
 1 

Nonparametric Bootstrapping of the Reliability Function for Multiple Copies of 

a Repairable Item Modeled by a Birth Process 

John Quigley, Lesley Walls 

University of Strathclyde, Glasgow, Scotland 

Index Terms 

Reliability function, bootstrap, Kaplan-Meier, confidence intervals, censored data  

Abstract 

Nonparametric bootstrap inference is developed for the reliability function estimated 

from censored, non-stationary failure time data for multiple copies of repairable 

items.  We assume that each copy has a known, but not necessarily the same, 

observation period; and upon failure of one copy, design modifications are 

implemented for all copies operating at that time to prevent further failures arising 

from the same fault.  This implies that, at any point in time, all operating copies will 

contain the same set of faults.  Failures are modeled as a birth process because there is 

a reduction in the rate of occurrence at each failure.  The data structure comprises a 

mix of deterministic & random censoring mechanisms corresponding to the known 

observation period of the copy, and the random censoring time of each fault. Hence, 

bootstrap confidence intervals & regions for the reliability function measure the 

length of time a fault can remain within the item until realization as failure in one of 

the copies.  Explicit formulae derived for the re-sampling probabilities greatly reduce 

dependency on Monte-Carlo simulation.  Investigations show a small bias arising in 

re-sampling that can be quantified & corrected.  The variability generated by the re-

sampling approach approximates the variability in the underlying birth process, and so 

supports appropriate inference. An illustrative example describes application to a 
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problem, and discusses the validity of modeling assumptions within industrial 

practice. 

 

ACRONYMS
1
   

pdf  probability density function 

i.i.d.  independent, and identically distributed 

NOTATION 

 F

i t  rate of occurrence of failures for all copies at time t, given i faults have 

been detected by time t 

 t  rate of occurrence of failures for one copy at time t having 1 fault 

within the design 

K  number of faults in the design at time 0 

U(t)  number of copies at risk at time t 

Ui  number of copies at risk at time of realization of the i
th

 fault  

ci  censored time of the i
th

 copy 

ti  time of the i
th

 fault detection 

Xi  bootstrap simulation of the realization of the i
th

 fault  

 D t   number of faults realized by time t 

 D t s s  number of faults realized in the interval (s,s+t) 

 R t  probability that a particular fault will not be realized on a particular 

copy in the interval (0,t)  

                                                 
1
 The singular and plural of an acronym are always spelled the same.  
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 R t s s  probability that a particular fault will not be realized on a particular 

copy in the interval (s,s+t), given it had not been realized in the 

interval (0,s) 

 FR t s s  probability that a particular fault would not be realized within all 

copies in the interval (s,s+t), given it had not been realized in the 

interval (0,s) 

 
^

KMR t s s   Kaplan-Meier estimator of  R t s s   

 j iY t  number of faults remaining undetected in item j prior to time ti 

G(z) number of faults that have been detected across the fleet by calendar 

time z  

 

ASSUMPTIONS 

1. Once a fault is identified within one copy, it is removed from all other copies. 

2. The fault removal process does not introduce any new faults. 

3. The distinct faults are realized independently of each other. 

 

1. INTRODUCTION 

The reliability estimate for a new design can be derived from operational data for 

items with a similar heritage [1], [2].  Such data can provide information about the 

operational environment, but must be adapted to account for design changes between 

generations.  An appropriate estimate for the new item should remove the effects of 

known weaknesses or faults that have been designed out, but include potential faults 

arising from new features or functions introduced.  The former may be achieved by 

deleting operational database records corresponding to faults removed [3]; however 
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estimating the effects of new features is not trivial.  Although processes exist to elicit 

subjective expert judgment regarding potential faults within new designs [4], little 

work has been reported about the use of heritage data to estimate when these potential 

faults may be realized in operation.  Evolutionary designs whose failure 

characteristics change throughout operational life, for example, due to design 

modifications or upgrades, further challenges such inference.   

