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Identifying Optimal Components
in a Reliability System

Josep Freixas and Montserrat Pons

Abstract—The first step in a reliability optimization process is to
make a reliability assessment for each component in the system. If
this assessment is made in a qualitative way, by grouping together
components with the same reliability, and establishing a prevalence
order among groups, is there a way to decide which components
have the greatest Birnbaum measure without computing the exact
value of this measure? In this paper, three relations between com-
ponents are introduced and studied, and it is proved that they are
useful for selecting the components that have the biggest effect on
the system reliability in the sense of Birnbaum. An algorithm that
uses the results in the paper to select these important components
is also provided.

Index Terms—Birnbaum’s measure of reliability importance,
important components, pre-ordering relation.

ACRONYM1

CSS complete semi-coherent structures

NOTATION

the set of components, which are assumed to be
numbered consecutively from 1 to .
random variable associated to component :

if component is functioning,
otherwise. The variables are assumed to be
-independent.

state vector, .

it represents the state vector where the th
component has been changed to .
structure (Boolean) function of the system:

if system is functioning,
otherwise.
semicoherent system, its structure function is
nondecreasing in each argument, , and

.
reliability of the th component, .

reliability vector, .

reliability vector with the th component of
changed to .
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1The singular and plural of an acronym are always spelled the same.

semicoherent structure defined by the set of path
sets in .
semicoherent structure defined by the set of
minimal path sets in .
system reliability, ;

.

Birnbaum’s measure of reliability importance
of component : the partial derivative of with
respect to , i.e., , or .

I. INTRODUCTION

ENGINEERS are often faced with the task of identifying
the components of a system that have the biggest effect

on the system reliability. These components deserve especial
interest in many circumstances (if the reliability of the system
has to be increased, if certain types of improvement in input
parameters has to be done, etc.). In general, the identification of
these components is done by using some measure of component
importance.

One of the most used measures for determining the impor-
tance of a component in a binary semicoherent system is Birn-
baum’s measure of reliability importance [1], which is mainly
used in classical sensitivity analysis. The calculation of the Birn-
baum measure can be difficult if the number of components in
the system is not small, but it is impossible to find its exact value
if component reliabilities are not precisely known.

The aim of this paper is to investigate the problem of finding
the component(s) that have the biggest effect on the system re-
liability in the sense of the Birnbaum measure, i.e., the compo-
nents with the highest Birnbaum measure, when only the struc-
ture function of the system, and the ranks of components’ re-
liabilities (but possibly not their exact values) are known. We
refer to this (these) component(s) as the most important com-
ponent(s) in the sense of Birnbaum in a reliability system. To
help identify these (most important) components, we use some
binary relations defined on the set of nodes of the system, i.e.,
binary relations that do not depend on the nature of the compo-
nents, but only depend on the structure of the system.

Some work has previously been done in similar contexts. In
particular, the binary relation called the “criticality relation” was
introduced in [2] as a tool to find an optimal component arrange-
ment that maximizes system reliability, and some other relations
between nodes have also been considered in the literature [3],
[4]. These relations have subsequently been used to compare
the Birnbaum measure between system components [5]–[7].
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TABLE I
THE MOST IMPORTANT COMPONENTS IN A 2-OUT-OF-3 SYSTEM

In this paper, two new binary relations (pre-orderings)
between nodes are introduced, and it is proved that they are
stronger than the criticality relation, i.e., they imply it. The
main results of this paper show that these newly defined binary
relations between components induce a ranking between their
Birnbaum measures, and so they play a key role (together
with the criticality relation) in identifying the most important
component(s) in the sense of Birnbaum in a complex relia-
bility system. Using these three pre-orderings, we are able to
construct an algorithm that selects a set of components, which
we call potentially important, and which contain the most
important one(s).

Similar work could be done using other alternative impor-
tance measures. In [8], and [9] the criticality relation is used
to study the importance of components in the sense of Fussell-
Vesely measure. The study we propose in this paper might also
be adapted for other reliability importance measures, such as
those considered for example in [10], or [11].

Recall that -out-of- systems are functioning iff at least of
the components are functioning, i.e., if

, and otherwise. Series, and parallel systems can be
considered particular cases for , and respectively.

