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Reliability Databases in Perspective

Roger Cooke and Tim Bedford

Abstract—Concepts and methods used in designing modern r.v. random variable
RDB (reliability data banks) are reviewed. Taxonomies for failures RC random clipping
and maintenance actions are not fully standardized and can cause RDB reliability data base

confusion. Section Il summarizes current usages. The structure ROCOF te of f fail
of the raw data is identified as: component socket histories with ra e.o occurr.ence 0, aylure
competing risk. Successive sections discuss data-structure andSf survivor function (reliability)
operations on data, data analysis with and without competing TTT total time on test

risk, and the analysis of uncertainty. In the context of reliability
data, the assumption that competing risks ares-independent is D
frequently unwarranted. Models for dependent competing risk EFINITION

?n? dllscuzsed, and gust(rjatid Wlfh examples from pressure-re- . i, jps, ip similar to “it, its, it” except that the “p” implies
'eé\é?n‘;el e:l;%r?; tl‘ggm;’\ée a:Se, nuclear-power stations. personwhereas the “t” implieshing.

e The needs of various users of reliability databases must be dis-

tinguished. The interests and requirements of a maintenance engi- NOTATION
neer are very different from those of a risk analyst or a component
designer. It is unlikely that a single reliability number serves these £ Sf
diverse needs. R* sub-Sf
e The problem of analyzing reliability-data has become a Cdf
problem of data compression. Years ago, analysts justifiably com- F* sub-Cdf
plained about the sparseness of reliability data. With the advent .
of computers, automated sensors, and condition monitoring, there A qonStant failure rat_e
is no reason for sparseness today. The problem is knowing what 7() time-dependent failure rate
to collect, how to make sense of the wealth of data that one can obr observed failure rate
gather, and what to do with it. w repair rate
e To be useful, reliability data must reveal not only the proba- ® conditional probability of censoring

bility of failure, but also the cause of failure. Thus, competing fac-
tors causing the termination of service sojourns must be quantifi-
able from reliability data. Failure-causes interact, and this interac- I. INTRODUCTION

tion makes the problem of quantification very challenging. ELIABILITY parameters characterize populations that

_ Index Terms—Censori_ng, colored Poisson process, comp_eting emerge from complex interactions of components, op-
ﬂ;'?,gf?npfgf.,e?;i;ﬁﬂﬁ%g?gbiesfndem competing risk, mainte- erating environments, and maintenance regimes. This paper
reviews the mathematical tools for defining and analyzing
populations from which reliability data are to be gathered. Such
ACRONYMS analyses form a subfield of lifetime data analysis with its own
specific features. These features emerge from the uses to which

CB s-confidence bounds o )

Cdf cumulative distribution function reliability data are put. Modern RDB are intended to serve at
CM corrective maintenance least 3 types of users:

iff if and only if + the maintenance engineer interested in measuring and op-
lmin time-wise lower-bound for average failure rate timizing maintenance performance,

Imax time-wise upper-bound for average failure rate * the component designer interested in optimizing compo-
MLE maximum likelihood estimate nent performance,

MTBE mean time between failures + the risk/reliability analyst wishing to predict reliability of
pdf probability density function complex systems in which the component operates.

PM preventive maintenance To serve these users, modern RDB can distinguish at least

10 failure modes: mutually exclusive ways of terminating
_ _ _ a service sojourn. Different users are typically interested in
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component boundary, operating characteristic, and mainteen the TTT statistic also estimates the rate of failures when
nance/repair policy. Because decision-makers increasingly maintenance is performed. This latter is called the “naked
demand an assessment of uncertainty in risk and reliabilfailure rate.”
calculations, modern RDB also provide uncertainty-intervals Now what does the neighbor want to know? Because the
for failure-rate estimates. neighbor never works on ips own car, ip wants to know the rate
The systematic collection of reliability-data dates from thef failures when no maintenance would be performed. In other
Titan Missile program [39]. Since the 1980s there have bee@mwrds, the neighbor wants to know the naked failure rate of RE’s
many attempts to provide systems for collecting and organiziagr. If these two rates are the same, then RE would be a very poor
raw data, and to standardize the information presented in Hadiability engineer indeed. RE’s maintenance efforts would be
data banks. The Center for Chemical Process Safety of teally ineffective; failures would be just as frequent if RE did
American Institute of Chemical Engineers (CCPS) publishetbthing. PM is supposed to prevent failures while losing as little
its Guidelines for Process Equipment Reliability D4ia8] in  useful service time as possible. This requires that PM be highly
1989. Other Guidelines are in [4], [20], [21], [26], [30]. Lannoycorrelated to failure. Ideally, the car is PMed at titiéit would
[32] and the ESReDA Working Group [40] represent curreritave failed shortly aftet.
practice in Europe. A special issue REliability Engineering In sum, the modern RDB user is not only interested in when
and System Safeyol. 51, num. 2) is devoted to the design ok component expires, but also why it expires. Such users distin-
reliability databases. For an historical perspective, see [19]. guish several risks which are competing to terminate each ser-
The problem of designing an RDB is the problem of exvice sojourn.
tracting estimates from the raw data. The first problem is finding Begin with taxonomies for maintenance and failure and the
an appropriate mathematical representation for the raw dafata structure for component socket histories. Standard tech-
Because failure modes are mutually exclusive, think of failuriques for data analyses are based on the absence of competing
modes as marks or colorings of an underlying point-procesisks. After discussion of these, then the discussion is on the
The theory of colored Poisson processes has been used imphathematics of competing risk, and on some competing-risk
itly and explicitly for this purpose [38]. models. Uncertainty in estimation of failure rates under com-
Also, think of mutually exclusive failure modes as riskgeting risks arises from statistical fluctuations and from non-
which are competing to terminate the current service sojouidentifiability. Both sources of uncertainty must be considered.
The failure-mode seen is the risk which succeeded in killing tl@onclusions draw together some lessons learned. This research
component first; which risks might have killed the componenfraws on [7], [9], [10], [36], [41].
a little later are not seen. A colored Poisson process can be
viewed as a renewal process generated by an independent
exponential competing risk model for interarrival times (see Il. M AINTENANCE AND FAILURE TAXONOMIES
Section VI-B). The general theory of competing risks, not
necessarily independent and not necessarily exponential, is ad=irst, distinguish between types of maintenance jobs (CM and
vanced here as a suitable mathematical language for modeltg). and ways in which maintenance is scheduled: calendar
reliability data. Competing-risk data resemble what statisticiaR@sed, condition based, opportunity based, and emergency.
call “right censored data.” The language of censoring, however,
is more appropriate to the analysis of cohort populations whexe Maintenance Taxonomy
the interest is in death due to a specific cause (e.g., the treategﬁ . ]
disease), and one lumps together as “censoring” everything he 2 maintenance types are:
which prevents observing this cause, e.g., moving out of town, * PM: Jobs which do not repair a fault or failure, but are part
death by other causes, termination of observation period. of regular servicing.
A simple example illustrates the problem of competing failure * CM: Jobs to repair a defect, fault, or failure.
risks. RE (a reliability engineer) buys a new car and collects re-The 4 scheduling types are:
liability life data. RE logs the times at which the car is taken e Calendar Based: Planned maintenance activities, not based
in to repair a breakdown (failure). RE maintains the car fastidpn observed deterioration of component, but scheduled from
ously: every Sunday morning RE repairs anything which is nealendar time, or some surrogate, such as cycles or cumulative
functioning normally even though no breakdown has occurrddad. This maintenance does not repair anything, and involves
These “noncritical repairs” are logged as PM. RE’s neighbd’M.
who never works on ips own car, asks RE how reliable RE’s care Condition Based: The component’s state is observed to de-
is. viate from that which the manufacturer intended, though the
If the neighbor uses the methods currently used in mammponent’s functionality (as required by the system in which
RBDs, the neighbor estimates the rate of occurrence of breélserves) is still maintained. Hence one can leave the component
downs (failure rate) in ips own car via the TTT statistic (sei@ socket until a suitable maintenance opportunity arises. This
Section VII-A): the number of failures divided by the totaimaintenance is therefore planned and corrective. It is typically
time in operation. The TTT statistic is the “observed rate dfiggered by indicators of degradation such as leaking, dirty oil,
failure™: the rate at which failures befall the fastidious RE i@bnormal power consumption, vibration, noise, or heat.
spite of RE’s PM. It could also be something else, and hereine Opportunity Based: Maintenance is undertaken when a suit-
resides much confusion. If the PM were performed randombble opportunity presents itself. If the system is shut down for
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TABLE |
MAINTENANCE JOBS AND SCHEDULES
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TABLE I
MAINTENANCE AND FAILURE TYPE

