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ABSTRACT 

In this paper, a sequential failure limit maintenance policy for a repairable system is studied. The 

system is assumed to have     states, including one working state and   failure states, and the 

multiple failure states are classified by, e.g., failure severity or failure cause. The system will be 

replaced at the  th failure and corrective maintenance is conducted immediately at each of the 

first     failures. A reliability-centered preventive maintenance schedule is proposed in which, 

between two adjacent failures, a preventive maintenance action is taken as soon as the system 

reliability drops to a critical reliability  . Both preventive maintenance and corrective 

maintenance are assumed to be imperfect. Increasing and decreasing geometric processes are 

introduced to characterize the efficiency of these two types of maintenance. The objective is to 

derive an optimal maintenance policy        such that the long-run expected cost per unit time 
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is minimized. The explicit expression of the average cost rate is derived, and the corresponding 

optimal maintenance policy can be determined analytically or numerically. A numerical example 

is given to illustrate the theoretical results and the procedure. The decision model shows its 

adaptability to different possible characteristics of the maintained system.  

 

Key words: Geometric process; Quasi-renewal process; Multiple failure states; Sequential 

failure limit policy. 

 

ACRONYMS & NOTATION 

   the number of preventive maintenance in the  th repair cycle 

  
 
  the working time between the      th and the  th preventive maintenance in the 

 th repair cycle 

    the working time between the   th preventive maintenance and the corrective 

maintenance in the  th repair cycle 

    the length of the corrective maintenance in the  th repair cycle 

    the failure type in the  th repair cycle 

    cost of each preventive maintenance 

    corrective maintenance cost rate due to the down-time 

    failure damage of failure type  ,         

   replacement cost 

a the impact of the preventive maintenance on system’s lifetime distribution 

b the impact of the preventive maintenance on the duration of corrective maintenance 

    the impact on the system’s lifetime distribution by each occurrence of failure type  , 
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    the impact on the duration of corrective maintenance by each occurrence of failure 

type  ,         

    the probability of occurrence of the  th type failure,         

   the time to failure in the  th repair cycle 

PM preventive maintenance 

CM corrective maintenance 

GP geometric process 

QRP 

 

quasi-renewal process 

 

1. Introduction 

For a repairable deteriorating system, the most advanced maintenance strategies rely on the 

monitoring of a measurable degradation process of the system and base the maintenance 

decisions on the level of degradation. Generally, such a condition-based maintenance policy is 

more efficient than a maintenance policy based on the system age and on the knowledge of the 

underlying lifetime distribution. However, building a degradation database is very expensive and 

some legacy systems still lack the capability of acquiring sensor-based information. Moreover, it 

is unrealistic to establish a condition-based maintenance program for each small but critical 

element such as the horizon of an airplane and the radar altimeter of a satellite. This is, however, 

not the case with failure time data which can be easily retrieved from historical maintenance 

records (Gebraeel et al. [1]). In view of this, we consider a maintenance strategy which is 

applicable to those systems inaccessible to the condition-based maintenance program. Note that 
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the preliminarily used lifetime distributions can be updated by the subsequent real-time sensory 

signals. 

It is well-known that the maintenance of a deteriorating system is usually not perfect, 

restoring the system’s operation state to somewhere between as good as new and as bad as old 

(see [2]-[4]). For a repairable system, a common phenomenon is that the successive operating 

times of the system after repair become shorter and shorter, whereas the mean lengths of the 

successive repair times are increasing. To model the maintenance efficiency with this 

characteristic, Lam [5] introduces a geometric process (GP) repair model. It should be noted that 

Wang and Pham [6] propose a quasi-renewal process (QRP) to modulate imperfect maintenance 

process. Conceptually different as they are, the GP and the QRP share the same theoretical basis. 

As Lam put this idea out first, we use the notation “geometric process” in the following. The GP 

and the QRP models have been studied by many researchers. The readers are referred to [7]-[10] 

for more details. 