Series, and parallel systems are conspicuous examples of sys-
tems wherein the ordering between components’ reliabilities de-
termines the most important component(s). Indeed, the most im-
portant component in a series system is the least reliable one,
while in a parallel system the most important component is the
most reliable one.

On the contrary, in a 2-out-of-3 system, the simplest interme-
diate case between parallel and series systems, one can easily
check that the election of the most important component not
only depends on the ordering between components’ reliabilities,
but it also depends on the actual values of these reliabilities. The
following table summarizes all the possible situations, having in
mind that all components play interchangeable roles.

The first line in Table I is a particular example of a result
in [12] where it is proved that, in a -out-of- system with
independent components, Birnbaum’s importance ordering be-
tween components agrees with the ordering between their corre-
sponding reliabilities iff all of them are greater than

.
In general, as asserted in [13], by examining Birnbaum’s im-

portance measures of components in a given system, system an-
alysts could gain better insight into the system design without
resorting to mathematical programming methods as described
in [14], or [15].

To end this introduction, we summarize in the following
lemma some basic properties of the Birnbaum measure .
The proof is omitted because parts (i)-(iii) are trivial, (iv) is

a consequence of (i) & (iii), and (v) follows from the law of
total probability which leads to the following expressions (for

):

Recall that a component in a system is irrelevant if its failure
does not affect the performance of the system, and it is rele-
vant otherwise. A semicoherent system without irrelevant com-
ponents is said to be coherent.

Lemma 1.1: Let be a semicoherent structure, ,
, . Then

(i) .
(ii) If is an irrelevant component, then .

(iii) If is a relevant component, and , then
.

(iv) If , and for all , then .
Moreover, if is relevant, and , then we get

.
(v) For all , , we have

The organization of the paper is as follows. In Section II, three
pre-orderings are considered on the set of components, and their
properties are established. In Section III, three main theorems
are stated which relate Birnbaum’s measures of two different
components linked by some of the previously defined pre-or-
derings. Section IV contains the conclusions. An algorithm that
uses the theorems of Section III is shown in the first part of the
Appendix. The second part of it is devoted to the proofs of the
main statements of the paper.

II. SOME USEFUL PRE-ORDERINGS ON

We are going to introduce three binary relations between
components that will be helpful to solve the proposed problem.
One of them is already well known, and it is a particular pre-or-
dering between components. It is known as the desirability
relation in game theory (see, e.g., [16], and [17]), or as the
criticality relation in reliability theory (see [2]), and it is a
useful tool to compare the relative strength of the components
of a system. A classification theorem (see [18]) allows us to
generate and count, up to isomorphism, the number of semi–co-
herent structures for which the criticality relation is complete.

The other two pre-orderings are new. Both of them extend
to (imply) the criticality relation, and the simultaneous verifi-
cation of them provides us with a new characterization of the
irrelevance.

Definition 2.1: Let be a semicoherent structure. Given
two elements , , we consider the following binary rela-
tions.

(i) The external domination relation. iff , or
.If , we say

that component externally dominates .
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Fig. 1. Coherent structure with N = f1; 2; 3; 4; 5; 6g, and � =

ff1g;f2g;f3;4g;f5;6gg.

(ii) The internal domination relation. iff , or
.If , we say that

component internally dominates .
(iii) The criticality relation. iff [

, whenever ]. If we say
that component is at least as critical as component .

Proposition 2.2: Let be a semicoherent structure. The
external domination relation, the internal domination relation,
and the criticality relation are transitive relations on .

It is clear that the three considered binary relations are re-
flexive. The former proposition shows that they are pre-order-
ings, i.e., they are reflexive and transitive. It is important to note
that these pre-orderings can be characterized using minimal path
sets. This fact considerably reduces the computational work for
large systems.

Proposition 2.3: Let be a semi-coherent structure, and
, be different elements in .

(i) iff
(ii) iff

(iii) iff
The following example shows that in general the three pre-or-

derings are not antisymmetric (i.e., they are not ordering rela-
tions), and also that they are not total (i.e., there exist incompa-
rable elements).

Example 2.4: Let be a coherent structure such that
, and

(Fig. 1). Then
(i) , and ; , and ; and there are no other

links by the external domination relation.
(ii) , and ; ; and there are no other

links by the internal domination relation.
(iii) , and ; , and ; , and

; ; and there are no other links by
the criticality relation.

