588

IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 4, DECEMBER 2007

Self-Healing Spyware: Detection, and Remediation

Ming-Wei Wu, Student Member, IEEE, Yi-Min Wang, Member, IEEE, Sy-Yen Kuo, Fellow, IEEE, and
Yennun Huang, Member, IEEE

Abstract—Spyware has become a significant threat to most In-
ternet users as it introduces serious privacy disclosure, and poten-
tial security breach to the systems. It has not only utilized critical
areas of the computer system to survive reboots, but also grown
resilient against current anti-spyware tools; they are capable of
self-healing themselves against deletion. Because existing anti-spy-
ware tools are stateless in the sense that they do not remember or
monitor the spyware programs that were deleted, they fail to re-
move self-healing spyware from the system completely. This paper
proposes a stateful approach that is based on characterizing spy-
ware invasion as a trust information flow problem, and implements
STARS (Stateful Threat-Aware Removal System), which is a tool
that at run time monitors critical system behaviors, and ensures
that removed spyware programs do not reinstall themselves, to
enforce information flow policy in the system. If a reinstallation
(self-healing) is detected, STARS infers the source of such activities,
and discovers additional “suspicious’ programs. Experimental re-
sults show that STARS is effective in removing self-healing spyware
programs that resist removal by existing anti-spyware tools.

Index Terms—Self-healing, spyware, stateful removal, system se-
curity, threat-aware.

ACRONYM!
API Application Programming Interface
ASEP Auto-Start Extensibility Points
BHO Browser Helper Objects
DLL Dynamic Link Library
EULA End-User License Agreement
IAT Import Address Table
LSP Layered Service Provider
PCM Policy Configuration Module
PME Process Monitoring Engine
PUP Potentially Unwanted Programs
SRE Stateful Removal Engine
SSM System Snapshot Manager
STARS Stateful Threat-Aware Removal System

Manuscript received January 15, 2007; revised May 1, 2007; accepted June 2,
2007. This work was supported by the National Science Council, Taiwan under
Grant NSC 95-2221-E-002-068. Associate Editor: Y. Dai.

M.-W. Wu is with the Department of Electrical Engineering, National Taiwan
University, Taipei, Taiwan.

Y.-M. Wang is with Microsoft Research, Redmond, WA 98052 USA.

S.-Y. Kuo is with the Department of Electrical Engineering, National Taiwan
University, Taipei, Taiwan, and also with the National Taiwan University of Sci-
ence and Technology, Taipei, Taiwan (e-mail: sykuo@cc.ee.ntu.edu.tw).

Y. Huang is with the Institute for Information Industry, Taipei, Taiwan.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2007.909755

IThe singular and plural of an acronym are always spelled the same.

TLM
VxD

Threat-Level Manager

Virtual Device Driver

1. INTRODUCTION

PYWARE is a new type of potentially unwanted programs

(PUP) [1] the goal of which is to monitor users’ online
behaviors without user consent. Users infected with spyware
commonly experience severely degraded reliability and perfor-
mance such as increased boot time, sluggish feel, and frequent
application crashes [2], [3]. Some other types of PUP include
adware, malware, backdoor, and Trojan horse. Spyware, and
other PUP are often distributed with freeware/shareware, es-
pecially peer-to-peer (P2P) file-sharing applications [4], [5],
which might state what spyware programs are bundled inside
the lengthy EULA (End-User License Agreement) [6]. Others
are installed through drive-by downloads following browser
vulnerability exploits with little or no user interaction [7].
Ordinary users often do not have sufficient knowledge about
spyware [8], and removing spyware is beyond their ability [9].

Such increasing spyware threat prompted the development of
a number of commercial anti-spyware products. For example,
Lavasoft AdAware [10], Spybot Search & Destroy [11], and Mi-
crosoft Windows Defender [12] are popular tools that are able
to remove a large number of spyware programs. In practice, it is
essential to install multiple anti-spyware tools in order to mini-
mize false negative spyware detection [13].

These anti-spyware tools are primarily based on the signa-
ture approach used by anti-virus software, where each program
installation is investigated to determine its file, and registry sig-
natures for use by scanner software to detect spyware instances.
This approach has two major limitations.

First, the effectiveness relies on the completeness of the sig-
nature database for known spyware. Beyond the difficulty of
manually locating and cataloging new spyware, this approach
is further complicated because spyware are full-fledged appli-
cations that are generally much more powerful than the average
virus, and can actively take measures to avoid detection & re-
moval [14].

Second, popular spyware removal programs are commonly
invoked on-demand, or periodically long after the spyware in-
stallation. This allows the spyware to collect private informa-
tion, and makes it difficult to determine when the spyware got
installed, and from where. A monitoring service that keeps track
of suspicious system activities since installation time is essen-
tial to reduce exposure, and avoid re-infection.

Notably, some of these tools have provided real-time moni-
toring features [11], [12] that warn users when a program is at-
tempting to make changes to critical areas of a Windows system

0018-9529/$25.00 © 2007 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

WU et al.: SELF-HEALING SPYWARE

registry. However, as programs which modify critical registry
entries are not necessarily spyware, these real-time monitoring
features introduce a high occurrence of false positives, and are
likely to be disabled by users to avoid annoying warnings.

Our previous study revealed that quite a few spyware pro-
grams had become resilient against deletion, and were capable
of restoring removed entries [14]. We refer to this class of
spyware programs that recover themselves as self-healing
spyware. The primary reason for the ineffectiveness of existing
anti-spyware tools against self-healing spyware is because
these tools are stateless in the sense that they do not remember
what spyware were removed between scanning sessions, and
cannot recognize if previously identified spyware programs
have been completely deleted.

This paper presents a novel approach to spyware detection &
remediation that overcomes the limitations of existing anti-spy-
ware solutions. Our approach is based on characterizing spy-
ware invasion as a trust information flow problem, which is in-
dependent of its binary representation, and therefore can be used
to identify previously unknown spyware instances. We use a
stateful approach to monitor sensitive program behaviors that
may affect the confidentiality, integrity, and availability of the
information flow, and hence endanger the trustworthiness, and
reliability of the system. Through stateful monitoring, it also en-
ables tracking the completeness of a spyware removal task. In
addition, our technique is threat-aware, meaning that its com-
plexity is adaptive to the severity of spyware infection. Specifi-
cally, it may choose to sacrifice system performance for system
dependability when the threat level is elevated.

The remainder of this paper is organized as follows.
Section I surveys related work on spyware detection, es-
pecially on self-healing ones. Section II describes how a
self-healing spyware survives a removal. Section III introduces
a stateful threat-aware removal system (STARS) for removing
self-healing spyware. Section IV evaluates the effectiveness,
and performance of STARS. Section V concludes the paper.

