger number of
classes. The low attack performance on PUBMED can be
therefore additionally attributed to its lowest number of classes.

3) Effect of Neighborhood Sampling in SAGE: We attribute
the differences in SAGE’s robustness towards attacks on
different datasets to its neighborhood sampling strategy. Recall
that rather than using complete neighborhood in the aggregation
step, SAGE samples a fixed number of neighbors at each layer.
SAGE also utilizes a mini-batching technique that contains
nodes on which representation needs to be generated and their
sampled neighbors. To showcase the effect of the neighborhood
sampling, we varied the number of neighbors sampled at
different layers of the network and the batch size.

We used [25,10] and [5,5] as sampled neighborhood sizes
in layers 1 and 2. As shown in Figure 3a, the attack AUROC
decreases as the number of sampled nodes decreases. This is
because the model uses the noisy neighborhood information
and it is not able to fully encode the graph structure in the
model, this, in turn, makes the posteriors of neighboring nodes
less correlated. Similar results are obtained for a larger dataset,
FLICKR (shown in Figure 3b).

32 64 512
Batch Size

0.5

0.6

0.7

0.8

0.9

AU
RO

C

Neighborhood Sampling [25,10]
Neighborhood Sampling [5,5]

(a) CORA

32 64 512 1024
Batch Size

0.5

0.6

0.7

0.8

0.9

AU
RO

C

Neighborhood Sampling [25,10]
Neighborhood Sampling [5,5]

(b) FLICKR

Fig. 3: Effect of training batch size and sampled neighbors
on attack performance for SAGE model on (a) CORA and (b)
FLICKR dataset.

4) Effect of Instance Connectivity: Here, we present a
qualitative analysis of the differences in the robustness of
different models to MI attack using FLICKR as an example
dataset in the TSTF setting. Recall that given the predicted
posteriors as input, the attack model labels the node instance
as a member (label 1) or non-member (label 0) node. To
understand the pattern of label assignments by the attack model
we need the following definition.

Definition 1 (Homophily). For any node u which is either a
member or non-member, we define its homophily as the fraction
of its one-hop neighbors which has the same membership
label as u. The neighborhood of any node is computed using
the graph available to the adversary. We call homophily with

respect to ground truth as the true homophily and with respect
to the attack model predictions as the predicted homophily.

Therefore, true homophily of 1 means u, and all its neighbors
in the graph used by the adversary have the same membership
label. Similarly, predicted homophily of 1 implies that u and
its neighbors were assigned the same membership label by
the attack model. In Figure 4, we visualize the differences in
attack behavior for different models on the FLICKR dataset by
plotting the joint distribution of true and predicted homophily
of the correctly (orange contour lines) and incorrectly (blue
contour lines) predicted nodes. We chose FLICKR here because
the attack performance varies the most with respect to different
target models as also discussed in the last sections.

We observe more dense regions in the upper half of the
plots for all the models. Noting the fact that these highly
concentrated regions correspond to high predicted homophily,
we conclude that the attack model’s predictions on a node
are highly correlated with its predictions on its neighbors.
As the attack model is agnostic to the graph structure, this
further implies that the posterior of neighboring nodes are also
correlated, which the attack model can exploit.

The differences in the behavior of different models are also
well illustrated. Note that the higher the density of orange
regions on diagonals (see for GCN and SGC), the more accurate
the attack model will be. In contrast to GCN, the attack
model is confused for GAT and assigned the wrong label
to corresponding nodes and their neighbors (see blue regions
corresponding to high predicted homophily). For SAGE, even
though there are more orange regions, these do not lie over
the diagonal. This means that the attack model, even if it
predicts the right membership label for a member node, it
also predicts the same membership label for its non-member
neighbors. Hence, including them incorrectly in the member
set. To summarize, for GAT the attack results in more false
negatives whereas for SAGE there are more false positives.
Both scenarios render the attack less useful to the adversary.

C. Effect of Model Overfitting

To investigate the effect of overfitting (RQ 2), we train
the models such that they achieve zero training loss or high
generalization error. The train and test accuracy as well as the
attack precision and recall are shown in Table II.

TABLE II: Performance of GNN models and the attack model
on FLICKR dataset in case of overfitting.