Definition 2.5: Let be a semicoherent structure. Given
two elements , , the following binary relations will be
used:

(1.a) iff , and
(1.b) iff , and
(2.a) iff , and
(2.b) iff , and
(3.a) iff , and
(3.b) iff , and

Obviously, due to the reflexivity of the three pre-orderings,
, , , we have

but the converse implications do not hold because the pre-order-
ings are not antisymmetric.

These binary relations are not independent. The following
proposition states some relations among them.

Proposition 2.6: Let be a semicoherent structure, and
, be different elements in .

(i)
(ii)

(iii)
(iv) .
The former proposition proves that each one of the new pre-

orderings implies the criticality relation. Moreover, because Ex-
ample 2.4 has shown that neither the converse of (i) nor the con-
verse of (iii) holds, then we conclude that the two new pre-or-
derings are stronger than the criticality relation. However, notice
that if , are different components in , and there is no
with , , then iff .

The following proposition provides a new characterization of
irrelevant components using external, and internal subordina-
tion pre-orderings.

Proposition 2.7: Let be a semicoherent structure, and
, be different elements in . Then

, and is an irrelevant component.

III. METHOD TO FIND THE MOST IMPORTANT COMPONENTS

Recall that our goal is to select the most important compo-
nents in a reliability system where is a reliability
vector with a known ordering between its components. Our way
of doing this is to construct a set of potentially important com-
ponents, by discarding, from the whole set of components, those
that are strictly less important than another one in the set.

The theorems in this section explain which one of two compo-
nents has maximum –measure whenever they are comparable
by some of the foregoing pre-orderings. In this case, the compo-
nent with minimum measure is clearly not the most important,
and so it can be removed from the set of potentially important
components. This principle is the base for the construction of a
step-by-step algorithm for finding a set of potentially important
components for all semicoherent structures , and for all
reliability vectors in , using Theorems 3.3, 3.4, and 3.5.

Because irrelevant components have -measure zero for all
reliability vectors (Lemma 1.1-(ii)), they will never be the
most important components in a system. This is why, in the rest
of this paper, we assume that all components are relevant.

We start the section with a proposition that shows the utility
of the former binary relations to solve the problem of finding
the component with the biggest effect on the system reliability.

Proposition 3.1: Let be a semicoherent structure,
, and , be different elements in .

(i) . If then
the converse is also true.

(ii) . If then
the converse is also true.
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(iii) .
(iv) , and .
The following proposition proves that, if two components are

not conveniently related, then there are no arguments to discard
any of them as potentially important components in the system.

Proposition 3.2: Let be a semicoherent structure, and
let , be different elements in . Also let , . Then

(i) If , and , then there exists a reliability vector
such that , , and

.
(ii) If , and , then there exists a reliability vector

such that , , and
.

(iii) If , then there exists a reliability vector
such that , , and .

The following theorem proves that if a component exter-
nally dominates another component , and its reliability is
lower than , then component can be discarded as potentially
important. But if is greater than , then neither of the two
components can be discarded, i.e., both of them could still be
the most important component in the system.

Theorem 3.3: (On the external domination relation) Let
be a semicoherent structure, , and , be

different relevant components in . Then
(i) , and .

(ii) , and with .
(iii) if , and , then there exist vectors ,

with , and , such that
, and .

In the next theorem, it is proved that if a component inter-
nally dominates another component , and its reliability is
greater than , then component can be discarded as poten-
tially important. But if is lower than , then neither of the
two components can be discarded.

Theorem 3.4: (On the internal domination relation) Let
be a semicoherent structure, , and , be

different relevant components in . Then
(i) , and .

(ii) , and with .
(iii) if , and , then there exist vectors

with , and , such that
, and

The last theorem proves that if a component is more critical
than another component , and their reliabilities coincide, then
component can be discarded as potentially important. But if

is different of , then none of the two components can be
discarded except in the cases provided by the former two theo-
rems.

Theorem 3.5: (On the criticality relation) Let be a
semicoherent structure, , and , be different relevant
elements in . Then,

(i) , and .
(ii) , and with .

(iii) if , , , and , then there exist vectors
, with , and ,

such that , and

Fig. 2. Coherent structure with N = f1; 2; 3; 4g, and � =

ff1g;f2;3g;f2;4gg.