Job Schedule Job Schedule
Planned Unplanned Planned Unplanned
Condition  Opportunity Condition Opportunity
Calendar based based Emergency Calendar based based Emergency
PM X X PM | No repair No repair
CM X X X Repair Repair Repair
CM degraded degraded critical
failures failures failures

overhaul of one component, other components can be main-
tained as well. The decision to maintain a component at an op-

portunity might or might not be triggered by the condition of th eir functionality is totally lost; in this case the repair of a crit-
component. ical failure might be planned.

« Emergency: Actions to repair a component which is in a Fig. 1 displays the.variqus maintenance and failure concepts
state that disables the system. The system cannot function Uit Plot of state against time.
the repair is done, and the repair activity was not planned be-
forehand. Repair actions usually begin almost immediately affer Operating Modes, Failure Causes, Failure Mechanisms,
component failure. Postponing repair is not an option. MaintE&ilure Modes
nance crews typically would like to prevent emergency mainte- |t is common now to distinguish 3 operating modes:

nance from occurring. _ « Continuous operation: The component operates as long as
The way maintenance is scheduled can influence the type of e system operates

maintenance which is performed. Although usage is not stan-, Standby: The component is dormant unless required to
dardized in this regard, there is some currency in using these f,nction on demand

concepts; see Table I. « Alternating (or intermittent): The component rotates so-
journs of continuous operation with one or more spares.
Components in the alternating mode are planned to relieve

The 4 failure types are: each other according to a regular schedule, whereas components

e Degraded Failure: A component is not in the state whid standby are typically brought into service when the front-line
the manufacturer intended for performing its function, but th@omponent is failed or in repair.
system function is being fulfilled. The component is in a: non- The following terms are encountered in the literature. Though
critical degraded state. their use is not standardized, we use the definitions:

e Critical Failure: The component is unable to perform its ® Failure causes: These give the reasons why a component
function due to critical-degradation of its state. Critically-defails. RDB often list only local causesijz, causes within the
graded components are always repaired or renewed, and theeggnponent itself (vibration, leak, crack, etc.). However these
pair typically begins as soon as possible. Critical failure can igcal causes themselves can be caused by factors outside the
total or nontotal. frame of the RDB, e.g., a component fails due to over-stress

¢ Entrained Functional Unavailability: The functionality ofcaused by other failures upstream. These are sometimes called
the component s lost due to upstream failure of some supportiig@t-causes. If root-cause analysis has been performed, the re-
system. The component need not be repaired. sults would typically enter an RDB in the form of free text.

o Total failure: The component not only fails to meet specifi- ® Failure mechanisms: These describe the actual physical
cations, but fails to meet specifications to any degree. Non-topibcesses leading to a failure. Thus, the failure-cause might be
critical failure occurs when the component fails to meet spedeak in the oil lines” and the failure-mechanism might be “jam-
ifications but still has some residual functionality, as when @ing of piston.” The distinction between cause and mechanism
pump cannot deliver the required flow rate but can still delivdg frequently discretionary.
some flow, or a valve does not close in the required time, bute Time-related or demand-related failures: This distinction
still closes. usually coincides with operating mode. Thus, a failure occur-

The terms “functional” and “nonfunctional” describe failureging when the component is called into service from the standby
in a way which is complementary to the way they are used faode is classified as demand-related. Failures occurring while
describe component states. Thus a functional-failure puts th€ componentis in continuous operation are classified as time-
component in a nonfunctional state. related. Because the same component type might operate contin-

Table Il supplements Table | by including the types of repaitgously or in standby, this component can have both demand-re-
typically performed. There are, of course, exceptions, e.g., sotated and time-related failures.
components might be allowed to remain in-line even though  Failure modes: These describe the way in which a compo-

nent fails, usually from a functional or sub-functional point of

, _ _ __ view e.g., “fails to open,” or “fails to close.” It becomes neces-
2There is considerable overlap between the notions of condition-based and

opportunity-based maintenance. Opportunity-based maintenance is not con§ﬁ_i[y to distinguish failure r_nOde_S when the Conseq_uences of a
ered further in this paper. It is included here for completeness. failure depend on the way in which a component fails.

B. Failure Taxonomy
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critical failure (total)
emergency maintenance

State Total
critical failure
emergency maintena "
rgency nee Critical
/"1 degraded failure condition
based mai
ased maintenance Degraded

l /I calendar maintenance
/3 As good as new

Time —»

Fig. 1. Maintenance and failure in time.

TABLE Il
COMPONENT SOCKET TIME HISTORIES (#314 FRESSURERELIEF VALVE)

Hierarchical Category” Incident Data
Component Socket Failure Fields** Repair Fields**
Detection FE Action Start Start Start
SYS Socket SubComp | FD Date OI FT | Taken Un-Av Repair Av Man MH
314 V001 M/1-Unit | B 28/06/1976 L 4 Z 23/07/1976 23/07/1976  23/07/1976 1 1
314 Vo001 Sensor B 06/10/1977 L N B 06/10/1977 06/10/1977 06/10/1977 3 9
314 V001 Valve C 17/09/1980 K F C 17/09/1980 18/09/1980 18/09/1980 2 18
314 Vo001 Valve C 01/08/1982 L E C 02/08/1982 02/08/1982 02/08/1982 2 8
314 Vo001 Valve C 11/07/1983 L U C 12/07/1983 12/07/1983 22/07/1983 2 24
314 Vo001 Sensor B 07/10/1985 F Y B 31/07/1986 31/07/1986 31/07/1986 1 1
314 Vo001 Sensor D 18/08/1986 E P z 20/07/1987 20/07/1987 20/07/1987 2 4
314 Vo001 Valve E 14/09/1992 K F C 14/09/1992 14/09/1992 15/09/1992 2 8
314 V001 Sensor D 03/07/1993 K J B 10/07/1993  10/07/1993 10/07/1993 1 1
314 Vo001 Valve B 06/09/1994 F P C 06/09/1993 06/09/1993 06/09/1993 2 2
314 V001 Valve B 13/05/1995 K E C 20/05/1995 20/05/1995 20/05/1995 1 2
314 V002 M/1-Unit | B 06/10/1977 L N C 06/10/1977 06/10/1977 06/10/1977 3 9
314 V002 Valve D 08/05/1978 B M C 08/05/1978 08/05/1978 08/05/1978 2 6
314 Vo002 Valve D 08/05/1978 B M C 08/05/1978 08/05/1978 08/05/1978 2 2
314 V002 Valve E 08/05/1978 L F C 08/05/1978 08/05/1978 08/05/1978 1 15
314 V002 Valve C 17/09/1980 K F C 17/09/1980 18/09/1980 18/09/1980 2 18
314 V002 Pipe B 07/07/1983 L E C 25/07/1983 25/07/1983 25/07/1983 2 16
314 V002 Valve C 11/07/1983 L U B 12/07/1983 12/07/1983 22/07/1083 2 24
314 V002 Sensor B  08/08/1985 L J Z 26/08/1985 26/08/1985 26/08/1985 2 2
314 V002 Sensor D 17/07/1986 E Y B 31/07/1986 31/07/1986 31/07/1986 2 2
314 V002 Valve C 19/07/198 L F C 19/07/1986 19/07/1986 24/07/1986 2 24
314 V002 M/1-Unit | A 17/11/1992 K N B 23/11/1992 23/11/1992 23/11/1992 1 1
314 V003 Valve C 08/05/1978 L F C 09/05/1978 08/05/1978 09/05/1978 1 20
314 V003 Pipe B 01/09/1979 K E C 18/09/1979 18/09/1979 18/09/1979 2 3
314 V003 Valve C 17/09/1980 K F C 17/09/1980 18/09/1980 18/09/1980 2 18
314 Vo003 Valve C 11/07/1983 L U B 12/07/1983 12/07/1983 22/07/1983 2 24
314 V003 Valve C 19/07/1986 L F G 19/07/1986 19/07/1986 24/07/1986 2 24
314 V003 Valve E 23/07/1991 L E C 23/07/1991 24/07/1991  26/07/1991 2 40
314 V003 Sensor D 27/08/1994 L P H 12/09/1994 12/09/1994 12/09/1994 1 1

