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Reliability Databases in Perspective
Roger Cooke and Tim Bedford

Abstract—Concepts and methods used in designing modern
RDB (reliability data banks) are reviewed. Taxonomies for failures
and maintenance actions are not fully standardized and can cause
confusion. Section II summarizes current usages. The structure
of the raw data is identified as: component socket histories with
competing risk. Successive sections discuss data-structure and
operations on data, data analysis with and without competing
risk, and the analysis of uncertainty. In the context of reliability
data, the assumption that competing risks are -independent is
frequently unwarranted. Models for dependent competing risk
are discussed, and illustrated with examples from pressure-re-
lief-valve data at two Swedish nuclear-power stations.

Some lessons learned are:
The needs of various users of reliability databases must be dis-

tinguished. The interests and requirements of a maintenance engi-
neer are very different from those of a risk analyst or a component
designer. It is unlikely that a single reliability number serves these
diverse needs.

The problem of analyzing reliability-data has become a
problem of data compression. Years ago, analysts justifiably com-
plained about the sparseness of reliability data. With the advent
of computers, automated sensors, and condition monitoring, there
is no reason for sparseness today. The problem is knowing what
to collect, how to make sense of the wealth of data that one can
gather, and what to do with it.

To be useful, reliability data must reveal not only the proba-
bility of failure, but also the cause of failure. Thus, competing fac-
tors causing the termination of service sojourns must be quantifi-
able from reliability data. Failure-causes interact, and this interac-
tion makes the problem of quantification very challenging.

Index Terms—Censoring, colored Poisson process, competing
risk, dependent censoring, dependent competing risk, mainte-
nance model, reliability database.

ACRONYMS1

CB -confidence bounds
Cdf cumulative distribution function
CM corrective maintenance
iff if and only if

time-wise lower-bound for average failure rate
time-wise upper-bound for average failure rate

MLE maximum likelihood estimate
MTBF mean time between failures
pdf probability density function
PM preventive maintenance
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r.v. random variable
RC random clipping
RDB reliability data base
ROCOF rate of occurrence of failure
Sf survivor function (reliability)
TTT total time on test

DEFINITION

ip, ips, ip similar to “it, its, it” except that the “p” implies
person,whereas the “t” impliesthing.

NOTATION

Sf
sub-Sf
Cdf
sub-Cdf
constant failure rate
time-dependent failure rate

obr observed failure rate
repair rate
conditional probability of censoring

I. INTRODUCTION

RELIABILITY parameters characterize populations that
emerge from complex interactions of components, op-

erating environments, and maintenance regimes. This paper
reviews the mathematical tools for defining and analyzing
populations from which reliability data are to be gathered. Such
analyses form a subfield of lifetime data analysis with its own
specific features. These features emerge from the uses to which
reliability data are put. Modern RDB are intended to serve at
least 3 types of users:

• the maintenance engineer interested in measuring and op-
timizing maintenance performance,

• the component designer interested in optimizing compo-
nent performance,

• the risk/reliability analyst wishing to predict reliability of
complex systems in which the component operates.

To serve these users, modern RDB can distinguish at least
10 failure modes: mutually exclusive ways of terminating
a service sojourn. Different users are typically interested in
different failure modes. Critical failures are of primary interest
in risk and reliability calculations. A maintenance engineer is
interested in degraded and incipient failures, because these are
often associated with PM. A component designer is interested
in the particular component function that is lost and in the
failure mechanisms. In addition to failure modes, modern RDB
also have data fields relating to component characteristics,
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component boundary, operating characteristic, and mainte-
nance/repair policy. Because decision-makers increasingly
demand an assessment of uncertainty in risk and reliability
calculations, modern RDB also provide uncertainty-intervals
for failure-rate estimates.

The systematic collection of reliability-data dates from the
Titan Missile program [39]. Since the 1980s there have been
many attempts to provide systems for collecting and organizing
raw data, and to standardize the information presented in the
data banks. The Center for Chemical Process Safety of the
American Institute of Chemical Engineers (CCPS) published
its Guidelines for Process Equipment Reliability Data[18] in
1989. Other Guidelines are in [4], [20], [21], [26], [30]. Lannoy
[32] and the ESReDA Working Group [40] represent current
practice in Europe. A special issue ofReliability Engineering
and System Safety(vol. 51, num. 2) is devoted to the design of
reliability databases. For an historical perspective, see [19].

The problem of designing an RDB is the problem of ex-
tracting estimates from the raw data. The first problem is finding
an appropriate mathematical representation for the raw data.
Because failure modes are mutually exclusive, think of failure
modes as marks or colorings of an underlying point-process.
The theory of colored Poisson processes has been used implic-
itly and explicitly for this purpose [38].

Also, think of mutually exclusive failure modes as risks
which are competing to terminate the current service sojourn.
The failure-mode seen is the risk which succeeded in killing the
component first; which risks might have killed the component
a little later are not seen. A colored Poisson process can be
viewed as a renewal process generated by an independent
exponential competing risk model for interarrival times (see
Section VI-B). The general theory of competing risks, not
necessarily independent and not necessarily exponential, is ad-
vanced here as a suitable mathematical language for modeling
reliability data. Competing-risk data resemble what statisticians
call “right censored data.” The language of censoring, however,
is more appropriate to the analysis of cohort populations where
the interest is in death due to a specific cause (e.g., the treated
disease), and one lumps together as “censoring” everything
which prevents observing this cause, e.g., moving out of town,
death by other causes, termination of observation period.

