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Abstract—We present a continuous-time Bayesian network
(CTBN) framework for dynamic systems reliability modeling and
analysis. Dynamic systems exhibit complex behaviors and interac-
tions between their components; where not only the combination
of failure events matters, but so does the sequence ordering of
the failures. Similar to dynamic fault trees, the CTBN framework
defines a set of ‘basic’ BN constructs that capture well-defined
system components’ behaviors and interactions. Combining, in a
structured way, the various ‘basic’ Bayesian network constructs
enables the user to construct, in a modular and hierarchical
fashion, the system model. Within the CTBN framework, one can
perform various analyses, including reliability, sensitivity, and
uncertainty analyses. All the analyses allow the user to obtain
closed-form solutions.

Index Terms—Bayesian networks, dynamic systems, reliability
modeling and analysis.

ACRONYMS1

BN Bayesian network
CPD conditional probability distribution
CSP cold spare
CTBN continuous-time Bayesian network
DBN dynamic Bayesian network
DFT dynamic fault tree
DTBN discrete-time Bayesian network
FDEP functional dependency
FT fault tree
HSP hot spare
MPD marginal probability distribution
MTTF mean time to failure
PAND priority AND
PDF probability density function
RBD reliability block diagram
RV random variable
SEQ sequence enforcing
WSP warm spare

NOTATION

dormancy factor
impulse function

, , , , failure rates
marginal probability density function of
variable
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1The singular and plural of an acronym are always spelled the same.

conditional probability density function
of variable given
joint probability density function of vari-
ables and
cumulative distribution function of PDF

the set of the parent variables of node
Heaviside unit-step function
a specific value taken by random variable

a random variable

I. INTRODUCTION

TODAY’S reliability methodologies and tools need to as-
sess increasingly large, complex systems. When devel-

oping such methodologies and tools, there are several aspects
we need to be aware of: (1) The modeling power, (2) the ease in
specifying a model, and (3) the computational efficiency.

Complex system components exhibit dynamic behavior,
where not only the combination of failing components reflects
the state of the system, but also the sequence in which these
components fail. Conventional combinatorial reliability as-
sessment methods (e.g., static FT, RBD) fail to capture such
dynamic behavior. Markov chains have proved to be a versatile
formalism for modeling dynamic systems. However, they
present some limitations: (1) Markov chains are a low level
modeling formalism, and manually specifying a Markov chain
for a large system becomes a cumbersome, error-prone task. For
this reason, Markov chains are usually automatically derived
from a high level modeling description language (e.g., DFT in
the Galileo tool [1]). (2) Markov chain modeling is limited to
Markov processes, which generally requires all state holding
times to be exponentially distributed. (3) Markov chains are
faced with the infamous state space explosion problem; in
fact, the number of states grows exponentially with the size
of the system (i.e., number of components in the system).
Consequently, the number of differential equations to be solved
simultaneously grows exponentially with the size of the system.
The state space explosion is one of the main limitations in using
Markov chains for modeling large systems.

A software tool for reliability analysis ought to be easy and
intuitive to use. Engineers generally view the system in terms of
a collection of components interacting with each other. Higher
level formalisms tend to provide such a view and abstraction of
the system. For instance, FT and DFT map each system com-
ponent to an event in the tree; and express the component in-
teractions through the use of specialized gates (also called con-
structs). Each gate describes a particular component behavior
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or a particular interaction between a set of components (e.g.,
the WSP gate in Galileo is used to describe a situation where
a primary working unit possesses a backup spare unit which is
turned on once the primary unit fails). In the Galileo DFT re-
liability tool, there are several of these predefined specialized
gates which effectively form a library. A real system is gener-
ally broken down into modules because a modularized model
of the system is indeed easier to specify, understand, and solve.
Reliability formalisms need to capture this modular nature of
systems, and enable the user to specify the system model in a
modular fashion. RBD, static FT, and DFT are inherently mod-
ular because they map system components to events in their di-
agram or tree.