Target Model Attack Model
TRAIN TEST PRECISION RECALL

GCN 0.70± 0.01 0.13± 0.01 0.63± 0.01 0.70± 0.04
GAT 0.61± 0.07 0.50± 0.21 0.75± 0.05 0.69± 0.03
SGC 0.75± 0.02 0.20± 0.03 0.62± 0.04 0.59± 0.09
SAGE 0.90± 0.03 0.24± 0.03 0.57± 0.08 0.50± 0.01

Figure 5a shows the comparison between a "normal" model
and the overfitted model. The attack precision and recall of the
overfitted model consistently decreases across all models except
for GAT. This implies that overfitting alone might not always

be a contributing factor to membership inference attack and
that overfitted model may not always encode the information
needed to launch an MI attack.

To understand the reasons behind the above observations,
we investigate the posterior distribution of member and non-
member nodes. In Figure 5b, we show the distribution of the
maximum posterior (i.e., the posterior probability corresponding
to the predicted class) of overfitted models on the members and
non-members. We observe that in the case of overfitting, the
GNN model not only makes highly confident predictions for
the member nodes but also for the non-members. Most of the
nodes whether member or non-member obtain the maximum
class probability (or posterior) greater than 0.8 for models
GCN and SGC. For GAT and SAGE, the attack model obtains
higher precision given that a relatively less number of non-
member nodes obtain a high maximum posterior. Moreover,
from the test set performance in Table II, we observe that
SAGE generalizes better than GAT which also reflects in lower
attack precision in SAGE.

D. Sensitivity Analysis of Attack

We answer RQ3 by performing the sensitivity analysis of the
attack with respect to the number of queries (Section V-D1),
different sizes of hidden layers (Section V-D2) and relaxation of
model architecture and data distribution assumptions (Section
V-D3 and V-D4).

1) Attack with reduced number of queries: We relax the
number of queries required to imitate a target model to 0 by
assuming that the adversary has access to the dataset from a
similar distribution as the dataset used for the target model. To
construct such datasets we randomly sampled disjoint sets of
nodes from the full graph for the target as well as the shadow
model. We then construct the corresponding induced graphs on
the node sets to train the shadow and target models. Note that
the shadow model data, in this case, will not be exactly from
the same distribution as the target graph since our construction
would not exactly preserve the structural characteristics of
these graphs e.g. degree distribution. The data used in training
the shadow model is in fact, similar but not from the same
distribution as the target model. We found that training the
shadow model using ground truth labels performs similarly
to querying the target model in the order of ±0.02 standard
deviation.

2) Attack performance without knowledge of exact hyper-
parameters: In this section, we relax the assumption that the
attacker knows the exact hyperparameters used in the target
model by varying the number of hidden neurons of the shadow
model. We experiment with three values {256, 128, 64}.

The corresponding mean AUROC scores are plotted in Figure
7 on Github (1) due to space constraint. A general trend is
that the larger the hidden layer size, the better the attack
performance. This is expected as an increase in the size of the
hidden layer increases the model parameters/capacity to store
more specific details about the training set. Therefore, though
we observe some reduction in attack performance for PUBMED
when using 128 or 64 as hidden layer size, an attacker can

0.0 0.2 0.4 0.6 0.8 1.0
Homophily (True Labels)

0.0

0.2

0.4

0.6

0.8

1.0

Ho
m

op
hi

ly
 (P

re
di

ct
ed

 L
ab

el
s)

model = GCN

0.0 0.2 0.4 0.6 0.8 1.0
Homophily (True Labels)

model = GAT

0.0 0.2 0.4 0.6 0.8 1.0
Homophily (True Labels)

model = SGC

0.0 0.2 0.4 0.6 0.8 1.0
Homophily (True Labels)

model = SAGE

Fig. 4: Joint density plot of true and predicted homophily (refer to Definition 1) on FLICKR dataset.

GCN GAT SGC SAGE
GNN models

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rf

or
m

an
ce

Precision O
Precision N

Recall O
Recall N

(a) Influence of overfitting on the
attack on FLICKR. N= Normal and
O=Overfit. "Normal" refers to the case
when all models were trained for a
fixed number of epochs.

GCN GAT SGC SAGE
GNN models

0

20

40

60

80

100

Pe
rc

en
ta

ge

Member Non-member

(b) % of nodes for which the maxi-
mum posterior is greater than 0.8 for
overfitted GNN models. The statistics
are shown for one random data split.