II. SELF-HEALING SPYWARE: STRIVING FOR SURVIVABILITY

To complement the signature-based approach, we first char-
acterize spyware invasion as a trust information flow problem,
and introduce the concept of Auto-Start Extensibility Points
(ASEP) as the key to spyware detection, and remediation. Our
work is based on the observation that, to monitor users’ be-
havior on an ongoing basis, and to maximize the time window
for monitoring, an overwhelming majority of spyware pro-
grams infect systems in such a way that they are automatically
started upon reboot, and at the launch of most commonly used
applications. We use the term ASEP to refer to the subset of
0OS, and application extensibility points that can be “hooked”
to allow programs to be auto-started without explicit user
invocation. An ASEP may accept one or more ASEP hooks,
each of which is associated with an auto-start program.

We distinguish two types of ASEP hooking: 1) as a stand-
alone application that is automatically run by registering as an
OS auto-start extension such as a Windows NT service, or a
Unix daemon; or 2) as an extension to an existing application
that is either automatically run (such as WinLogon.exe with its

589
A Availability Violation A Integrity Violation
4 ¢ Trusted Untrusted
Program / Program
i . Untrusted
ﬁusred Victim Hos Spyware i
Environment Environment
Secret ‘\ Public
Data Data
& Access Rights Violation & Confidentiality Violation

e Insecure Information Flow A Security Violation

Fig. 1. A model of common spyware invasions.

Notify extensions), or popular, commonly run by users (such as
the Internet Explorer browser with its Toolbar extensions).

In addition to ASEP hooking, to ensure its survivability in
a system, advanced spyware are likely to conceal itself to avoid
discovery, and use redundancy to resist a removal. Next, we give
an overview of these advanced techniques employed by self-
healing spyware.

A. A Trust Information Flow Problem

The primary objectives of information security systems are to
protect confidentiality, integrity, and availability [15]. From our
previous work [14], it is obvious that, for spyware, compromises
in integrity are the main causes of compromises in confiden-
tiality, and availability. The relationship is illustrated in Fig. 1
in which arrows represent insecure information flow that causes
certain security violations. An untrusted program (e.g. drive-by
downloads or any spyware program) downloaded from an un-
trusted environment (e.g. Internet) is installed onto the system
resulting in the violation of system integrity. Integrity violation
leads to escalation of access rights (e.g. spyware program dis-
guised as a legitimate library to be loaded by the system pro-
gram), which results in compromises in availability (e.g. spy-
ware consumes CPU utilization, and networking resource), and
confidentiality (e.g. cookie, and browsing history are being col-
lected, and sent to unauthorized party). There is clearly a need
for a mechanism that specifies insecure information flow (e.g.
suspicious program accessing sensitive files), and enforces se-
curity policies (e.g. stateful removal of spyware program) within
the client host.

We realize, of course, that benign components may also gen-
erate sensitive activities; but the depth, and frequency of these
activities would differentiate them from spyware components.
For example, a benign executable would never hide itself be-
cause it will prevent users from being able to click, and execute
it. Another example is a benign executable would not recover
itself when a user tries to uninstall, or remove it.

The key insight here is that each of the inspected activities
on their own does not generally warrant suspicion, but an ac-
cumulated amount of critical activity are strong indicators of
malicious behavior, as shown in Fig. 2. Therefore, we classify a
binary executable as spyware if the component

1) attempts be executed automatically at system reboot by

ASEP hooking, and
2) attempts to reinstall or recover removed ASEP entries.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

590

Uniainted Untrusted Tainted Critical .
tainte PR 2 o octe
ni an7 ed activity . amlF) activity Infected
Entries _~ \ﬁmrw’;f ~ \\Entria\'
p \\\ / \
\\ ’ \
Untainted Tainted
State State

A Bl A
(’ \ Integrity Violation /! \ Access Rights Violation
[y L 2

o P Insecure Information Flow /K Security Violation

Fig. 2. A security information flow problem.

In the following section, we describe the background infor-
mation of the monitored sensitive activities in our approach.

B. ASEP Hooking

On Windows platforms, most of the ASEP reside in the Reg-
istry. Only a few of them reside in the file system. We have found
it useful to classify ASEP into the following categories:

1) ASEP that start new processes: for example, the HKLM
Registry key, and the % USERPROFILE%Menu file folder
are well-known ASEP for auto-starting additional pro-
cesses.

2) ASEP that hook system processes: for example,
HKLMNT allows a DLL (Dynamic Linking Library)
to be loaded into WinLogon.exe.

3) ASEP that load drivers: for example,
HKLM{4D36E96B-E325-11CE-BFC1-08002BE10318}
allows loading of a keylogger driver; HKLM allows
loading of general drivers.

4) ASEP that hook multiple processes: for example,
HKLM_Catalog9 and NameSpace_Catalog5 allow a
Layered Service Provider (LSP) DLL to be loaded
into every process that loads networking components;
HKLMNT_DIlIs allows a DLL to be loaded into every
process that links with User32.dl1.

5) Application-specific ASEP: for example,
HKLM\SOFTWARE\Microsofi\internet Explorer\Toolbar
allows a toolbar to be loaded into the IE browser;
HKCR\PROTOCOLS\Name-Space Handler, and
HKCR\PROTOCOLS\Filter allow other kinds of DLL to
be loaded by IE; HKLM\SOFTWARE\Microsofi\Internet
Explorer\Search\SearchAssistant, and CustomizeSearch
take URL as input, and control which search pages will
be loaded.

Fig. 3 shows the number of spyware hooks to each of the 34
ASEP hooked by at least one of the 120 spyware programs in our
Spyware Zoo. Browser Helper Objects (BHO), HKLM “Run”
key, and IE “Toolbar” are the three most popular ASEP. We
also found that most of the individual spyware programs hook
only three or less ASEP, but some hook as many as 13 or 17.
When spyware, and freeware programs are bundled together in a
single installation, it is not uncommon to see that a single bundle
hooks 10 or more ASEP, which would usually cause significant
performance degradation. We note that a freeware program may
not have any ASEP hook if it is to be manually launched by the
user as needed, but spyware programs always have ASEP hooks.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 4, DECEMBER 2007

& 100
n
< 90 -
K=
[80 -
(©
lg 70 A
2 J
9 60
X 50
£ 40
g 30
3 20
T
o 1
5 0 (: ‘ :
5 0 & D D D D 2 Dot & D D @
§ F IS IS TP T
S O 2
g & ¥ & ‘b”'qo@@ & S S E %&\{9 &S 0(}\}
28 ST T er & N F &K
2 %Q),b 0@ o Q@ Q}o ,b&/ ¥ o8 & v\\?}\
& ¢S F N S &
&° \4 N2 e
@ N <
o &

Auto-Start Extensibility Points (ASEPs)

Fig. 3. Distribution of Spyware ASEP Hooks: 120 spyware programs with 334
hooks to 34 ASEP; ASEP are sorted by popularity.

