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Abstract—This paper proposes a generalized formulation for
multilevel redundancy allocation problems that can handle re-
dundancies for each unit in a hierarchical reliability system, with
structures containing multiple layers of subsystems and compo-
nents. Multilevel redundancy allocation is an especially powerful
approach for improving the system reliability of such hierar-
chical configurations, and system optimization problems that take
advantage of this approach are termed multilevel redundancy
allocation optimization problems (MRAOP). Despite the growing
interest in MRAOP, a survey of the literature indicates that most
redundancy allocation schemes are mainly confined to a single
level, and few problem-specific MRAOP have been proposed
or solved. The design variables in MRAOP are hierarchically
structured. This paper proposes a new variable coding method in
which these hierarchical design variables are represented by two
types of hierarchical genotype, termed ordinal node, and terminal
node. These genotypes preserve the logical linkage among the
hierarchical variables, and allow every possible combination of
redundancy during the optimization process. Furthermore, this
paper developed a hierarchical genetic algorithm (HGA) that
uses special genetic operators to handle the hierarchical genotype
representation of hierarchical design variables. For comparison,
the customized HGA, and a conventional genetic algorithm (GA)
in which design variables are coded in vector forms, are applied
to solve MRAOP for series systems having two different config-
urations. The solutions obtained when using HGA are shown to
be superior to the conventional GA solutions, indicating that the
HGA here is especially suitable for solving MRAOP for series
systems.

Index Terms—Hierarchical genetic algorithm, hierarchical
genotype, multilevel redundancy allocation, reliability optimiza-
tion.

NOTATION

system level unit

system reliability

-th unit; a common name for system, subsystem, and
component.
reliability of

number of components used in

set of design variables

reliability function
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cost function

number of sub-units in

th sub-unit of

-th redundant unit of -th sub-unit of

reliability of

number of sub-units of unit , a nonnegative
integer

cost of unit
cost of -th unit

system cost

threshold cost

additional costs of -th unit when adding a redundant
unit to a unit
ordinal genotype node of -th unit

terminal genotype node of -th unit

ACRONYM1

GA genetic algorithm

HGA hierarchical genetic algorithm

MRAOP multilevel redundancy allocation optimization
problem

MS multilevel series

RBD reliability block diagram

I. INTRODUCTION

T HE demand for higher reliability tends to make system de-
signs increasingly complex. Typical systems contain mul-

tiple levels, with the entire system at the top level, subsystems
at lower levels inside the system, and down to the components
at the lowest levels inside the various subsystems. Hierarchical
systems such as these are termed multilevel systems, and their
reliability depends on the reliability values of lower subsystems.
For example, if the lower subsystems of a bi-level system are
connected serially, the system reliability is the product of the
reliability values of the lower subsystems. Fig. 1 illustrates a
schematic diagram of the multilevel configuration of a hierar-
chical reliability block diagram in a hierarchical product design.

The system reliability of a multilevel design configuration is
usually optimized by allocating appropriate redundancy to less
reliable subsystems or components at different levels, subject to

1The singular and plural of an acronym are always spelled the same.
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Fig. 1. A multilevel RBD.

certain constraints. This optimization technique is called multi-
level redundancy allocation optimization (MRAO), and subse-
quently formulated problems are called multilevel redundancy
allocation optimization problems (MRAOP).

MRAOP are particularly attractive because real world sys-
tems and products are increasingly complex, and the system reli-
ability of the multilevel configurations of these complex designs
can be significantly improved by using multilevel redundancy
allocation techniques. Multilevel redundant designs are increas-
ingly prevalent in many practical systems, such as communica-
tion systems, computing systems, control systems, and critical
power systems [1]. Techniques for implementing redundancy
span a wide spectrum in the design space, and can create high
reliability systems. Moreover, recent progress in miniaturization
has made it easier to provide redundancy at all levels, ranging
from the system level down to component levels. This approach
can boost system reliability remarkably because redundancy can
be distributed to any component at any level without structural
constraints.