Fig. 5: Effect of overfitting. In figure (a) we observe a surprising
effect that attack is less successful for overfitted models. The
reason behind such an effect is explained in (b) which illustrates
that the overfitted model also makes extremely confident albeit
incorrect predictions on the test (unseen) set.

just choose the hyperparameter which gives the best train set
performance on its shadow dataset.

3) Attack without the knowledge of target model’s architec-
ture : We further relax the assumption that the attacker knows
the architecture of the target model. Specifically, we used SGC
as the shadow model and other GNN models as the target
model. As the SGC model is obtained from the GCN model by
removing the non-linear activation function from GCN, we aim
to quantify how this difference affects the attack performance.
Therefore, we also used GCN as a shadow model. The mean
AUROC scores corresponding to attacks for different datasets
are presented in Figure 8 in our Github page (1).

In both TSTF and TSTS, on the CITESEER and CORA
dataset, the performance of using different shadow models is
equivalent to using the same model as the target model except
for SAGE where a significant drop in performance is observed.
However, GCN performs significantly better than SGC when
used as the shadow model by the attacker. On the PUBMED
dataset, an interesting observation, particularly for GAT is that
when SGC is used for the shadow model, the attack precision
and recall increases more than when GAT (target model) is used
as the shadow model. On the FLICKR and REDDIT datasets,
using GCN as the shadow model performs comparably to an

adversary knowing the architecture of the target model in both
TSTS and TSTF settings. However, using SGC as a shadow
model significantly led to reduced attack precision in the TSTF
setting. Better attack precision is achieved when GCN is used
as the shadow model and SAGE is used as the target model on
large networks like REDDIT. Therefore, we conclude that using
GCN as the shadow model is sufficient to launch a successful
attack and that the removed non-linear activation function of
SGC makes it a less attractive option to use as a "universal"
shadow model.

4) Attack using different data distribution (Data transferring
attack): We relax the assumption that the attacker trains her
shadow model based on data coming from similar distribution
as that used by the target model. Specifically, we used CORA
as the data for training the target model and CITESEER as the
data used by the attacker for training her shadow model. In
here, the goal of the attack model is to understand membership
status based on the posterior distribution. To cater for the
discrepancies in the length of the posterior vectors of these
two datasets, we select the top n coordinates of the posterior
vector and arrange them in ascending order.

As shown in Table III, we observe that relaxing the
knowledge of the dataset distribution does not affect the attack
precision. Surprisingly, some gains are observed on GCN and
GAT. However, the recall drops by 13% on GCN, 16% on
GAT and SGC while the recall on SAGE remains the same.
This implies that the assumption of the attacker drawing the
shadow dataset from the same distribution as the target model
can be relaxed with minimal loss in attack performance.

TABLE III: Attack precision and recall when Cora is used as
the target and CiteSeer as the shadow dataset. The % change
with respect to original performance is shown in the brackets.

GCN GAT SGC SAGE

PRECISION 0.766 (+1%) 0.723 (+8%) 0.780 (-2%) 0.798 (-2%)
RECALL 0.653 (-13%) 0.552 (-16%) 0.663 (-16%) 0.792 (0%)

VI. DEFENSE MECHANISMS

To defend against the current black box attack based on
posteriors (RQ 4), we note that the defense mechanism should
possess the following properties. First, given access to only
posteriors, the defense should lend indistinguishability among

member and non-member nodes without compromising task
performance and target model’s utility. Second, the defense
should be oblivious to the attacker. The second property is
important for output perturbation-based defense mechanisms
such that the added noise cannot be inferred from the released
information.

Based on the insights gained from our experimental analysis
of attack performance for different GNN models and datasets
we propose two defense mechanisms : (i) query neighborhood
sampling defense (NSD) and (ii) Laplacian binned posterior
perturbation (LBP) which we describe in the following
sections.

a) Laplacian binned posterior perturbation (LBP) de-
fense: Here, we propose an output perturbation method by
adding noise to the posterior before it is released to the user.
A simple strategy would be to add Laplacian noise of an
appropriate scale directly to each element of the posterior.
We refer to this strategy as VANPD. Note that the noise level
increases with the number of classes which can have an adverse
effect on model performance.