C. Stealth Techniques

1) Spyware Might Be Installed Anywhere in the System: Spy-
ware may not create its home directory in obvious places such
as C:Files because it would be too easy for users to discover.
Therefore, spyware programs, and data are usually scattered in
privileged system directories (e.g. %windows directory%), or
temporary directories (e.g. Temporal Internet Files) to bypass
a straightforward inspection. Because modifications to infor-
mation stored in Temporary Internet Files directory may incur
system stability issues, many files and directories are managed
internally by Internet Explorer. For example, Content.IES is not
accessible to ordinary users.

2) Spyware Might Intercept System Calls: In some cases,
spyware programs can stay stealthy to common system inspec-
tion by using rootkit technology [16], such as intercepting,
and modifying kernel function ZwQueryDirectoryFile(), which
is responsible for querying file, and directory information on
Windows 2K/XP; or IFSMgr_InstallFileSystemApiHook(),
which is used to install a file system hook inside Windows
98/ME. For examples, the former may be writing a new routine
in the DriverEntry() function to replace the old ZwQueryDirec-
toryFile(), and the latter may be implementing a filter function
inside the VxD (Virtual Device Driver) [16]. Similarly, when
ZwEnumerateValueKey(), and ZwQueryValueKey() functions
in Windows 2K/XP, or _RegEnumValue() in Windows 98/ME
are intercepted, registry keys, including sub-keys, and their
data, could also be manipulated.

However, no matter how stealthy spyware files are stored in
file systems, they still need to be executed to do their work. So,
a running spyware must exist in system memory as a process
with thread(s), or loaded as modules by other processes. To
avoid being seen on the process list, spyware programs need
to intercept system calls to stay hidden. On Windows 2K/XP,
spyware can intercept ZwQuerySystemInformation() to hide its
existence [16]. On Windows 98/ME, a spyware process can
call RegisterServiceProcess() of kernel32.dll to hide itself in
system services as Windows task manager never lists processes
of system services.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

WU et al.: SELF-HEALING SPYWARE

3) Identification of Spyware: Randomized Filename: Like
the names of people, the file name of a spyware program is an
important attribute that has been used to recognize the spyware.
However, it is not uncommon to see spyware programs using ei-
ther partially, or fully randomized filenames for different users
on different machines. For example, both Look2Me, and Virtu-
Monde spyware programs were observed to generate random-
ized filenames.

4) Spyware Might Be Disguised in Legitimate DLL: While
DLL files can be automatically loaded by using Windows
system interfaces directly, they can also be loaded by other
DLL files, and processes. For example, utility Rundll32.exe
can be called to load a DLL file. By default, Rundll32.exe
launches the Dllmain() entry of the DLL file, and sends a
DLL_PROCESS_ATTACH message to itself. However, a run-
ning Rundll32.exe shown in the process list can become very
suspicious to experienced users.

Another approach is to replace existing DLL files, especially
system DLL files, with spyware-infected DLL files. Using this
approach, users may not notice the difference between a good
DLL file, and a bad DLL file. Instead of intercepting all func-
tions of a targeted DLL, the replacing DLL forwards the original
function calls to the replaced, renamed DLL, and only intercepts
selected functions.

There are also spyware programs which use a relatively com-
plicated method called DLL injection. It utilizes remote thread
technique to force other processes to load/unload a DLL [18].

D. Redundancy for Robustness

After spyware programs are installed and executed silently,
they could still be discovered, and removed. If so, all the intru-
sion efforts are wasted. Therefore, advanced spyware programs
adopt redundant or paired execution & monitoring, and healing
of ASEP to ensure survivability.

1) Robust Execution: Paired Processes: 180search Assis-
tant, eXact, BargainBuddy, and IBIS Toolbar programs are ex-
amples that form rescue teams of running processes that watch
each other; when one process is killed, another one recovers it.
We will illustrate the IBIS Toolbar example in the next section.
For 16-bit Windows applications, one can check the hPrevIn-
stance pointer of WinMain() for the handler of previous in-
stances; while for 32-bit Windows applications, one can create
Mutex objects for inter-processes communication to determine
whether the corresponding program is up, and running.

2) Robust Configuration: Setting Recovery: CoolWebSearch
is a well-known spyware that uses self-healing Winlogon/Notify
ASEP hooks. Windows OS supports the Winlogon Notification
Package, which is a DLL that exports functions to handle
Winlogon.exe events. These event messages includes lock,
unlock, logoff, logon, startup, shutdown, startscreensaver,
stopscreensaver, and startshell [19]. Some spyware programs
use the Winlogon Notification Package as an alternative to
Windows Services because Winlogon/Notify requires much
less code to start a program. One simply creates a DLL with
specific functions to run as specified in appropriate sub-keys of
HKEY_LOCAL_MACHINE. For example, MyDLL.dIl may
export two functions, i.e. StartAtLogon(), and Close AtLogoff(),

then set appropriate registry entries such as HKLM/../No-
tify/Dllname/MyDLL.dll, HKLM/../Notify/Logon/StartAtL.-
ogon, and HKLMY/../Notify/Logon/CloseAtLogoff. MyDLL
code can be placed in either function, and is activated when
users logon or logoff. A malicious Notify DLL can reside inside
WinLogon.exe, and heal its own ASEP entries. Because Win-
Logon.exe is an essential service that is owned by the system
account, it cannot be easily terminated by ordinary users.

III. THE STATEFUL THREAT-AWARE REMOVAL SYSTEM
(STARS)

We propose a Stateful Threat-Aware Removal System
(STARS) to remove self-healing spyware. By intercepting crit-
ical system API, STARS monitors the activities performed by
any running process in a system. Some attribute-manipulation
activities, such as installing hidden executables, or placing files
in a hidden directory, are considered suspicious by STARS;
and thus are recorded, and alerted. While existing anti-spyware
tools are stateless (memoryless) between spyware removal
tasks, STARS is designed to be stateful by monitoring the
effectiveness of a spyware removal task over a period of time,
setting policies, and detecting any violation of the policies
as a sign of having self-healing spyware in the system. To
identify any illegal reincarnation of removed entries, STARS
performs Soft Rollback, which is a procedure that periodically
re-executes the previous removal processes. If there is no
reincarnation of suspicious processes, the re-execution would
fail. But if a re-execution is successful, a self-healing spyware
program would be reincarnated. In this case, STARS learns
to remember the source of such reincarnation by adding new
policy rules to prevent this reincarnation from happening again
in the future. In addition, the source of every reincarnation is
considered an instance of the self-healing spyware, and is added
into the so called rescue team set maintained by STARS. As
it is necessary to avoid re-instantiation to defeat self-healing,
STARS employs a Soft Termination mechanism to suspend
every instances of the rescue team one-by-one so that they are
not able to watch the status of each other, and then terminate
the whole set of suspended processes all together.