Any solution of a large system model is faced with the
problem of long computational times. Modularizing the system
helps break down the size of the system into smaller, more
manageable modules, and thus can reduce the overall com-
putational time. However, in many circumstances, the size
of a single module remains significant, potentially leading to
an unreasonably long computational time. In Markov chain
modeling, long computation times arise due to a state space ex-
plosion of the Markov chain. There exist some techniques (e.g.,
states lumping, and states truncation) to reduce the size of the
Markov chain; however, the applicability of these techniques is
not always evident, and/or may lead to gross approximations.

The objective of this work is to find an alternative formalism
for modeling and analyzing large dynamic systems, and address
the problems and issues mentioned above. We propose a tem-
poral Bayesian network reliability modeling and analysis for-
malism.

II. BACKGROUND

In this section, we provide a brief background on DFT, and
BN; and their usage in reliability assessment. The remainder
of the paper is divided as follows. In Section III, we present
our continuous-time BN formalism, and show, as examples, the
AND gate and the WSP gate CTBN. In Section IV, we illus-
trate the usage of the CTBN formalism through a hypothetical
example system, and show the different types of analyses that
can be performed. Section V provides a discussion, and some
concluding remarks.

A. Dynamic Fault Trees

Dynamic fault trees extend traditional fault trees to handle
failure sequence (or temporal), and functional dependencies.
Traditional FT, also called standard or static FT, are combina-
torial models. A combinatorial model only captures the combi-
nation of events, and not the sequential ordering of their occur-
rences. Combinatorial models become, therefore, inadequate to
model today’s complex dynamic systems. Dynamic fault trees
define special gates that capture a variety of failure sequence
and functional dependencies.

The Galileo tool currently uses (in addition to the static gates
AND, OR, and K/M) six dynamic gates: The functional depen-
dency gate (FDEP), the spare gates HSP (for hot spares), CSP
(for cold spares), WSP (for warm spares), the priority AND gate
(PAND), and the sequence enforcing gate (SEQ). The Galileo

user models a system as a fault tree using static and dynamic
gates. A modularization algorithm [2] finds the different mod-
ules composing the system. Static modules are solved using a
binary decision diagram based algorithm, and dynamic mod-
ules are solved using a Markov chain. Each dynamic module
is in fact automatically, and transparently to the user, converted
into an equivalent Markov chain. The modules are solved sep-
arately, and their solutions are then combined to get the overall
system failure probability. The reader is encouraged to consult
references [3]–[5] for a thorough description of dynamic gates.

B. Bayesian Networks

A Bayesian network2 is a directed acyclic graph comprised
of nodes and arcs. Nodes3 represent random variables (RV), and
directed arcs between pairs of nodes represent dependencies be-
tween the RV. A Bayesian network uniquely defines a joint prob-
ability distribution over all the RV present in the graph [6], [7].
Any probabilistic query (e.g., probability of , and to be in
state , and respectively, given that variable is in state ) can
be answered once the joint probability distribution over all the
RV is known. The concept of d-separation [6]–[8] restricts rel-
evance between RV, and allows a compact representation of the
joint probability distribution. In fact, by examining a Bayesian
network structure (or graph), one can identify the (conditional)
independence assumptions between the various random vari-
ables constituting the BN. It is this very particular characteristic
of BN that makes the usage of BN to model large systems ap-
pealing. Indeed, a Markov chain model is a global-state model,
where each of the states in the Markov chain explicitly describes
the state of all the system variables. It’s this very particularity
that makes Markov chains vulnerable to the state space explo-
sion problem. On the other hand, in a BN, each node is only
affected by a limited number of nodes that form ’s Markov
blanket. The Markov blanket of node is the set consisting
of the parents of , the children of , and the nodes sharing
a child with [7], [9]. Given the states of the nodes belonging
to ’s Markov blanket, is -separated from the rest of the
network. This property naturally breaks down the complexity
of the system model by avoiding a global state representation.
In this respect, a BN is a local-state model.

In a BN, if there is an arc from node to node , we say
that is a parent of , and is a child of . Nodes without
incoming arcs, i.e., without parents, are called root nodes; and
nodes without outgoing arcs, i.e., without children, are called
leaf nodes. If there exists a directed path from node to node

; then is a descendant of , and is an ancestor of . A RV
can be in any one of a number of mutually exclusive states, and
can be continuous or discrete. Each root node has a marginal
probability distribution (MPD) associated with it, and all other
nodes have conditional (conditioned on the state of the parent
nodes) probability distributions associated with them.