A simple example illustrates the problem of competing failure
risks. RE (a reliability engineer) buys a new car and collects re-
liability life data. RE logs the times at which the car is taken
in to repair a breakdown (failure). RE maintains the car fastidi-
ously: every Sunday morning RE repairs anything which is not
functioning normally even though no breakdown has occurred.
These “noncritical repairs” are logged as PM. RE’s neighbor,
who never works on ips own car, asks RE how reliable RE’s car
is.

If the neighbor uses the methods currently used in most
RBDs, the neighbor estimates the rate of occurrence of break-
downs (failure rate) in ips own car via the TTT statistic (see
Section VII-A): the number of failures divided by the total
time in operation. The TTT statistic is the “observed rate of
failure”: the rate at which failures befall the fastidious RE in
spite of RE’s PM. It could also be something else, and herein
resides much confusion. If the PM were performed randomly,

then the TTT statistic also estimates the rate of failures when
no maintenance is performed. This latter is called the “naked
failure rate.”

Now what does the neighbor want to know? Because the
neighbor never works on ips own car, ip wants to know the rate
of failures when no maintenance would be performed. In other
words, the neighbor wants to know the naked failure rate of RE’s
car. If these two rates are the same, then RE would be a very poor
reliability engineer indeed. RE’s maintenance efforts would be
totally ineffective; failures would be just as frequent if RE did
nothing. PM is supposed to prevent failures while losing as little
useful service time as possible. This requires that PM be highly
correlated to failure. Ideally, the car is PMed at timeiff it would
have failed shortly after.

In sum, the modern RDB user is not only interested in when
a component expires, but also why it expires. Such users distin-
guish several risks which are competing to terminate each ser-
vice sojourn.

Begin with taxonomies for maintenance and failure and the
data structure for component socket histories. Standard tech-
niques for data analyses are based on the absence of competing
risks. After discussion of these, then the discussion is on the
mathematics of competing risk, and on some competing-risk
models. Uncertainty in estimation of failure rates under com-
peting risks arises from statistical fluctuations and from non-
identifiability. Both sources of uncertainty must be considered.
Conclusions draw together some lessons learned. This research
draws on [7], [9], [10], [36], [41].

II. M AINTENANCE AND FAILURE TAXONOMIES

First, distinguish between types of maintenance jobs (CM and
PM), and ways in which maintenance is scheduled: calendar
based, condition based, opportunity based, and emergency.

A. Maintenance Taxonomy

The 2 maintenance types are:

• PM: Jobs which do not repair a fault or failure, but are part
of regular servicing.

• CM: Jobs to repair a defect, fault, or failure.
The 4 scheduling types are:

Calendar Based: Planned maintenance activities, not based
on observed deterioration of component, but scheduled from
calendar time, or some surrogate, such as cycles or cumulative
load. This maintenance does not repair anything, and involves
PM.

Condition Based: The component’s state is observed to de-
viate from that which the manufacturer intended, though the
component’s functionality (as required by the system in which
it serves) is still maintained. Hence one can leave the component
in socket until a suitable maintenance opportunity arises. This
maintenance is therefore planned and corrective. It is typically
triggered by indicators of degradation such as leaking, dirty oil,
abnormal power consumption, vibration, noise, or heat.

Opportunity Based: Maintenance is undertaken when a suit-
able opportunity presents itself. If the system is shut down for
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TABLE I
MAINTENANCE JOBS AND SCHEDULES

overhaul of one component, other components can be main-
tained as well. The decision to maintain a component at an op-
portunity might or might not be triggered by the condition of the
component.2

Emergency: Actions to repair a component which is in a
state that disables the system. The system cannot function until
the repair is done, and the repair activity was not planned be-
forehand. Repair actions usually begin almost immediately after
component failure. Postponing repair is not an option. Mainte-
nance crews typically would like to prevent emergency mainte-
nance from occurring.

The way maintenance is scheduled can influence the type of
maintenance which is performed. Although usage is not stan-
dardized in this regard, there is some currency in using these
concepts; see Table I.

B. Failure Taxonomy

The 4 failure types are:
Degraded Failure: A component is not in the state which

the manufacturer intended for performing its function, but the
system function is being fulfilled. The component is in a: non-
critical degraded state.

Critical Failure: The component is unable to perform its
function due to critical-degradation of its state. Critically-de-
graded components are always repaired or renewed, and the re-
pair typically begins as soon as possible. Critical failure can be
total or nontotal.

Entrained Functional Unavailability: The functionality of
the component is lost due to upstream failure of some supporting
system. The component need not be repaired.

Total failure: The component not only fails to meet specifi-
cations, but fails to meet specifications to any degree. Non-total
critical failure occurs when the component fails to meet spec-
ifications but still has some residual functionality, as when a
pump cannot deliver the required flow rate but can still deliver
some flow, or a valve does not close in the required time, but
still closes.

The terms “functional” and “nonfunctional” describe failures
in a way which is complementary to the way they are used to
describe component states. Thus a functional-failure puts the
component in a nonfunctional state.

Table II supplements Table I by including the types of repairs
typically performed. There are, of course, exceptions, e.g., some
components might be allowed to remain in-line even though

2There is considerable overlap between the notions of condition-based and
opportunity-based maintenance. Opportunity-based maintenance is not consid-
ered further in this paper. It is included here for completeness.

TABLE II
MAINTENANCE AND FAILURE TYPE

their functionality is totally lost; in this case the repair of a crit-
ical failure might be planned.

Fig. 1 displays the various maintenance and failure concepts
in a plot of state against time.

C. Operating Modes, Failure Causes, Failure Mechanisms,
Failure Modes

It is common now to distinguish 3 operating modes:

• Continuous operation: The component operates as long as
the system operates

• Standby: The component is dormant unless required to
function on demand

• Alternating (or intermittent): The component rotates so-
journs of continuous operation with one or more spares.