The system architecture of STARS is illustrated in Fig. 4, and
the labeled numbers are “step numbers” in the STARS proce-
dure presented in Fig. 5. The Process Monitoring Engine (PME)
is responsible for monitoring running processes, and critical API
of system DLL. Table I lists the API that STARS intercepts in
order to gather information about the activities performed by
a running process, especially those that access critical areas of
the system registry (ASEP), launch processes, access critical
files, and perform network communication. For example, run-
ning program calls RegCreateKeyEx (RegCreateKeyExW for
Unicode, and RegCreateKeyExA for ANSI opens specified reg-
istry key, and creates it if it doesn’t exist. Note that key names
are not case sensitive.

PME utilizes Windows API, such as Process32First(), and
Process32Next(), to enumerate all on-going processes; and in-
tercepts critical API that are called by these processes. The Reg-
istry Monitoring Module, File/Directory Monitoring Module,
and Network Monitoring Module of STARS hook critical Win-
dows API calls by employing the Windows IAT (Import Address

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

592

)
8 L Soft ’ Soft L Threat-level +_2 78| External
8 Terminati A Rollback Manz | 4
E e ermination - ollbac 6"’;"?: anager Logs
%) () @’ System
2 Stateful Removal Engine, Snapshot
0=4.2
P Manager 9r2:5 ASEPs
Q Poli Databasc
__O=1=p 31 olicy
‘ e Configuration
(o Process O 2pll Module),
Q218 o ring Engine O3 :
2 onitoring Engine ©°5. Policy
2 2.3 Database
g Registry File/Directory Network
~ Monitoring Monitoring Monitoring
_/ Module Module Module
Q Q
2.3 24
- o = ——

m W
Fig. 4. System architecture of STARS.

Table) redirection mechanism [20], [21]. Functions to be inter-
cepted in a program are imported to the program using the IAT
redirection mechanism. In the current implementation of Win-
dows, IAT holds file-relative offsets to the names of imported
functions referenced by a program, and calls to the imported
functions are routed using the IAT with an indirect JMP instruc-
tion. We overwrite a specific IAT entry with the address of our
desired routine; PME can gain control before the original func-
tion gets a chance to be executed. PME provides real-time mon-
itoring, as well as internal logging of system activities including
1) registry access, 2) file/directory access, and 3) network access
performed by each process.

Another core engine, called Stateful Removal Engine (SRE),
enforces spyware removal actions according to the existing
threat-level, and a pre-defined time constraint. Similar to the
System Restore feature of Windows, System Snapshot Manager
(SSM) checkpoints ASEP from time to time. It provides the
reference information of a set of healthy ASEP so that the
spyware-infected ASEP can be detected. Threat-level Manager
(TLM) is able to adjust the spyware threat-level by parsing ex-
ternal logs created by third-party anti-spyware tools. Whenever
a spyware threat level is raised, SRE performs Soft Rollback
to re-execute the spyware removal procedure from time to
time to make sure that the removed entries remain removed.
However, if Soft Rollback discovered some removed ASEP
entries are being reinserted by a suspicious process, it hands
over the process for Soft Termination, and enables a policy rule
to auto-reject subsequent activities issued by the suspicious
process. In other words, STARS can monitor the source of
policy violations, and insert rules to stop future self-healing
of spyware programs. Policy rules are maintained by the
Policy Configuration Module (PCM), which stores pre-defined,
customized rules in the Policy Database so that PME is able
to respond to any spyware event with appropriate reactions.
For example, one may configure STARS to reject one set of
spyware processes, but accept another set of spyware processes
to log their activities.

IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 4, DECEMBER 2007

A. STARS Detection and Recovery Procedure

The STARS procedure is described in Fig. 5. Generally
speaking, the low threat level indicates no spyware has been
found recently; and STARS simply performs process moni-
toring, and API interception, which consumes very minimal
system resources. In addition to customized policy database,
STARS also leverages existing anti-spyware tools by moni-
toring their external logs to detect the existence, and removal
of known spyware programs, which raises the threat level
from low to medium. When STARS is in the medium threat
level, not only all system activities are logged but also Soft
Rollback is applied from time to time, which may incur more
performance overhead. However, the longer it stays in the
medium threat state, the better chance that STARS can detect
a self-healing spyware with its rescue team, and insert new
policy rules to block future reincarnation of the spyware.
Therefore, the duration for STARS to stay in the medium
threat level after a spyware is detected is a tradeoff between
security, and performance. Our experience shows that most
self-healing spyware processes today reincarnate themselves
immediately after a spyware removal procedure is complete. If
a self-healing spyware in a system is detected, STARS would
elevate its state to the high threat level. Then it launches Soft
Termination to remove all self-healing spyware processes
from the system immediately, and restores ASEP entries from
the previous ASEP checkpoint. Apparently this is a simple
rollback, and may accidentally remove good ASEP installed by
legitimate applications since the time of spyware installation.
We have addressed this issue with bundled tracing (determining
which ASEP hooks belong to the same package), and ASEP
recovery that attempt to restore infected ASEP entries without
over-killing good ones [14].

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness and performance of STARS, we
have selected several real-world spyware programs for a demon-
stration at each threat-level.

A. Threat-Level Is Low

While STARS enumerates all running processes, it intercepts
critical API of system DLL rather than all system calls, and
consumes minimal system resources (with CPU time less than 1
percent, and memory usage of 2,200KB) at the low threat level.

Although STARS does not have a large database of signatures
to identify known spyware as most commercial anti-spyware
tools do, it has powerful API interception to trace critical
activities taken by running programs. When surfing on the web,
Internet users may be prompted to download a file, but the
malicious website actually pushes two files. The trick seems
incredibly simple, but it works. Fig. 6 is the log of STARS,
and it shows that Internet Explorer (iexplore.exe) downloaded
both a wanted file (e.g. Norton_Internet_Security_v2005.zip),
and an unwanted file (e.g. activate_crack.exe). When a user
carelessly clicked the wrong file, i.e. activate_crack.exe (at
timestamp 03:35:57), a BHO plug-in was installed without
the user’s consent. In this case, STARS later recognizes that
activate_crack.exe is malicious because it suspiciously inserts

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

WU et al.: SELF-HEALING SPYWARE

Step 1. Initialization: STARS is launched, Stateful Removal Engine and Process Monitoring Engine are activated.
Step 2. When spyware threat-level is low:

2.1 Process enumeration: Enumerate all running processes and applies default rules accordingly.

2.2 Policy configuration: With Policy Configuration Module, one can add new rules or customize existing rules to
instruct STARS to either accept or reject a given request. All policy rules are maintained in the Policy Database.