The conditional probability distribution (CPD) of a node
quantifies the effects of the parent nodes upon . The CPD of
a RV specifies, for each of the states of , the probability

2A Bayesian network is also known as Bayesian belief network, causal
network, causal net, graphical probability network, probabilistic cause/effect
model, or probabilistic network.

3We will interchangeably use the words node, and variable.
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of being in a particular state conditioned on the states of each
of its parent nodes. The joint probability distribution is deter-
mined using the chain rule, and assuming the conditional inde-
pendence assumptions, encoded in the BN structure, between
the variables. The joint probability distribution of a set of vari-
ables is [8]

(1)
where denotes the set of all the parent variables of node

.
The MPD of a particular RV is found by marginalizing the

joint probability distribution with respect to the RV. For ex-
ample, assume we have three continuous nonnegative real vari-
ables , , and ; i.e., each variable belongs to 0 . The
joint probability distribution (expressed as a density function)

is known. The MPD of , for instance, can be ob-
tained by marginalizing with respect to and

Temporal Bayesian Networks: To account for temporal (or
sequence) dependencies, we need an explicit representation of
time in a BN. Temporal BN can be divided into two broad
categories according to their time representation: Instant-based
approaches (also called time-sliced approaches), and interval-
based approaches (also called event-based approaches).

In instant-based approaches, time is divided into successive
time instants, and a RV (i.e., a node in the BN) is associated
with each time instant. The BN model is essentially obtained
by generating a BN for a specific time instant, and repeating
the same structure for all other time instants, thus covering the
whole time range of interest. Arcs are then also added between
RV belonging to different time instants. Dynamic Bayesian net-
works (DBN) [10], [11] are an instance of widely used, popular
instant-based temporal BN.

In interval-based approaches, the time line is subdivided into
a finite number of disjoint time intervals. A temporal RV repre-
sents an event that can have a certain outcome, and that can take
place at a certain time interval; thus, a state of the RV is defined
as being the event’s outcome, and the time interval at which the
event took place. An interval-based temporal BN is generally
used to model irreversible processes.4 Temporal nodes Bayesian
networks (TNBN) [12], net of irreversible events in discrete
time (NIEDT) [13], and networks of probabilistic events in dis-
crete time (NPEDT) [14] are all examples of interval-based tem-
poral BN.

Recent work by Nodelman et al. has looked at a new way
to express (homogenous) Markov processes using a Bayesian
network approach. In [15], the authors present a language to
describe Markov processes that evolve over continuous time.
The idea is to define a set of conditional Markov processes, one
process per variable, and then to compose those processes to

4Events that happen in at most one time interval.

get the overall system Markov process. Defining a conditional
Markov process is similar to defining a CPD in a BN. A condi-
tional Markov process is fully characterized by its conditional
intensity matrix. Although this work is different from ours, the
authors use the same acronym (i.e., CTBN in [15]) to describe
their framework.5

The Use of BN in Dependability Assessment: Bayesian
networks have been extensively used in certain areas such as
medical diagnosis, system troubleshooting, and manufacturing
control. However, the application and contribution of temporal
BN to the area of dependability analysis remains modest.
In fact, specifying and using a temporal BN for a specific
domain knowledge is a difficult task. The difficulty lies in: (1)
defining, especially for large systems, a correct network struc-
ture reflecting the ‘true’ behaviors and interactions between the
system, or process, components; and (2) specifying the right
values for the prior, and the conditional probability table entries
(or density functions). In reference [16], Bobbio et al. apply
BN to reliability analysis. They provide a mapping between
static (AND, OR, K/M gates) FT and BN, and show how infer-
ence in the latter can be used to obtain the FT top gate failure
probability. They also illustrate how additional benefits can be
obtained from the usage of BN at both the modeling and the
analysis levels. However, this work has been only carried out
for static fault trees, and therefore not applicable for dynamic
systems that exhibit complex sequential dependencies between
their components. Torres-Toledano and Succar [17] have also
conducted similar work where a mapping between RBD and
BN has been established. In [18], Bouissou et al. use a BN
to demonstrate how to perform availability computation on a
multi-state system. In Bouissou’s framework, the BN prob-
ability tables are populated using asymptotic (or stationary)
probabilities. The asymptotic probabilities are computed based
on the interactions between the components, and using other
analysis techniques such as Markov chains. In the dynamic
domain, Weber et al. [19] show how to use a 2-time-slice
DBN to model temporal dependencies between components
for reliability calculations. The authors also demonstrate the
equivalence between their DBN model, and a Markov chain,
i.e., they both possess the Markov property. Thus the model is
applicable exclusively to Markovian processes.