The optimization of system reliability using multilevel re-
dundancy allocation is widely practiced in industry. Most in-
tegrated memory circuits, and VLSI chips that include internal
memory blocks, currently use a hierarchical redundancy alloca-
tion scheme to enhance reliability, and chip yields. Also, a sig-
nificant advantage of multilevel or hierarchical allocation is that
it permits a modular scheme of redundancy allocation. Koren
et al. [2] described how such modular schemes are particularly
applicable when designing fault-tolerant or self-repairing semi-
conductor devices. Multilevel architectures that provide phys-
ical protection are now commonly implemented to increase the
survivability of real systems in adverse conditions [3]. For pro-
tecting archived data, multilevel redundant designs in redundant
arrays of inexpensive disks (RAID) that provide fault tolerance
against disk failures outperform other RAID designs [4]. Sev-
eral examples of multilevel RBD structures can be found in the
literature, such as hierarchical series, hierarchical series parallel,
and others [5], [6].

Almost all previous research in redundancy allocation opti-
mization problems has focused on system configurations such
as series-parallel, parallel-series, general networks, k-out-of-n:
G(F), and other unspecified configurations, classified by
Tillman, Hwang, & Kuo [7]. Kuo & Zuo provided good details
concerning optimal reliability modeling [8], and the review
paper by Kuo & Prasad [9] presents an overview of system re-
liability optimization. However, a comprehensive examination
of this literature reveals that multilevel redundancy alloca-
tion problems are seldom addressed in terms of the detailed

modeling or appropriate optimization techniques that such
problems actually require. Also, attention paid to redundancy
allocation is mainly confined to a single level, principally due
to the notion that single-level redundancy yields better system
reliability. We feel that this is not always the case. Boland &
EL-Neweihi [10] demonstrated that this result does not hold in
cases of redundancy configurations using non-identical parts.

According to Chern, redundancy allocation optimization
problems are nonlinear integer programming problems, and
NP-hard [11]. Besides being NP-hard, MRAOP qualify as
hierarchical optimization problems [12]. The optimization of
such hierarchical optimization problems beyond two levels,
however, is more difficult using heuristics or exact algorithms.
This is because multilevel allocation optimization problems
generate a very large search space, and searching for optimal
solutions using exact methods or heuristics will necessarily
be extremely time consuming. Therefore, metaheuristic algo-
rithms, particularly genetic algorithm (GA), are suitable for
solving the multilevel redundancy allocation optimization. The
seminal work by Goldberg [13] demonstrated that GA are very
useful for solving complex discrete optimization problems,
and the multiple solutions that GA provide allow considerable,
valuable flexibility when choosing the best solution. This is
one reason that GA is popularly applied to a variety of re-
liability optimization problems [14]–[20]. However, none of
the above-cited research specifically aims to optimize system
reliability beyond two-level systems, and their subsystems.

Recently, the growing research interest in multilevel relia-
bility modeling, and multilevel optimization using GA, is re-
flected in the literature, due to the practical importance of these
techniques. Levitin [3] proposed an algorithm for solving mul-
tilevel protection cost minimization problems subject to surviv-
ability constraints. This algorithm is based on a universal gen-
erating function technique used for system survivability evalu-
ation, and on a genetic algorithm used as an optimization en-
gine. Later, Yun & Kim [21] proposed a restricted multilevel re-
dundancy allocation model, and optimized a three-level series
redundancy allocation problem using a customized GA. How-
ever, this model allows redundancy allocation to only one unit
at a given level in a direct line, which is defined as a set of units
in which every unit except the system has a parent unit, and no
other cousin units, the other units at the same level, are present
in that set. Direct line concepts are explained by an example in a
later section of this paper. The purpose of using direct lines is to
transform the multilevel design variables into vector representa-
tions, because conventional GA use one-dimensional represen-
tations of design variables. Unfortunately, the additional con-
straints imposed when transforming hierarchical design vari-
ables into vector design variables artificially constrict the fea-
sible design region, often leading to suboptimal solutions.