2.3 API monitoring: Registry Monitoring Module, File/Directory Monitoring Module, and Network Monitoring
Module hooked critical APIs of system DLLs to control their calls according to the defined policy rules.

2.4 Activity logging: The subsequent activities taken by each process can be logged in Internal Logs.

2.5 Snapshot maintenance: System Snapshot Manager checkpoints ASEP periodically for future rollback and
recovery.

2.6 Process monitoring: User may occasionally run some third-party anti-spyware tools (e.g. Ad-Aware SE Personal
1.06) and Threat-level Manager is informed of its presence (e.g. Ad-Aware.exe).

2.7 Log monitoring: Parse the External Logs of the anti-spyware tools (e.g. C:\Documents and
Settings\[User]\Application Data\Lavasoft\Ad-Aware\Logs). If evidence of spyware threat is found, the
threat-level is raised from low to medium and STARS jumps to step 3.1.

Step 3. When spyware threat-level is medium

3.1 Removed ASEP entry monitoring: As threat-level is changed to medium, SRE instructs PME to log all system
activities and identify any action that violates existing policy rules —i.e. a recreation of the removed ASEP entries
which indicates the existence of self-healing spyware. If a violation is detected, go to step 3.4. If not, continue to
step 3.2.

3.2 Soft Rollback: In addition to ASEP monitoring, STARS redoes spyware removals periodically. If there is no
reincarnation of suspicious processes, the redo would fail. But if a redo is successful, self-healing spyware
process is reincarnated and STARS will learn to remember the source of such reincarnation by adding new policy
rules to auto-reject them next time. In this case, the threat-level is raised to high and the STARS jumps to step
3.4.

33 Returning to low threat level: If no suspicious activities are detected within a certain interval (e.g. 10 minutes),
Threat-level Manager reduces the threat-level to low and STARS go to step 2. Otherwise, go to step 3.1

34 Identifying suspicious processes: With the occurrence of policy violation, STARS identifies the self-healing
spyware (and members of the rescue team) and learns to add new policy rules to auto-reject them next time.
Threat-level is raised to high and STARS go to step 4.1.

Step 4. When spyware threat-level is high

4.1 Soft Termination: STARS employs Soft Termination to terminate the detected self-healing processes and kill
their rescue team.

4.2 ASEP rollback: STARS removes ASEP entries that do not exist in the previous ASEP checkpoint.

4.3

Returning to medium threat level: STARS reduces the threat-level to medium and go to Step 3.1.

Fig. 5. The STARS procedure.

TABLE I
CRITICAL SYSTEM API CALLS INTERCEPTED BY STARS

Registry Monitoring Process Monitoring
RegCreateKeyExA() CreateProcessA()
RegCreateKeyExW() CreateProcess\W()
RegOpenKeyEXA() File Monitoring
RegOpenKeyExW() CreateFileW()
RegSetValueExA() DeleteFileW()
RegSetValueExW() MoveFileWithProgressW()
RegCloseKey() Network Monitoring

Connect()

Listen()

a BHO entry (at timestamp 03:36:00), and invokes hidden
Internet Explorer (at timestamp 03:36:03) to access sensi-
tive files (at timestamp 03:36:06) such as user cookies, and

browsing history (i.e. index.dat file of Content.IES directory is
pre-defined by STARS belonging to the set of sensitive files).
Because Internet Explorer iexplore.exe is indirectly invoked
by a suspicious program (activate_crack.exe) not belonging to
the pre-defined white-list (list of trusted program) maintained
by our system, and utilizes IE to access sensitive files, STARS
immediately rejected these malicious accesses, and learned that
activate_crack.exe is malicious.

With STARS, users are able to identify suspicious behavior
during the installation stage, especially those trying to install
themselves in hidden directories. As mentioned earlier, self-
healing spyware programs often manipulate system attributes to
protect their existence. DashBar is an adware-supported search
toolbar from the GAIN Network that would change the browser
settings to make DashBar the default search engine. STARS
found that, in addition to using the standard Program Files di-
rectory, Dashbar also launches another suspicious executable

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

594

IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 4, DECEMBER 2007

Time Process FID Action Taken | Activity Details ~
03:3536 iexplore exe 1696 accepted File::Write {C:\Documents and Sethngs\Bemﬂn‘.Locsl Settings\Temporary Internet Files\Content TESV094 ITKEMente:
02:3526 iexplore.exe 1696 accepted File::Write {C:\Documents and Settings\Benson'Local Settings\ Temporary Intermet Files\Content IESYI94JTESM\pom
02:35326 iexplore.exe 1696 accepted File:: Write (C:\Documents and Settings\Benson’Local Settings\Temporary Intermet Files\Content IESY94 JTKSM'\pom
033526 iexplore exe 1696 accepted File:: Write (C:\Documents and Settings\BensonLocal Setiings\ Temporary Intermet Files\Content IESV) THINCEPipo)
033526 iewplore exe 1696 accepted File:: Write (C\Documents and Settings\Benson'Local Settingsh\Temporary Internet Files\Content TES\UTHLL WGV,
03:3526 iexplore.exe 1696 accepted File::Write {C:\Documents and Settings\Benson'Local Settings\ Temporary Intemet Files\Content IESNTIHLL WGEVC,
03:35:26 iexplore exe 1696 accepted Fi]e::Wnﬁe (C '\Dncuments and Sethngs\Bermn’\anal Settings\Temporary Internet Files\Content IESNUTHLL WG Vac
a5 t e ettingsh Temporary Intermet Files\Content IESSTIHLL WGEVN(

02:35:33 iexploreexe 1696 accepted File::Write {C:\Worton_Internet_Security w2005 zip)
032:25:33 iexplore exe 1696 accepted File:: Write (C:\Norton Intemet Security w2005 =21

(U553 1 XDlOre BXE 10800 accepted Fale: Wy ADocumen|] ensnnilLocal settings\Temporary Internet Files\Content IESVQ TEINCREPWo

33 1explore exe accepied Write (L hactivate_crackexe
023530 dexplore exe 696 accepted File::
U3:35:44 exploze exe BOn_ accepted 22
3307 Bxplorer BXE e acceptea Vs 2

03 35 50 activate_crackexe 1940 accepted Sys E)oecute (i \WINDOWSWDﬁE\F&g&‘VﬁQ exe)
03:36:00 ressvi3dexe 144 accepted Reg: SefValue KLM&Sofwaxe'\lvhcmsoft‘\Wmdows'\CurrentVerﬁon\E lorer'Browser Helper Objects\{ 3SFDEOCES
NERTHIE] mgsvrﬁ.e)ﬂe 144 accepte wysBxecute (CProgram XD
03:36:06 iexplore.exe 412 accepted File::Write {C:\Documents and Set‘lmgs\Benmn\Local Semngs\Temporary Internet Files\Content [ES\index dat)
03:36:06 iexplore.exe 412 accepted File::Write {C:\Documents and Settings\Benson’Local Settings\Temporary Intemet Files\Content [ES\index daf)

Fig. 6. Example of drive-by download, BHO installation and unauthorized access to sensitive files.

called trickler4104.exe, which uses a hidden directory C:and
Settings[user] Settings_tmp as its home directory to maintain its
profile settings. We believe that installing executables in hidden
directories without user consent is considered malicious, and
STARS has a default policy to prohibit such activities.