The primary aim of this research is to develop an efficient non-parametric 

bootstrap procedure that will provide confidence intervals about the reliability 

function describing the length of time a fault will remain within an item without 

resulting in a failure based on censored operational data for items subject to design 

modifications, and therefore is non-stationary.   

It is assumed that the item possesses a fixed, known number of faults, and that 

when these faults are realized as failures, repair follows with perfect modifications 

implemented across all copies.  The usual Poisson Process models [5], [6] are deemed 

inadequate because the rate of occurrence of failures decreases with every fault 

realized & corrected.  Moreover, because there are a finite number of faults, once all 

are corrected, the fault realization process terminates.  Therefore, a more suitable 

counting process describing the fault realization process is a birth process [7], [8], 

where the realization of a fault results in the reduction of the rate of occurrence of 

failures across all copies operating at a given time.  However, modeling is further 

complicated because all copies of the item are not observed for the same length of 

time because each copy can enter operation at different calendar times. 

 Initially, modeling is restricted to the case where observation of all copies 

begins at the same calendar time, and so it is assumed that each copy begins 

observation with the same number of faults.  However we shall show this assumption 
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can be relaxed to allow for the case where the copies start observation at different 

points in calendar time.  In either case, the data structures comprise a mixture of 

deterministic & random censoring mechanisms corresponding to the known 

observation period of the copy, and the uncertain time at which a fault will be realized 

as a failure.   

Bootstrap procedures [6], [9], [10] are developed to support inference for the 

reliability function under this two-fold censoring structure because re-sampling 

techniques provide a useful methodology for constructing nonparametric confidence 

intervals & regions using Monte-Carlo simulation from the estimated reliability 

function.  Bootstrapping is potentially most useful when the data are obtained from 

complex sampling schemes, when sampling distributions are difficult to obtain 

analytically.   However, there are three shortcomings to this methodology.  Firstly, 

bootstrapping is computer intensive with the number of simulations required 

increasing exponentially as the censoring structure increases in complexity. Secondly, 

incorrect re-sampling plans can result in inconsistent estimates.  Thirdly, even for 

consistent re-sampling plans, the coverage of the confidence intervals is often smaller 

than specified when the sample size is small. 

Section 2 describes the censoring structure, and the birth process underpinning 

the data in detail.  Section 3 argues that the usual Kaplan Meier approach to 

nonparametric inference is biased, and proposes an alternative unbiased estimator of 

the reliability function based on order statistic arguments. Section 4 proposes a 

simplified re-sampling procedure to support the bootstrap method, which is much less 

reliant on Monte-Carlo procedures to determine confidence intervals for the reliability 

function.  Section 5 presents an evaluation of the proposed procedures.  An illustrative 
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example is provided in Section 6 along with a discussion of the practical applicability 

of the approach. 

 2.  CENSORING STRUCTURE, AND BIRTH PROCESS 

Figure 1 presents two different data representations.  For simplicity, it is assumed 

there are two copies (labeled 1, and 2) of the repaired item, although in general there 

is no limit to the number of copies.  Each copy is observed for different lengths of 

(pre-determined) time denoted by c1, and c2 respectively.  It is assumed that the item 

contains two faults which are realized as failures at times t1, and t2, by copy 1, and 2 

respectively.  Figure 1a shows a failure history of the ‘fleet’ of copies by tracking the 

history of each, while Figure 1b is the corresponding representation of the realization 

of the faults & censoring times. 

It is assumed that each copy of the item is identical with respect to the faults 

they possess, and the nominal operating environment; and that each copy operates 

independently of the other.  Further, it is assumed that each copy began observation at 

time 0 with the same K faults, and that once a particular fault is realized it is removed 

from all copies.  Moreover, we assume that distinctly different faults fail 

independently of one another.  We denote the number of copies in operation at time t 

by U(t), and let  t  be the rate of occurrence of failures for one copy at time t. 

These assumptions are consistent with a birth process with intensity function 

      ,     ,    0,1,2,...,F

i t U t t K i K i K         (1)      

which describes the rate of occurrence of failure for the set of all copies, given i faults 

have been realized. 