To reduce the amount of noise needed to distort the posteriors,
we propose a binned posterior perturbation defense. We first
randomly shuffle the posteriors and then assign each posterior
to a partition/bin. The total number of bins, ψ, is predefined and
depends on the number of classes. For each bin, we sample
noise at scale β from the Laplace distribution (LBP). The
sampled noise is added to each element of the bin. After the
completion of the noise addition operation to each bin, we
restore the initial positions of the noisy posterior y* before
binning. Then we release y*.

We observe in our experiments that it leads to a drop
in attack performance without substantially compromising
model performance on the node classification task. We set
the reference values for β as {5, 2, 0.8, 0.5, 0.3, 0.1}. The
higher the value of β, the higher the added noise. We set ψ as
{2, 3, 4} where for example, ψ = 2 implies that the posterior
vector is divided into 2 groups and the same noise added to
all members of the same group.

b) Query neighborhood sampling defense (NSD): Exploit-
ing the observation that a node and its neighbors are classified
alike by the attack model (homophily property), we propose a
query neighborhood sampling (NSD) defense mechanism to
distort the similarity pattern between the posterior of the node
and that of its neighbors. Specifically, when a target model
is queried with the node and its L-hop neighborhood, the
defender removes all its first-hop neighbors except k randomly
chosen neighbors (Note that no change is made to the trained
model.). The neighborhood of the k sampled neighbors stays
intact and is not changed. By doing so, NSD limits the amount
of information used to query the target model. We set the
reference values for k as follows {0, 1, 2, 3} which implies
sampling no neighbors, 1, 2, or 3 neighbors respectively.

A. Evaluating Defenses

We measure the effectiveness of a defense by the drop in
attack performance after the defense mechanism is applied. To

further incorporate the two desired properties of the defense
into our evaluation we employ the following utility measures
[6].

a) Label loss (L): The label loss measures the fraction
of nodes in the evaluation dataset whose label predictions are
altered by the defense. For a given query i, if the highest
coordinate of the true posterior and that of the perturbed or
distorted posterior is the same, then the Li is 0, otherwise, it

is 1. The total label loss is quantified as: L =
|Q|∑
i=1
Li/|Q|, where

|Q| is the number of user queries. A L close to 0 is desirable
whereas L close to 1 indicates that the defense mechanism is
relatively bad since it alters the label prediction which directly
affects the test accuracy of the target model.

b) Confidence score distortion (C): For a given query i,
we measure the confidence score distortion, Ci by the distance
between the true posterior and the distorted posterior due to
the defense mechanism. We use Jensen Shannon Distance
(JSD) as the distance metric. JSD extends Kullback–Leibler
divergence (relative entropy) to compute symmetrical score
or similarity between two probability distributions. The total

confidence score distortion is given as: C =
|Q|∑
i=1
Ci/|Q| where

Ci = JSD(y, y*) for a given query i ∈ Q. Ideally, 0 indicates
that both the perturbed posteriors and the true posteriors are
the same and 1 indicates that they are highly dissimilar.

Setup. We compare the drop in attack precision with respect to
label loss (L) and confidence distortion (C). For each defense
and a given value of each parameter (β, ψ or k), we plot the
pairs {P,L} and {P, C} where P is the attack precision. We use
the attacker’s AUROC as a representative metric but observe a
similar trend on the other attack inference performance metrics
(precision and recall). We performed our experiments on GCN
since it is the most vulnerable GNN model across all datasets
as observed in Section V-A and V-D3.

B. Results

TABLE IV: Attack precision, recall and AUROC (lower the
better) corresponding to different label loss L. – indicates that
the defense mechanism does not incur the corresponding label
loss.