Components in the alternating mode are planned to relieve
each other according to a regular schedule, whereas components
on standby are typically brought into service when the front-line
component is failed or in repair.

The following terms are encountered in the literature. Though
their use is not standardized, we use the definitions:

Failure causes: These give the reasons why a component
fails. RDB often list only local causes,viz, causes within the
component itself (vibration, leak, crack, etc.). However these
local causes themselves can be caused by factors outside the
frame of the RDB, e.g., a component fails due to over-stress
caused by other failures upstream. These are sometimes called
root-causes. If root-cause analysis has been performed, the re-
sults would typically enter an RDB in the form of free text.

Failure mechanisms: These describe the actual physical
processes leading to a failure. Thus, the failure-cause might be
“leak in the oil lines” and the failure-mechanism might be “jam-
ming of piston.” The distinction between cause and mechanism
is frequently discretionary.

Time-related or demand-related failures: This distinction
usually coincides with operating mode. Thus, a failure occur-
ring when the component is called into service from the standby
mode is classified as demand-related. Failures occurring while
the component is in continuous operation are classified as time-
related. Because the same component type might operate contin-
uously or in standby, this component can have both demand-re-
lated and time-related failures.

Failure modes: These describe the way in which a compo-
nent fails, usually from a functional or sub-functional point of
view e.g., “fails to open,” or “fails to close.” It becomes neces-
sary to distinguish failure modes when the consequences of a
failure depend on the way in which a component fails.
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Fig. 1. Maintenance and failure in time.

TABLE III
COMPONENTSOCKET TIME HISTORIES(#314 PRESSURERELIEF VALVE)

III. D ATA STRUCTURE AND OPERATIONS

The data consist of:

• component socket-time histories, organized in hierar-
chical categories,

• incident data,

as shown in Table III from the Swedish TUD RDB. The hier-
archical categories identify the hardware in the system down
to the smallest maintainable part, the subcomponent. The inci-
dent-fields include failure-fields describing each exit from ser-

vice, and repair-fields describing events leading to re-entry into
service. These events might be replacing a defective part, or re-
pairing a part. Any repair action is complete, the repair crew
never returns a part to service unless it is believed to be as good
as new (this of course must be verified). Some authors (e.g.,
[2]) have inveighed against confounding nonrepairable systems
(failures replaced by new parts) and repairable systems (failures
repaired, perhaps not completely). Successive service sojourns
of nonrepairable systems generate a renewal process, whereas
sojourns of repairable systems might not. The distinction is not
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material here. In a competing-risk context, complete repair, even
complete replacement, does not guarantee that the competing
risk process is a renewal process (see Section V).

Mathematically, a time history is a colored point process.
The “points” are the event-times logged in the database. Each
“point” bears some properties describing the event. A grouping
of properties into mutually exclusive and exhaustive sets is
called a coloring. The notion of a “colored point-process” re-
sembles the “marked point-process” in the literature. However,
in a marked point-process the distribution over the possible
marks, given that an event has occurred, is independent of the
history of the process.

Competing-risk processes produce colored point-processes.
After each event, risks (or colors) are competing to
cause the next time-event. When the next time-event occurs, ob-
serve which risk caused it.

Three main types of operation can be performed on the data.

A. Superposition

Time histories having the same begin and end points can be
superposed. The set of event-times of the superposition is the
union of the event-times of superposed processes. In general, su-
perposing scrambles any structure in the individual processes. A
notable exception occurs when superposing-independent (ho-
mogeneous or nonhomogeneous) Poisson processes. Because
the intensity function of these processes does not depend on the
history of the process, the intensity function of the superposition
is the sum of the intensity functions of the superposed processes,
and is -independent of the process history.

B. Pooling

Pooling is applied to data generally. The pooled data are con-
sidered as multiple realizations of the same r.v. or stochastic
process. When time histories are pooled, they are considered
as realizations of the same (colored) point process. When inter-
event times are pooled, they are considered as realizations of the
same distribution. Typically, but not always, inter-event times
are pooled when the individual processes are believed to be re-
newal processes.

C. Coloring/Uncoloring

A coloring of time events is a partition of the event properties
into mutually exclusive and exhaustive classes (colors). A col-
ored process can be uncolored simply by giving each event the
same color.

D. Illustrations

To illustrate superposition and pooling, let the outages of the
steam Pressure Relief Valve V001 of the 314 system be due
either to the subcomponent “sensor” or to the subcomponent
“valve.” Then the outage times of the valve and sensor can be
superposed to form the outage times of the V001 pressure relief
valve. If the sensor is renewed whenever the valve is repaired,
and conversely, then the superposition is a renewal process, and
the individual valve and sensor histories in general are not re-
newal processes. On the other hand, if the sensor is not renewed
when the valve is repaired, then the superposition,viz,the V001

valve, is not a renewal process. The inter-outage times of the
V001 and V002 valves in the 314 system can be pooled to form
the set of inter-outage times for 314 valves. The outage events
can be colored according to the subcomponent which failed the
component, or they can be colored according to: the method of
detection, effect, repair type, or length of repair, etc.

Thus, the rule of thumb is: Superpose until “as-good-as-new,”
and then pool similar histories.

For a more detailed discussion of operations on component
socket-time histories and relevant statistical tests to support
these operations, see [36]. Statistical reference books are [13],
[25], [42].

IV. DATA ANALYSIS WITHOUT COMPETING RISKS

The analysis of data not subject to competing risk is briefly
reviewed. A component enters service and remains in service
until it fails. There is no other cause of termination of a service
sojourn. Because this material is available in standard textbooks,
[5], [25], [29], [33], this discussion is brief.