The resulting probability distribution describing the number of faults realized 

in the interval (t,t+s) has a Binomial distribution of the form in Equation (2), where 

D(t) is the number of faults realized in the interval (0,t). 
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                (2) 

 

Parametric inference under such censoring can result in optimistic estimates of 

the reliability function due to the assumptions underlying the probability model [11].  

The nonparametric approach to inference provides an alternative.  For example, it is 

trivial to calculate a Kaplan-Meier estimate [12] of the underlying distribution once 

the data have been converted to a form represented in Figure 1a.  However, the 

construction of confidence intervals is not necessarily straightforward.  Standard 

approaches, such as Greenwood’s formula [12], rely on the Central Limit Theorem; 

and if the required large sample sizes are not achieved, these approaches can result in 

confidence intervals for the reliability function that exceed 1, or fall below 0.   

The use of bootstrapping for obtaining confidence intervals based on the 

Kaplan-Meier estimate of the reliability function is well documented [13].  However 

difficulties arise in adequately modeling the censoring structure using such an 

approach.  For simpler data structures, for example, where fault realization times are 

censored independently of the realizations from other copies, re-sampling directly 

from the Kaplan-Meier estimate [14] can result in asymptotically incorrect results 

[15] as opposed to re-sampling directly from the data [16].  Therefore, we can 

reasonably expect similar problems for the more complex censoring structure of 

interest in this paper, where the sample size is varying throughout the period of 

observation because copies are censored at different times.  Therefore, we require 

both means of estimating the reliability function for our scenario before we can 

develop the bootstrapping procedures. 
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3. ESTIMATOR OF THE RELIABILITY FUNCTION 

We begin by defining the reliability function for the probability that a particular fault 

is not realized in the interval (0,t), assuming there is only one copy of the item.  This 

function provides information about how long a fault can remain within the item if it 

were left to fail without interference from modifications, and is given by  

 
 

0

-

t

u du

R t e


          (3) 

We extend this reasoning to develop an estimator of the reliability function 

under the assumed censoring structure using the approach of Kaplan Meier. Consider 

the situation where Uj copies of the item are in operation at time tj, where ti represents 

the time of the i
th

 fault realization. Assume each copy contains K faults at the start of 

operation, because all parts began observation at the same calendar time. If, at time ti, 

the i
th

 fault is realized, then K-i faults will remain within the item design.  Once a fault 

is exposed in one copy, it is removed from all copies without the addition of another 

fault into the item design.  Hence, an estimator of the conditional reliability function, 

R(t|ti-1), is given by the ratio of the number of faults that will not have been realized 

by time ti to the total number of faults that either remain undetected at time ti or are 

realized by time ti 

 
 

 

^

-1

1- -1

1-
KM

i

i i

i

U K i
R t t

K i U




 
        (4) 

The estimator of the unconditional reliability function is then the product of the 

conditional reliability functions 

 
 

 

^

1

- 1 -1

- 1

i
j

KM i

j j

U K j
R t

K j U




 
        (5) 
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The proposed estimation procedure would be unbiased if the reliability function is 

compiled from data collected at controlled discrete points selected along the 

observation period because this would be based on modeling the number of faults 

observed within any section of the observation period through a Binomial sampling 

scheme.  However, because we propose to estimate the reliability function at each 

time a fault is realized, this will result in a bias.  For example, consider the reliability 

function conditional on survival to time ti-1, R(t|ti-1), where t<ti,.  If at time t there are 

Ui copies being observed that will also be observed at time ti, then there are K+1-i 

faults remaining within the design.  Denote the probability that a particular fault is not 

realized by time t, given it has not been realized by time ti-1, as RF(t|ti-1) where the 

subscript F is used to denote that there are a ‘fleet’ of copies.  RF(t|ti-1) will be the 

product of the conditional reliability functions for each copy, and so the probability 

that a fault remains within a copy by time ti, given it was not realizes by time ti-1, is 

given by  

   
1

-1 -1
iU

i i F i iR t t R t t         (6) 