The GP and the QRP were originally introduced to characterize the effectiveness of 

corrective maintenance (CM). Modulating imperfect preventive maintenance (PM) processes via 

the GP, however, has received surprisingly little attention until very recently. Wang and Pham 

[11] modulate the imperfect PM by a quasi-renewal process in which the degradation critical 

threshold is raised proportionally after each PM. Doyen and Gaudoin [12] also pointed out that 

the quasi-renewal process can be generalized to imperfect PM by introducing a positive 

parameter characterizing the PM efficiency. Yet, this article just presents a general framework 

and does not give much detailed discussions on this generalized model. In this current paper, we 

propose a maintenance strategy, including both imperfect CM and imperfect PM, and assess the 

efficiency of these two maintenance actions both in the context of GP. As the PM and the CM 
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are only different in the sense that the PM is planned while the CM is unplanned, it is reasonable 

to characterize PM and CM efficiency both using the GP, with different impact factors. 

In recent years, there has been growing research interest on multi-state reliability theories, 

models and optimization algorithms. Derman [13] is among the first to investigate a multi-state 

model, where the deterioration of the system was described as the movement from state to state 

by a Markov chain. More works on multi-state systems can be found in [14]-[17]. A special type 

of multi-state system model, which we will deliberate in this paper, is defined as follows: A 

degenerative system has     states with one working state and   different failure states (Zhang 

and Wang [18]). The occurrences of these   failure states are stochastic and mutually exclusive. 

For example, in the context of gracefully degrading systems, a failure may be classified by its 

severity and thus the cost related to each failure type is different. Another example is that a 

failure can be classified by its cause and thus the treatment related to each failure type is 

different. Lam et al. [19] studied a monotone process repair model for such system with   failure 

modes. They applied a replacement policy based on the number of failures of the system in 

which the system state after repair cannot be “as good as new”. They showed that the repair 

model for the multi-state degenerative system forms a general monotone process repair model 

which includes the GP repair model as a special case. Several extensions of this multi-state 

model have been investigated in Zhang et al. [20] and Zhang and Wang [18]. However, the 

multi-state failure system subjected to imperfect CM and imperfect PM, both in the form of GP, 

is a blank topic of interest. 

Conventional PM is scheduled periodically and it often holds the same time interval   for 

PM actions (Sheu et al. [21]). However, because the PM is generally imperfect and it cannot 

restore the system to as good as new, the age-dependent or periodic PM policy is unavoidably 
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ineffective. On the other hand, as Wang [22] pointed out, the optimal maintenance policy must 

be based not only on cost rate but also on reliability measures. Sometimes when the maintenance 

cost rate is minimized the system reliability measures are so low that they are not acceptable in 

practice. This leads to the sequential failure limit PM policy presented herein. Under sequential 

failure limit PM policy, the PM actions are scheduled so that the system does not drop below a 

critical reliability. Many literature works focus on reliability centered PM policy. Zhou et al. [23] 

integrates sequential imperfect maintenance policy into condition based predictive maintenance 

policy and an imperfect PM is performed whenever the system reliability reaches the threshold  . 

In Liao et al. [24], it is assumed that the system’s reliability could be monitored continuously and 

the imperfect PM is performed whenever the system’s reliability reaches the threshold  . Doyen 

and Gaudoin [12] also mentioned a sequential failure limit PM policy in which the system is 

preventively maintained as soon as a reliability indicator exceeds a predetermined threshold.  

The maintenance strategy in this present paper is a combination of failure limit policy and 

repair number counting policy (Wang [22]). The system is replaced by a new one at the  th 

failure and CM is conducted at the first (   ) failures. PM is performed whenever the system 

reliability drops to a critical threshold  . Both the CM and the PM are assumed to be imperfect. 

That is, the successive working times of the system after repair will become shorter and shorter. 

We further assume that the consecutive corrective repair times of the system become longer and 

longer. Because PM actions are pre-scheduled, the PM times are assumed to be negligible. One 

interpretation of replacing at the  th failure is that when a new system is put into operation, the 

first   repairs at failures will be performed at a low cost, because the system is young. It will be 

in a good operating state and should not need any major repairs for some period. After    repairs, 

this system will be in a bad condition and then it is more economical to replace it by a new one. 
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The policy decision variables are   and  . The purpose is to determine the optimal policy 

parameters        such that the long-run expected cost per unit time is minimized.  