* STM = B for all cases; BLK = 1 for all cases
** FD = Failure Detection; FE Ol = Failure Effect On Item; FT = Failure Type; MH = Man Hours

[ll. DATA STRUCTURE AND OPERATIONS vice, and repair-fields describing events leading to re-entry into
service. These events might be replacing a defective part, or re-
. o . ~_ pairing a part. Any repair action is complete, the repair crew

* component socket-time histories, organized in hierafever returns a part to service unless it is believed to be as good

Fh|f33| categories, as new (this of course must be verified). Some authors (e.g.,

* incident data, [2]) have inveighed against confounding nonrepairable systems
as shown in Table Il from the Swedish TUD RDB. The hier{failures replaced by new parts) and repairable systems (failures
archical categories identify the hardware in the system dowepaired, perhaps not completely). Successive service sojourns
to the smallest maintainable part, the subcomponent. The ingf-nonrepairable systems generate a renewal process, whereas
dent-fields include failure-fields describing each exit from sesojourns of repairable systems might not. The distinction is not

The data consist of:
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material here. In a competing-risk context, complete repair, evealve, is not a renewal process. The inter-outage times of the
complete replacement, does not guarantee that the compelt@@1 and V002 valves in the 314 system can be pooled to form
risk process is a renewal process (see Section V). the set of inter-outage times for 314 valves. The outage events
Mathematically, a time history is a colored point processan be colored according to the subcomponent which failed the
The “points” are the event-times logged in the database. Eadmponent, or they can be colored according to: the method of
“point” bears some properties describing the event. A groupimigtection, effect, repair type, or length of repair, etc.
of properties into mutually exclusive and exhaustive sets isThus, the rule of thumb is: Superpose until “as-good-as-new,”
called a coloring. The notion of a “colored point-process” reand then pool similar histories.
sembles the “marked point-process” in the literature. However,For a more detailed discussion of operations on component
in a marked point-process the distribution over the possildecket-time histories and relevant statistical tests to support
marks, given that an event has occurred, is independent of these operations, see [36]. Statistical reference books are [13],

history of the process. [25], [42].
Competing-risk processes produce colored point-processes.
After each event, risks (or colorg) ..., k are competing to IV. DATA ANALYSIS WITHOUT COMPETING RISKS

cause the next time-event. When the next time-event occurs, o
serve which risk caused it.
Three main types of operation can be performed on the d

b"I'he analysis of data not subject to competing risk is briefly
reviewed. A component enters service and remains in service
ARl it fails. There is no other cause of termination of a service
sojourn. Because this material is available in standard textbooks,
[5], [25], [29], [33], this discussion is brief.
Time histories having the same begin and end points can be
superposed. The set of event-times of the superposition is theDemand Related Failures

union of the event-times of superposed processes. In general, sisomponents subject to demand can be eitieerdegradable
perposing scrambles any structure in the individual processesdt subject to maintenance), degradable(typically main-
notable exception occurs when superposiigdependent (No- tained). The statistical analysis of the failure data for nondegrad-
mogeneous or nonhomogeneous) Poisson processes. Becgygeis quite simple. Each demand can be modeled as a flip of a
the intensity function of these processes does not depend ondhg- assume, for each component type, that the probabilities of

history of the process, the intensity function of the superpositiggjyre per demand areindependent and identical. The proba-
is the sum of the intensity functions of the superposed processg@gsy of observingr failures inn demands is:

and iss-independent of the process history.

A. Superposition

Pr{rfailuresinn trialslpy = [ " } - p" - (1 = p)"";
B. Pooling r{7 n trials|p} <7) pr(1=p)"

Pooling is applied to data generally. The pooled data are cgn= pr{failure per demanpl The MLE ofp, givenr failures in
sidered as multiple realizations of the same r.v. or stochasfigrials, is7/n.

process. When time histories are pooled, they are consideregtor - failures inn observations, the 90% CB are
as realizations of the same (colored) point process. When inter-

eventtimes are pooled, they are considered as realizations of the pi = largestp such that:
same distribution. Typically, but not always, inter-event times Pr{r or more failures im trials|p} < 0.05;
are pooled when the individual processes are believed to be re-

pu = leastp such that:
newal processes.

Pr{r or fewer failures im trials|p} < 0.05.

C. Coloring/Uncoloring A component called to function on demand is in the standby

A coloring of time events is a partition of the event propertiesiode. Some failure mechanisms, notably those associated with
into mutually exclusive and exhaustive classes (colors). A calear, are disengaged during stand-by, while others, notably
ored process can be uncolored simply by giving each event these associated with corrosion, oxidation, or embrittlement,

same color. continue during standby. Therefore components on standby are
often subjected to maintenance. Knowledge of the maintenance
D. lllustrations policy is necessary for determining reliability parameters from

To illustrate superposition and pooling, let the outages of tif&ta. This is illustrated by 2 popular maintenance-policies.
steam Pressure Relief Valve V001 of the 314 system be due* Test-and-Replace
either to the subcomponent “sensor” or to the subcomponenComponents are tested at regular inteyaind if found in a
“valve.” Then the outage times of the valve and sensor can faded state they are replaced immediately by new components
superposed to form the outage times of the V001 pressure refiéthe same type. The failure probability, on demand, for uni-
valve. If the sensor is renewed whenever the valve is repairéermly distributed demand is:
and conversely, then the superposition is a renewal process, and 1

i ST e —exp(=A-I) AT

the individual valve and sensor histories in general are notre- 1 — 7 N — for A-I <0.1.
newal processes. On the other hand, if the sensor is not renewed
when the valve is repaired, then the superpositianthe V001 * Fail-and-Fix
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A component with constaritis allowed to fail and then taken Let a sequence of observations of the lifetime variable be
off line and repaired. During repair the component is unavailabteade: observé&y, ..., Ty, ....
and would lead to a demand failure if demanded during outage. N(t) = number of failures up to time

They is also constant; thus the equilibrium unavailability is Definition 1: The ROCOF is the derivative of theexpected

A number of failures up to time,
— E[N(®)].
This formula remains valid when the variables are not exponen- dt V)]

tial, and when the rates are interpreted as the inversesgrf Using the simple Poisson-gamma Bayes model, estimate the

peétgccji I|f§tlmg§. tical N biect to standby d uncertainty about the ROCOF of a class of components which
vidently, s-identical components subject to standby 0€grdyq ,nsigered-identical for the purposes of lifetime estima-

dation _do r_10t y!eld_ the same demand probabilities when thﬁXn. Specifically, let the pattern of failures is follow a homo-
are maintained in different ways. For such components, the u Leous Poisson process. There(E) failures in operating

cannot interpre_t a failure probability on demand, unlessthe u ﬁ‘ﬁe,T. The ROCOF is\, an uncertain quantity, and is modeled
knows the testing interval (when using test-and-replace) or t §a gamma distributed r.v.

repair rate (when using fail-and-fix). Additional complications Let the prior distribution for\ be the gamma distribution:
arise if a hybrid maintenance policy is pursued; componen&s()\_a 3), with pdf
tested regularly and pulled off-line for repairs. s

a—1
B. Time-Related Failures Pr{A} occ A0 exp(—f - A).