In our previous work [20], we defined an interval-based dis-
crete-time BN (DTBN) framework for reliability modeling and
analysis of dynamic nonrepairable systems. We also provided
the equivalent DTBN for each of the DFT gates present in the
Galileo tool, and showed how additional BN constructs can be
added to account for new component behaviors and interactions
(e.g., deterministic time delay, inhibition). Similar to FT, the
DTBN reliability framework provides a high level modeling
environment, and is hierarchical and modular in nature. The
DTBN framework is expandable from a modeling power point
of view because new constructs can be incrementally added to
the existing library of constructs. For each new construct, we
need to identify the BN structure, showing the various depen-
dencies between the variables (or nodes); and the marginal, or

5In the remainder of the paper, the acronym CTBN refers to our definition of
the continuous time Bayesian network framework.
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Fig. 1. The correspondence between the variable states, and the failure time
intervals.

conditional, probability distribution of each node. From a model
specification point of view, the user specifies and combines high
level constructs when building a system. The underlying details
of the BN are automatically generated, and transparent to the
user. The DTBN solution is carried out using a standard BN
inference algorithm. The solution is flexible as it provides a
tradeoff between accuracy and computation speed depending on
the time granularity that the user sets.

A node, or RV, in our reliability BN represents the state of a
system component. A component can be either a basic system
component, or a subsystem. A subsystem is represented by
a gate6 whose output reflects the state of the subsystem (i.e.,
working or failed). The RV represents the failure event of
basic component , or gate output .

In the DTBN formalism, we divide the time line, from time
0 to time ( is mission time), into intervals of

length each. is the time granularity. Each variable (repre-
sented by a node) has 1 states. The first states represent the
failure of component in one of the first time intervals (i.e.,
during the mission time); and the last state 1 represents
the survival of for the duration of the mission. Note that to
establish a temporal ordering among a set of RV, all RV need to
have the same time granularity. The statement “RV is in state

(i.e., )” means that the basic component or the gate
fails in time interval ; i.e., 1 . Fig. 1 depicts the
correspondence between the variable states and the failure time
intervals. For further details on the DTBN formalism, applica-
tion examples, and performing various analyses on the system
BN, refer to [20], [21]. At the limit (i.e., as tends to infinity)
the DTBN becomes a CTBN. Next, we define the CTBN.

III. THE CONTINUOUS-TIME BN FORMALISM

The same framework is used whether the BN variables are
discrete or continuous. In fact, the underlying BN structure used
in the CTBN is the same as the one used in the DTBN. The
difference is that, in a CTBN, variables are continuous, (con-
ditional) probabilities are expressed in terms of (conditional)
probability density functions, and the joint probability distribu-
tion is expressed as a joint probability density function. Actu-
ally, a DTBN is an approximation of the CTBN, where time
is discretized. The (conditional) probabilities for each of the
nodes, in a DTBN, are derived from the (conditional) proba-
bility density functions defined in the continuous domain.

Similar to the DTBN formalism, the CTBN formalism is hi-
erarchical and modular from both a modeling point of view, and
an analysis point of view. The two main advantages for using a
CTBN over a DTBN are

6Gate (alternatively called construct) is used here as a generic word for de-
scribing any subsystem reflecting a certain interaction between a set of system
components.

• Memory savings: Because the (conditional) probabili-
ties are expressed as parametric functions, there are no
multi-dimensional tables, as with DTBN, to be stored.