The theorems in this section allow us to know, for all possible
ways in which two components are related by any of the pre-or-
derings considered, and for all orderings between their reliabil-
ities, which one of these situations happens: a) one of them can
be removed from the set of potentially important components, or
b) both of them are candidates to be the most important compo-
nent(s). As a consequence, we can use these theorems to select
a list of potentially important components, given any particular
ordering of their reliabilities, with ties allowed. Let us remark
that the algorithm can be easily implemented (this is done in the
Appendix) in a computer whenever the set of minimal path sets
is not too large.

We conclude the paper with an example that will help the
reader to better understand the provided results.

Example 3.6: Let be a coherent structure such that
, and (Fig. 2).

Assume that the ordering between components’ reliabilities is
Which is the most important

component(s), i.e., which component(s) has the highest Birn-
baum measure?

Using Proposition 2.3-(i),(ii) we have

Consequently, from Proposition 2.6-(ii),(iii),(iv) we get

Now, because , and , then we get
using Theorem 3.3, and so component 4 is clearly not the most
important one. Using the same argument, component 3 can be
discarded. Finally, because , and , then

using Theorem 3.4. Thus component 2 can not be the
most important either. As a conclusion, the set of potentially im-
portant components reduces to a singleton, component 1. This
tells us that component 1 is the most important in this reliability
system.

The use of Theorems 3.3, 3.4, and 3.5 does not always allow
us to find directly the most important component as in this ex-
ample, but this procedure will always allow us to select a set of
potentially important components containing the most impor-
tant component(s).

IV. CONCLUSIONS

The paper contains a new algebraic method for determining
the most important components, in the sense of the Birnbaum
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measure, in a semicoherent system with statistically indepen-
dent random Boolean variables.

For this purpose, two new pre-ordering relations between the
components of the reliability system are introduced (external,
and internal domination). These two pre-orderings, as well as
the well known criticality pre-ordering (which extends each
one of them), are defined through the set of path sets of the
system. The three relations are studied in detail, from the alge-
braic point of view, and are used to derive the main results of
the paper, three theorems which respectively correspond to each
one of the three pre-ordering relations. These theorems provide
us with sufficient conditions for assuring certain inequalities
between the Birnbaum measure of reliability importance of
two given components. More precisely, the theorems state
that if two fixed components , are comparable by one of
these pre-orderings, and if their reliabilities , satisfy the
corresponding (in)equality, then we can determine a priori the
ordering between their Birnbaum’s measures , ,
without computing them.

The theorems in this paper extend the results obtained in [5]
by using the criticality relation. There it is proved that if com-
ponent is strictly greater than by the criticality relation, and
their reliabilities coincide, i.e., , then the Birnbaum mea-
sure of is strictly greater than that of . In this paper, we prove
that if it is also possible to know which of them has
a greater Birnbaum measure, by considering two newly defined
stronger pre-orderings on the set of nodes. It is proved that if is
greater than by the external domination relation, and ,
then the Birnbaum measure of is strictly greater than that of .
We come to the same conclusion if component is greater than

by the internal domination relation, and . Using these
results, we construct a set of potentially important components,
i.e., components that may be the most important ones, by dis-
carding from the whole set of components those that are strictly
less important than another one.

The results for the criticality relation, and for the two domina-
tion relations introduced in this paper, complement each other.
In fact, these domination relations are stronger than the criti-
cality relation so that the criticality relation between two com-
ponents appears more frequently than each one of the two dom-
ination relations. On the other hand, the condition re-
quired to use the criticality relation for discarding a component
(Theorem 3.5) is stronger than the inequalities needed to use the
domination relations (Theorems 3.3 and 3.4).

If at least two components in a system are related by the crit-
icality relation, our procedure can be applied to find a set of
potentially important components. The widest applicability ap-
pears when the criticality relation is total (complete semi-co-
herent structures). The number of complete semi-coherent struc-
tures (CSS) of less than 9 components (obtained by program-
ming the four conditions stated in [18] to classify them) is given
in Table II, and illustrates that the study presented in this paper
has a wide applicability.

It would be interesting to study how the theory introduced in
this paper for Birnbaum’s measure can be extended to other reli-
ability importance measures such as improvement potential, risk
achievement worth, risk reduction worth, or Fussell-Vesely’s
measure.