Several genetic algorithms use a hierarchical approach to
solve classes of hierarchical optimization problems. The hier-
archical features offer the potential to address large problems
efficiently [22]. De Jong et al. [23] delineated classes of hier-
archical problems, and described a framework for Hierarchical
Genetic Algorithms (HGA), genetic algorithms that can ex-
ploit the structure present in hierarchical problems to achieve
improvements in efficiency. These HGA exploit hierarchical
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Fig. 2. A general multilevel redundancy allocation configuration.

features in different ways depending on the problem, such
as the use of a fitness-based hierarchy of populations [24],
problem-specific subdivision of an algorithm into multiple
levels [25], and the use of hierarchical representation by using
control genes that regulate other genes [26]. Sefrioui & Periaux
[27] developed HGA in which they used a hierarchical topology
for the layout of sub-populations, achieving higher efficiency
than conventional GA. Further, Yoshimura & Izui [28] proposed
a genetic algorithm in which hierarchical genotype coding rep-
resentation is used to exactly express the internal structure,
and related hierarchical details. New crossover and mutation
operators have been developed to handle these hierarchical
genotypes during optimization processes.

The genotype coding representation used in the genetic al-
gorithms proposed by Yoshimura & Izui [28] aims to repre-
sent the hierarchical design variables in design optimization
problems for mechanical structures. However, the MROAP re-
quire a problem specific coding method for handling the logical
linkages among the hierarchical design variables, and thus the
coding scheme proposed by them cannot be applicable directly
to solving MRAOP. Therefore, this paper proposes a new vari-
able coding method for the HGA first proposed by Yoshimura
& Izui [28]. In this coding method, the phenotypes of hierar-
chical design variables are coded using two newly designed hi-
erarchical nodal genotypes: the ordinal, and the terminal. These
two nodal genotypes can be used as building blocks to codify
most of the MRAOP hierarchical configurations. Thus, there is
no need to transform the hierarchical design variables because
these nodal genotypes preserve the exact hierarchical relation-
ships within each design variable. The novelty of these hierar-
chical nodal genotypes is that they can express every possible
combination of multilevel redundancy allocation, so that the op-
timization has a high probability of yielding nearly global op-
timal solutions.

The rest of the paper is organized as follows. Section II de-
scribes the detailed mathematical formulation of our multilevel
series redundancy allocation optimization model. In Section III,
the HGA concepts are explained, and a HGA coding method
for HS problems is proposed. In Section IV, we solve two se-
ries problems, a three-level problem, and a four-level problem.
The optimal solutions obtained when using a conventional GA
are compared with those obtained with the custom-coded HGA,
and the resulting configurations are presented. Finally, the re-
sults are discussed in Section V, while Section VI concludes
the paper.

II. PROBLEM DESCRIPTION

A. Multilevel Series Redundancy Allocation Model

The proposed redundancy model contains multiple hierar-
chical levels. The system level is the topmost level, and the com-
ponent level is the lowest. Subsystem or module levels are lo-
cated between the top, and second lowest levels. Each system,
module, and component is here termed a unit. Every unit ex-
cept components can have any number of subordinate elements,
such as modules that make up a system, or components that
make up a module. These subordinate elements are called sub-
units, whereas the next highest hierarchical unit of a sub-unit is
called a parent unit. The proposed redundancy allocation model
can provide redundancy for all units of a multilevel reliability
system. Fig. 2 represents the schematic diagram of a general-
ized hierarchical redundancy allocation model. The connecting
lines in the diagram imply the logical relationships among the
units at different levels, relationships that may be in series, in
parallel, or combinations of these two. Redundancy at all levels
is assumed to be active, and failures are -independent.

Fig. 3 explains the redundancy allocation scheme in a bi-level
series system, and the distinction between sub-units and redun-
dant units. In Fig. 3(a), is a unit at the system level that has
two sub-units & at the next lowest level in the basic
configuration. Fig. 3(b) illustrates the redundancy allocation in

, which has two redundant units at system level & .
Similarly, sub-units , and have 3, and 1 redundant units,
respectively, in parent unit , and so on.

Thus, in a multilevel redundancy allocation model, each unit
can have redundant units, and sub-units, so there are

sub-units in the level below a parent unit. The sub-units
are different for each parent unit in the model described here.
For example, as shown in Fig. 2, is a system unit containing

to units as modules at its next lowest hierarchical level.
Similarly, the module contains sub-units as modules
or components at its next lowest level, represented as to

, which is actually the second level of the system hier-
archy. This structure is replicated until the lowest level of the
system hierarchy is reached.