At time ti-1, there are K-i faults remaining in the item, and there are Ui copies 

being observed, all of which possess each fault.  The distribution of the time to realize 

the next fault, Ti, can be derived from an order statistic argument [17]. The time to 

realization of the next fault will be the minimum fault realization time from a sample 

of K+1-i, where each fault realization time is i.i.d. from the distribution with 

reliability function RF(t|ti-1).  The pdf of the time to realize the i
th

 fault, given the (i-

1)
th

 fault was realized at time ti-1, is 

       
1-

-1 -1 -12- ,     0 ,    ,  ,
K i

i F i F i if t K i R t t dR t t t t K i K i


           (7) 
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Therefore, an unbiased estimator of the conditional reliability function at time ti 

would be 

   

       
-1

1^

-1 -1

1
1-

-1 -1 -11-

1-

1
1-

i

i

i

U
i i F i i

K i
U

F i i F i i F i i

t

i

R t t E R t t

R t t K i R t t dR t t

K i

K i
U




 
  

 

  




 

     (8) 

The estimator Equation (8) will always produce an estimate of reliability 

which is greater than Equation (4) for the following reasons.  The difference will 

decrease as the number of copies increases, or when many faults remain within the 

item design. 

 

 

 
 

   

^

-1

^

-1

1- -1

1-

1-

1
1-

1 1
1 1

1- 1-

1

i

KM i i i

i i

i

i i

U K i

R t t K i U

K i
R t t

K i
U

K i U K i U








 

   
     

    



 

The conditional probabilities in Equation (8) lead naturally to the following estimator 

for the reliability function  

 
^

1

- 1

1
- 1

i

i

j

j

K j
R t

K j
U






 
         (9) 

As each of the conditional reliability estimates given by Equation (8) are 

unbiased & conditionally independent at each fault realization time, then Equation (9) 

is an unbiased estimator of the underlying reliability function. 

  

4. BOOTSTRAP CONFIDENCE INTERVALS 
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The bootstrap method of constructing confidence intervals is based on the principle of 

strong repeated sampling, and is assessed by examining the behavior of the estimates 

through hypothetical repetitions under the same conditions under which the data were 

observed [18]. As such, data are simulated from the estimated reliability function 

subject to both types of censoring: deterministic censoring of the copies, and random 

censoring at the times at which faults are realized.   

Figure 2 illustrates the modeling process.  A natural approach to re-sampling would 

be to simulate a realization time for each fault on each copy using  
^

R t .  This would 

require KU0 simulations.  For each simulated realization time, there will be an 

assessment of whether the fault was realized prior to the censored time of the copy.  

This would require KU0 evaluations.  For each fault, the earliest time it was observed 

is recorded, and provides the re-sampled data from which the reliability function can 

be re-estimated.  This process is repeated indefinitely, and allows the variability in 

estimation to be recorded & used to determine bootstrap confidence intervals.  In 

total, there will be 2MKU0 calculations, where M is the number of bootstraps required.   

The re-sampling process described in Figure 2 would be simple to code.  

However it is possible to develop an algorithm for calculating the bootstrap 

confidence interval requiring fewer simulations with only 2MK calculations.  This not 

only reduces computational time, but also supports an explicit representation of the 

confidence intervals.  

To develop the revised algorithm, again we begin by assuming only one copy 

is being observed for a pre-determined time cm.  Consider the probability distribution 

describing the time until a particular fault, say j, is realized; and denote this random 

variable by Tj.  This is obtained directly from Equations (8) & (9), noting t0=0. 
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   
^ ^

1 1 1Pr 1 ,    0j i i i i i iT t R t R t t c t t  

 
          

               (10) 

The probability that a censored time for fault j is generated is given by 

  
^

Pr jT c R c                       (11) 

Because the two components of the right hand side of Equation (10) are conditionally 

independent, we obtain an unbiased estimate of the probability of detecting a fault at 

time ti+1. 