This paper is organized as follows. In Section 2, a monotone process model for a 

deteriorating system, which has one working state and   failure states, is introduced. In Section 3, 

an explicit expression of the average cost rate is derived. The optimal policy        can be 

determined numerically or analytically for minimizing the average cost. Section 4 illustrates the 

maintenance policy via an example. The last section concludes the paper. 

 

2. Model assumptions 

For easy reference, we first state the definitions of stochastic order and GP as follows (see Ross 

[25]): 

Definition 1. Given two random variables   and  ,   is said to be stochastically larger than   if  

                                  

and it is denoted by      or      . We say that a stochastic process              is 

stochastically decreasing if           and stochastically increasing if          , for all 

       . 

Definition 2. Assume that              is a sequence of independent non-negative random 

variables. If the distribution function of    is                for some     and all   

     , then              is called a geometric process. Furthermore, if    ,       

       is called stochastically decreasing, i.e. 
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         ,   for all          

If      ,              is called stochastically increasing, i.e. 

         ,   for all          

If    , the geometric process becomes a renewal process. 

Our model assumptions are listed below. 

Assumption 1.  At the beginning, a new system is installed and will be replaced at the  th 

failure by a new one with negligible replacement time. 

The time interval between the      th replacement and the  th replacement of the 

system is called the  th renewal cycle,        . Let    be the first replacement time point of 

the system. Let          be the time duration between the      th replacement and the 

 th replacement of the system. Obviously,           forms a renewal process. 

Assumption 2.  The system is a multi-state system with one working state and   failure states. 

We use           to denote the working state, the first-type failure state, the second-type failure 

state, …, and the  th-type failure state. If the system fails, then with probability    the system 

will be in state          , and ∑   
 
     . 

As we can always arrange the   failure states in order of failure severity we might assume 

that failure type     is more serious than failure type   for            . Thus, state   is a 

failure state with the lowest severity.  

Assumption 3.  The PM is executed as soon as the system reliability drops to the critical 

threshold  . The CM commences immediately at the system’s failure. The PM is assumed to 
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take negligible time. Both PM and CM are assumed to be imperfect. Each PM is assumed to 

have an effect   on working time distribution and an effect   on repair time distribution. Each 

CM is assumed to have an effect    on working time distribution and an effect    on repair time 

distribution, where   indicates the failure type. 

The time interval between the completion of the      th corrective maintenance and the 

completion of the  th corrective maintenance is called the  th repair cycle of the system, 

        . Let random variable    denote the number of PM conducted in the  th repair cycle. 

Given      , let   
 
 ,    and    be, respectively, the working time before  th PM, the working 

time before  th CM and the length of the  th CM (        ). A possible course of the  th 

repair cycle is shown in Fig. 1. 

 

 

 

 

 Fig. 1.  A possible course of the system in  th repair cycle.  

 

Assumption 4.                and               are two independent processes. 

Assumption 5.  Given that the system’s working time after the  th PM in the  th repair cycle 

follows distribution         , and that the system survives beyond the PM threshold, we have 

  
   

          and that the system’s working time after the      th PM follows 

𝑥𝑛
  𝑥𝑛

  𝑥𝑛
𝑉𝑛 𝑋𝑛 𝑌𝑛 

…    … 

 𝐿𝑛  

𝑥𝑛
  𝑥𝑛

    𝑥𝑛
𝑉𝑛: working period before each PM; 𝑋𝑛: working period before the 𝑛th CM; 

𝑌𝑛: corrective repair time; 
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distribution      ,    . Parameter   implies that as the system deteriorates the working time 

will be shorter and shorter. Given              , with failure type   , the system’s working 

time at the beginning of the      th repair cycle follows distribution      
  , where    

          and               . Parameter    represents the impact on the system’s 

lifetime distribution by each occurrence of failure type  . 

Suppose that the working time of the system at the beginning of a renewal cycle has 

distribution function     . In the  th repair cycle, we have 

  
 

 
        

 ∑          
   ∏    

   
   

        

      |                                  
 ( ∑   

 
   ∏    

   
    )

   
  

where         ,       ,                        and  

   
        

 ∑   
 
   ∏    

   
   

  

Assumption 6.  Given                ,       and failure type   , the CM time   follows 

distribution         
  , where              and              . Parameter   

implies that as the system deteriorates, the repair time will be longer and longer. Parameter    

represents the impact on the repair time by each occurrence of failure type  . 