Thus, the reliability of unit for multilevel series con-
figurations can be calculated using

(1)
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Fig. 3. An example of redundancy allocation in bi-level series configuration.

where are reliability values for sub-units , a unit in the
-th redundant unit of the -th sub-unit of . Each value

is calculated using (1) at the level immediately below the unit,
and these calculations are recursively iterated to the level just
above the very lowest hierarchical level. At the very lowest level,
where there are no sub-units belonging to unit , the reliability
can be obtained as

(2)

The multilevel reliability allocation model presented here al-
lows redundancy for any unit at any level, and it is thus possible
to achieve redundancy schemes that function at both the compo-
nent, and modular levels. This mixed redundancy scheme allows
the units to have redundancy not only at the same level, but also
simultaneously for sub-units at lower levels.

The cost constraint of a multilevel redundancy allocation
model also reveals hierarchical relationships among the multi-
level units. The system cost is essentially the sum of the cost
of subsystems and modules, and the cost of a module is the
sum of all modules or component costs therein, when there are
parallel units at the immediate lower level. In practical systems,
it is assumed that multilevel redundancy incurs additional
cost due to the adding or duplication of redundant units to
modules, and the increased number of components. In general,
the redundancy cost of can be expressed mathematically as

(3)

Note that there are definite advantages to using modular redun-
dancy in multilevel redundancy allocation, because the cost of
adding, duplicating, or repairing a module is lower than carrying
out a similar action upon a component. This result holds because
the lower the level in a system, the more costly the repair job.

B. Redundancy Allocation Optimization Problem

The redundancy allocation optimization problem in a relia-
bility system consisting of a set of design variables is expressed
as

(4)

(5)

In a set of design variables , each design variable has a min-
imum, and maximum redundancy value. is a given, fixed
positive value for the cost constraint. For example, the problem
of optimizing a 2-level series redundancy allocation, as shown
in Fig. 3, can be stated mathematically as

(6)

The cost function used in this paper for the cost constraint is
described by (3).
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TABLE I
HIERARCHICAL GENOTYPE REPRESENTATION

Fig. 4. Representation schemes of design variables in GA, and HGA: (a) con-
ventional GA; (b) HGA.

III. HIERARCHICAL GENETIC ALGORITHM

A HGA [28] is an advanced genetic algorithm that can rep-
resent hierarchical and constraint relationships among design
variables using hierarchical genotypes, and can optimize hier-
archical problems in a single optimization process. This HGA
is further customized with a new variable coding method, and
subsequently applied to solve the MRAOP in this paper. Fig. 4
illustrates that conventional GA [13] use vector genotype struc-
tures, in contrast to HGA that use hierarchical genotype struc-
tures.

The hierarchical redundancy allocation optimization prob-
lems here involve hierarchical relationships among design vari-
ables. Such hierarchical relationships can be handled well using
hierarchical genotype representation. Because the HGA has spe-
cial types of genotype structures, new crossover, and mutation
operators have to be applied. The HGA allows lower branches
of the hierarchical structure to be exchanged, in addition to the
exchange of genes. Using such genetic operations, new individ-
uals are produced, and optimal hierarchical structures can then
be obtained.

A. Solution Encoding

A hierarchical genotype is represented using two types of
nodes, ordinal, and terminal nodes, as shown in Table I. Ordinal
node corresponds to redundancy unit , and is character-
ized by several parameters, and design variables. Parameters ,

and stand for the redundancy of unit , and the number of
sub-units, respectively. Here, is given by a design variable at
an upper node, while the parameter is a fixed value that de-
pends on the optimization problems to be solved. is a de-
sign variable denoting the redundancy for the -th sub-unit of
the -th redundancy unit, where varies from 1 to . Therefore,
there are design variables in unit . A terminal node
corresponds to one of the lowest units, and incorporates design
variable , unit reliability , and unit cost . Because there are
no sub-units, this terminal node does not contain parameter ,
or design variable . Using these two genotypes, all possible
optimal solutions for series reliability allocation problems can
be represented.