When two or more copies are observed, the model needs to be extended to 

include the random censoring mechanism.  Therefore consider the distribution for the 

time until fault j is first realized across all copies, and denote this random variable by 

Xj.  This distribution can be obtained from Equation (10), adjusting for the varying 

number of copies being observed, and is given by 

     -1

-1 ^ ^ ^

-1 1

1

Pr ,    0
m m i i

i
U U U U

j i m i i i i

m

X t R t R t R t c t t






   
            

             (12) 

If cmax represents the maximum censored time across all copies, then the 

probability that fault j is censored from the fleet data is 

  -1
^

max

1

Pr    
m m

K
U U

j m

m

X c R t




 
     

 
                  (13) 

However, this leads to a bias in re-sampling for the following reasons.  It has 

been argued that the reliability function in Equation (9) is an unbiased estimator of the 

reliability function at each time of fault realization, ti.  As such, the successive ratios 

between this estimator & the reliability function form a martingale process [18].  

However, the re-sampling proposed in Equation (12) is a power transformation of the 

estimator in Equation (9), and so, due to the convexity of the transformation, the 
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successive ratios between Equation (12) & the true probability for this process would 

form a sub-martingale process.  Simply, we would have the following relationship 

   
^

,   1,....,
U U

i iE R t R t for i K
 

   
 

An unbiased re-sampling proportion would be obtained by using 

1 max

1
Pr ,   :  ,..., ,

1
j KX x where x t t c

K
     

               (14) 

Assuming the realizations of distinctly different faults are independent 

processes, the bootstrap re-samples for the realizations of the K faults can be 

simulated from a multinomial distribution, with equal proportion assigned to each 

realization time, or maximum censored time.  

Bootstrap re-samples are generated from the data by conditioning on the 

censoring times of the copies.  Because there are K faults realized at times ti (i = 1 to 

K), then the result from a re-sample will be a vector of fault realization times (x1,..,xk).  

If the re-samples can be re-conceptualized as fixed times, where the number of faults 

assigned to that time as their first realization are randomly selected, then we introduce 

Ni to represent the number of faults assigned to time ti for time of first realization.  

The vector of Ni (i=1 to K+1) has the following multinomial distribution 

 1 1 1 max

1 1

1

1

! 1
Pr ,..., ,

!... ! ! 1

,  

K

K k K

K K

K

i

i

K
N n N n N c

n n n K

n K K









 
     

 

 

             (15) 

Having simulated the bootstrap data from the distribution in Equation (15), the 

reliability function can be re-assessed.  However re-sampling from a discrete 

distribution in Equation (9) means it is possible that more than one fault can be 

realized at the same time.  Therefore, when estimating the reliability function using 
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the bootstrapped data, it is no longer appropriate to use the approach in Equation (9); 

but instead, one should employ the usual Kaplan-Meier for the conditional reliability 

function 

 
   

 

 
 

^
-1 -1

-1

-1

-1

-1

-

-

1
-

i i i i

B i i

i i

i i

i i

U K D t D t t
R t t

U K D t

D t t

U K D t

  
  

 
  

                (16) 

where D(ti|ti-1) represents the number of faults realized at time ti, and D(ti-1) represents 

the number of copies observed in the interval (0, ti-1].  Thus, the estimates of the 

reliability function from the bootstrap data are computed from 

 
 

 

^ -1

1 -1

1
-

i
j j

B i

j j j

D t t
R t

U K D t

 
  

  
  

                  (17) 

 

5. EVALUATION OF THE BOOTSTRAP 

The bootstrap confidence intervals are evaluated by comparing the expectation, and 

the standard deviation of the conditional reliability function obtained through 

bootstrapping, with those of the true reliability function.   

 

5.1 Expectation of the Bootstrap Re-samples 

From Equation (17), the re-sampled probability assigned to time ti can be considered 

as a function of two correlated random variables, D(ti|ti-1) & D(ti-1), whose joint 

distribution is 

    
 

-1 -1-

-1 -1 -1

-1 -1

! -1 1 1-
Pr ,

! ! - ! 1 1 1

i i i id n K d n

i i i i i

i i i i

K i K i
D t d D t t n

d n K n d K K K


     

        
        

                     (18) 
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Repeated samples are taken from a birth process, which can terminate at each 

of the observed order statistics, ti.  Therefore, from Equation (18), we note that if all 

faults were realized before time ti, then the reliability function at time ti would be 

indeterminate.  To overcome this problem, consider the expectation conditional on 

there being faults to realize at the given times. 