A. Demand Related Failures

Components subject to demand can be eithernondegradable
(not subject to maintenance), ordegradable(typically main-
tained). The statistical analysis of the failure data for nondegrad-
able is quite simple. Each demand can be modeled as a flip of a
coin; assume, for each component type, that the probabilities of
failure per demand are-independent and identical. The proba-
bility of observing failures in demands is:

failures in trials

failure per demand. The MLE of , given failures in
trials, is .
For failures in observations, the 90% CB are

largest such that:

or more failures in trials

least such that:

or fewer failures in trials

A component called to function on demand is in the standby
mode. Some failure mechanisms, notably those associated with
wear, are disengaged during stand-by, while others, notably
those associated with corrosion, oxidation, or embrittlement,
continue during standby. Therefore components on standby are
often subjected to maintenance. Knowledge of the maintenance
policy is necessary for determining reliability parameters from
data. This is illustrated by 2 popular maintenance-policies.

• Test-and-Replace
Components are tested at regular interval, and if found in a

failed state they are replaced immediately by new components
of the same type. The failure probability, on demand, for uni-
formly distributed demand is:

for

• Fail-and-Fix
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A component with constantis allowed to fail and then taken
off line and repaired. During repair the component is unavailable
and would lead to a demand failure if demanded during outage.
The is also constant; thus the equilibrium unavailability is

This formula remains valid when the variables are not exponen-
tial, and when the rates are interpreted as the inverses of-ex-
pected lifetimes.

Evidently, -identical components subject to standby degra-
dation do not yield the same demand probabilities when they
are maintained in different ways. For such components, the user
cannot interpret a failure probability on demand, unless the user
knows the testing interval (when using test-and-replace) or the
repair rate (when using fail-and-fix). Additional complications
arise if a hybrid maintenance policy is pursued; components
tested regularly and pulled off-line for repairs.

B. Time-Related Failures

Let , be -independent variables with pa-
rameter , such that their Cdf is ; the
MLE for , given observations is:

-Confidence intervals are based on the fact that
has a distribution with degrees of freedom. The 90% sym-
metrical -confidence interval has the lower and upper limits:
and :

largest such that less than

least such that more than

Instead of -identical components, let there be 1 component
with constant failure rate which fails and is repaired to as
good as new, or replaced with a new,-identical component.
The number of failures as a function of time is a Poisson process
with parameter . The -expected number of failures in time
is . Given failures in time , the MLE of is . The
MTBF is .

C. Bayes Models

Bayes methods have had a strong impact on the design of
RDB. First, the simple Poisson-gamma model is discussed. The
strength in Bayes models, however, lies in their ability to com-
bine different types of data via hierarchical inference models.
The 2-stage hierarchical model, used in the TUD RDB [38],
is discussed briefly; this model has been reviewed in [11] and
discussed in [16], [35]. A similar 2-stage model was proposed
independently in [24]. An earlier model developed for compo-
nents in nuclear-power stations has found extensive application
[1], [27]; the goal was to capture both generic and plant-specific
data sources.

Let a sequence of observations of the lifetime variable be
made: observe .

number of failures up to time.
Definition 1: The ROCOF is the derivative of the-expected

number of failures up to time,

Using the simple Poisson-gamma Bayes model, estimate the
uncertainty about the ROCOF of a class of components which
are considered-identical for the purposes of lifetime estima-
tion. Specifically, let the pattern of failures is follow a homo-
geneous Poisson process. There are failures in operating
time, . The ROCOF is , an uncertain quantity, and is modeled
by a gamma distributed r.v.

Let the prior distribution for be the gamma distribution:
, with pdf

After observing failures in time , the posterior distribution
for is

(1)

(2)

If the pattern of failures follows a Poisson process with rate,
the

with probability 1 as . When a prior is up-
dated, then

with probability 1. Hence, if the posterior-expectation is used
to estimate , it will converge in probability to the true value,
i.e., this estimator is-consistent.

The Pörn Model: A Bayes model for dealing with
plant-to-plant variability has been adopted by the Swedish
Nuclear Inspectorate [38]. Consider a collection of classes
of components. Each class consists of components which
are -identical for lifetime estimation, and which are used
in a specific plant under plant-specific conditions. Different
plant-specific conditions lead to different ROCOF. Using
data from given plants to infer the ROCOF in another plant,
assumptions are necessary about the underlying relationship
between the ROCOF of the various plants. In the Pörn model,
these ROCOFs are treated as-independent realizations of
random quantities with the same distribution. Specifically:

1) The pattern of failures at each plant is follows a Poisson
process. At plant, there are failures in operating time,

. The plant specific ROCOF is , a realization of the
r.v. .
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2) has a gamma distribution3 with unknown parameters
. The uncertainty over values ofis modeled

by assuming that is a random vector.
3) are conditionally -independent realizations

of , given .
4) Given , then are -indepen-

dent.
5) Given , then , are

-independent.
A consequence of this-dependence structure is that data

from plant can influence only one’s beliefs on the
value of ( ) through its influence on one’s beliefs on the
value of .

Inference Under the Pörn Model:Let there be data
from plants ; choose a prior distribution for
the hyper-parameters ; and update the distribution of

. There is information on from 2 directions:

1) The influence of all of the data on the prior beliefs of the
value of .

2) The influence of the plant-specific data on
the beliefs about the value of .

Under the Pörn model assumptions, the likelihood function
of given the data ( ) is propor-
tional to

(3)

The likelihood of , given , is

Thus the posterior distribution of , given data:
, is

, follow the distribution proportional to Pr [likeli-
hood function in (3)].