Furthermore, the ordinal, and the terminal genotypes each
have two functions, namely, reliability, and cost. When the re-
liability function in the ordinal genotype is called, a calcula-
tion is conducted using (1). The particular equation selected de-
pends on whether the unit is in series, or in parallel. When cal-
culating either of these two equations, the reliability values of
the lower units, , are required; and these are obtained by
calling the reliability function of the lower units. Finally, the
reliability function of the terminal genotype returns its unit reli-
ability . Thus, the reliability functions are recursively called,
and the total system reliability can be obtained. Similarly, the
system cost can be obtained by calling the cost function em-
bedded in each genotype.

Fig. 5 illustrates an example of the genotype encoding for a
three-level series redundancy configuration. Fig. 5(a) shows an
optimal redundancy configuration for a system consisting
three modules, , , and , at the second level. The or-
dinal, and terminal nodes are assigned to represent modules,
and component units at each level. Note that unit features, such
as the redundancy and configuration, series or parallel, are ex-
pressed in the corresponding upper node.

The HGA example shown in Fig. 5(b) illustrates that geno-
types using fixed arrays, which are frequently used in various
optimization problems, are not applicable to this problem be-
cause the number of design variables varies according to the
number of redundant units. In other words, the number of genes
varies dynamically based on the proposed solution configura-
tion. In this case, the two design variables, , and , rep-
resent the redundancy of , because there are two redundant
units for , which is the unit above in the hierarchy. If
the number of redundant units for increases, the number
of design variables for will also increase. The solution en-
coding scheme proposed in this paper can successfully represent
different numbers of design variables at every hierarchical level.
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Fig. 5. Hierarchical genotype representation in system � . (a) An example of a multilevel reliability system � ; (b) design variable values at each ordinal, and
terminal node.

B. Objective Function

A penalty function method has been applied to transform the
constrained problem into an unconstrained problem, by penal-
izing infeasible solutions via a penalty term added to the objec-
tive function for any violation of the constraints. In this paper,
we used Gen & Cheng’s method [29], which applies a severe
penalty to infeasible solutions. The fitness function, , is
calculated using

(7)

where, , , and are the system reliability, penalty func-
tion, and a set of design variables, respectively. We calculate the
value of using Gen & Cheng’s penalty function for each in-
dividual; and for highly constrained optimization problems, the
infeasible solutions occupy relatively large portions of the pop-
ulation at each generation. The penalty approach here adjusts
the ratio of penalties adaptively at each generation to achieve a
balance between the preservation of information, the selective
pressure for infeasibility, and the avoidance of excessive penal-
ization.

C. Crossover Operators

Crossover operations between individuals are conducted
among each corresponding set of genes, using a two-step pro-
cedure. For the initial step, any other individual is first selected
as the crossover partner, and crossover operators then exchange

the corresponding genes of the two individuals. Here, when a
gene of an alternative for a substructure is exchanged with the
corresponding gene of another alternative, all corresponding
lower substructures are also exchanged, to preserve consis-
tency in the selection of alternatives. If this operation were not
conducted in this way, meaningless lower structures might be
generated in the lower positions of the exchanged substructures.
The algorithmic procedures are as follows.

Step 1 Select two individuals for crossover operations,
then find the set of genes at the highest level of the multi-
level structural system for each of the two individuals, and
start the crossover operation with probability .
Step 2.1 If the gene of individual 1, and that of indi-
vidual 2, are different, then conduct a crossover operation
for with probability . This operation is the same
as a uniform crossover of simple genetic algorithms with

set to 0.5. Then, proceed to Step 2.3. If crossover oper-
ations are not conducted, proceed to Step 2.4. If the genes
of both individuals are the same, proceed to Step 2.2.
Step 2.2 If contains a subordinate set of genes,
it will be examined for possible crossover operations in
Step 2.1. Otherwise, proceed to Step 2.4.
Step 2.3 When genes are exchanged between indi-
viduals 1 and 2, the lower substructures of each individual
are also exchanged.
Step 2.4 Increment by 1. When , set ,
and increment by 1. When , end the crossover
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Fig. 6. Problem-A (a three level MS system [21]).