Let X;,i = 1, ..., n be s-independent variables with pa-After observingr failures in timeT’, the posterior distribution
rameter), such that their Cdf ig'(z) = 1 — exp(—A - z); the for Ais
MLE for A, given observations,, ..., x, is:
. n Pr{Mz, T} < L(A|z, T) - Pr{A\} Q)
A= x G\ a+z, f+T). )
> T
=1

If the pattern of failures follows a Poisson process with péte
s-Confidence intervals are based on the fact that2x- " =; the
has ay? distribution with2n degrees of freedom. The 90% sym-
metricals-confidence interval has the lower and upper limiis: @
and \,:

with probability 1 asl” — co. When a priorG(A|«, 3) is up-
\; = largest\ such thaPr {Iess thanz a:i|)\} < 5%, dated, then

— A"

EA2(T)] = 252\
A, = least) such that’r { more thanz x|\ p < 5%. p+T
- o+

Instead ofn s-identical components, let there be 1 component

with constant failure raté. which fails and is repaired to aswith probability 1. Hence, if the posteriagrexpectation is used
good as new, or replaced with a newidentical component. to estimate\*, it will converge in probability to the true value,
The number of failures as a function of time is a Poisson procass, this estimator is-consistent.

with parameter\. The s-expected number of failures in timde  The Porn Model: A Bayes model for dealing with

is A - t. Givenn failures in timet, the MLE of A is n/¢t. The plant-to-plant variability has been adopted by the Swedish

MTBF is 1/ . Nuclear Inspectorate [38]. Consider a collection of classes
of components. Each class consists of components which
C. Bayes Models are s-identical for lifetime estimation, and which are used

Bayes methods have had a strong impact on the designibf specific plant under plant-specific conditions. Different
RDB. First, the simple Poisson-gamma model is discussed. TRlant-specific conditions lead to different ROCOF. Using
strength in Bayes models, however, lies in their ability to conflata from given plants to infer the ROCOF in another plant,
bine different types of data via hierarchical inference modeRSsumptions are necessary about the underlying relationship
The 2-stage hierarchical model, used in the TUD RDB [38petween the ROCOF of the various plants. In the P6rn model,
is discussed briefly; this model has been reviewed in [11] atfdese ROCOFs are treated asndependent realizations of
discussed in [16], [35]. A similar 2-stage model was proposé@ndom quantities with the same distribution. Specifically:
independently in [24]. An earlier model developed for compo- 1) The pattern of failures at each plant is follows a Poisson
nents in nuclear-power stations has found extensive application process. At plant, there arer; failures in operating time,

[1], [27]; the goal was to capture both generic and plant-specific ~ 7;. The plant specific ROCOF i%;, a realization of the
data sources. rv. A.
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2) A has a gamma distributi®rwith unknown parameters (sometimes called the naked failure rates). The theory of inde-
6 = («, ). The uncertainty over values 6éfis modeled pendent competing risks is developed in [12], [14], [15], [22],

by assuming that is a random vector. [34].

3) A1, ..., A, are conditionallys-independent realizations Let there bek competing risks X1, ..., Xi; let AX; be the
of A, giventheta. minimum of X, ..., Xx. Ina competing-risk context, observe

4) Given(Ay, ..., A,), then(zy, ..., z,) ares-indepen- the minimum of theX;, and observe which it is; i.e., observe
dent.

5) Given\;, thenaz;, (0, A1, ... Ai—1, Aig1, -.., A) are Y=nAXi, lax=x,, j=1... Fk

s-independent. X is cured, if it is eliminated without disturbing the distri-

A consequence of this-dependence structure is that Olat%utions of the other risks. Mathematically, curing riskorre-

(;, T;) from plgntz can |r_1ﬂu_ence only ones’ bellgfs on thesponds to observing
value of; (j # ¢) through its influence on one’s beliefs on the

value of 6. ) Yy =N Xi, Iax=x,, h=1,...,k h#j,
Inference Under the P6rn Modeltet there be datér;, T;)
from plantsi = 1, ..., n + 1; choose a prior distribution for the distribution oft’ ;) is obtained from that of” by integrating

the hyper-parametet3r{«, 8}; and update the distribution of over X .
An+1- There is information on\,,4; from 2 directions:

1) The influence of all of the data on the prior beliefs of the XiLX; = X; and X; ares-independent.

value off. B LetY;,i =1, 2, ... bes-independent copies af. The process
2) The influence of the plant-specific ddta, 1, T+1) On  y — Y1, Ys, ... is the competing-risk renewal-process associ-
the beliefs about the value of, ;. ated withY’.
Under the Pérn model assumptions, the likelihood function | gt x — x,, 7 = Aj=a. . 1 X;,andX; L Z. Re-arranging if
of 6 = («, f) giventhe datd;, T;) (¢ = 1, ..., n) IS propor- necessary, let the first’ observations be
tional to
ﬁ Iz + «) < p )a < L )mi (3) (Y, - yn) = (@1, oo, T, 21, - Zm); n+m=N;
s D@ +1) ey \B+T: g+ 1 z1, ..., T, are interarrival times at whictk was ob-
S . . served,
The likelihood 0fAs11, givenzyy, is z1, ..., zm the interarrival imes at whicH was observed.
()‘n-l-l . Tn+1)m”+1 Fx = Cdf[X], f}( = pdf[X],
_ T . .
exp(—Ant1 - Tuta) Flones +1) Fy = Cdf[Z], f» = pdfiZ].

The probability of ..., yn) is (becauseX; L Z):
Thus the posterior distribution of,.,, given data:(z;, T;) P y oflun, - yw) 18 ( 112)

(izlv"'7n+1)'is Pr{ylv"'vyN}
Glo+ znt1, B+ Tot); =[] fx(@) Q= Fz(z:)- [J(1 - Fx(z) - fz(2)- @)

«, 3 follow the distribution proportional to Rrv, 3} x [likeli- i=t

hood function in (3)]. If F'x is described by parametémhich does not occur ik,
then the MLE of¢ does not depend af;.
V. COMPETING-RIsk CONCEPTSand METHODS

: . . fA Subsurvivor Functions and Identifiability
To assess the failure rates corresponding to various compefirig

ways of ending a service Sojourn' the situation is: Competingumess stated otherWise, in this section: all distributions have
risk. Various “ways of dying” are competineg (as it were) to tedfs.

minate the component’s service sojourn. Section IV shows thatConsider onlyX andZ, whereZ is the censoring variable.

a failure event can be described by assigning values, or colorstts = 1 — Fx is SfX].