Similarly, suppose that the CM duration of a new system has cumulative distribution 

function     , namely      is a generic cumulative distribution function of the repair times. In 

the  th repair cycle, we have 
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      |                               ( ∑   
 
   ∏   

 

   

 )  

where     and                     . 

Denote the cost of each occurrence of failure by             . We assume that     are 

independent and identically distributed random variables with distribution               

     . The corrective maintenance cost rate, due to down-time, is denoted by   . The 

replacement cost in each renewal cycle is  , and the cost for each PM is   . 

The following theorem shows that               is a monotone decreasing process and 

              is a monotone increasing process. 

Theorem 1. For       ,  and      , we have 

                   

                   

The proof of this theorem is given in Appendix A. 

 

3. Average cost rate under policy       

In this section, we consider the bivariate policy       based on the critical threshold   and the 

failure number  . Our objective is to determine the optimal policy        such that the long-run 

expected cost per unit time is minimized. 
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Let        denote the average cost rate under policy      . According to the renewal 

reward theorem (see Ross [26]), we have 

       
                                         

                                    
 

  

  
  

where   and   denote the total cost in a renewal cycle and the length of a renewal cycle, 

respectively. 

According to the assumptions, we have 

  [∑∑  
 

  

   

 

   

 ∑  

 

   

]  ∑   

   

   

  

The first part at the right side of the equation denotes the total working time while the second 

part denotes the total repair time of a renewal cycle. The total cost of a renewal cycle is given by 

    ∑∑  

  

   

 

   

   ∑   

   

   

 ∑  

 

   

  

Thus, the average cost rate        can be written as 

       
    ∑    

 
      ∑    

   
    ∑    

 
   

∑  (∑   
   

   ) 
    ∑    

 
    ∑    

   
   

  

All the expectations in function        are stated below and their proofs are given in Appendix 

B. 

 (∑  

 

   

)   ∑     
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For simplicity of reference, we define   and   as follows: 

  
  

  
   

  

  
         

  

  
   

  

  
  

Theorem 2. Under policy      , the explicit expression of        is 
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For a proof, see Appendix C. 

From the expression of the cost rate function        we can see that the form of the generic 

distribution function of the CM duration,     , makes no difference as long as the mean   

remains unchanged. 

Remark 1. We can solve the bivariate optimization problem        via two univariate 

optimization procedures. When   is fixed, e.g.,    ,        can be written as a function of   

                               

and the optimal reliability is thus a function of  ,   
   Therefore, for a fixed  , we can find   

  by 

analytical or numerical methods such that      
   is minimized. By choosing   to be 

         , we can find   
 ,   

 , ...,   
 ,… respectively such that the corresponding 

     
        

          
     are minimized. Because of the degeneration, the total length of a 

renewal cycle is limited (see Wang and Pham [7]). Therefore, we can determine the minimum of 

the long-run expected cost rate by comparing the values of      
        

          
    . 

Remark 2. Given the deteriorating trajectories                                  

     , it is of interest to derive the survival function               |             

                        , where    ∑   
   

       denotes the time to failure of the  th 

repair cycle. We have 

  
 

 
        

 ∑          
   ∏    

   
   

              

For       
 , 
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 [   ( ∑   
   
       ∏   

   

   

 )]                

Another interesting measurement of system reliability is the mean time to failure (MTTF), which 

is easy to give 

 [∑  
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4. Numerical Example 

To demonstrate the model and the methodology developed in this paper, a numerical example is 

discussed in this section. In the following analysis we assume that the original survival time 

distribution is known, and its parameters are given (estimated). For illustrative purpose, we 

consider a deteriorating repairable system with only three states, namely two failure states and 

one working state      .  

Assume that at the beginning of a renewal cycle, the working time of a new system has a 

Weibull distribution 

          ( (
 

 
)
 

) 

with parameters       and       . Assuming that        ,        ,       , 

      ,       ,       ,       ,       , we have 

  
  

  
 

  

  
                

  

  
 

  

  
         

We assume that the other parameters are obtained as        ,       ,           

     ,         ,   240.  

