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Some insights into the effect of maintenance quality

for a protection system
M.D. Berrade, P.A. Scarf, and C.A.V. Cavalcante, Member, IEEE

Abstract—This paper considers an inspection and preventive
replacement policy for a one-component protection or cold
standby system. Inspection is imperfect, and subject to false pos-
itives and negatives; preventive replacement may also be of poor
quality. We determine conditions relating to the quality of the
inspection and preventive replacement under which a maintained
system would not benefit from the execution of inspections and
preventive maintenance. We present examples with decreasing
failure rate component lifetimes in which preventive replacement
is cost-optimal, contrary to the classic policy. Such cases arise
when inspections do not necessarily detect the failed state.

Index Terms—Inspection, replacement, mixture, cold standby,
preparedness, optimum policy

ABBREVIATIONS

DFR Decreasing failure rate

IFR Increasing failure rate

NOTATION

X component lifetime

R(x) reliability or survival function of X
µ=E[X] expected component lifetime

T inspection interval

α probability of a false positive inspection

β probability of a false negative inspection

M maximum number of inspections until preven-

tive replacement.

K1 number of inspections previous to failure or a

false positive or to preventive replacement whichever

occurs first

K2 number of inspections after failure until

its detection or preventive replacement whichever

occurs first

U uptime in a cycle

D downtime in a cycle

c0 cost of inspection

cm cost of a preventive replacement either at time

MT or at a replacement at a false positive inspection

cr cost of replacement at a true positive inspection

cd cost-rate of unavailability

cins expected cost due to all inspections in a cycle

cren expected cost derived from the replacement

of the system

M.D. Berrade is with the Department of Statistics, School of Engineering
and Arquitecture (EINA), University of Zaragoza, Zaragoza, 50018 Spain (e-
mail: berrade@unizar.es).

P.A. Scarf is with Salford Business School, University of Salford, Manch-
ester, M5 4WT, U.K. (e-mail: p.a.scarf@salford.ac.uk).

C.A.V. Cavalcante is with the Department of Production Engineering,
Federal University of Pernambuco, Recife-PE, 740-530, Brazil (e-mail: cris-
tiano@ufpe.br).

τ length of a cycle

C(τ) total cost of a cycle

Q(T,M) cost rate (the long run expected cost per

unit time)

I. INTRODUCTION

THIS paper focuses on the quality of maintenance, and in

particular on the quality of inspection. Inspection policies

are typically used when failures are hidden, where a test or

inspection is required to establish the state of the system. This

hidden failure condition is the case for systems that are not

in continuous operation but alternate between idle periods and

periods of use. When a failure can occur during an idle period,

if such a failure occurs and there is no regular inspection, the

failure will remain undetected until there is an attempted use

of the system.

Protection or preparedness systems and cold standby sys-

tems are typical examples of systems that operate in this way,

and thus experience hidden failures. Apostolakis and Bansal

[1] describe safety features of nuclear power plants consist-

ing of redundant systems that are inactive until emergency

conditions occur (e.g., pump failure in a cooling system).

These systems undergo inspections at regular intervals to

ensure their high availability. The consequences of poor quality

maintenance, including poorly executed replacements or low

quality spare parts [2], are reported by technology users or

operators ( [3], [4]). In our paper here, we model the quality of

inspections, and analyze when low quality has non-negligible

consequences on both maintenance procedures and systems

reliability.

Inspection policies for systems subject to hidden failures

have been studied by many authors. A classic reference is

Vaurio [5]. Recent work has considered multi-component

systems (e.g [6]), and hard (revealed) and soft (unrevealed)

failures of multi-component systems (e.g [7]). Models have

been proposed when inspection and replacement downtimes

are non-negligible (e.g. [8]).

Inspection policies with false positives or false negatives

or both are analysed in [9]- [13]. Okumura et al. [9] present

an inspection model based on the delay-time model. Human

errors are considered in [1], and [10]. Gong [14] investigates

a repetitive testing process where the testing equipment may

leave the in-control state at random, resulting in different

testing errors.