The expectation of each conditional probability assigned to the fault 

realization times within the bootstrap can be derived from Equation (18) as 

   

   

-1 -1

-1

^

-1 -1

---1

0 0 -1 -1 -1

-1

! -1 1
1

- ! ! - ! 1 1 1
1-

-1
1

1

1 1
1-

2 -

i i i ii

i i

B i i i

d n K d nK dK
i

d n i i i i i i

K

i

E R t t D t K

n K i i

U K d d n K n d K K K

i

K

U K i



 

 
 

 

     
     

        


 
  

 

 
  

 

 
           (20) 

Hence, Equation (16) is clearly a biased estimator of the reliability function at 

time ti. There are two obvious approaches to correcting for bias.  One is to 

arithmetically adjust the estimates by adding a corrective term, as shown in Equation 

(21), and it is denoted by RBA.  Alternatively, the conditional estimates can be adjusted 

multiplicatively, as shown in Equation (22), and it is denoted by RBM.  Each approach 

would produce unbiased estimates, although RBM would also affect the variation, 

which would increase with time.   

 
   

     -1
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1
1- 2 - 1

ˆ
-2 - 1- 1

i

i i
BA i i

i ii

K i U K i
U n

R t t
U K dK i U K i

     
 

    
              (21) 

 

   
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1ˆ 1
-1 1

1 1-
1- 2 -

i
BM i i

i i

i i

n
R t t

U K d

U K i U K i

 
  
      

   

             (22) 



 16 

Inspection of Equations (21) & (22) indicates that the bias will decrease as the 

number of copies increases.  The bias also increases as a function of t, such that bias 

is greatest at tk, the time of the last fault realization.  

 

5.2 Standard Deviation of the Bootstrap 

Consider the variability associated with the conditional reliability function, firstly by 

examining the standard deviation of the underlying stochastic process, and secondly 

from the bootstrap re-samples before making a comparison.  

Assume that immediately after time ti-1 there are K-D(ti-1) faults remaining, 

and there are Ui copies being observed.  An order statistic argument leads to a closed 

form solution 

             

   
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t
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K i
K i R t t dR t t

U
K i
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K i

K i
U






    
 

 
    

  




 





Similarly, from Equation (8), we have 

     -1 1 -1
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1
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i i i

i

K i
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U


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 

 

 

Therefore, 

     
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 

       
    

 
  
  
     
 

            (23) 

and so the standard deviation is 
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     -1 1 -1

2

,..,

1- 1-

2 1
1- 1-

i i iR t t D t D t

i i

K i K i

K i K i
U U



 
  
  
     
 

               (24) 

The bootstrap conditional reliability functions, are conditionally mutually 

independent [19], hence we can derive the following expression for the variance.   

 
   

      
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1 -1
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U K d U K i K j K D t

                         

  

(25) 

Therefore, an estimate of the standard deviation of  
^

-1BA i iR t t  is given by 

Equation (26), and for  
^

-1BM i iR t t  by Equation (27).  These expressions have been 

obtained by substituting D(tj-1) with K+1-j, which is the E[D(tj-1)]. 
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              (26) 
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

  
        


  
       


              (27) 

The standard deviation from both adjusted bootstraps can be compared with 

the order statistic approach in Equation (24).  The calculations were based on fleet 

sizes (U) ranging from 1 to 1000 copies, and the number of faults within the item 

design (K) ranging from 5 to 501.  Note that an odd number of faults were selected to 

simplify the evaluation of the median.  We found that the differences between 

Equations (25) & (26) were negligible; therefore, only the results using Equation (26) 

are summarized in Table I.   
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The maximum difference increases as the number of faults increases, while the 

median difference, and the smallest difference both decrease.  The number of copies 

has a greater impact on the differences, whereby an increase in the number of copies 

by a factor of 10 approximately decreases the difference by a factor of 10.  In 

summary, for situations where at least 10 copies are being observed, the differences in 

standard deviations were small, and to all extents & purposes, negligible.   