• Closed-form solution: An exact closed-form analytical
expression of the system reliability is derived.

As mentioned earlier, the DTBN solution is carried out using
a standard BN inference algorithm. Unfortunately, there isn’t a
theory for exact BN inference in continuous-time BN with gen-
eral distributions. However, a theory for exact inference exists
where the distributions are Gaussians [22]; and recently, Moral
[23] also described a theory for exact inference where distribu-
tions are specified as a mixture of truncated exponentials. At
this point, the CTBN exact closed-form solution is obtained by
simply executing a series of symbolic integrations.

In the CTBN formalism, the variables have a continuous state
space. The state space is the failure time of the system compo-
nent. The statement “random variable is in state ” means
that the system component represented by has failed in the
time instant , with belonging to the set of nonnegative real
numbers. Table I provides a comparison between the DTBN,
and the CTBN formalisms.

To capture the kind of (temporal) behaviors and dependen-
cies found in complex dynamic systems, we will use two spe-
cial functions: The unit-step function (also called the Heavi-
side unit-step function), and the impulse function (also called
the Dirac delta function). In the next section, we define these
two functions, and explain their use in our CTBN formalism.
We then present the CTBN formalism using the AND and WSP
gates as illustrations.

A. The Unit-Step Function

The unit-step function is conventionally defined [24]
as

Definition 1: The Unit-step function

if
if
if

where and belong to the set of nonnegative real numbers.
is discontinuous at , where the discontinuity of

the step function occurs. In the CTBN formalism, the unit-step
function is used to denote that an event occurring at time

can not take place before the time instant , or equivalently that
time precedes time .

B. The Impulse Function

The impulse function is used as a PDF,7 and expresses the fact
that a variable takes on a specific, unique value. The impulse
function is defined as [24], [25].

Definition 2: Impulse function

0

and

7It satisfies the properties of a legitimate PDF.
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TABLE I
DTBN AND CTBN COMPARISON

Fig. 2. The fault tree AND gate, and its equivalent CTBN.

Because all the variables in our framework are nonnegative real
numbers (i.e., , 0), we rewrite the integral in Definition 2
as

1 (2)

The following is an important property [24] of the impulse func-
tion which will be used extensively.

Property 1:

(3)

The interpretation of the impulse function is as follows: Con-
sider a term of a time-to-failure PDF, where is a
fixed number between 0 and 1. represents an event
failing at exactly time with a probability . When ,

expresses the fact that the event will never happen
(i.e., happens at a time in infinity) with a probability . The PDF
term is typically used to denote a defective failure
distribution.

C. The AND Gate CTBN

The fault tree AND gate, and the BN equivalent, are shown
in Fig. 2. The structure of the AND gate CTBN is the same as
the AND gate DTBN structure. Nodes and are root nodes,
and each possesses a marginal PDF, and respec-
tively. is the output of the AND gate. The conditional PDF

of node is8

(4)

8Refer to [26] for details.

where the first term states that when fails
after , the state of node (i.e., the failure time of the gate) is
equal to the state of node (i.e., the time at which failed).
While the second term states that, when
fails after , the state of node is equal to the state of node .

Notice that is a proper distribution function; in fact,
using Definition 1, and (2)

1 (5)

The joint failure probability density function of the BN shown
on Fig. 2 is

(6)

To find the marginal failure PDF of , we need to integrate
(i.e., marginalize), with respect to and from
0 to . Using9 (2), and Property 1, we get

(7)

The probability of failure of the gate output in time interval
0 is

(8)

9We also use the fact that �(t � �) = �(� � t).
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Fig. 3. The corresponding Markov chain of an AND gate.

Equation (8) is the result we expect for the failure probability of
the AND gate having -independent inputs (i.e.,

, and ). As an example, let’s assume
that and are exponentially distributed, i.e., 1

, and 1 ; then

1 (9)

The above analytical solution corresponds to the closed-form
solution given by the Markov chain in Fig. 3, where the AND
failure probability corresponds to the probability of being in
state 4.

As a second example, let’s assume that the failure distribu-
tions of and follow a Weibull distribution with shape pa-
rameter , and scale parameter ; i.e., 1 ,
and 1 . Then, in this case

1 2 (10)

Note that, in this case, the corresponding Markov chain is non-
homogeneous; i.e., transition rates are time dependent.