TABLE II
NUMBER OF CSS WITH n COMPONENTS

Another extension for our work should include multistate
monotone systems where components and system are allowed
to have an arbitrary (finite) number of states/levels.

Another interesting problem would be to find a subclass
of semicoherent structures as wide as possible for which
the respective pre-orderings induced for the two most well
known measures of structural importance given by Barlow and
Proschan, and Birnbaum coincide; i.e., to study the ordinal
equivalence of the two structural importance measures.

APPENDIX I
ALGORITHM

Given a semicoherent structure , and a particular or-
dering between the components of the reliability vector

, with ties allowed, the following algorithm selects a set
of potentially important components using Theorems 3.3, 3.4,
and 3.5. It uses three auxiliary procedures: , ,
and , which are described after the main algorithm, that
check respectively if , , and .

Main alogoritm

INPUT:

• The number of components.
• The set

of
minimal path sets, where the superindex indicates
the number of components in the set, and for each

, is the number of minimal path sets
with elements. We assume that for all ,
the sets are arranged in lexicographic
order of their components.

• A partition of the set of components
. We assume that all components in

have the same reliability , and that
.

OUTPUT: The set of potentially important components.

STEP 1 (discarding irrelevant components): For every ,
for every , and for every ,
check if . If does not belong to any , then let

for the unique value of such that
, i.e., , and let .

STEP 2 (discarding components within those that have the
same reliability): For every , and for all
pair with , if , and

, then let . In this way, a set is
being constructed of elements that will be discarded. We
don’t discard them yet because they still could help other
components to be discarded in the next step.
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STEP 3 (discarding components within those that have
different reliability): For every , for every

, and for every , check
if , and if . If , i.e., , then let

. If , i.e. , then let .

STEP 4: The set of potentially important components is
.

Procedure ED

INPUT: Two different components and of .

OUTPUT: The Boolean value , which is 1 if ,
and 0 otherwise.

STEP 0: Initialize .

STEP 1: For every , and for every
, check if . If this is the case, then if

, let , and finish step 1.

STEP 2: Let .

Procedure ID

INPUT: Two different components and of .

OUTPUT: The Boolean value , which is 1 if ,
and 0 otherwise.

STEP 0: Initialize .

STEP 1: For every , and for every
, check if . If , and it is also

, then let , and finish step 1. If but ,
then let , and search if there is some

and some such that . If
no such can be found, then let and finish step 1.

STEP 2: Let .

Procedure CR

INPUT: Two different components and of .

OUTPUT: The Boolean value , which is 1 if ,
and 0 otherwise.

STEP 0: Initialize .

STEP 1: For every , and for every
, check if . If , and also ,

then let , and search if there is some
and some such that . If

no such can be found, then let , and finish step 1.

STEP 2: Let

APPENDIX II

PROOFS

A. Proof of Proposition 2.2

To prove that the external domination relation is transitive,
assume that , and that . Suppose
that is such that , and . We must prove that

. There are two possibilities:
If , because , then .
If , because , and , we have .

But , and , thus , and using
monotonicity, .

To prove that the internal domination relation is transitive,
assume that , and that . Suppose that

is such that , . We want to prove that .
There are two possibilities:

If , because , we have .
If , let . Because (due to the

monotonicity of ), , , and , we have
. But , , and implies

, as desired.
To prove that the criticality relation is transitive, assume that

, and that . Suppose that
is such that , and we want to prove that .
There are two possibilities:

If , then we get ; and because ,
and , we have . But it is also true that

; and because , we have .
If , let . Then ,

and . Because , we get
. But ; and because ,

and , we get .

B. Proof of Proposition 2.3

To see (i), assume that , , and . Then, if
, it would be , but this contradicts the minimal

character of the path set . Conversely, assuming the hypothesis,
let be such that , and . We must prove that

. Let be such that . If it would
be , and thus (contradiction). Thus ; and as a
consequence, , and .

To prove (ii) assume that , , and . Then
, and , ; and thus

. Conversely, assume the hypothesis, and let
be such that , . We must prove that . Let

be such that . Now, if then
, and thus . On the other

hand, if , then , and thus .
Finally, to prove (iii), assume that , and let be

such that , and . Because ,
we get . Conversely, assume
the hypothesis, and consider such that

. We want to prove that . Let be such that
. Now, if , we get , and

thus . If , then , and so .
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C. Proof of Proposition 2.6

To prove (i), notice that if , because there is no
such that , and , then we get .