Fig. 7. Problem-B (a four level MS system).

operations because the set of genes has been exhausted,
and return to the crossover operations for the parent set of
genes.

D. Mutation Operators

In mutation operations, mutation operators are first applied to
the set of genes at the highest level of the multilevel structural
system, and mutation operators are recursively applied to their
child sets of genes in the same way as for crossover operators.
The algorithmic procedures are as follows.

Step 1 Examine the substructure at the highest level.
Step 2.1 Determine whether or not a mutation opera-
tion should be conducted, with mutation probability
for the gene . If the mutation is conducted, proceed
to Step 2.3. Otherwise, proceed to Step 2.2.
Step 2.2 If contains a child set of genes, proceed to
Step 2.1, and examine the child set of genes. If not, proceed
to Step 2.5.
Step 2.3 Randomly generate .
Step 2.4 Randomly reconstruct the genes of all sub-units
for the selected alternative.
Step 2.5 Increment by 1. When , set ,
and increment by 1. When , end the crossover
operations because the set of genes has been exhausted,
and return to the crossover operations for the parent set of
genes.

Fig. 8. Coding schemes in conventional GA, and HGA for a bi-level series con-
figuration. (a) Redundancy allocation in unit � ; (b) conventional GA coding
of unit � ; (c) HGA coding of unit � .

TABLE II
HGA PARAMETERS

IV. NUMERICAL EXAMPLES

A. Hierarchical Series Redundancy Allocation Problem

The HGA was applied to optimize multilevel series redun-
dancy allocation problems having two different configurations.
The first configuration is called problem-A, and is similar to the
problem described in Yum & Kim [21], while the second config-
uration is called problem-B. Figs. 6 and 7 respectively represent
problem-A, and problem-B.

Problem-A contains three levels, and problem-B contains four
levels. All units of these configurations are in series. We applied
the GA, proposed by Yum & Kim [21] to solve MRAOP to com-
pare the obtained solutions with those obtained by the HGA. We
call this GA a conventional GA because it uses vector coding of
the design variables, and applies a special crossover & mutation
operator to handle such coding.

The genotypes for the conventional GA [21] are encoded as
an ordered couple of a design variable, , and an indicator
variable, ; , where the subscript is the
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TABLE III
INPUT DATA

Fig. 9. Convergence of GA, and HGA in problem-A.

Fig. 10. Convergence of GA and HGA in problem-B.

index of the chromosome to which the gene belongs, and sub-
script denotes units. A chromosome is represented as

The value of the indicator variables for a unit is 1 when that unit
is subject to redundancy, and 0 when that unit is not allowed to
have redundancy. Only one unit among the set of units in a di-
rect line is selected to have redundancy so that the sum of the

Fig. 11. Optimal solutions for problem-A obtained using GA, and HGA.

Fig. 12. Optimal solutions for problem-B obtained using GA, and HGA.

indicator variables of units along a direct line is 1. On the other
hand, we used hierarchical genotype encoding when applying
the HGA to solve the MRAOP. Coding schemes for conven-
tional GA, and HGA can be understood more clearly by exam-
ining an example of redundancy allocation in a bi-level series
unit having two sub-units, , and , as shown in Fig. 8.

The redundancy values for sub-units , and are 2, and
1, respectively. Note that there are two direct lines, ,
and in Fig. 8(b). Because only a unit at a level is
selected to have redundancy among the set of units in a direct
line, unit cannot have redundancy if units and are
subject to redundancy. Thus, the GA coding scheme does not
allow redundancy at two levels simultaneously. In contrast, the
HGA allows redundancy at two levels simultaneously. Fig. 8(c)
shows the reliability for both the system, and the sub-units.

Both a conventional GA, and a HGA were applied when
optimizing multilevel series redundancy allocation problems
having two different configurations, to evaluate their appli-
cability for solving multilevel allocation problems. The cost
function , described in [21], is used as a
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TABLE IV
OPTIMAL HIERARCHICAL CONFIGURATIONS

constraint for these two optimization problems. The symbols
, , and respectively represent the number of parallel units,

the unit cost, and the additional cost.