At a false positive event, inspection indicates that the system

is failed when it is in fact not failed. At a false negative,

inspection does not reveal an existing failure. In Berrade et

al. [12], the effect of such imperfect inspection is further
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analysed by presenting two scenarios, one of which is related

to the outsourcing of maintenance, and the other is related to

maintenance performed in-house. In our paper, we analyze in

detail the second scenario, and in particular we characterise

circumstances in which false positives can lead to unneces-

sary replacements. We also implicitly consider circumstances

in which false negatives do the same. This consideration

is important because, if false negatives tend to occur with

high probability, a typical response might be to do more

inspection. Moreover, more inspection will lead to more false

positives; and, where we have DFR component lifetimes, more

inspection will lead to the possibility of more unnecessary

replacements of good components by poor components. We

model this low quality replacement by a mixture of two

Weibull distributions (see e.g. [16], [20]). Cha and Finkelstein

[17] also consider two ordered sub-populations with strong,

and weak units respectively for a burn-in procedure.

When the population is heterogeneous, that is, strong and

weak spares are mixed, failed components are replaced by new

ones, which in turn can be weak or strong. However, in the

case of imperfect inspections, another consequence emerges

which is that strong, working components can be replaced

by weak ones. Thus, an actual decrease of reliability can

occur when heterogeneous components may undergo imperfect

inspections.

Our paper analyzes this situation just described. Further-

more, whereas Ten Wolde and Ghobbar [15] for example state

that increasing the inspection frequency increases the chance

that a potential failure will be identified so that the additional

cost (of more inspections) leads to improved reliability, this

condition is not the case when the consequence of a false

positive inspection is the possible replacement of a strong

component by a weak one (Berrade et al. [13]). Therefore,

in our view, it is necessary to consider both cost and system

reliability when analyzing the effect of inspection errors and

low quality maintenance on inspection policy, and we do so

in our paper here.

In the next section, we describe our maintenance policy

and its features, including the underlying component reliability

model. We then determine conditions under which there exists

a finite optimum inspection interval (Section 2.1). In so

doing, we also quantify circumstances in which the quality

of inspection and replacement is not sufficiently high for

the benefit derived from inspections to compensate for their

incurred cost. In this way, we provide conditions that relate

to the quality of maintenance and spare parts under which a

maintained system would not benefit from the execution of

preventive maintenance. Proofs of our results are given in the

Appendix. In Section 2.2, we further determine the operational

reliability of the system. This knowledge may be useful when

one wishes not only to consider a maintenance policy that is

safety driven rather than cost driven (e.g. Flage et al. [18]),

but also to consider the possibility that an increasing cost (of

inspection) does not imply an increasing reliability. We then

consider some numerical examples, the first of which presents

a discrete mixture for the failure time distribution (Section

3.1), and the second a continuous mixture (Section 3.2). The

examples provide additional insight about how the interaction

between inspection errors and low quality maintenance cannot

be neglected. We finish with a short discussion of the impli-

cations for the management of engineering services.

II. MAINTENANCE POLICY

Consider a system with failures that are detected only

by inspection. The system is inspected periodically every T
units up to replacement. The system is replaced at a positive

inspection, which is when inspection indicates the occurrence

of a failure.

Testing may be imperfect. At an inspection, a false positive

can occur. A false positive is the case when the inspection

indicates a system failure but the system is actually good

(working). Also, an inspection may report that the system is

good when in fact it is failed; this is a false negative. The

corresponding probabilities of a false positive, and a false

negative at an inspection are denoted by α, and β respectively.

We assume that, when an inspection is positive, the system

is replaced. Thus the system is replaced at a true positive

inspection, in error at a false positive inspection, and at MT ,

whichever occurs first.

One might envisage circumstances in which at a false

positive a deeper investigation of the state of the system is

carried out to reveal the true system state. Such a secondary

inspection would come at an extra cost; but because it would

ultimately reveal the system state, in such circumstances false

positives would not occur, and a positive inspection would

merely imply an additional cost. Thus, we do not consider

this scenario. We emphasise that, in the model we develop in

this paper, at a positive inspection, the system is replaced. In

a real context, a maintainer may not have the capability to

carry out the secondary inspection; the maintainer responds

to a positive inspection (whether true or false) with an im-

mediate replacement. This response is referred to as in-house

maintenance by Berrade et al. [12].