D. The WSP Gate CTBN

The WSP gate generalizes the CSP, and the HSP gate. Fig. 4
shows the WSP dynamic fault tree, and its equivalent BN. Node

is the primary unit, and node is the spare unit. When the
system starts functioning, the primary unit is active, and the
spare is in a standby (or dormant) mode. In standby mode, ’s
hazard rate is reduced by a factor , called the dormancy factor.
Note, in the BN on Fig. 4, how node is dependent upon node

(i.e., arc ). To formulate ’s conditional PDF, the
in-isolation failure distribution (or hazard rate function

) of must be known in advance.
The conditional PDF of node is10

1

1 (11)

In the HSP case (i.e., 1), (11) reduces to

(12)

10A detailed derivation of f (bja) is provided in the Appendix.

Fig. 4. The WSP fault tree, and the corresponding Bayesian network.

In the CSP case (i.e., 0), (11) reduces to

(13)

The marginal failure PDF is

1

1

1

1 1

1 (14)

The second term in (14) is not trivial to find for any general
distribution. As an example, assume , and

. Then

1 1

1

1

1
(15)

We can now compute as

1
1

(16)

The above analytical solution corresponds to the closed-form
solution we get from the Markov chain depicted in Fig. 5 (prob-
ability of being in state 3 or 4).

Fig. 6 shows the CTBN for the WSP gate. The output of
the WSP is simply an AND gate; i.e., AND . Due to
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Fig. 5. The corresponding Markov chain of a WSP gate.

Fig. 6. The WSP gate CTBN.

space limitations, the more general and complicated configura-
tion of multiple spares shared among multiple WSP gates is not
presented in this paper (refer to [26] for further details on other
WSP configurations).

E. Progress to Date

At this stage, we have defined all the ‘basic’ BN constructs
equivalent to the static (AND, OR, K/M), and dynamic (FDEP,
PAND, HSP, CSP, WSP, SEQ) gates present in the Galileo dy-
namic FT. Moreover, we have laid down an algorithm [26] for
automatically converting a DFT into a CTBN. We have also de-
fined new constructs, not currently present in the Galileo tool,
including mutually exclusive events, deterministic time delay,
failure to start on demand, etc. In this manner, we have defined
a library of ‘basic’ BN constructs that possess well-defined se-
mantics. In defining the various BN constructs, we have limited
the number of parent nodes (to minimize the BN complexity) to
a maximum of 2 for any given node. Nodes, such as the AND
gate, having more than two inputs in the DFT, are replaced by
multiple gates having two inputs each. The only exception to the
above-mentioned rule is when modeling multiple warm spare
gates share multiple spares. In this case, some of the nodes have
three parent nodes.

The BN model construction and solution is carried out in a
modular fashion. The BN constructs defined so far are used to
model various system components’ behaviors and interactions.
More constructs can be readily defined as needed. Defining a
new construct consists in finding (1) the right BN structure,
and (2) the (conditional) probability distribution for each of the
nodes. The ‘basic’ constructs are combined together to produce
more complex constructs, and larger BN (i.e., BN composition).

IV. AN APPLICATION EXAMPLE

The goal of this section is to show how we can get the closed-
form solution of the reliability expression of a given system
using the CTBN framework. The procedure is carried out taking

Fig. 7. The CPU module DFT and BN.

advantage of the modular nature of the CTBN framework. The
following example is based on the hypothetical cardiac assist
system described in [20]. For the sake of illustration, we perform
the analysis on the CPU module of this system. Fig. 7 shows the
DFT for the CPU module, and the corresponding BN. All com-
ponents have exponentially distributed failure distributions.
and have failure rate , and and have failure rate .

’s dormancy factor is . is the primary of the WSP ,
and is its spare unit. The FDEP gate triggers the failure of
both and . The trigger is the OR of events and .