B. Input Data

Suitable parameters for optimizing the two allocation prob-
lems were selected based on several experimental runs using a
conventional GA, and the HGA we created. We observed the
convergence of fitness functions, and selected suitable GA op-
erator values for subsequent use in the optimization process.
Table II provides a summary of the average, and best fitness
values for different HGA parameters obtained during 20 runs
with 500 generations in each run. The best crossover, and muta-
tion rate values for solving these problems when using a conven-
tional GA were 0.8, and 0.1, respectively. Similarly, when using
the HGA, these best values were respectively 0.8, and 0.05. An
initial population of 100 individuals was generated randomly
when using both the GA, and HGA. This population size was
selected based on the performance evaluation of the algorithms
with different population sizes.

Twenty two design variables were used with the conventional
GA, which is the sum of the redundancy numbers plus the con-
straints for direct lines. In contrast, the number of design vari-
ables used with the HGA was 11. The number of generations
was 500 in each case, and a maximum redundancy number of
five was imposed for both the modular, and component redun-
dancy schemes. The unit reliability, and the unit cost at the very
lowest level in the multilevel redundancy allocation problems
were used when calculating the unit reliability, and the unit cost
of upper level units, up to the system level. Table III summarizes
the unit reliability, and unit cost of the components at the very
lowest level in both problems. Note that we used the same data

for problem-A that Yum & Kim [21] used, to enable a compar-
ison of the optimal solutions obtained by the HGA with those
provided by a conventional GA.

C. Computational Results

We separately applied the HGA, and GA when solving the
problem-A, and problem-B allocation optimization problems.
First, we checked the convergence of the optimal solutions when
using the GA, and HGA; and Figs. 9 and 10 show the results
when using the two different types of algorithm.

The x-axis represents the number of generations, and the
y-axis represents the system reliability. The cost constraints
for these two graphs were 240 for problem-A, and 500 for
problem-B. These figures indicate that the HGA yields a better
optimal solution than the conventional GA under the same
computational environment.

To assess the influence of cost constraints upon the optimal
solutions, 20 cases for a 3-level problem, and 15 cases for a
4-level problem, were examined. Ten 500-generation trials were
performed using each algorithm type, and the best solution of
the ten-trial set was chosen as the optimal solution in each of
these cases. Figs. 11 and 12 show the trends of optimal solu-
tions obtained using the GA, and HGA. The x-axis represents
the cost constraint, and the y-axis represents the optimal system
reliability.

Next, we examined ten cases in which the unit reliability
values were varied while the cost constraint was held to a value
of 300 for problem-A, and 500 for problem-B. In the same
manner as before, ten 500-generation trials for each of these ten
cases were carried out, and the best solution was chosen as the
optimal solution for each case. Note that the number of function
calls in each case considered here was the same for both GA,
and HGA. Tables IV and V summarize the optimal solutions
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TABLE V
OPTIMAL HIERARCHICAL CONFIGURATIONS

obtained when using the GA, and HGA for problem-A, and
problem-B, respectively.

An interpretation of the optimal solution data summarized in
these two tables is provided in Fig. 13, which shows the arrange-
ment of the units in problem-A, and problem-B. It is a graphic
representation of the optimal solutions for the fourth case listed
in Table IV.

Fig. 13(a) illustrates the optimal arrangement of the modules
and components in the system obtained when using the GA, and
Fig. 13(b) illustrates the optimal arrangement obtained when
using the HGA.

V. DISCUSSION

The numerical examples solved in the previous section
demonstrate that hierarchical genotype representations of
hierarchical design variables provide superior solutions in com-
parison to vector representation. The most suitable GA, and
HGA parameters were selected from the results of a number of
preliminary runs; and Table II shows that the most useful HGA
crossover, and mutation rates are 0.8, and 0.05, respectively,
determined by twenty 500-generation runs. We observe in
Fig. 9, and Fig. 10 that the HGA offers superior convergence,
and that this advantage is achieved more smoothly by searching
a larger feasible design space than when a conventional GA is
used.