several failure fields. Fig. 3 shows possible fields form the #314 The failure rate ofX is:

valve. In each failure event, exactly 1 value in each field is real- fx (@) 1 dRx
ized. A coloring is simply a partition of the set of failure events rx(t) = Rx (1) =R @) Ta
into disjoint subsets. In practice, choose 1 field for coloring, and ~ + ~

then assign different colors to the values in that field. Thus one Rx(t) = exp [_/ rx(s) ds:| .
might color the field “method of detdection” by grouping failure 0

events into “alarm or unintended discovery” and “operator 9f the competing risk context, the failure ratesf (r;) is the

test or revision.” This section introduces the basic mathemati¢gjjyre rate which would be observed; could be observed
formalism for describing competing risks. The goal is to extragithout the observation being censored by earlier occurrences
information about the failure rates of competing failure-modes X,, j #i. Itis sometimes called theakedfailure rate:r; is

3Porn uses @ontaminatediistribution: a mixture of &'(«, 3) distribution the rate_at W_h'Ch fa'lures_ Of_ typevould be observed if all other
(whose parameters can be updated) with(@.5, 1) distribution. competing risks were eliminated.
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When the competing risks are not eliminated, a differer m, f m, m f m m f
failure rate forX; is observed. The observed failéireate for |
X, is defined as

-

I

obr;(f) = lim Pr{AX; = X;, X, € (t, t + A)| AN X; > t} start calendar time ——»
¢ A—0 A ) Fig. 2. Calendar-time picture of censored data.

Theorem 1 [9] (Proof is Obvious)if competing risks Reference [37] derived bounds éix by noting that
X1, ..., Xy are s-independent, with differentiable Sf, then Pr{X <t, X <Z}<Pr{X <t} <Pr{XAZ <t}
ri(t) = obry(t),i =1, ..., k. N - T B
If the competing risks arg-independent, then the proble
of estimating the naked failure rate does not arise, because the 1—F%(t) > Rx(t) > Rx(t) + RZ().
naked and observed failure rates coincide. The quantities on the left and right sides are observable.
For notational convenience, focus on 2 competing risks: Theorem 2 is the main result farindependent competing
X, Z. Ry(t) = Pr{X > ¢ X < Z} is the subsur- risks; it generalizes fon competing modes.
vival-function of X' [3]. R% depends orZ, though this fact  Theorem 2 [3], [43], [44]: 1.LetX andZ bes-independent
is suppressed in the notation. Y is continuous at O then |ife variables, withFx and F; continuous. LetX’ and Z’ be
R%(0) = Pr{X < Z}. If X andZ ares-independent. then ¢ independent life variables such thét, = R%, and R}, =
" " R*,.ThenFX:FXr,andFZ:FZr.
Rx(t) + By (t) =Pr{X > ¢, Z > t} ZZ If Y and R} are a subsurvival pair and are continuous,
=Pr{X >t} -Pr{Z >t} = Rx(t)- Rz(t). then there exist-independent life variableX andZ such that

o ) Ry = Ry andR%, = Rj, and at most 1 of, Z has an atom
Definition 2: Real functionsi; and 5 on [0, oc) form a4 infinity.

mwh|ch entails

(CO”P”UOUS*) subsurvival pair if: _ _ By observings-independent copies df = (min{X, Z},

~ R andit; are nonnegative nonincreasing (con'gnuous, COR%_ ») the subsurvival functions can be estimated. Assuming

tinuous from the right at zerdy{ (0) < 1, R3(0) < 1; s-independence ok and Z, the Sf of X and Z can be deter-
lin [R2(8)] =0, i— 1.2 mined uniguely; and the distributions &f and Z are identifi-

& ()] able from the censored data. Of cour&eand” might not ac-
R7(0) =1— R3(0). tually bes-independent, and in this case the Sf obtained via the-
orem 2 would NOT be correct. Moreover, théndependence

If lim, oo [Rx ()] > 0, thenX has an atom at infinity: there agsumption can never be tested by the censored observations

is a nonzero probability that a component with life distributioBecause, according to theorem 2 (2), any censored observations
X never expires. Atoms at infinity are invoked in theorem 2. can pe explained by astindependent model.

R% and R}, form a subsurvival pair. If there are data fBr
then the “empirical subsurvival functions” can be calculate®. Colored Poisson Representation of Competing Risks
these contain all the information in the data: any parameter tha

fr?n be e.s.tlmlateg fro”? tr:ef dat? can '?'(:1 W‘f'tter:;t‘,s a fluncltjlontl% of censoring. This section shows that the colored Poisson
€ empirical subsurvival functions. 1he “conditional su SuFépresentation is equivalent¢eindependent exponentially-dis-

vival function” is the subsurvival function, conditioned on th_‘?ributed competing risks. It also affords additional insight into

event that the failure mode in question is manifested. Assum|ﬂ,g3 model’'s assumptions. For visualization, use the following
continuity of R%, and R}, at zero: notation: ' '

t—oo

ome RDB [17], [38] suggest a colored Poisson representa-

Pr{X >t X< ZIX < Z}= Ry () 7 e F'is the failure process, and is to be colored fuchsia,
R(0) * M is the maintenance (censoring) process, and is to be
. . R5(1) colored magenta.
Pr{Z >t 2 < X|Z <X} = R3(0) Consider the proces¥ = Y1, Ys, ..., whereY; are s-in-
Closely related to the notion of subsurvival functions is the profePendent copies df = (min[F, M], 1p<y). Let data be

ability of censoring beyond tim& generated by instantly replenishing a component socket with
. as-good-as-new components whenever a component exits ser-
R (1) : ) . ; .
e vice. The components exit service either because of failliye (
Ry (t) + B (1) or because of PMA/). Plot the set of observed “inter-arrival

() =Pr{Z < X|ZANX >t} =

For continuous subsurvival function®(0) = Pr{Z < X}. times” {f1, fo, ...;m1, ma, ...} in calendar time, then the
The “subdistribution functions” foX andZ are picture in Fig. 2 emerges.
Fi(t) =Pr{X <t, X < Z} = R (0) — R (t); The processnin(F, M) is obtained by removing all labels.

Think of:

min[F, M] as the uncolored process,
4Some sources, [29], use the designation “cause-specific failure rate” forwhat  the A/s as colored magenta,
is termed here as: observed failure rate. This is confusing when the competing :
risks are not-independent, because both the naked and observed failure rates the F_S as colored fUChSI_a' )
are cause-specific. The coloring-theorem for Poisson processes is [31]:

Fi(t)=DPr{Z < t, Z < X} = R5(0) — R} (t).
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Theorem 3: Let the uncolored process be a Poisson process VI. COMPETING RISK MODELS
with intensityr, and the coloring of a point be determined b)A 5

the outcome of as-independent coin toss; heads for magenta, ] _ o
tails for fuchsia withPr{head$ = p, then the Let X andZ be s-independent and exponentially distributed

with failure rates\ and~. Let V s-independent copies af =
(min[X < Z], 1x<z) be observed. Arrange the observations
so as to distinguish th&'s andZs, as follows:

Independent Exponential Competing Risk

e magenta points are a Poisson process with intemnsity,
» fuchsia points are a Poisson process with intensityl —

D),
* magenta and fuchsia processessanmedependent. Yis -5 YN = TLs -5 Ty 215 -0 Zme
A colored Poisson process starting at 0 can therefore be Substitute the exponential Cdf and pdf into (4) and set the
represented as “derivative of the logarithm™= 0O; then
Y= {My, My, .5 i By, o, ... 6} Ae i (5)
>owit )
i=1 j=1

where{M;} and {F;} are the inter-arrival times of 2-inde- _ _ _ , -
pendent Poisson processes, starting-ato, with intensitiesu The quantity on the right-hand-side of (5) is the TTT statistic.