V. COMPETING-RISK CONCEPTSand METHODS

To assess the failure rates corresponding to various competing
ways of ending a service sojourn, the situation is: competing
risk. Various “ways of dying” are competineg (as it were) to ter-
minate the component’s service sojourn. Section IV shows that
a failure event can be described by assigning values, or colors, to
several failure fields. Fig. 3 shows possible fields form the #314
valve. In each failure event, exactly 1 value in each field is real-
ized. A coloring is simply a partition of the set of failure events
into disjoint subsets. In practice, choose 1 field for coloring, and
then assign different colors to the values in that field. Thus one
might color the field “method of detdection” by grouping failure
events into “alarm or unintended discovery” and “operator or
test or revision.” This section introduces the basic mathematical
formalism for describing competing risks. The goal is to extract
information about the failure rates of competing failure-modes

3Pörn uses acontaminateddistribution: a mixture of a�(�; �) distribution
(whose parameters can be updated) with a�(0:5; 1) distribution.

(sometimes called the naked failure rates). The theory of inde-
pendent competing risks is developed in [12], [14], [15], [22],
[34].

Let there be competing risks, ; let be the
minimum of . In a competing-risk context, observe
the minimum of the , and observe which it is; i.e., observe

is cured, if it is eliminated without disturbing the distri-
butions of the other risks. Mathematically, curing riskcorre-
sponds to observing

the distribution of is obtained from that of by integrating
over .

and are -independent.

Let , be -independent copies of. The process
is the competing-risk renewal-process associ-

ated with .
Let , , and . Re-arranging if

necessary, let the first observations be

are interarrival times at which was ob-
served,

the interarrival times at which was observed.
Cdf , pdf ,
Cdf , pdf .

The probability of is (because: ):

(4)

If is described by parameterwhich does not occur in ,
then the MLE of does not depend on .

A. Subsurvivor Functions and Identifiability

Unless stated otherwise, in this section: all distributions have
pdfs.

Consider only and , where is the censoring variable.
is Sf .

The failure rate of is:

In the competing risk context, the failure rate of ( ) is the
failure rate which would be observed if could be observed
without the observation being censored by earlier occurrences
of , . It is sometimes called thenakedfailure rate: is
the rate at which failures of typewould be observed if all other
competing risks were eliminated.
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When the competing risks are not eliminated, a different
failure rate for is observed. The observed failure4 rate for

is defined as

Theorem 1 [9] (Proof is Obvious):If competing risks
are -independent, with differentiable Sf, then

, .
If the competing risks are-independent, then the problem

of estimating the naked failure rate does not arise, because the
naked and observed failure rates coincide.

For notational convenience, focus on 2 competing risks:
. is the subsur-

vival-function of [3]. depends on , though this fact
is suppressed in the notation. If is continuous at 0 then

. If and are -independent. then

Definition 2: Real functions and on form a
(continuous) subsurvival pair if:

and are nonnegative nonincreasing (continuous, con-
tinuous from the right at zero) , ;

If , then has an atom at infinity: there
is a nonzero probability that a component with life distribution

never expires. Atoms at infinity are invoked in theorem 2.
and form a subsurvival pair. If there are data for

then the “empirical subsurvival functions” can be calculated;
these contain all the information in the data: any parameter that
can be estimated from the data can be written as a function of
the empirical subsurvival functions. The “conditional subsur-
vival function” is the subsurvival function, conditioned on the
event that the failure mode in question is manifested. Assuming
continuity of and at zero:

Closely related to the notion of subsurvival functions is the prob-
ability of censoring beyond time,

For continuous subsurvival functions, .
The “subdistribution functions” for and are

4Some sources, [29], use the designation “cause-specific failure rate” for what
is termed here as: observed failure rate. This is confusing when the competing
risks are nots-independent, because both the naked and observed failure rates
are cause-specific.

Fig. 2. Calendar-time picture of censored data.

Reference [37] derived bounds on by noting that

which entails

The quantities on the left and right sides are observable.
Theorem 2 is the main result for-independent competing

risks; it generalizes for competing modes.
Theorem 2 [3], [43], [44]: 1. Let and be -independent

life variables, with and continuous. Let and be
-independent life variables such that and

. Then , and .
2. If and are a subsurvival pair and are continuous,

then there exist-independent life variables and such that
and , and at most 1 of has an atom

at infinity.
By observing -independent copies of

the subsurvival functions can be estimated. Assuming
-independence of and , the Sf of and can be deter-

mined uniquely; and the distributions of and are identifi-
able from the censored data. Of course,and might not ac-
tually be -independent, and in this case the Sf obtained via the-
orem 2 would NOT be correct. Moreover, the-independence
assumption can never be tested by the censored observations
because, according to theorem 2 (2), any censored observations
can be explained by an-independent model.

B. Colored Poisson Representation of Competing Risks

Some RDB [17], [38] suggest a colored Poisson representa-
tion of censoring. This section shows that the colored Poisson
representation is equivalent to-independent exponentially-dis-
tributed competing risks. It also affords additional insight into
the model’s assumptions. For visualization, use the following
notation:

• is the failure process, and is to be colored fuchsia,
• is the maintenance (censoring) process, and is to be

colored magenta.
Consider the process , where are -in-

dependent copies of . Let data be
generated by instantly replenishing a component socket with
as-good-as-new components whenever a component exits ser-
vice. The components exit service either because of failure ()
or because of PM ( ). Plot the set of observed “inter-arrival
times” in calendar time, then the
picture in Fig. 2 emerges.

The process is obtained by removing all labels.
Think of:

as the uncolored process,
the s as colored magenta,
the s as colored fuchsia.

The coloring-theorem for Poisson processes is [31]:
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Theorem 3: Let the uncolored process be a Poisson process
with intensity , and the coloring of a point be determined by
the outcome of an-independent coin toss; heads for magenta,
tails for fuchsia with heads , then the

• magenta points are a Poisson process with intensity,
• fuchsia points are a Poisson process with intensity

,
• magenta and fuchsia processes are-independent.