We assume replacement renews the system so that concep-

tually the system comprises a component located in a socket

which together perform an operational function (Ascher and

Feingold [19]). In this way, by replacement we mean the

replacement of the component in the socket with another

functionally new component from a common stockpile of

components.

Further, we suppose that, when the component fails, the

system fails. The lifetime X of a component has a general

distribution F with corresponding reliability function R. In

our numerical study in Section 3, we suppose that F may

be a mixture, although in the determination of our results

the exact nature of F does not need to be specified. In its

simplest form, in our first example, the mixture we consider

is a mixture of two sub-distributions: one that represents

components with relatively short lives, and one that represents

components with long lives. A short component life may be

the result of using a poor quality spare part, or of poor quality

installation. Either way, this is conceptually what we mean

by poor quality replacement. This idea has been studied in

a reliability context (e.g. [20]), and a maintenance context

(e.g. Scarf et al. [21]). Furthermore, and more generally in



3

our second example, we consider a continuous mixture model

for the lifetimes of a heterogeneous population of components.

Overall, in the numerical study, our purpose is to illustrate the

effect of poor quality inspection and component heterogeneity,

or poor component quality, upon a preventive maintenance

policy.

Regarding the costs, we suppose that the preventive cost

cm is smaller than the corrective cost cr, even though the

component is replaced in both cases. We justify this assump-

tion on the basis that, on replacement, components may be

re-conditioned and returned to inventory. In the case of a

false positive or a preventive replacement at MT , little re-

conditioning may be required. In the case of a true positive,

an overhaul of the component may be required. Furthermore,

it is worth noting that, as the system is a protection system, cr
is associated with the failure of the protection system, and not

the protected system. Thus, failure of the protection system

only has an impact on the protected system if the protected

system demands protective action from the protection system

when the protection system is in the failed state. Such an event

is modelled through the cost of unavailability cd, which is

interpreted as the product of notional quantities: the expected

cost per unmet demand (for the operational function of the

protection system), and the rate of occurrence of unmet

demands.

A. Some characterisations of the optimal policy

The random variables K1 and K2 take values in

0, 1, 2, . . .M .

Now

P (K1 = 0) = 1−R(T ),

and for i = 1, 2, . . .M − 1

P (K1 = i) =

(R(iT )−R((i+ 1)T ))(1− α)i +R(iT )(1− α)i−1α,

and

P (K1 = M) = R(MT )(1− α)M−1.

Its expected value is

E[K1] =

M
∑

i=1

R(iT )(1− α)i−1. (1)

In the case that there is no inspection at MT , the expectation

is

E[K1] =

M−1
∑

i=1

R(iT )(1− α)i−1.

For K2, we have

P (K2 = 0) =
M−1
∑

i=1

R(iT )(1− α)i−1α+R(MT )(1− α)M−1;

and for i = 1, 2, . . .M − 1,

P (K2 = i) =
M−i
∑

k=1

(R((k − 1)T )−R(kT )) (1− α)k−1βi−1(1− β) +

(R((M − i)T )−R((M − i+ 1)T )) (1− α)M−iβi−1,

and

P (K2 = M) = (1−R(T ))βM−1.

E[K2] = (2)
M
∑

i=1

(R((i− 1)T )−R(iT )) (1− α)i−1 1− βM+1−i

1− β
.

If there is no inspection at MT , the expectation is

E[K2] =

M−1
∑

i=1

(R((i− 1)T )−R(iT )) (1− α)i−1 1− βM−i

1− β
.

Therefore, the expected length of a cycle is

E[τ ] = E[(K1 +K2)T ] = (3)
M
∑

i=1

(1− α)i−1T
βM+1−i − β

1− β
R(iT ) +

M
∑

i=1

(1− α)i−1T
1− βM+1−i

1− β
R((i− 1)T ).