, in the BN, represents this functional dependency of the
CPU unit upon the trigger . In this case, is essentially
the OR of the events and . In fact, instead of having
triggering simultaneously the failure of the primary , and the
spare (as it is done in the Galileo DFT), we opted, in the BN,
for the equivalent scenario where triggers the failure of the

WSP gate as a whole.
The BN on Fig. 7 contains three modules: , , and

. We need to find the marginal PDF . We have

(17)
Let’s first find the expressions for , and for .

with (using (4))
, and (using (11))

1 1
,

and .
contains 4 terms; the first term is

The function is zero everywhere
except at a single point where , and because is Rie-
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mann integrable [27], the integral above, and therefore the first
term of , is equal to zero. The second term of is

The function is

if ,
if ,
if ,

Because is Riemann integrable, changing its value at a
single point will not change the value of its integral. In partic-
ular, we take, for , instead of
1/4 . Therefore, the second term of is equal to

1

Using a similar argument made to compute the second term, the
third term of is

1

Using a similar argument made to compute the first term, the
fourth term of is

0

Thus,

1 1

1
1 (18)

We now compute as

is an OR gate, , and .
Thus (see Appendix for the conditional PDF of the OR gate),
we have

2 1 1

2 (19)

and

1 (20)

Now we are able to derive . As noted earlier,
is essentially an OR gate; therefore

(21)

where

1
1

2

1
1

1
1

1

Therefore, the probability that the CPU module fails during mis-
sion time is

1 1 (22)

At this point, having the closed-form analytical solution given
in (22), we can perform various analyses and calculations. The
CPU module reliability is

1
1 1

(23)
The mean time to failure (MTTF) is

2
2 2

(24)
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Fig. 8. The CPU module reliability as a function of �, � , and � (T =
10 hours).

For a mission time 10 hours (h), 10 h, 2
10 h, and 0.5. The CPU module reliability is 0.797 899,
and the MTTF is 3.5 10 hours.

A. Sensitivity Analysis

Fixing the mission time to 10 hours, the CPU module
reliability is a function of the three parameters ,

, and . Fig. 8 shows the variation of with respect to each
of the parameters, keeping the other two parameters constant.

Next, we show the marginal importance, with respect to ,
, and , of the CPU module reliability by partially differen-

tiating . The partial derivative of with respect to
is a measure of the marginal importance of components

and . In addition, the partial derivative of with respect to
also provides a measure of the marginal importance of . The
partial derivative of with respect to is a measure of the
marginal importance of components and . We have for
the various partial derivatives of evaluated at the
operating point (i.e., 10 hours, 0.5, 10 ,

2 10 )

0.012 545 (25)

1.595 798 10 (26)

0.191 368 10 (27)

The negative values in (25), (26), and (27) simply show that
the reliability increases as the value of , , or decreases.
Moreover, (26) and (27) suggest that the potential improvement
of the CPU module reliability is significantly more important
with an improvement in than with an improvement in .

B. Uncertainty Analysis

In this section, we show how to carry out uncertainty anal-
ysis on any of the model input parameters (i.e., the compo-
nents’ failure rates, and the dormancy factor in our example).
Assume that the failure distribution of is exponential with a
failure rate . The failure rate , however, is not a fixed known
value (previously we had the failure rate of equal to ),
but follows a certain probability distribution . This scenario
is modeled by adding a new node B, representing the value of
the failure rate of component , and adding an arc from B to

; i.e., . Let’s assume to be uniform in the interval
[ , ]11

1
(28)

Because the failure distribution of is exponentially dis-
tributed, we write

(29)

Now, we need to find the marginal PDF .12

1

1

1
(30)

The failure distribution is:13

1

1

11� and � are constants.
12 te dt = (e =a)(t � (1=a)).
13 (e =t )dt = (�e =t) + a (e =t)dt.
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and using L’Hôpital’s rule,

1

1

1

1

1

therefore

1
1 (31)

Note that is proper. Now, we need to recompute in (19);
is unchanged.

1 1

1 1

And similar to the derivation of , the failure distribution
is

1
1

Finally, using (21), the probability of the CPU module to fail
during mission time is ( is unchanged)

1
1

1
1

So far, the states of all the BN variables were defined as the
failure times of the corresponding component. In contrasts, we
have introduced, in this section, a new node B whose states are
the different possible values of a failure rate . In general, a
variable in our BN framework does not necessarily represent
a component’s failure time; but it can also represent any other
quantity or measure (e.g., the value of the failure rate, the dor-
mancy factor, the water level, the temperature reading, etc.) as
long as its (conditional) PDF is known.