A colored Poisson process starting at can therefore be
represented as

where and are the inter-arrival times of 2-inde-
pendent Poisson processes, starting at , with intensities
and respectively; the uncolored (Poisson) process gotten by
uncoloring the points has intensity . The interleaving
of the 2 processes is uniquely determined in every realization

: failure occurs between the PM’s
and if

can be associated with a subsurvival pair as follows:
denotes the Sf for the uncolored inter-arrival

times,

Now, is the probability of magenta, is the
probability of fuchsia.

Theorem 4 [9]: 1. Let ;
be a colored Poisson process. Then there is a unique-indepen-
dent competing risk process,

associated with . Moreover, and are exponentially dis-
tributed with Sf and respectively.

2. Let be -independent copies of
( ), where and are -independent and expo-
nentially distributed with Sf and re-
spectively. Let be the competing-risk renewal
process associated with.

Then is a colored Poisson process with intensitiesand
for the and processes, respectively.

Consider the distance between an uncolored point, and the
previous uncolored point . This distance follows an expo-
nential distribution with failure rate , because is the
failure rate of . If is colored by flipping an-inde-
pendent coin, this does not affect the distribution of .
Hence, the distance between a maintenance point and its nearest
predecessor has the same distribution as the distance between a
failure point and its nearest predecessor. In other words, given
that a service sojourn terminates in PM, the distribution for the
length of that sojourn is the same as the distribution for the
length of sojourn given termination in failure. This is illustrated
in a different way in remark i) of theorem 5.

VI. COMPETING RISK MODELS

A. -Independent Exponential Competing Risk

Let and be -independent and exponentially distributed
with failure rates and . Let -independent copies of

be observed. Arrange the observations
so as to distinguish the s and s, as follows:

Substitute the exponential Cdf and pdf into (4) and set the
“derivative of the logarithm” 0; then

(5)

The quantity on the right-hand-side of (5) is the TTT statistic.
This result does not depend on the distribution of, as long as
it is -independent of .

If the censoring is-independent, then neglecting thecould
produce a important over-estimate for. For reliable compo-
nents, the sum of the censored lifetimes is typically much larger
than the sum of the observed failure times.

-Confidence intervals cannot be readily computed for the
MLE of under random right censoring, because the sampling
distribution of TTT is not available. One could, however, use the
asymptotic normality of the MLE to derive bounds, but this is
not done here (for a discussion see [5], [33]).

Although competing-risk data can always be explained by an
-independent model (theorem 2), this does not mean that any

censored observations can be explained by a model with expo-
nential-life variables. Rather, a very sharp criterion for exponen-
tiality is derived in terms of the subsurvival functions [8]:

Theorem 5: Let and be -independent life variables,
then any 2 of the following imply the others:

1)

2)

3)

4)

Remark i: Let and be -independent exponential life
variables with failure rates and ; then

In other words, the conditional subsurvival functions are equal
and exponential, and (conditional probability of ,
given survival up to ) is constant.

Remark ii: For -independent exponential competing risks,
can be computed as

, from which

Assuming -independence among all the events, usual methods
can be used to test the hypothesis that both of the empirical
conditional subsurvival functions follow the same exponential
distribution.
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Theorems 1, 4, 5 yield the following characterization of-in-
dependent exponential competing risks:

If competing risks are -independent and exponential, then
the rate of occurrence of each risk is unaffected by curing (elim-
inating) other risks.

In particular, if PM and critical failure are-independent ex-
ponential competing risks, then abandoning all PM would not
affect the rate of occurrence of critical failures.

B. Random Clipping

Perhaps the simplest model of interaction between an expo-
nential-life process and a warning process is obtained by
assuming that is always censored by a random amount .
That is, is exponential and for some positive r.v. -indepen-
dent of , observe . can be thought of as a warning
which a component emits prior to expiring at time. Of course

might be greater than , which is interpreted as censoring
at birth. Let the censors, at birth, simply be not recorded; i.e.,
components emitting warnings at birth are simply repaired until
the warning disappears, and the false start is not recorded as an
incipient failure at time 0. Indeed, this is what usually happens.
Let the variable be a RC of . Thus, in this case

is exponential with parameter.
Theorem 6: Let be a r.v. -independent of , and

. Then conditional on , has the same
distribution as .

C. Random Signs

A simple model for -dependent competing risk is “random
signs competing risk” (called age-dependent censoring in [8]).
Consider a component subject to right censoring; time at
which a component would expire if not censored. Let the event
“component expires due to competing risk” be -independent
of the age at which the component would expire, but given
that the component expires from, the time at which it expires
might depend on . For example, suppose that a component
emits some warning of deterioration (leakage, vibration, noise)
before expiring (life variable ). If these warnings are perceived
by maintenance personnel, then the component will be PMed
and competing risk is observed. If the process of perceiving
the warnings is -independent of the component’s time in ser-
vice, then the random-signs model is appropriate. This situation
is captured in the definition:

Definition 3: Let and be life variables with ,
where: , , and sgn . The variable

is a: random signs censoring ofby
.
Theorem 7 [8]: Let be a pair of continuous strictly

monotonic subsurvival functions; then the following are equiv-
alent:

1. There exist r.v. and , , such that

2. For all :

Condition 1 of theorem 7 says that the subsurvival functions
and are consistent with a random-signs censoring model.