VANPD LBP NSD
L Prec Rec AUC Prec Rec AUC Prec Rec AUC

C
O

R
A

0 0.814 0.811 0.813 0.777 0.772 0.750 0.800 0.699 0.700
0.1 0.782 0.778 0.800 0.721 0.717 0.705 0.774 0.686 0.691
0.3 0.678 0.673 0.658 0.616 0.608 0.631 – – –

C
IT

E
-

S
E

E
R

0 0.880 0.887 0.880 0.87 0.859 0.846 0.810 0.791 0.795
0.1 0.846 0.830 0.852 0.691 0.683 0.700 0.778 0.766 0.758
0.3 0.747 0.731 0.735 0.620 0.606 0.617 – – –

P
U

B
M

E
D

0 0.642 0.633 0.681 0.592 0.58 0.66 0.533 0.521 0.568
0.1 0.564 0.548 0.653 0.570 0.554 0.556 0.519 0.509 0.537
0.3 0.523 0.508 0.600 0.347 0.503 0.542 – – –

F
L

IC
K

R 0 0.810 0.775 0.820 0.568 0.665 0.745 0.302 0.500 0.500
0.1 0.685 0.541 0.785 0.541 0.514 0.680 – – –
0.3 0.571 0.505 0.655 0.484 0.645 0.649 – – –

R
E

D
-

D
IT

0 0.747 0.825 0.830 0.730 0.801 0.814 0.176 0.500 0.500
0.1 0.574 0.533 0.655 0.521 0.524 0.620 – – –
0.3 0.527 0.518 0.632 0.227 0.384 0.500 – – –

In Figure 6, we plot the attack AUROC (after the defense is
applied) together with label loss and confidence distortion. In
the following, we analyze the results for different datasets when
the three different defense mechanisms were applied. Table
IV further provides the attack precision, recall and AUROC
scores (after defense mechanism has been applied) and the
corresponding label loss. All results corresponds to attacks in
TSTF setting except for REDDIT in the TSTS setting.

a) CORA: Recall that CORA is a sparse graph (with
average degree 3.89 in TSTF setting) with 7 classes. Because
of high sparsity, we do not benefit much by NSD defense which
perturbs the input neighborhood of query node. Nevertheless,
it achieves a drop of 15% in attack’s performance with a negli-
gible label loss and confidence distortion (see Figure 6a). LBP
and VANPD which directly perturbs the posteriors, achieves
larger drops in attack performance though at the expense of
higher label loss and confidence distortion. Nevertheless, for
the same label loss, LBP achieves a better drop in attack
performance. For instance, LBP achieves a maximum drop of
24% at label loss of 0.3 whereas for VANPD, the drop in attack
precision is only 17% at the same label loss. At 0.1 label loss,
LBP achieves a 12% (thrice the percentage drop in attacker’s
inference than VANPD and NSD at 0.1 label loss).

b) CITESEER: For the CITESEER dataset (Figure 6b),
the drop in attacker’s inference for LBP at label loss of 0.3 and
0.1 is 30% and 22% respectively which is two times (16%)
and four times (5%) better than VANPD at the same label
loss. At 0.1 label loss, NSD achieves 12% drop in attacker’s
performance. However, at a 0 label loss, NSD still achieves
9% drop in attacker’s performance while VANPD and LBP
only have 1% and 2% drops respectively.

c) PUBMED: On the PUBMED dataset, we observe a
further reduction in the attacker’s inference with VANPD
achieving 25% and LBP achieving 50% at label loss of 0.3.
NSD does not incur any label loss above 0.1. Hence, at a
lower label loss of 0.1, VANPD and LBP perform similarly.
One possible explanation is that PUBMED only has three
classes. Therefore, the maximum number of bins is restricted
to 2 which does not lead to any specific advantage for LBP
as compared to VANPD. On the contrary, NSD performs well
with a 26% and 24% drop in attacker’s inference at a label loss
of 0.1 and 0 respectively making the attacker’s performance
largely incorrectly classifies member nodes as non-members.
(Figure 6c).

d) FLICKR: As in the previous analysis on other datasets,
LBP outperforms VANPD by about over 15% at label loss of
0.3. It is notable that NSD that samples the neighborhood of
the query performs significantly better than LBP with a drop
in inference performance of 65% at a perfect label loss of 0.
This significant drop explains the intriguing observation that
the predictions of a node follow that of its neighbors (Section
V-B4). Therefore, when the neighbors of a node are distorted
by the query sampling mechanism, the posterior is equally
affected, causing the attack model to misclassify member and
non-member nodes.

e) REDDIT: Similar to FLICKR, at label loss 0, we
observe an 80% drop for NSD, 17% for LBP, and 15% drop
for VANPD. We note that a similar drop in attacker’s inference
that LBP will achieve at 0.3 label loss, NSD will achieve the
same drop at a perfect 0 label loss (observed at k = 2). The
observations also follow that of FLICKR because of the high
node degree of the REDDIT dataset.