Moreover, Figs. 11 and 12 indicate that the optimal solution
obtained using the HGA is superior to its conventional GA coun-
terpart. After examining the solution data, we find that there is
an approximately 4% maximum improvement in the 3-level se-
ries allocation problem, and a 5% improvement in the 4-level
series allocation problem. Similarly, in Tables IV and V, we
see that the HGA yielded average improvements of 4.7%, and

5.82% over the conventional GA. Moreover, the maximum im-
provement in the optimal solutions when using the HGA was
found to be 9.23% in the 3-level problem, and 11% in the 4-level
problem. The improved reliability obtained using the HGA is
achieved without incurring additional material or parts costs.
This is an important milestone because, in high reliability ap-
plications, even very small improvements in reliability are often
difficult to obtain. Thus, it appears incontrovertible that the hi-
erarchical genotype scheme typical of HGA is better suited for
optimizing multilevel allocation problems than the one-dimen-
sional vector schemes of conventional GA.

The reason why the GA yielded inferior solutions in compar-
ison to the HGA is that the GA requires vector transformation
of the hierarchical design variables. The vector transformation
of hierarchical design variables into one dimensional array rep-
resentations actually reduces the feasible design space, and the
GA may consequently fail to find superior solutions that exist
just beyond its feasible design space. Because HGA do not re-
quire vector transformation, the feasible design space remains
unaffected, and this leads to better optimal solutions during the
searching process. Additionally, the hierarchical coding method
proposed in this paper can express the exact internal structure
with series linkage.

Furthermore, the simultaneous allocation of redundancy at
two or more levels also leads to better solutions than those pro-
vided by conventional GA. Allocated resources can be appropri-
ately shared at all levels, and one such optimal arrangement of
redundant units is graphically illustrated in Fig. 13. We see that
the optimal HGA solution contains two parallel modules for unit

; and sub-units , , and have single, double,
and double redundancy, respectively. On the other hand, the op-
timal solution obtained using the conventional GA contains four
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Fig. 13. Optimal solutions for the fourth case listed in Table IV. (a) Optimal configuration obtained using GA; (b) optimal configuration obtained using HGA.

parallel modules, and all the sub-units have only single re-
dundancy. A similar pattern can be seen concerning the other
two modular units. Hence, an additional significant advan-
tage that the use of HGA provides is that redundancy at both the
unit, and the sub-unit level can be achieved simultaneously.

The performance of the HGA in solving the two examples
here indicates that hierarchical genotype representation is not
only capable of solving multilevel reliability optimization prob-
lems of any size, but also that it allows significant flexibility so
that every possible redundancy combination can be evaluated.
This flexibility in redundancy optimization seems impossible to
achieve when using conventional GA. Another useful feature of
hierarchical genotype representation is that optimal redundancy
values are given hierarchically for each module, and component.
This is highly desirable in a complex system, when the goal of
ensuring optimum reliability depends on determining exactly
how many redundancies are required for a particular module at
a particular level in the hierarchical system.

VI. CONCLUSIONS

Multilevel redundancy allocation optimization problems are
frequently encountered in complex system designs. This paper
proposed a general formulation for multilevel redundancy allo-
cation optimization problems that aim to maximize system relia-
bility. These multilevel optimization problems have hierarchical
design variables, so we proposed a new coding method for use
in a HGA, in which hierarchical design variables of MRAOP are
represented using two types of hierarchical genotype: nodal, and
terminal. We applied the newly developed HGA, and a conven-
tional GA separately, to solve two multilevel series redundancy
allocation optimization problems having three, and four levels.
The optimal solutions for these two problems demonstrated that

the proposed HGA provides optimal system reliability that is su-
perior to the conventional GA results, because it does not depend
on the use of vector coding to represent the hierarchical vari-
ables, and can preserve the original design space. HGA using
the new variable coding method presented here can be applied
in other hierarchical optimization problems, but the efficiency
of such algorithms must be investigated. We hope to extend our
approach for optimizing the system reliability of other multi-
level structures such as hierarchical series-parallel, multilevel
network, and other multilevel configurations in future work.
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