If , because , there exists such that ,
but . Now, , because if ,
it would be (because ), which is a
contradiction. Thus, , and this proves (ii).

It is clear from Proposition 2.3 that implies . If
, because , there exist such that , but

. Now , because if , it would
be (because ), which is a contradiction. Thus,

.

D. Proof of Proposition 2.7

If , then using Definition 2.1, we have the relations ,
and iff implies , and this property
characterizes irrelevant components.

E. Proof of Proposition 3.1

If , we can write

(1)

(2)

(3)

(4)

(i) If , every addend in (4) appears also in (2)
so that . Using
Lemma 1.1-(iv), , and thus

. For the second part, if ,
then there is at least one addend in (4) which is not in
(2). If , this addend is strictly positive, which
implies .

(ii) If , every addend in (1) appears also in (3),
and thus . Using
Lemma 1.1-(iv), and thus

. For the second part if ,
there is at least one addend in (1) which is not in (3).
If , this addend is strictly positive, which
implies .

(iii) If is such that , and , then
, and . Thus, if

, then , and so every addend in (4) ap-
pears also in (3). This implies

.
(iv) Finally, if , but , there exist such

that , and . This means that
there is at least one addend in (3) which does not appear
in (4). If , this addend is not zero, and we get
the desired result.

F. Proof of Proposition 3.2

If , there exists such that , , and
. Because , and , then we

get . Define by

if
if
if
otherwise

Then, using Lemma 1.1-(v), , because
from (1)–(4), ,
and ; so (i) is proved.

To prove (ii), assume that . Then there exists
such that , , and . Because , we get

. Define by

if
if
if
otherwise

Then using Lemma 1.1-(v), , be-
cause from (1)–(4), then , and

.
Finally, if , there exists such that

, and . Define by

if
if
if
otherwise

Then using Lemma 1.1-(v), , because
from (1)–(4), then , and

, so (iii) is proved.

G. Proof of Theorem 3.3

If , then using Lemma 1.1-(v), and Proposition 3.1, we
get

But, because , from Proposition 2.6, we get , and from
Proposition 3.1, we get . Now,
taking into account Lemma 1.1-(iv), if , then

. This proves (i).
Because is relevant, and , if , it must be ; and

if , from Proposition 3.1(ii), we get
. Proceeding as in the proof of part (i), we have

.
To prove (iii), assume that , and . It must be

; and using Proposition 2.6, we get . From Proposi-
tion 3.2, there exists a reliability vector with

, and , such that .
On the other hand, because , using Proposition 2.6, we get

. Thus, using Proposition 3.2, there exists
such that , , and .
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H. Proof of Theorem 3.4

If , then using Lemma 1.1-(v), and Proposition 3.1, we
get

But, because , from Proposition 2.6, we get ; and,
from Proposition 3.1-(iii), . Now,
taking into account Lemma 1.1-(v), if , then

. This proves (i).
Because is relevant, , and , then using Propo-

sition 2.7, we get . Now, because , then
using the converse implication of Proposition 3.1-(i), we
have . But, due to the second part of
Lemma 1.1-(iv), this is equivalent to .
Finally, proceeding as in the proof of part (i) of this theorem,
and taking into account that , we get .

To prove part (iii), assume that , is relevant, and
. Using Proposition 2.6, it must be that , and

; and, from Proposition 3.2, there exists a reliability vector
with , and , such that

. On the other hand, because , using
Proposition 2.6, we get . Thus, using Proposition 3.2,
there exists such that , , and

.

I. Proof of Theorem 3.5

If , then using Lemma 1.1-(v), we get
. But, if , from Propo-

sition 3.1, . This proves part (i).
Part (ii) is derived in the same way.
To prove part (iii), assume that , and . If ,

because , then we get also ; and from Proposition 3.2,
there exists such that , , and

. If , because , then we get also
; and from Proposition 3.2, there exists such

that , , and . Thus, if
, and , we can always select such that

. On the other hand, because , using Proposition 3.2
there exists such that , , and

.
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