Summary. We observe that VANPD leads to a degradation in
the test performance of the target model as well as the attack
performance. Although this significantly defends against MI
attack, it is at the expense of the test accuracy of the target
model. Binning as in LBP provides a viable strategy to reduce
the amount of added noise without compromising defense. We
observe that our LBP defense is well suited for graphs with
a low degree. For LBP, setting ψ = 2 led to a good balance
between privacy and limiting label loss. We remark that both
LBP and VANPD are evaluated on the same noise scale.

On all datasets, NSD achieves the lowest label loss. We
attribute the observation of different defenses to the degree of
each graph. Specifically, CORA, CITESEER, and PUBMED have
low degrees, therefore, the NSD does not significantly reduce
the attacker’s inference. However, on large datasets such as
FLICKR and REDDIT which have higher degrees, the attacker’s
inference reduces to a random guess (with AUC score of 0.5)
with a perfect 0-label loss. With respect to the choice of k, we
observed that the smaller the value of k, the better the defense.
For the current datasets, we observed that for k > 3, there was
not much degradation in attack performance.

Comparison based on confidence score distortion.
The lower the C, the more difficult it is for an attacker to detect
whether the model has undergone any defense. Moreover, a
lower confidence distortion is required for applications where
the target’s model output posterior is used rather than just
the predicted class. As shown in Figure 6, VANPD leads to
very high confidence distortion as compared to other defenses.
For instance, VANPD, LBP, and NSD achieves 0.70, 0.40
and 0.10 confidence score distortion respectively on CORA
dataset corresponding to the reduction in attack precision by
15%, 15% and 12%. On the larger dataset REDDIT, VANPD,
LBP, and NSD achieves 0.82, 0.60 and 0.05 confidence score
distortion corresponding to 30%, 30% and 63% reduction
in attack precision. Our result shows that NSD achieves the
lowest confidence score distortion leading to an oblivious
defense and the preservation of target model’s utility.

VII. CONCLUSION

We compare the vulnerability of GNN models to membership
inference attacks. We further show that the observed differences
in vulnerability is caused by differences in various model and
dataset properties. We show that the simplest binary classifier-
based attack model already suffices to launch an attack on
GNN models even if they generalize well. We carried out
experiments on five popular datasets in two realistic settings. To
prevent MI attacks on GNN, we propose two effective defenses

0.0 0.2 0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C

0.0 0.2 0.4 0.6 0.8

VANPD
LBP
NSD

(a) CORA

0.0 0.2 0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C

0.0 0.2 0.4 0.6 0.8

VANPD
LBP
NSD

(b) CITESEER

0.0 0.2 0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C

0.00 0.25 0.50 0.75

VANPD
LBP
NSD

(c) PUBMED

0.0 0.2 0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C

0.0 0.2 0.4 0.6 0.8

VANPD
LBP
NSD

(d) FLICKR

0.0 0.2 0.4
0.5
0.6
0.7
0.8
0.9
1.0

AU
RO

C

0.0 0.2 0.4 0.6 0.8

VANPD
LBP
NSD

(e) REDDIT

Fig. 6: Comparison of defense mechanisms using label loss (L)
and confidence score distortion (C) metric. The red dashed line
corresponds to the attack AUROC when no defense mechanism
was applied. We observe a similar trend for Precision and Recall.
Table IV shows the performance on all metric at specific L.

based on output perturbation and query neighborhood sampling
that significantly decrease the attacker’s inference without
substantially compromising the target model’s performance.

Acknowledgements. This work is in part funded by the Lower
Saxony Ministry of Science and Culture under grant number
ZN3491 within the Lower Saxony "Vorab" of the Volkswagen
Foundation and supported by the Center for Digital Innovations
(ZDIN), and the Federal Ministry of Education and Research
(BMBF) under LeibnizKILabor (grant number 01DD20003).

REFERENCES

[1] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song.
The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th {USENIX}
Security Symposium, 2019.

[2] M. Fredrikson, S. Jha, and T. Ristenpart. Model inversion
attacks that exploit confidence information and basic
countermeasures. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 1322–1333, 2015.

[3] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive
representation learning on large graphs. In NIPS, 2017.