and ¢ respectively; the uncolored (Poisson) process gotten bis result does not depend on the distributioZofs long as

uncoloring the points has intensity= 1« + ¢. The interleaving 't1S s-independent ofX’. _
of the 2 processes is uniquely determined in every realization!f the censoring is-independent, then neglecting thecould

{fi, fo. ...;m1, ma, ...}: failure j occurs between the PM’s produce a important over—estim_ate_ for F_or re_IiabIe compo-
k and(k + 1) if nents, the sum of the censored lifetimes is typically much larger
than the sum of the observed failure times.
Zmi < Z fi < Z m;. s-Confidence intervals cannot be readily computed for the
i<k i<y i<htl MLE of X\ under random right censoring, because the sampling
) ) . ) distribution of TTT is not available. One could, however, use the
Y can be associated with a subsurvival pair as folldi#s(t) = 4symptotic normality of the MLE to derive bounds, but this is
gxp(—(u + ¢)t) denotes the Sf for the uncolored inter-arrivahqt done here (for a discussion see [5], [33]).
times, Although competing-risk data can always be explained by an
. Ru(t) - 1 . Ry(t)- ¢ s-independent model (theorem 2), this does not mean that any
Ry () = Thitd Rp(t)= ———. censored observations can be explained by a model with expo-

p+ ¢ o ) Lo
nential-life variables. Rather, a very sharp criterion for exponen-
Now, 1/ (11 + ¢) is the probability of magenta/(1 + ¢) is the tiality is derived in terms of the subsurvival functions [8]:

probability of fuchsia. Theorem 5:Let X and Z be s-independent life variables,
Theorem 4 [9]_: 1.Lety =M, Ms, .. 4 I, 1_7?, ...; ¢ then any 2 of the following imply the others:
be a colored Poisson process. Then there is a usiduéepen- 1) Rx(t) = exp(=A - 1),

dent competing risk process,

2) Ry (t) = exp(—v - 1),
Y = (min[F, M|, 1r<nr)i; 1=1,2, ..., 3) R(f) = A- exp(—)f)—\i_—i,—yfy)i)7
associated witl)y. Moreover,M and I' are exponentially dis- exp(—(A+7) - 1)
tributed with Sfexp(—p - t) andexp(—¢ - t) respectively. 4) Ry (t) =~ - ppr .

2. LetY; be s-independent copies dfnin[F, M], 1p<ar)
(1 =1,2,...), whereM and F' are s-independent and expo-
nentially distributed with Stxp(—px - ) andexp(—¢ - t) re-
spectively. LefY = Y7, Y3, ... be the competing-risk renewal

Remark i: Let X and Z be s-independent exponential life
variables with failure ratea and~; then
Rx(@®) _ R’y

= exp(=(A+7) - 1),

process associated with. Ry (0) — Ry(0)
ThenY is a colored Poisson process with intensijiesnd¢ o(t) = v
for the M and F’ processes, respectively. Aty

Consider the distance between an uncolored pgirand the In other words, the conditional subsurvival functions are equal
previous uncolored point;_;. This distance follows an expo-and exponential, ané (conditional probability ofZ < X,
nential distribution with failure ratg + », because, +  is the  given survival up td) is constant.
failure rate ofmin[F, M]. If =; is colored by flipping an-inde- =~ Remark ii: For s-independent exponential competing risks,
pendent coin, this does not affect the distributionrpf- 7;_;. £%(t) = Pr{X > ¢, X < Z} canbe computed d8&{XAZ >
Hence, the distance between a maintenance point and its nedesPr{X < Z}, from which
predecessor has the same distribution as the distance between a AR (1) dRz(t)
failure point and its nearest predecessor. In other words, given dt x(®) dt
that a service sojourn terminates in PM, the distribution for thessumings-independence among all the events, usual methods
length of that sojourn is the same as the distribution for tlean be used to test the hypothesis that both of the empirical
length of sojourn given termination in failure. This is illustrate@onditional subsurvival functions follow the same exponential
in a different way in remark i) of theorem 5. distribution.
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Theorems 1, 4, 5 yield the following characterizatior-of- 2. For allt > 0:
dependent exponential competing risks:

If competing risks ares-independent and exponential, then
the rate of occurrence of each risk is unaffected by curing (elim-

inating) other risks.

Ri(t) _ Ry(t)

R;(0) ~ R3(0)
Condition 1 of theorem 7 says that the subsurvival functions
In particular, if PM and critical failure are-independent ex- R andR; are consistent with arandom-signs censoring model.

ponential competing risks, then abandoning all PM would n&'{)r random-signs censoring under the conditions of theorem 7,
affect the rate of occurren,ce of critical failures the conditional probability of censoring is maximal at the origin:

(I)(t) — RZ(t)

Ry (1) + R (1)
Perhaps the simplest model of interaction between an expst every set of censored observations is consistent with a

nential-life process{ and a warning process is obtained by random-signs censoring model. Assuming continuity and strict

assuming thak is always censored by arandom amaolint Z. monotonicity, theorem 7 says that a random-signs censoring

Thatis, X is exponential and for some positive i4/s-indepen- model exists iff for all# > 0 the conditional subsurvival

dent of X, observeX — Z. Z can be thought of as a warningfunction for failure dominates that of censoring. Under

which a component emits prior to expiring at tinte Of course random-signs censoring the population of observed failures are

Z might be greater thaiX, which is interpreted as censoringstatistically equivalent to the uncensored population, hence:

at birth. Let the censors, at birth, simply be not recorded; i.e., _n

components emitting warnings at birth are simply repaired until Am S

the warning disappears, and the false start is not recorded as an i

incipient failure at time 0. Indeed, this is what usually happenRecalling the estimate undefindependent right censoring,

B. Random Clipping < 9(0).

Let the variableX — Z > 0 be a RC ofX. Thus, in this case n
A= lim HL 2377 277
El #i and noting that typically _ z; > > «; for reliable systems, it

is evident that the-independence assumption can lead to gross
underestimates of the critical failure rate for random-signs com-
peting risk (see example “action taken” in Section VI-B).

X is exponential with parametax.
Theorem 6:Let Z > 0 be a r.v.s-independent ofY, and
U = X — Z. Then conditional oV > 0, U has the same

distribution asX. D. Conditionallys-Independent Competing Risks

A somewhat more complex model views the competing-risk
variables, X and Z, as sharing a common quantify, and as

C. Random Signs

A simple model fors-dependent competing risk is “rando
signs competing risk” (called age-dependent censoring in [8
Consider a component subject to right censorilig= time at

wh|ch a component would expire if not censored. Let the evenherey U,

“component expires due to competing riskbe s-independent
of the ageX at which the component would expire, but given
that the component expires froffy the time at which it expires
might depend onX. For example, suppose that a componera;5
emits some warning of deterioration (leakage, vibration, noise
before expiring (life variableX). If these warnings are perceived 1)
by maintenance personnel, then the component will be PMed
and competing risk is observed. If the process of perceiving
the warnings iss-independent of the component’s time in ser-
vice, then the random-signs model is appropriate. This situatiorb)
is captured in the definition:

Definition 3: Let X andZ be life variables withZ = X —¢,
where:( < X, Pr{¢ =0} =0, and sgi¢) L X. The variable
Y = (min[X, Z], 1x<z)is a: random signs censoring &fby |

3

Theorem 7 [8]: Let (R}, R3) be a pair of continuous strictly
monotonic subsurvival functions; then the following are equiv-
alent:

1. There exist r.v¢ and X, X Lsgn(¢), such that 4)

Ri(t) =Pr{X > ¢, £ <0}

Ry(t) =Pr{X — £ >t &> 0). 5)

elngs-lndependent gively':