V. DISCUSSION AND CONCLUSIONS

The CTBN, described herein, provides a sound framework
for system reliability modeling. Similarly to DFT, the CTBN is

a modular high-level modeling language, which directly maps
physical system components to nodes in the Bayesian graph.
The CTBN reliability framework can be used as (1) a stand-
alone framework for reliability modeling/analysis; or (2) inte-
grated into an existing reliability framework (such as the Galileo
DFT) to provide enhanced expressive power, and/or an alter-
native solution technique. The CTBN generalizes the DTBN
framework published in earlier work [20]. The DTBN is a dis-
cretized CTBN that enables the usage of a standard BN infer-
ence algorithm to carry out various analyses.

In a CTBN, the exact expression of all the marginal (i.e., for
each of the root nodes) probability distributions must be given.
On the contrary, in a DTBN, the marginal probability tables can
be filled using raw life data taken from an ‘observed failure fre-
quencies (histogram)’ database; and this without making any
assumption on the types of failure distributions.

The main advantage of a CTBN over a DTBN is that it pro-
vides a closed-form solution for the system reliability (or any
of its subsystems). However, at this point, in order to get the
closed-form solution, one needs to go through a series of sym-
bolic integrations (due to the lack of a theory for exact inference
in continuous-time BN with general distributions). This process
is, of course, time consuming when carried out by hand, and
only feasible for relatively small sized modules. Moreover, a
closed-form solution can only be obtained if the integral is an-
alytically solvable. A numerical integration, and therefore an
approximate solution, can be performed in the case where the
closed-form solution can not be explicitly derived. We are also
currently investigating the possibility of automating this process
using a ‘symbolic integration tool,’ such as the one provided in
the MATLAB symbolic toolbox.

As mentioned earlier, another advantage of CTBN over
DTBN is memory savings, because the (conditional) proba-
bilities are expressed as parametric functions; as opposed to
storing and manipulating multi-dimensional tables in DTBN.

A DTBN is a straight forward, easy approximate technique
for evaluating a CTBN. Stochastic simulation would be another
approximate technique for CTBN evaluation. The major advan-
tage of stochastic simulation over the DTBN solution is that
there is no need to generate and store probability tables. The in-
vestigation of a stochastic simulation solution technique is left
for future work. We conjecture that a stochastic simulation so-
lution technique could be more efficient (in terms of accuracy
and computation time) than the DTBN solution in evaluating a
CTBN. A mixture of truncated exponentials [23], or a mixture
of Gaussians [22] might also be used to approximate the various
(conditional) PDF of the CTBN model, and use their respective
inference theories to solve the CTBN.

APPENDIX I
DERIVING THE WSP CONDITIONAL PDF

Let’s find the conditional PDF of the spare unit . According
to the definition of the WSP gate, the in-isolation hazard rate

of is reduced by a factor when fails before, or
at the same time as, ; and the hazard rate remains the same
when fails after . Assume that is the in-isolation
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failure distribution of ; then using

, we have14

• For failing before, or at the same time as

(32)

• For failing after

(33)

The factor is the survival of until time
. Indeed, using (32), we have 1

. Concisely, we can write

1

1 (34)

APPENDIX II
DERIVING THE OR CONDITIONAL PDF

The derivation of the OR gate’s output conditional PDF is
similar to the AND gate. In fact, the BN structures of the OR
and the AND gates are identical. However the OR gate output
conditional PDF is

(35)

Similar to the AND gate, the OR gate’s BN has the following
joint probability density function

(36)

and the marginal PDF of the gate output is

1

1

(37)

14r(t) = (dR(t)=dt) = �f(t), and R(t) = 1� F (t).

The probability of failure of in time interval 0 is

Note that the above expression can be directly used each time
we need to evaluate an OR gate whose inputs are independent.
However, if the inputs are dependent in any way, then we need
to explicitly recompute as in (37).
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