[4] X. He, R. Wen, Y. Wu, M. Backes, Y. Shen, and Y. Zhang.
Node-level membership inference attacks against graph
neural networks. arXiv preprint arXiv:2102.05429, 2021.

[5] B. Jayaraman and D. Evans. Evaluating differentially
private machine learning in practice. In 28th {USENIX}
Security Symposium, 2019.

[6] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong.
Memguard: Defending against black-box membership
inference attacks via adversarial examples. In Proceedings

of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, 2019.

[7] T. N. Kipf and M. Welling. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

[8] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov.
Exploiting unintended feature leakage in collaborative
learning. In 2019 IEEE Symposium on Security and
Privacy (SP), 2019.

[9] M. Nasr, R. Shokri, and A. Houmansadr. Machine learning
with membership privacy using adversarial regularization.
In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[10] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman.
Towards the science of security and privacy in machine
learning. arXiv preprint arXiv:1611.03814, 2016.

[11] S. Sajadmanesh and D. Gatica-Perez. When differential
privacy meets graph neural networks. arXiv preprint
arXiv:2006.05535, 2020.

[12] A. Salem, A. Bhattacharya, M. Backes, M. Fritz, and
Y. Zhang. Updates-leak: Data set inference and recon-
struction attacks in online learning. In USENIX, pages
1291–1308, 2020.

[13] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz,
and M. Backes. Ml-leaks: Model and data independent
membership inference attacks and defenses on machine
learning models. arXiv preprint arXiv:1806.01246, 2018.

[14] R. Shokri, S. Marco, S. Congzheng, and S. Vitaly.
Membership inference attacks against machine learning
models. In IEEE Symposium on Security and Privacy
(SP), 2017.

[15] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ris-
tenpart. Stealing machine learning models via prediction
apis. USENIX Association, 2016.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero,
P. Liò, and Y. Bengio. Graph Attention Networks. ICLR,
2018.

[17] B. Wang and N. Z. Gong. Stealing hyperparameters in
machine learning. In 2018 IEEE Symposium on Security
and Privacy (SP), 2018.

[18] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and
K. Weinberger. Simplifying graph convolutional networks.
In Proceedings of the 36th International Conference on
Machine Learning, pages 6861–6871. PMLR, 2019.

[19] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy
risk in machine learning: Analyzing the connection
to overfitting. In 2018 IEEE 31st Computer Security
Foundations Symposium (CSF), 2018.

[20] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals.
Understanding deep learning requires rethinking general-
ization. arXiv preprint arXiv:1611.03530, 2016.

[21] B. Z. H. Zhao, H. J. Asghar, R. Bhaskar, and M. A.
Kaafar. On inferring training data attributes in machine
learning models. arXiv preprint arXiv:1908.10558, 2019.

[22] J. Zhou, C. Chen, L. Zheng, X. Zheng, B. Wu, Z. Liu,
and L. Wang. Privacy-preserving graph neural network
for node classification. arXiv:2005.11903, 2020.

	I Introduction
	II Background and Related Works
	II-A Graph Neural Networks
	II-B Privacy attacks on Machine Learning

	III Our Approach
	III-A Problem Description
	III-A1 Notations
	III-A2 Our Proposed Settings

	III-B Attack Methodology
	III-B1 Shadow model training
	III-B2 Attack model training
	III-B3 Membership inference

	IV Experiments
	IV-A Dataset and Settings
	IV-B Model Architecture and Training
	IV-C Research Questions

	V Analysing the MI Attack on GNNs
	V-A Overall Attack Performance
	V-B Effect of Model and Dataset Properties
	V-B1 Which model is more robust towards MI attack and Why?
	V-B2 How do dataset properties affect attack performance?
	V-B3 Effect of Neighborhood Sampling in Sage
	V-B4 Effect of Instance Connectivity

	V-C Effect of Model Overfitting
	V-D Sensitivity Analysis of Attack
	V-D1 Attack with reduced number of queries
	V-D2 Attack performance without knowledge of exact hyperparameters
	V-D3 Attack without the knowledge of target model's architecture
	V-D4 Attack using different data distribution (Data transferring attack)

	VI Defense mechanisms
	VI-A Evaluating Defenses
	VI-B Results

	VII Conclusion