X=Y+W, Z=Y+U,

U(t) = exp(—)\U 'ﬁ), Rw’(t) = exp(—)\W 'ﬁ),
R;((t) _ Ay - Aw - exp(—()\U + )\w) . t))
(Av +2w) - (Ay = Aw — Av)
Aw - exp(=Ay - 1)
Ay —Aw— Ay
" . Av - Ay - exp(—()\U + )\w')t)
z(t) = (A ) — A —
v+Aw) Ay = Aw — Ap)
A - exp(—Ay 1)
Ay —dw =
. . Ay -exp(—(Av + Aw) - 8)
Rx(t) + Ry(t) = SV w——
_ ()\w — )\U) . exp(—)\y . t)
Ay — Aw — Ay ’
Ry (t) _ Ry(Y) .
2(0) o) OO
RY(0) _ Aw  RZ(0)
EXAZ] A EXAZ

W are mutuallys-independent. Explicit expres-
sions can be derived fok¥, U, W are exponential [23], [36]:

Theorem 8:LetY, U, W be s-independent withRy (t) =
Xp(—)\y . t), R
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_.|I| alad FLOTTEF

6) If Y has an arbitrary distribution such thafPr > 0) = 1, ' ﬂl;-T::u:n ""':n'_':::'
andY is s-independent ot/ and W, then R '__—_
Btn) _ Byl e L
R}(O) R}(O) © [reantis rastrmc LT
Further, it is easy to see th&t A Z = Y 4 (U A W). Hence: —— . A
B[X A Z] = 1 N 1 | T WELHFLA
v+ Aw ooty R
1 1 & wilo oo |'\-..|-_-_.|.u_|| i LT Wl
Val X NZ]l=F+~+— - ik e el Fosrmer] [Npnisgisl ELOIRR
l[ ] ()‘U + )‘V‘ ) : Fph (a5 Db .-.--.-!-:-.--n-.-.: ; B I: I-I- H
Together with (5), these glve 3 equations for estimating the 3 : SO o pUnsla e T LOHIALT
18

parametersy-, Ay, Aw, which show that this model is identifi- i R

able from the subsurvival functions (of course, maximum like- G IO TV TE N L
lihood provides a better means of estimating these parameters) : e
The ratio of the naked over the observed failure-rates\fos: I e funcand s
)\Y =+ )\U =+ )\VV hetlon
—_—Y - taken
)\Y + )\VV | H chamge Kya
F m=plir b
E. Time-Window Censoring L fepeir aflucimend
K winEd 1 En e En el on el

When analyzing data, the user chooses a time window, that |

is begin and end times for observation. The begin-time can ty[p
ically be chosen to coincide with plant startup (perhaps after
major overhaul), thus the inception of observation coincid
with the inception of a service-sojourn in each socket. Atthe e
of the time-window, however, each socket will typically have®
a functioning component whose last service-sojourn is not 1!
minated. Such sojourns are called “time-window censofed.”
Techniques for dealing with time-window censoring and com-
peting-risk are not well developed, but a crude procedure is de-The Introduction observed that most modern reliability
scribed to assess the impact of this type of censoring. Fodatabases provide some indication of the uncertainty of esti-
given sojourn, letX denote the minimum of all competing risks.mates derived from the failure data.
Let C be a variable describing the time-window censoring. Put Uncertainty bounds convey the restrictions on the possible
C = ~o for each sojourn which is not time-window censored. I€hoices of reliability parameters arising from the observed life
the sojourn is time-window censored, €te the time between data. It is convenient to distinguish uncertainty due to noniden-
the inception of the sojourn and the termination of observatiatifjability from uncertainty due to sampling fluctuations. To ex-

3. Data fields for coloring.

?@uis gives a rough estimate of the effects of time-window cen-
ring.A, > Ax, and the equality holds if there are no time-
indow censors.

VIl. UNCERTAINTY

and putX = oo. clude the effect of sampling fluctuations, it is useful to consider
The data are obtained by drawing sojourns from an urn wittow one should proceed if there actually were infinitely many
replacement. There ave+ k draws, onn draws ther;, ¢ = observations of the censored life process.

1, ... n is obtained (on these draw% = o) and onk draws
the ¢, J — ]_ . k is obtained (On these drawé = OO) Let A. Uncertainty Due To Non- |dent|f|ab|llty Bounds in the

X have constant failure ratd, and the observations be recorded\bsence of Sampling Fluctuations

asri, ..., Tn, €1, - -+, ck. The MLE Ofo satisfies Let I™* be the subcumulative distribution of the life process

n k X of interest:

yw :% Z ch F(t) = Pr{X <t, X < Z},

i=1 j=1 and letF,,;, be the Cdf of the minimum oK and~Z,

Let Foin(t) =Pr{X A Z < t}.
n Reference [37] observes that the Sf for Ry, satisfies
Ay = S 1—F*(t) 2 Rx(t) 2 1 — Fuin(t)
i=1,..,n and shows that these bounds are shanghe following sense.

For allt and alle > 0, there are joint distributions with S%;

be the estimate of the failure rate &fif the censoring times are and Ry, depending or ande satisfying

simply ignored. Rearranging thekterms: R* — R* — R*
v 1 — S22 — AL
A, ECJ 1—F*(t) —e < Ri(2),
E 1- Enin(t) +e> RQ(t)
El Li For I' = Cdf[ X], these bounds can also be written as

F*(t) S F(t) S -Fmin(t)-
SThis is distinct from what is commonly called type-Il censoring. With type-II
censoring, observation of a population at risk is terminated after a predetermineReference [6] notes that the bounds are true only under certain continuity
number of failures has occurred. conditions.
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Fig. 4. Coloring of “failure effect.”

Through any point between the functiofy,;, and F'* there Although there might be a wide band betweEp;,,(¢) and
passes a (nonunique) C&f] which is consistent with the cen- F*(¢), the band of exponential Cdf passing through this band

sored data. Becaus€ > X A Z, then can be quite narrow. A better visual appreciation of the data
E[X]>E[X A Z]. is afforded by considering the time-average failure rates. The
If X has an exponential distribution with failure ratethen  failure raterx (t) for X is
N 1 < 1 rx(t) = _dRx(t) _ _d(log(Rx(t))
T EX] S EXAZ] * B () dt
Hence, the observed data yield an upper bound.on so that the t|mtla-gv%ra?e ailure rate is
This result [37] does not say that any Cdf betwdéhand _M — 1 rx () du.
Foin is a possible Cdf ofC. Theorem 9 is a simplified version 4 tJo . .
of results in [6], [44]: If Rx(t) = e>.(p(—)\~t), then the t|m§—averagefallyre rate is the
Theorem 9:If F is a Cdf satisfying E)conséant:) failure rata. Applying this transformation, the [37]
() < F(t) < Pin(t), OUNES BEEOME g1 — P 1) _1 [
then there is a joint Cdf fofX, Z) with " as marginal distri- lmin(t) = — ’ Sl /0 rx (u) du
bution for X iff for all ti’ ta, With ¢; < tQ,* _log(l — Foin(®)) B
F(ty) — F*(t1) < F(t2) — F*(t2). <——— % —Imax(t).

In other words, the distance betweE(x) andF*(¢t) mustbe Ateacht, the set of numbers betweknax(¢) andlmin(¢) cor-
increasing irt. responds to the time-average failure rates at timéich are
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Fig. 5. Coloring of “action taken.”

consistent with the data, up to As¢ — oo, thenF*(t) — have been given based on a nonparametric test [6] and based on
Pr{X < Z} < 1 so thatlmin(#) — 0. Hence the lower ax? test[41] which also compares these two bounds for several
bound on the admissible values of the time average failure rat&a sets.

decreases as time becomes large. The [37] bounds are the ent@the derivation of time-wise bounds is straightforward. The
points of the intersection for aflof the admissible time-average[37] bounds are:

failure rates: log(1 — F* t
: g(1—F*(t) 1 ["
[37] bounds= (") [lmax(#), lmin(t)] = [Ar, A]- lmin(t) = — ; <5 rx)du
>0 (1 — .
< _w — Tmax(?).