B. Threat-Level Is Medium

STARS is aware of third-party anti-spyware tools, and auto-
matically parses their external logs when changes are detected.
If evidence of spyware threat is found, the threat-level is raised
from low to medium. At the medium threat-level, STARS is re-
sponsible for enforcing the spyware removal policy, and moni-
toring any policy violation. With the extra overhead for moni-
toring processes and policies, STARS at the medium threat-level
has an average CPU utilization of 2% to 3%, and memory con-
sumption of 3,000 KB.

In the Zango Search spyware case, when exercising Soft Roll-
back to re-execute a previous spyware removal, STARS learns
that a removed entry in HKLM/../Run key is immediately recov-
ered by MediaGateway.exe (Zango Search), and thus inserts a
new policy rule to reject such modification in the future. In an-
other example, STARS recognizes that istsvc.exe (IST Bar) con-
tinuously sets the registry HKLM/../Run key (once per second).
Based on our experience, excessive modifications (one access
per 1~5 seconds) of an identical registry entry often implies
the presence of self-healing spyware. STARS considers such an
aggressive registry access as a malicious behavior. Both Zango
Search, and IST Bar are examples of self-healing spyware that
uses executable programs to recover their ASEP entries, which
violates STARS policies, and thus the threat-level is elevated to
high (self-healing spyware presents).

C. Threat-Level Is High

Because STARS can detect the sources of policy violations, it
can identify the root process of a spyware program, and launch
Soft Termination to terminate the root, and all its child processes
together. In this section, we demonstrate the effectiveness of
STARS with a spyware called the WebSearch Toolbar. Using
STARS, we find that, in addition to the WebSearch Toolbar, the
package installs several other executables that are self-healing
such as TBPS.exe, TBPSSvc.exe, and PIB.exe. They not only

set ASEP to ensure an auto-execution at each system reboot,
but also help each other for their survivability. In our experi-
ments, when a user discovers the existence of spyware using
taskmgr.exe, and tries to terminate these processes one by one
with Task Manager, the surviving processes would quickly bring
up the killed ones. As a result, existing anti-spyware tools cannot
terminate the WebSearch spyware successfully.

Because members of the rescue team, namely TBPS.exe,
TBPSSvc.exe, and PIB.exe, repeatedly violate the predefined
policies, STARS first identifies the source of policy violations,
and recognizes members of the spyware rescue team. Then
STARS inserts new policy rules to reject future reincarnation
of these processes, and runs Soft Termination to kill these
processes all together so that no rescue team can recover the
removed processes, and their ASEP entries.

Fig. 7 shows a snapshot of STARS in action. While a user
had been killing spyware programs manually with Task Man-
ager (taskmgr.exe) repeatedly because they kept recovering
after being terminated (from timestamp 00:36:55 to 00:38:27),
STARS recognized that PIB.exe, and TBPS.exe had been
launching each other excessively, so they must be members
of the rescue team. Hence, STARS learned to reject, and kill
paired processes at timestamp 00:38:56. As a result, STARS
effectively removed malicious running processes, and stopped
the reinsertion of spyware entries into ASEP.

Our experiments on using STARS against today’s spyware
suggest that a stateful approach towards detecting & removing
self-healing spyware is feasible. First, the violation of confiden-
tiality is a sign of spyware intrusion. Areas that stored sensitive
profile, and valuable information should be monitored consis-
tently, and any arbitrary access to these areas should be carefully
examined against defined security policy. In our first example
(when threat level is low), even the spyware can be stealthy,
and get installed without user consent; it got caught by STARS
when trying to access sensitive data on the system. Apparently,
false positives occur when any legitimate process not on the
white-list is trying to access certain sensitive data; in these sit-
uations STARS would prompt the user with the call history of
that process, and help make the decision to permit or deny it.

Second, the violation of integrity is another sign of spyware
intrusion, and modifications made to critical areas of the system

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

WU et al.: SELF-HEALING SPYWARE

595

Time Process PID | Action.. | Activity Details
00:34:51 Explorer EXE 1372 accepted Sys:Execute (C:\Documents and Settings\Benson'dsL Ewebsearch.exe)
00:324:55 websearchexe 1388 eccepted Net:Connect (146.82.109.210, 80)
00:35:10 websearchexe 1388 accepted Swys:Execute (C:\Program Files\WebSearch Toolbar\TBPS exe)
00:35:14 TBPSexe 216 accepted SwsiExecute (C\Program Files\WebSearch Toolbar\TEPR exe)
00:35:16 TBPSexe 628 accepted SvsiExecute (CAPROGRA~I\WEBSEA~1'PIB exe)
00:35:17 PlBexe 308 accepted SvsiExecute (CNPROGRA~INWEEREA-INTEPS exe)
00:35:18 TBPSexe 216 accepted SwsiExecute (CAPROGRA~IVWEBSEA~1\TEPS exe)
00:3527 TBEPSexe 216 accepted Reg:SetValue (HKLM'\Software\MicrosoftiWindows\CurrentVersionlexplorerBrows
00:35:32 TBPSexe 628 accepted Reg:SetValue (HKLM'\Goftware\MicrosoftiWindows\CurrentVersion\Explorer\Brows
00:35:35 TBPSexe 216 accepted Net:Connect (146.82.109.210, 80)
00:35:38 TBEPSexe 628 accepted Reg:SetValue (HKLM'\Software'MicrosoftiWindows\CurrentVersion\Run, TEPS)
00:35:41 TEPS exe 628 accepted Net:Connect (146.82.109.210, 80)
00:35:44 TEPS.exe 628 accepted Net:Connect (146.82.109.210, 80)
00:3547 TEPSexe 628 accepted Reg:SetValue (HKLM'\Software\MicrosoftiWindows\CurmrentVersion\Explorer\Brows
00:35:52 TBPS.exe 628 accepted Net:Connect (146.82.109.210, 80)
00:36:17 TEPS.exe 628 accepted Sys:Execute (C:\PROGRA~1\WEBSEL~1N\TBPSSve exe)