 

6. ILLUSTRATIVE EXAMPLE 

This example is motivated by the development of complex electronic 

equipment for aerospace systems.  These data have been desensitized, but the key 

messages associated with the application of the method are representative of actual 

experiences. The item of equipment being developed was a variant of earlier 

designs for which there was accumulated operating experience in similar 

environments.  Elicitation of engineering judgment was conducted to assess the 

potential faults within the new design [20] based on the processes discussed in [4] and 

historical data provided the duration of operating time until a fault is detected within a 

copy of the item.  

For an earlier generation of the design, 15 faults were realized over a period of 

2 years.  There were 20 copies in-service, of which half were censored after the first 

year of operation, and the remainder after the second year.  Each copy was exposed to 

approximately 6000 operating hours per annum.  Once a fault was realized in 

operation, a modification was implemented across the fleet; this was assumed to occur 

instantaneously.  The estimated reliability function was calculated using Equation (6), 

and is illustrated for the first year of operation in Figure 3, with 95% bootstrap 

confidence intervals as well as the true 95% confidence intervals obtained through the 
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order statistic approach.  Due to the high number of censored faults, the increments on 

the reliability function are small, and at the end of the observation period, there is still 

a high chance a fault would remain within the item without resulting in a failure. 

We used Monte Carlo methods to simulate the number of faults exposed at each of the 

fault realization times.  At each time, the 2.5
th

 and 97.5
th

 percentiles were identified to 

provide the 95% bootstrap point-wise confidence intervals.  For the first year, there is 

very little difference between the two sets of confidence intervals.  Computations for 

the order statistic confidence intervals for the second year are more challenging 

because the fleet size changes.  The largest deviation between the two sets of 

confidence intervals occurs about 7000 hours with the difference on the lower bounds 

being 0.00592.  

The preferred methodology for constructing confidence intervals prior to the 

development of the procedures presented in this paper would have been based on the 

use of Greenwood’s formula.  For this example, as expected, these approximate 

intervals are consistently wider than the bootstrap point-wise, and the order statistic 

confidence intervals, although the difference is not statistically large. 

There are two main advantages for using bootstrap rather than analytical 

solutions.  First, as the number of copies changes throughout the observation period, 

the calculations required to derive confidence intervals increases substantially.  

Second, the bootstrap approach easily supports the determination of a confidence 

region for the reliability function.  For example, Figure 4 illustrates the 95% 

confidence region, together with the point estimate, of the reliability function.  This 

region is bounded by the two curves that contain 95% of the bootstrap reliability 

functions.  Figure 4 shows that the point estimate is very close to the lower bound of 

the confidence region near the end of the process.  This is due to the termination of 
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the birth processes prior to the end of the observation period.  Finally, an important 

characteristic of these birth processes is that they do not possess independent 

increments; therefore the usefulness of point-wise confidence intervals is limited.   

 

6.1 Discussion 

Assuming all copies begin observation at the same time, contain the same number of 

faults, which when identified in any one copy are corrected, instantly & perfectly, 

across all copies is unrealistic.  For example, typical problems giving rise to 

sequences of failure times for multiple copies of repaired items include aircraft fleet 

reliability monitoring, warranty analysis of consumer goods such as mobile phones, 

and plant-wide analysis of common components.  In many cases, it may be that the 

copies build up over calendar time giving rise to different exposure times, and 

different numbers of inherent faults at any age.  Our approach is adaptable to such 

situations. 

 For example, if we have fleet data where the entry into service dates vary for 

each copy, then this not only affects the exposure of faults to operating conditions but 

some younger copies may be released into service with fewer faults than older copies 

due to modifications implemented prior to their release.  However, we assume that the 

realization of faults is i.i.d. for each fault.  As such, Equation (14) is a valid approach 

for simulating the first realization of each fault, but Equation (16) requires correction. 