For random-signs censoring under the conditions of theorem 7,
the conditional probability of censoring is maximal at the origin:

Not every set of censored observations is consistent with a
random-signs censoring model. Assuming continuity and strict
monotonicity, theorem 7 says that a random-signs censoring
model exists iff for all the conditional subsurvival
function for failure dominates that of censoring. Under
random-signs censoring the population of observed failures are
statistically equivalent to the uncensored population, hence:

Recalling the estimate under-independent right censoring,

and noting that typically for reliable systems, it
is evident that the-independence assumption can lead to gross
underestimates of the critical failure rate for random-signs com-
peting risk (see example “action taken” in Section VI-B).

D. Conditionally -Independent Competing Risks

A somewhat more complex model views the competing-risk
variables, and , as sharing a common quantity, and as
being -independent given :

where , , are mutually -independent. Explicit expres-
sions can be derived for: , , are exponential [23], [36]:

Theorem 8: Let , , be -independent with
, , ,

then

1)

2)

3)

4)

5)
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6) If has an arbitrary distribution such that Pr ,
and is -independent of and , then

Further, it is easy to see that . Hence:

Together with (5), these give 3 equations for estimating the 3
parameters , , , which show that this model is identifi-
able from the subsurvival functions (of course, maximum like-
lihood provides a better means of estimating these parameters).
The ratio of the naked over the observed failure-rates foris:

E. Time-Window Censoring

When analyzing data, the user chooses a time window, that
is begin and end times for observation. The begin-time can typ-
ically be chosen to coincide with plant startup (perhaps after
major overhaul), thus the inception of observation coincides
with the inception of a service-sojourn in each socket. At the end
of the time-window, however, each socket will typically have
a functioning component whose last service-sojourn is not ter-
minated. Such sojourns are called “time-window censored.”5

Techniques for dealing with time-window censoring and com-
peting-risk are not well developed, but a crude procedure is de-
scribed to assess the impact of this type of censoring. For a
given sojourn, let denote the minimum of all competing risks.
Let be a variable describing the time-window censoring. Put

for each sojourn which is not time-window censored. If
the sojourn is time-window censored, letbe the time between
the inception of the sojourn and the termination of observation,
and put .

The data are obtained by drawing sojourns from an urn with
replacement. There are draws, on draws the

is obtained (on these draws ) and on draws
the is obtained (on these draws ). Let

have constant failure rate,, and the observations be recorded
as . The MLE of satisfies

Let

be the estimate of the failure rate ofif the censoring times are
simply ignored. Rearranging the terms:

5This is distinct from what is commonly called type-II censoring. With type-II
censoring, observation of a population at risk is terminated after a predetermined
number of failures has occurred.

Fig. 3. Data fields for coloring.

This gives a rough estimate of the effects of time-window cen-
soring. , and the equality holds if there are no time-
window censors.

VII. U NCERTAINTY

The Introduction observed that most modern reliability
databases provide some indication of the uncertainty of esti-
mates derived from the failure data.

Uncertainty bounds convey the restrictions on the possible
choices of reliability parameters arising from the observed life
data. It is convenient to distinguish uncertainty due to noniden-
tifiability from uncertainty due to sampling fluctuations. To ex-
clude the effect of sampling fluctuations, it is useful to consider
how one should proceed if there actually were infinitely many
observations of the censored life process.

A. Uncertainty Due To Non-Identifiability: Bounds in the
Absence of Sampling Fluctuations

Let be the subcumulative distribution of the life process
of interest:

and let be the Cdf of the minimum of and ,

Reference [37] observes that the Sf for, , satisfies

and shows that these bounds are sharp6 in the following sense.
For all and all , there are joint distributions with Sf
and , depending on and satisfying

For = Cdf[ ], these bounds can also be written as

6Reference [6] notes that the bounds are true only under certain continuity
conditions.
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Fig. 4. Coloring of “failure effect.”

Through any point between the functions and there
passes a (nonunique) Cdf[] which is consistent with the cen-
sored data. Because , then

If has an exponential distribution with failure rate, then

Hence, the observed data yield an upper bound on.
This result [37] does not say that any Cdf betweenand

is a possible Cdf of . Theorem 9 is a simplified version
of results in [6], [44]:

Theorem 9: If is a Cdf satisfying

then there is a joint Cdf for with as marginal distri-
bution for iff for all , , with ,

In other words, the distance between and must be
increasing in .

Although there might be a wide band between and
, the band of exponential Cdf passing through this band

can be quite narrow. A better visual appreciation of the data
is afforded by considering the time-average failure rates. The
failure rate for is

so that the time-average failure rate is

If , then the time-average failure rate is the
(constant) failure rate. Applying this transformation, the [37]
bounds become

At each , the set of numbers between and cor-
responds to the time-average failure rates at timewhich are
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Fig. 5. Coloring of “action taken.”

consistent with the data, up to. As , then
so that . Hence the lower

bound on the admissible values of the time average failure rate
decreases as time becomes large. The [37] bounds are the end-
points of the intersection for allof the admissible time-average
failure rates:

[37] bounds

B. Accounting for Sampling Fluctuations

The bounds developed in Section VII-A reflect a lack of
knowledge in due to nonidentifiability of the Cdf for
caused by censoring. This lack of knowledge cannot be reduced
by observations unless the censoring is suspended. In practice,
there is another lack of knowledge: that caused by a limited
number of observations.

The [37] bounds can be used to obtain classical CB depending
on time (time-wise bounds). Bounds-independent of time

have been given based on a nonparametric test [6] and based on
a test [41] which also compares these two bounds for several
data sets.

The derivation of time-wise bounds is straightforward. The
[37] bounds are:

For each , the and can be estimated from the
data. Classical CB on these estimates can be substituted into
the previous formula to yield classical CB for the time-average
failure rate of , for each time .