3f 1388 apcented Met-Conpect (146 82 109 210, 801
00:26:55 PlBexe 308 accepted SwsiExecute (CAPROGRA~IVWEBSEA~1\TEPS exe)
00:36:56 TBPS.exe 1956 accepted Sws:Execute (CAPROGRA~INWEBSEA~1'PIB exe)
00:37.03 TEPSexe 1956 accepted Reg:fetValue (HKLM\Software\MicrosoftyWind ows\ClrentVersdon\Explorer\Brows
00:37.04 TBPS.exe 1956 accepted RegiSetValve (HKLM'Software\MicrosoftyWindows\CdmentVerson Explorer'Brows
00:37:14 PlBexe 308 accepted SvsiExecute (CAPROGRA~INWEEBSEA~INTEPS exe)
00:37:15 TBPSexe 508 accepted SvsiExecute (CANPROGRA~I\WEEREA~1'PIB exe)
00:37:17 TBPSexe 508 accepted Reg::SetValue (HELM\Software\MicrosoftyWind ows\ClmentVersion\Explorer\Brows
00:37:19 TEPSexe 508 accepted Reg:SetValue (HKLM\Software\Microsoft\Windows\Crfrrent¥ersion\ExploreriBrows
00:37:20 PIBexe 308 accepted SysiExecute (CAPROGRA~I\WEBSEA~1\TEPS exe)
00:37:21 TEPS.exe 1952 accepted SysiExecute (C\PROGRA~1\WEBSEL~1'PIB exe)
00:37:24 TEPSexe 1952 accepted RegrSetValve (HKLM\Software\MicrosoftyWind ows\CdrrentVersion\Explorer\Brows
00:37:25 TBPS.exe 1952 accepted RegoSetValue (HKLM\Software\MicrosofthWind ows\CrentVerdon\Explorer\Brows
00:37:26 TEPSexe 1952 accepted Sws:Execute (CAPROGRA~INWEBSEA~1'PIB exe)
00:37:27 PlBexe 248 accepted SvsiExecute (CNPROGRA~1I\WEESEA~INTEPS exe)
00:37.29 TBPSexe 1952 apcepted Svs:Execute (CPROGRA~I\WEBSEA~1'PIB exe)
00:37:31 PIB.exe 404 accepted SvsiExecute (CAPROGRA-1\WEBSEA-1\TEPS exe

T T 7 W&mmvmmmmﬁ
00:33:56 PIB.exe 404 yejected SvsiExecute (CAPROGREA~INWEBSEA~1\TEPS exe)

Fig. 7. STARS learned to reject paired self-healing processes.

(e.g. ASEP) should also be monitored. In our second example
(when the threat-level is medium), advanced spyware is so stub-
born that it repeatedly resets the ASEP to survive registry dele-
tion made by the anti-spyware tools. However, such aggressive
access to the same set of ASEP implies the suspicious program
is trying to compromise system integrity, and STARS would in-
sert a new rule to block subsequent tries from that program.

In our last example (when the threat-level is high), STARS is
no longer dealing with a single spyware program at a time, but
a group of spyware programs that rescue each other. They not
only break system integrity, but also greatly reduce the avail-
ability of the resources on the system because they consume
unnecessary CPU utilization, memory usage, and file I/O. Note
that we did not find any legitimate software that would form
a rescue team to recover terminated peers, except the Windows
Security Center (wscntfy.exe) introduced in Service Pack 2, and
afew others. These programs are very common in every system,
and are included in the white-list of STARS to reduce false pos-
itives.

As the present implementation of STARS heavily relied on
the Windows IAT (Important Address Table) technique to gain
control before the original function gets a chance to be executed,
it is possible that there are spyware instances (e.g. those that in-
tegrate rootkit functionalities) that may try to disable or bypass
STARS, and lead to the occurrence of false negatives. In our fu-
ture work, we would implement STARS as a system driver to
gain more control in the kernel.

V. CONCLUSION

Spyware threats are prevalent as they are often bundled in
freeware, shareware, or add-on plug-ins. Without a careful
examination, computer users can hardly detect if a software

package contains spyware. Although existing anti-spyware
tools are effective in identifying & removing known spyware
using signatures, our study shows that some self-healing spy-
ware are immune to these signature-based anti-spyware tools.
This is due to the fact that existing anti-spyware tools are
stateless (memoryless) in the spyware removal process. That
is, once a removal is done, they do not monitor & identify the
recurrence of spyware entries, and thus self-healing spyware
programs are able to reincarnate themselves. We described a
Stateful Threat-Aware Removal System (STARS) that can 1)
keep track of critical activities performed by running processes;
2) follow up on checking the effectiveness of a spyware re-
moval task over time; and 3) trade off system dependability,
and system performance depending on the severity of the
spyware threat in a system. Experimental results demonstrated
that STARS is effective in detecting & removing self-healing
spyware that existing commercial anti-spyware tools fail to do.

Although we had designed STARS to be adaptive to the
severity of spyware threats, and can trade off system perfor-
mance for system dependability, the performance overhead
for removing self-healing spyware is small. However, there
are rooms for improving the comprehensiveness of STARS
because not all attributes manipulation discussed in Section I
can be automatically detected by STARS. In its current imple-
mentation, STARS cannot detect hidden Registry entries, and
DLL injection. The difficulties are that 1) Registry entries are
relatively more complicated to maintain than files/directories,
and 2) it requires remote thread monitoring to identify DLL
injection. These features will introduce additional performance
overhead to STARS.

The battles between spyware, and anti-spyware programs
will never end; the former evolves against security measures

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

596

to evade detection, while the latter extensively monitors, and
filters known, and suspicious activities. We see similar con-
frontation in other security threats such as malware, backdoor,
Trojan horse, and rootkit. We are currently working on applying
STARS to these security problem domains.

REFERENCES

[1] P. McFedries, “Technically speaking: The spyware nightmare,” [EEE
Spectrum, vol. 42, no. 8, p. 72, 2005.

[2] M. B. Schmidt and K. P. Arnett, “Spyware: A little knowledge is a won-
derful thing,” Communications of the ACM, vol. 48, no. 8, pp. 67-70,
2005, New York.

[3] “Battling ‘spyware’: Debate intensifies on controlling deceptive pro-
grams,” Microsoft, April 20, 2004 [Online]. Available: http://www.mi-
crosoft.com/presspass/features/2004/apr04/04-20Spyware.mspx

[4] G. Lawton, “Invasive software: Who’s inside your computer,” IEEE
Computer, vol. 35, no. 7, pp. 15-18, 2002.

[5] S. Saroiu, S. D. Gribble, and H. M. Levy, “Measurement and analysis

of spyware in a university environment,” in Proceedings of the First

Symposium on Networked Systems Design and Implementation (NSDI

"04), 2004.

W. Aaron, “Spyware be gone,” NetWorker, vol. 9, no. 1, p. 18, 2005,

New York.