 The first necessary amendment is to record the calendar time of the realization 

of each fault.  Denote the calendar time of the realization of fault i by zi.  The first 

stage of the bootstrapping is to simulate the operational time of the first realization of 

each fault, then simulate not only an operational time but also a calendar time using 
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Equation (28).  The operational time, ti, is associated with the copy that realized the 

fault, and the index i is assigned to the i
th

 smallest operational time. 

  1 max 1

1
Pr , ,   :  1,.., 1      

1
j i i K KX t z where i K t c z

K
 

         
              (28) 

From Equation (28), the number of faults that exist within each copy is evaluated as a 

function of operating time; however, because copies enter service at different calendar 

times, the number of faults per copy may differ.  Denoting the number of faults 

realized across the fleet by calendar time z as G(z), and the entry into service calendar 

time of copy j by sj, then the number of faults in copy j after ti operating hours is 

denoted by Yj(ti), and expressed as   
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j i j i

if c t
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K G s t if c t


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The conditional reliability function is estimated by 

 
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-1

1

1
i i

B i i U

j i

j

D t t
R t t
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 


                  (29) 

where  -1i iD t t  is the number of faults realized at time ti through the bootstrap 

simulation.  The overall reliability function is calculated as usual by evaluating the 

products of the conditional reliability estimates. 
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a) Data recorded by copy tracking.       b) Data recorded by fault tracking.  

 

Figure 1: Representations of operational data with two censoring mechanisms.  
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Figure 2: Computationally intensive bootstrapping procedure. 

For i from 1 to U do 

For j from 1 to K do 

Simulate the time the i
th

 copy would fail 

due to fault j without any censoring, tij 

Evaluate whether the realization time is before copy censoring 

time ci, dij=(min(tij,ci),ij , where ij=0 if tij>ci  else ij=1 

Next i 

For those realizations where ij=1 choose minimum dij   

Next j 
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Figure 3: Comparison of point-wise bootstrap (BS), and true (OS) 95% confidence 

intervals for reliability function for year 1 data. 
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Figure 4: 95% confidence region for reliability function with point estimate of R(t) for 

data from both years. 
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Table I: Bootstrap minus order statistic standard deviations of conditional reliability.  

a) Maximum Difference. 

K\U 1 10 100 1000 

5 0.4306 0.0043 0.0003 0.000025 

51 0.5184 0.0199 0.0019 0.000192 

501 0.5281 0.0217 0.0021 0.000210 

 

b) Median Difference. 

K\U 1 10 100 1000 

5 0.1643 0.0020 -0.0001 -0.00001 

51 0.1004 0.0094 0.0009 0.00009 

501 0.0406 0.0040 0.0004 0.00004 

 

c) Minimum Difference. 

K\U 1 10 100 1000 

5 0.025800 -0.01416 -0.00260 -0.00028 

51 0.000400 -0.00580 -0.00180 -0.00019 

501 0.000004 -0.00480 -0.00168 -0.00018 

 

 



 29 

BIOGRAPHIES 

John Quigley, PhD, CStat 

Department of Management Science 

University of Strathclyde 

Glasgow G1 1QE, SCOTLAND 

Email: j.quigley@strath.ac.uk 

John Quigley earned a BMath in Actuarial Science from the University of Waterloo, 

Canada; and a PhD from the Department of Management Science, University of 

Strathclyde, Scotland. Currently, he is a Senior Lecturer with research interests in 

applied probability modeling, statistical inference, and reliability growth modeling. 

He is also a Member of the Safety and Reliability Society, a Chartered Statistician, 

and an Associate of the Society of Actuaries.  

 

Lesley Walls, PhD, CStat 

Department of Management Science 

University of Strathclyde 

Glasgow G1 1QE, SCOTLAND 

Email: lesley.walls@strath.ac.uk 

Lesley Walls is a Professor in Management Science, a Fellow of the UK Safety and 

Reliability Society, a Chartered Statistician, and a member of IEC/TC56/WG2 on 

reliability analysis.  She holds a BSc in Applicable Mathematics, and a PhD in 

Statistics.  Her current research interests are in reliability modeling, and applied 

statistics. 