 For each value of  , we calculate an optimal   
  which minimizes the expected long-run 

cost rate. Fig. 2 shows the result. The  -axis denotes the number of failures (repair cycles) and 

the  -axis denotes the corresponding minimum cost rate. It is obvious that                   

is a global optimum at which        is minimized.                 is the minimum of the 
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expected long-run cost rate (see Table 1). The maintenance policy can thus be interpreted as: the 

system will be replaced by a new one upon its sixth failure and CM is conducted immediately at 

the first five failures. In order to avoid failures and to reduce cost, the system will be 

preventively maintained once its reliability drops to 0.6488.  

 

 

Fig. 2.  The plot of cost rate against  . 

 

Table 1. The optimal reliability and the corresponding minimized expected long-run cost rate for 

each value of  . 

  1 2 3 4 5 6 7 8 

   0.91 0.85 0.79 0.74 0.69 0.65 0.61 0.57 

        163.57 106.53 89.01 81.75 78.86 78.31 79.15 80.84 

  9 10 11 12 13 14 15 16 

   0.52 0.49 0.46 0.43 0.40 0.37 0.34 0.32 

        83.01 85.38 87.76 89.99 91.98 93.69 95.11 96.27 

   17 18 19 20 21 22 23 24 

   0.30 0.28 0.27 0.25 0.24 0.23 0.26 0.21 

        97.18 97.89 98.43 98.84 99.15 99.38 99.55 99.67 
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Fig. 3 shows the variety of the average cost rate based on bivariate policy      . It can be seen 

that the optimal policy can be found uniquely from the cost rate surface. 

 

 

Fig. 3.  The plot of cost rate versus   and  . 

 

Fig. 4 demonstrates the decreasing property of process              . Under policy 

                 , we first randomly generate six failure types and then simulate the 

working process    
    

      
        

    
      

          
    

      
      . Define cumulative  

working time    as    ∑   
 
             . Fig. 4 depicts the cumulative working time    

versus the number of repair cycles  , in which there are 20 renewal cycles. The shape of the 

curves shows the decreasing property of process              . More detailed results can be 

found in Table 2. 
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Fig. 4.  Cumulative working time in each renewal cycle.  

 

Table 2. The working time before each failure with twenty renewal cycles. 

Renewal 

Number 

Working Time During Each Failure 

                  

1 1164 1637 317 344 565 190 

2 1764 1427 3067 2197 1280 374 

3 131 2467 1585 2333 437 980 

4 1211 371 1874 482 999 796 

5 447 1137 947 345 2034 185 

6 511 892 1406 511 1127 603 

7 1316 1705 434 791 93 148. 

8 2522 2842 1809 1302 1182 151 

9 2495 250 514 370 612 293 

10 585 1704 1311 905 496 356 

11 2768 1713 996 1182 335 36 

12 2753 1679 59 1149 621 193 

13 2079 2092 2261 1281 1283 441 

14 530 3633 2055 1197 89 255 

15 4797 1693 1872 201 1803 502 

16 1462 199 2408 1273 343 138 

17 383 670 1546 596 1367 1164 

18 2010 2023 2642 264 1818 960 

19 3264 1884 1463 1525 199 260 

20 850 1421 191 1192 591 86 
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For a system with the same deteriorating mechanism, a sensitivity analysis is conducted to 

study the influence of the maintenance costs on the optimal values of the decision parameters. 

Three cases are considered. 

1) Costly preventive maintenance: A high PM cost    leads to less frequent PM operations 

and keeps the system working with an increased risk of failure.  The influence of the PM 

cost on the optimal values is shown in Table 3. It can be seen that as the PM cost 

becomes higher and higher, the critical reliability decreases. As the critical reliability 

drops to very low, though larger than zero, there will be no PM in a repair cycle. 

 

Table 3. The influence of the PM cost on the optimal values. 