[7] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King, “Automated web patrol with strider honeyMonkeys:
Finding web sites that exploit browser vulnerabilities,” in Pro-
ceedings of the Network and Distributed System Security (NDSS)
Symposium, February 2006 [Online]. Available: http://research.mi-
crosoft.com/HoneyMonkey/

[8] Q. Hu and T. Dinev, “Is spyware an internet nuisance or public
menace,” Communications of the ACM, vol. 48, no. 8, pp. 61-66,
2005, New York.

[9] W. Ames, “Understanding spyware: Risk and response,” IEEE IT Pro-
fessional, vol. 6, no. 5, pp. 25-29, 2004.

[10] Lavasoft Ad-Aware [Online]. Available: http://www .lavasoftusa.com/
software/adaware/

[11] Spybot Search & Destroy [Online]. Available: http://www.safer-net-
working.org/

[12] Microsoft Windows Defender [Online]. Available: http://www.mi-
crosoft.com/athome/security/spyware/software/default. mspx

[13] W. Harrison and T. Bollinger, “User confidence—and the software de-
veloper,” IEEE Software, vol. 21, no. 6, pp. 5-8, 2004.

[14] Y. M. Wang, R. Roussev, C. Verbowski, A. Johnson, M. W. Wu, Y.
N. Huang, and S. Y. Kuo, “Gatekeeper: Monitoring auto-start exten-
sibility points (ASEPs) for spyware management,” in Proceedings of
the Usenix 18th Large Installation System Administrations (LISA’04),
2004.

[15] R.S. Sandhu, “Lattice-based access control models,” IEEE Computer,
vol. 26, no. 11, pp. 9-19, 1993.

[16] Y. Kaplan, “API spying techniques for Windows 9x, NT and
2000,” [Online]. Available: http://www.internals.com/articles/apispy/
apispy.htm

[17] Y. M. Wang, D. Beck, B. Vo, R. Roussev, and C. Verbowski, “De-
tecting stealth software with strider GhostBuster,” in Proceedings of
the International. Conference on Dependable Systems and Networks
(DSN-DCCS), 2005, pp. 368-377.

[18] DLL Injection Tutorial [Online]. Available: http://www.codeproject.
com/dll/DLL_Injection_tutorial.asp

[19] T. Truong, “Taking advantage of the winlogon notification package,”
The Code Project, Jan. 2001 [Online]. Available: http://www.codepro-
ject.com/system/winlogon_notification_package.asp

[20] J. Richter, Advanced Windows, 3rd Bk&Cdr ed. : Microsoft Press,
February 1997, ISBN: 1572315482.

[21] O. Zaytsev, Rootkits, Spyware/Adware, Keyloggers and Backdoors:
Detection and Neutralization. : A-List Publishing, September 1,
2006, ISBN: 1931769591.

[6

—_

IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 4, DECEMBER 2007

Ming-Wei Wu is a Product Manager, and Security Consultant at Armorize
Technologies, where he manages an R&D team responsible for automated static
analysis on Web codes. Previously, he worked for the National Information &
Communication Security Taskforce, Executive Yuan, Taiwan as an associate re-
searcher to plan government security policy. He received his MS degree from
National Chiao Tung University, Taiwan in 2003, and has been a PhD candidate
in Electrical Engineering at National Taiwan University, Taiwan since 2004. His
research interests include Web application security, intrusion tolerance, and P2P
networking. He is a student member of the IEEE.

Yi-Min Wang is a Director and Principal Researcher at the Internet Services
Research Center (ISRC), Microsoft Research-Redmond, where he leads an
R&D organization responsible for systems, infrastructure, cyber-intelligence,
and search quality. Yi-Min received his B.S. degree from National Taiwan
University in 1986. He received his Ph.D. in Electrical and Computer Engi-
neering from University of Illinois at Urbana-Champaign in 1993, worked
at AT&T Bell Labs from 1993 to 1997, and joined Microsoft in 1998. His
research interests include security, systems management, dependability, home
networking, and distributed systems. He is a member of the IEEE.

Sy-Yen Kuo is a Chair Professor, and Dean of the College of Electrical and
Computer Engineering, National Taiwan University of Science and Technology,
Taipei, Taiwan. He is also a Distinguished Professor at the Department of Elec-
trical Engineering at National Taiwan University where he is currently taking
a leave of absence, and was the Chairman at the same department from 2001
to 2004. He received the BS (1979) in Electrical Engineering from National
Taiwan University, the MS (1982) in Electrical & Computer Engineering from
the University of California at Santa Barbara, and the PhD (1987) in Com-
puter Science from the University of Illinois at Urbana-Champaign. He spent
his sabbatical years as a Visiting Professor at the Computer Science and Engi-
neering Department, the Chinese University of Hong Kong from 2004-2005,
and as a visiting researcher at AT&T Labs-Research, New Jersey from 1999 to
2000, respectively. He was the Chairman of the Department of Computer Sci-
ence and Information Engineering, National Dong Hwa University, Taiwan from
1995 to 1998, a faculty member in the Department of Electrical and Computer
Engineering at the University of Arizona from 1988 to 1991, and an engineer
at Fairchild Semiconductor and Silvar-Lisco, both in California, from 1982 to
1984. In 1989, he also worked as a summer faculty fellow at Jet Propulsion
Laboratory of California Institute of Technology. His current research interests
include dependable systems and networks, software reliability engineering, mo-
bile computing, and reliable sensor networks.

Professor Kuo is an IEEE Fellow. He has published more than 270 papers in
journals and conferences, and also holds several patents. He received the distin-
guished research award between 1997 and 2005 consecutively from the National
Science Council in Taiwan, and is now a Research Fellow there. He was also
a recipient of the Best Paper Award in the 1996 International Symposium on
Software Reliability Engineering, the Best Paper Award in the simulation and
test category at the 1986 IEEE/ACM Design Automation Conference (DAC),
the National Science Foundation’s Research Initiation Award in 1989, and the
IEEE/ACM Design Automation Scholarship in 1990 and 1991.

Yennun Huang received his BS in EE from National Taiwan University in
1982; and MS, and PhD in CS from the University of Maryland. He worked
for AT&T/Lucent Bell Labs for 12 years, and started the Dependable Com-
puting Research Program at AT&T. He left AT&T in 2001 to become the VP of
Engineering of a startup company in 2001. Yennun Huang was a Visiting Re-
search Fellow in National Taiwan University in 2004. He returned to AT&T Labs
in late 2004 and was the Executive Director for Dependable Distributed Com-
puting and Communication Research Department. His work was to improve the
dependability and quality of emerging services such as mobile, digital home,
and IPTV for AT&T. He is currently an Executive Vice President of Institute
for Information Industry, Taiwan. His current research interests are dependable
computing, P2P computing, mobile computing, middleware platforms, IPTV,
and digital home applications. He is a member of the IEEE.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 20, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