If in of -independent observations of
, the event is observed, then
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Fig. 6. Coloring of “method of detection.”

is approximately standard Gaussian where
can be estimated as . Hence the classical

5% lower CB for can be written as

(6)

Similarly, for observations of the in
-independent observations of then an upper

95% classical CB for is

(7)

is now estimated as . The curves and
have the following interpretation. If samples of sizeare

repeatedly drawn from the Cdf of , then for each
,

• in 95% of the -samples the empirical version of
is greater than , and

• in 95% of the -samples the empirical version of
is less than .

This does not mean that 95% of the-samples lie above
[below ] for all .

VIII. E XAMPLES OFDEPENDENTCOMPETINGRISK MODELS

Pressure-relief valves are designed to open when pressure
exceeds a certain limit. A typical boiling-water reactor has 20
pressure relief valves inside the containment. These are tested
once a month. The data discussed below come from 1 Swedish
nuclear-station operating 2 identical reactors, from the period
01/01/1978 up to 01/09/1995. This yields a total 17.512 20

2 8400 socket-months. In each socket, 1 sojourn is time-
window censored, and these censors amount to 1995 months,
leaving 6405 socket months. There are 252 sojourns which are
not time-window censored. The following analyses are based
on these 6405 socket months and 252 sojourns. Fig. 3 shows
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Fig. 7. Coloring of “subcomponent.”

the data fields which can be selected for coloring; these fields
are failure detection, failure effect, action taken, and subcom-
ponent. The user chooses a field and applies 2 colors, light and
dark, to the elements of the selected field.

Thus in Fig. 3, the field “Effect of Failure” is chosen and the
first 9 effects are colored dark, while the last effect, “nonfunc-
tional” is colored light. “Type 1” always corresponds to the dark
coloring.

Four analyses, based on applying a coloring to each field, are
presented. To gauge the effect of time-window censoring, con-
sider the minimum of the dark and light variables, and assume
this follows an exponential distribution with parameter. The
minimum does not depend on which field is selected for col-
oring. Ignoring the time-window censors, is estimated as

.

A. Failure Effect

In Fig. 4, the field “Failure effect” is selected for coloring.
The functional failures have been darkened, and the “nonfunc-

tional failure” is colored light. There are 124 functional and
128 nonfunctional failures with total sojourn times 2938 and
3467 months, respectively. The functional failures include “fail
to open” and “fail to close.” These are both essential functions
of a valve, but from the risk view-point only “fail to open” would
be important.

Fig. 4 shows the subsurvival and conditional subsurvivor
functions. The is the probability of a service-sojourn
terminating due to color . The subsurvival plots show that the
probability is about one half that a sojourn ends in functional
failure. The conditional subsurvival functions are more or less
equal. This is consistent with the-independent exponential
model (theorem 5) and with the conditional-independence
model (theorem 9). The-independent exponential model also
predicts that is constant. Fig. 6 is not wholly convincing
in that respect. The conditional-expectation model is more
flexible in this respect and yields an estimated failure rate
of 0.02 failures/month. Nonetheless, proceed here with the
-independent exponential model. The lower 2 plots show



COOKE AND BEDFORD: RELIABILITY DATABASES IN PERSPECTIVE 309

the time-wise bounds on the time-average failure rate. The
estimated failure rate with this model is
failures/month. Apparently the difference in these models is not
great. The bottom 2 plots show the time-wise average failure
rate bounds as given in (6) and (7).

B. Action Taken

Now, color the field “action taken.” The dark color corre-
sponds to the action “Replace,” the light color to the other
possible actions. There are 57 (dark) sojourns terminating in
“Replace” and 195 other (light) sojourns. The total sojourn
times for these 2 (dark, light) colors are 1812 and 4593
months, respectively. It is not unreasonable to suppose that the
other actions are undertaken with the goal of prohibiting or
intercepting the action “Replace.” In this case the maintenance
personnel might plausibly behave in accordance with the
random-signs model. That model predicts that the conditional
subsurvivor function for “other” should lie below that for
“Replace,” and that should take its maximum value at the
origin. Fig. 5 confirms these predictions. These patterns are
not at all consistent with the-independent exponential or
conditional -independent model. The “random-signs estimate”
of the dark failure rate is . Had the -inde-
pendent exponential model been used, the estimate would be

.
If the maintenance crew is trying to prohibit “Replace” ac-

tions while losing as little useful service time as possible, then
the number of “Replace” actions should be small relative to
the number of others and the anticipated sojourn-times ending
in “other” is only a little shorter than the anticipated sojourn
times ending in “Replace” [28]. When these maintenance in-
dicators are applied to these data, the maintenance crew ap-
pears to be doing a good job. The lower 2 graphs (Fig. 5) show
the time-wise average failure-rate bounds. For “Replace,” the
random-signs and-independent exponential models are shown.
Both lie within the bounds, and the latter is a factor 3 lower than
the former.

C. Method of Detection

Fig. 6 shows the results of applying coloring to the field
“Method of detection.” The dark color corresponds to “alarm”
or “unintended discovery.” Discussions with maintenance
personnel indicated that these were indeed events which they
would try to avoid. There are only 4 such events (dark), and
248 other (light) events. The total sojourn times are 185 (dark)
and 6220 (light). As in the example in Section VIII-B, the
random-signs model seems appropriate. The random-signs
estimate of the dark failure-rate is .

D. Subcomponent

The most important (and expensive) subcomponents in the
pressure-relief valves are piston and valve. Fig. 7 shows the
coloring of subcomponent, with “valve” and “piston” colored
dark, and the others colored light. There are 202 dark events
with a total sojourn time of 5055 months; there are 50 light
events with a total sojourn time of 1350 months.appears to
be constant and the conditional subsurvivor functions appear to

be equal. This is the signature for the-independent exponen-
tial model. The naked failure rate is estimated on this model as

.
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