B. Accounting for Sampling Fluctuations .
For eacht, the F*(¢) and Fi,i,(t) can be estimated from the

The bounds developed in Section VII-A reflect a lack ofi5t4 Classical CB on these estimates can be substituted into

knowledge inA due to nonidentifiability of the Cdf forX' e hrevious formula to yield classical CB for the time-average
caused by censoring. This lack of knowledge cannot be reduggfi,re rate ofX . for each timet.

by observations unless the censoring is suspended. In practicgs n(t) of N s-independent observations dfX A

there is another lack of knowledge: that caused by a limiteg 1x<z), the even(X < ¢, X < Z) is observed, then
number of observations. ’ ' ’ ’
- P (1))

The [37] bounds can be used to obtain classical CB depending VN - ("’1(\:)
on timet (time-wise bounds). Boundsindependent of time

g
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is approximately standard Gaussian whefe = F*(¢)(1 — * in 95% of theN-samples the empirical versionlefiax(#)
L*(t)) can be estimated agN-(N—n)/N.Hence the classical is less tham,, ;).

5% lower CB for—log(1 — F*(t))/t can be written as

o 1 (2 - 520)
= ol

Ay = —

95% classical CB for-(log(1 — Lin(t))/t)is
log [1 - [0 Le22/w)]
t ?

Augy = =

t;

(6)
Similarly, for m(¢) observations of théX A Z < ¢) in N
s-independent observations @K A Z, 1x.z) then an upper

()

o'* is now estimated a@n - N —m?)/N2. The curves\,;y and
Au(r) have the following interpretation. If samples of siXeare
repeatedly drawn from the Cdf QK A Z, 1x . z), then for each

* in 95% of theN-samples the empirical versionlahin(#)

is greater thar;(,, and

This does not mean that 95% of thé-samples lie abovey,)
[below A, (] for all ¢.

VIII. EXAMPLES OF DEPENDENTCOMPETING RISK MODELS

Pressure-relief valves are designed to open when pressure
exceeds a certain limit. A typical boiling-water reactor has 20
pressure relief valves inside the containment. These are tested
once a month. The data discussed below come from 1 Swedish
nuclear-station operating 2 identical reactors, from the period
01/01/1978 up to 01/09/1995. This yields a total 1:712 - 20
- 2 = 8400 socket-months. In each socket, 1 sojourn is time-
window censored, and these censors amount to 1995 months,
leaving 6405 socket months. There are 252 sojourns which are
not time-window censored. The following analyses are based
on these 6405 socket months and 252 sojourns. Fig. 3 shows
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Fig. 7. Coloring of “subcomponent.”

the data fields which can be selected for coloring; these fieltenal failure” is colored light. There are 124 functional and
are failure detection, failure effect, action taken, and subcomh28 nonfunctional failures with total sojourn times 2938 and
ponent. The user chooses a field and applies 2 colors, light 8%#67 months, respectively. The functional failures include “fail
dark, to the elements of the selected field. to open” and “fail to close.” These are both essential functions
Thus in Fig. 3, the field “Effect of Failure” is chosen and thef a valve, but from the risk view-point only “fail to open” would
first 9 effects are colored dark, while the last effect, “nonfundse important.
tional” is colored light. “Type 1” always corresponds to the dark Fig. 4 shows the subsurvival and conditional subsurvivor
coloring. functions. TheR% (0) is the probability of a service-sojourn
Four analyses, based on applying a coloring to each field, aeeminating due to coloX . The subsurvival plots show that the
presented. To gauge the effect of time-window censoring, cqurobability is about one half that a sojourn ends in functional
sider the minimum of the dark and light variables, and assurfalure. The conditional subsurvival functions are more or less
this follows an exponential distribution with paramelgr. The equal. This is consistent with theindependent exponential
minimum does not depend on which field is selected for catrodel (theorem 5) and with the conditiongindependence
oring. Ignoring the time-window censors,,, is estimated as model (theorem 9). The-independent exponential model also

Au = 252/6405. predicts that® is constant. Fig. 6 is not wholly convincing
_ in that respect. The conditionatexpectation model is more
A. Failure Effect flexible in this respect and yields an estimated failure rate

In Fig. 4, the field “Failure effect” is selected for coloring.of 0.02 failures/month. Nonetheless, proceed here with the
The functional failures have been darkened, and the “nonfuncindependent exponential model. The lower 2 plots show
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the time-wise bounds on the time-average failure rate. The equal. This is the signature for tkéndependent exponen-

estimated failure rate with this model 184/6405 = 0.0194

tial model. The naked failure rate is estimated on this model as

failures/month. Apparently the difference in these models is n2@2/(5505 + 1350) = 0.032.

great. The bottom 2 plots show the time-wise average failure
rate bounds as given in (6) and (7).

B. Action Taken

Now, color the field “action taken.” The dark color corre-
sponds to the action “Replace,” the light color to the other [2]
possible actions. There are 57 (dark) sojourns terminating in
“Replace” and 195 other (light) sojourns. The total sojourn (3]
times for these 2 (dark, light) colors are 1812 and 4593
months, respectively. It is not unreasonable to suppose that th]
other actions are undertaken with the goal of prohibiting or [5]
intercepting the action “Replace.” In this case the maintenance
personnel might plausibly behave in accordance with thel€l
random-signs model. That model predicts that the conditional
subsurvivor function for “other” should lie below that for
“Replace,” and that> should take its maximum value at the
origin. Fig. 5 confirms these predictions. These patterns are[S]
not at all consistent with the-independent exponential or [9]
conditionals-independent model. The “random-signs estimate”
of the dark failure rate i$7/1812 = 0.031. Had thes-inde-
pendent exponential model been used, the estimate would be
57/(1812 + 4593) = 0.000 89. [11]

If the maintenance crew is trying to prohibit “Replace” ac-
tions while losing as little useful service time as possible, then
the number of “Replace” actions should be small relative td12]
the number of others and the anticipated sojourn-times endin[g3
in “other” is only a little shorter than the anticipated sojourn
times ending in “Replace” [28]. When these maintenance intl4]
dicators are applied to these data, the maintenance crew
pears to be doing a good job. The lower 2 graphs (Fig. 5) show
the time-wise average failure-rate bounds. For “Replace,” thé-6]
random-signs angtindependent exponential models are shown.
Both lie within the bounds, and the latter is a factor 3 lower tharj17
the former.

(1]

(7]

[18]

C. Method of Detection

Fig. 6 shows the results of applying coloring to the field
“Method of detection.” The dark color corresponds to “alarm”
or “unintended discovery.” Discussions with maintenancd?]
personnel indicated that these were indeed events which they
would try to avoid. There are only 4 such events (dark), and
248 other (light) events. The total sojourn times are 185 (dark?ZZ]
and 6220 (light). As in the example in Section VIII-B, the
random-signs model seems appropriate. The random-sigfiZs]
estimate of the dark failure-rate4g185 = 0.022.

[19]

[24]

D. Subcomponent 25
The most important (and expensive) subcomponents in the

pressure-relief valves are piston and valve. Fig. 7 shows thig®l
coloring of subcomponent, with “valve” and “piston” colored [27
dark, and the others colored light. There are 202 dark events
with a total sojourn time of 5055 months; there are 50 Iight[28]
events with a total sojourn time of 1350 montlsappears to
be constant and the conditional subsurvivor functions appear to
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