The expected uptime in a cycle, E[U ], is

E[U ] =

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

tdF (t) +

M−1
∑

i=1

iTα(1− α)i−1R(iT ) +MT (1− α)M−1R(MT ) =

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt. (4)

In addition, the expected downtime in a cycle is

E[D] = E[τ ]− E[U ].

Regarding costs, the expected cost derived from inspections,

cins, is

cins = c0 (E[K1] + E[K2]) .

Therefore,

cins = (5)

c0

M
∑

i=1

R(iT )(1− α)i−1 +

c0

M
∑

i=1

(R((i− 1)T )−R(iT )) (1− α)i−1 1− βM+1−i

1− β
.

The system is replaced at a false positive, or when it is

detected to be failed (true positive), or preventively at MT ,

whichever occurs first. Both a false positive and the preventive

maintenance at MT incur a cost cm. The associated cost due
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to the replacement of a failed system is cr. Hence, the cost

derived from the replacement of the system is
{

cr, if X < MT and there are no false positives,

cm, otherwise,

with

P (cr) =

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

dF (t) =

1− α

M−1
∑

i=1

R(iT )(1− α)i−1 − (1− α)M−1R(MT ),

and

P (cm) =

α

M−1
∑

i=1

R(iT )(1− α)i−1 + (1− α)M−1R(MT ),

where P (cr), and P (cm) denote the probabilities that the

replacement cost is cr, and cm respectively. The expected cost

derived from the replacement of the system is

cren =

(cm − cr)α
M−1
∑

i=1

R(iT )(1− α)i−1 +

(cm − cr)(1− α)M−1R(MT ) + cr.

The expected total cost incurred in a cycle is then

C(τ) = cins + cren + cdE[D] = cins + cren +

cd

(

E[τ ]−

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt

)

.

Therefore, the cost-rate (the long-run cost per unit time) turns

out to be

Q(T,M) = cd + (6)

cins + cren − cd

(

∑M
i=1(1− α)i−1

∫ iT

(i−1)T
R(t)dt

)

E[τ ]
,

with E[τ ] given in (3). In the case that M = 1, the expression

in (6) is

Q(T,M) =

cd +
c0 + (cm − cr)R(T ) + cr − cd

∫ T

0
R(t)dt

T
.

The next lemma gives two limits for Q(T,M) which are

the key in the proofs of the results concerning the existence

of a finite optimum policy T .

Lemma 1: Given M , Q(T,M) is a continuous function so

that

limT→0 Q(T ) = ∞ and limT→∞ Q(T ) = cd.

The next result provides a sufficient condition to ensure the

existence of a finite optimum T ⋆ for a given M when cm = cr.

Proposition 1: Suppose that cm = cr, and the number

of inspections previous to the preventive maintenance, M ,

is fixed. If there exists some T > 0 satisfying one of two

conditions

a) TR(MT ) > (7)

c0
cd(1− β)

(

1−
βM+1 − β(1− α)M

β − (1− α)

α

1− (1− α)M

)

+
αcr

cd(1− (1− α)M )

if α+ β 6= 1, or

b) TR(MT ) > (8)

c0
cd(1− β)

(

1−
MβM (1− β)

1− βM

)

+
cr(1− β)

cd(1− βM )

if α+ β = 1,

then there exists a finite T ⋆ minimizing Q(T,M) in (6).

Lemma 2: The following properties apply.

i) max (cr, cm) ≥ cren ≥ min (cr, cm).

ii) E[U ] < µ 1−(1−α)M

α for a given M .

The next results give some sufficient conditions under which

the optimum inspection interval, T ⋆, does not exist when the

number of inspections M is fixed.

Proposition 2: Given a fixed M , if µ = E[X] satisfies

µ ≤
α(c0 +min (cr, cm))

cd(1− (1− α)M )
, (9)

then T ⋆ = ∞.

Condition (9) broadly means that, if maintenance costs are

large or the false positive probability is large or both, then the

best policy is no inspection at all.

Theorem 1: Given a fixed M ≥ 1, if

i) cm ≤ cr, and

c0

(

1−βM

1−β + 1−M
)

+ cm ≥ cdµ
1−(1−α)M

α ; or

ii) cm > cr, and

c0

(

1−βM

1−β + 1−M
)

+ cr ≥ cdµ
1−(1−α)M

α

then T ⋆ = ∞.