                           

(4000, 100, 10000, 500000) 0.6712 6 77.3513 

(6000, 100, 10000, 500000) 0.6267 6 79.1821 

(8000, 100, 10000, 500000) 0.5833 6 80.7297 

(10000, 100, 10000, 500000) 0.5406 6 82.0502 

(15000, 100, 10000, 500000) 0.3783 7 84.3849 

(20000, 100, 10000, 500000) 0.2735 7 85.7446 

 

2) High corrective maintenance cost rate   : As the CM cost rate increases, the CM 

operation will be more and more expensive because of, e.g., the unavailability, 

production losses and unplanned intervention. In this case, the optimal policy sets a high 

critical reliability and involves more PM operations in order to avoid system 

unavailability. The increasing optimal thresholds and the decreasing repair numbers are 

listed in Table 4. The failure damage   has a similar influence on the optimal values and, 

limited by the space, we will not repeat here. 
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Table 4. The influence of the CM cost rate on the optimal values. 

                           

(5000, 70, 10000, 500000) 0.5519 9 68.4320 

(5000, 90, 10000, 500000) 0.6514 6 75.5480 

(5000, 110, 10000, 500000) 0.6922 5 81.0063 

(5000, 150, 10000, 500000) 0.6871 5 89.5926 

(5000, 200, 10000, 500000) 0.7345 4 97.7157 

(5000, 250, 10000, 500000) 0.7876 3 105.4958 

 

3) Costly replacement  : As shown in Table 5, the PM cost has its influence mainly on the 

number of corrective maintenance. The more expensive the replacement is, the more 

sensitive the optimal repair number    will be to variations of  .  

 

Table 5. The influence of the PM cost on the optimal values. 

                           

(5000, 100, 10000, 50000) 0.6319 2 24.5419 

(5000, 100, 10000, 80000) 0.6887 2 30.5608 

(5000, 100, 10000, 100000) 0.6393 3 34.1099 

(5000, 100, 10000, 300000) 0.6922 4 59.4617 

(5000, 100, 10000, 600000) 0.6314 7 86.3033 

(5000, 100, 10000, 800000) 0.5877 10 98.7854 

 

 

5. Concluding remarks 

In this paper a multi-state deteriorating system is studied and an optimal bivariate maintenance 

policy, namely      , is developed. This multi-state system has   failure states and one working 

state. This is a general formulation and many systems can be described in this way with a 

suitable failure and state specification. Under some commonly used assumptions, we have 

derived an explicit expression of the average cost rate function, and thus the optimal solutions 

can be readily obtained. 
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The maintenance strategy proposed herein is very flexible, including many maintenance 

policies as special cases. The PM can be assumed to be perfect, in which case we have     

 . If the threshold reliability is set to be zero, namely no preventive maintenance is taken, then 

our model reduces to the repair number counting policy. If we do not take into consider the 

failure types when we are making maintenance decisions, we can set    . As these 

maintenance policies are particular cases, it is obvious that the proposed Possible extensions of 

the research could be to 

1) Analyze systems with multiple components and/or more than one working state; 

2) The probability of occurrences of these   failure states are not constant but depend on the 

working time; 

3) Combine other imperfect maintenance treatment methods with monotone process model, 

such as virtual age method, improvement factor method, multiple       rule and so on. 

 

Appendix A. Proof of Theorem 1 

It is obvious that 

                                

and that 

      |                                  
 ( ∑   

 
   ∏    
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Because the numbers of preventive maintenance in each repair cycle are independent, we have 
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For       ,                    . So we can say that                   

and that               is a monotone decreasing process. 

Similarly, for    , we have 
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So we can say that                   and that               is a monotone increasing 

process. 

 

Appendix B 

Expectations   ∑   
 
     and     are easy to derive and are given below: 
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We use the law of conditional expectation to derive the expected working time  

     . First, we have conditional distribution 

      |                                  
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The expected working time       can be written as 
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The condition     can be removed since     and    . Similarly, we use the law of 

conditional expectation to derive the expected working time  (  
 
) and the expected repair time 
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The condition     is in line with reality. Since PM is always effective, restoring a system to a 

very good state. And due to the increasing power of  ∑   
 
   ∏    

 
   , the value of   should be 

close to one. 

 

Appendix C. Proof of Theorem 2 
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