Corollary 1: Given a fixed M > 1, let βM0 be defined as

βM0 = min

{

β|
1− βM

1− β
≥ v(µ,M,α, c0, cr, cm, cd)

}

where

v(µ,M,α, c0, cr, cm, cd) =

cdµ
1−(1−α)M

α −min(cr, cm)

c0
+M − 1.

If β ≥ βM0, then T ⋆ = ∞.

Note that Corollary 1 only makes sense when M > 1;

that is, when there are several inspections, and the inspection

may fail to detect a failure, only then does a condition on

β exist. Thus, if one insists on conducting an inspection, if

β is (sufficiently) large, then such an inspection should be

postponed indefinitely.

Next, we aim to obtain a condition for the existence of an

optimum number of inspections, M⋆, and hence for preventive

replacement to be optimal when the time to failure follows
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an exponential distribution. In general, Q(T,M⋆) has a local

minimum at M⋆ if

Q(T,M⋆ + 1) ≥ Q(T,M⋆), Q(T,M⋆ − 1) > Q(T,M⋆).

Theorem 2: If the time to failure is an exponential distri-

bution, and β = 0, then, for any given T , M⋆ = ∞.

The result is not necessarily true in the case of β 6= 0, as

the following counter examples establish. With costs c0 = 1,

cm = 5, cr = 10, cd = 5000, α = 0, and an exponential time

to failure distribution, we obtain

• λ = 100, β = 0.8, M⋆ = 1, T ⋆ = 0.0063, Q (T ⋆,M⋆) =
2613.751.

• λ = 1, β = 0.9, M⋆ = 1, T ⋆ = 0.0498, Q (T ⋆,M⋆) =
247.82.

It is known (Barlow and Proschan [22]) that, when the

failures of a system are revealed as soon as they occur, and

the time to failure follows an exponential distribution, then

the lack of memory property implies that the best policy is no

preventive maintenance (M⋆ = ∞). Theorem 2 indicates that

this classic result still holds when the inspection procedure

is only subject to false positives. Thus, there is no need to

replace the system before it fails provided that the system in

use is as-good-as-new, and the maintainer can be confident

that a potential failure will be detected in the next inspection.

When false negatives can occur, M⋆ = ∞ may not be

the best policy. The examples show that, although there is

nothing to be gained from preventive replacement of a non-

ageing system if it is known to be in the good state, if it

is not known to be in the good state (because inspections

are subject to false negatives) it may be worthwhile to carry

out preventive replacement at inspection. This condition is

true because replacement guarantees the restoration of system

functionality whereas inspection does not. Thus, and this is

the crux of our work here, when a protection or cold-standby

system has an exponential time to failure, and inspections are

subject to false negatives, then contrary to the classic result,

preventive replacement may indeed be cost-optimal. Thus,

in summary, Theorem 1 describes the consequences of low

quality maintenance for an inspection policy when M , the

number of inspections until preventive replacement, is given,

and the distribution of the time to failure of the component has

a general form. Theorem 2 shows that, when inspections of a

protection or standby system are subject to false positives, the

classic result (it is cost-sub-optimal to replace a non-ageing

system) still holds; but when inspections are subject to false

negatives, our examples show that the classic result is no

longer valid.

B. The operational reliability function

In the context of perfect inspection, more frequent inspec-

tions will increase the operational reliability of the system

while also increasing the cost-rate, so that a reliability or safety

requirement will generally dominate policy choice (Scarf

et al. [23]). With imperfect maintenance, it is possible to

simultaneously maximise reliability and minimise cost (Scarf

et al. [21]). Therefore, for the imperfect inspection policy

that we consider in this paper, it is interesting to derive the

operational reliability function. We do this now. Note that by

the operational reliability function we mean the probability

that the system is functioning at time t, and there has been no

failure in (0, t) given that the system was new at time t = 0
(Lewis [24]). The terminology used here is the same as that

in Christer [25] who formulate the reliability function for a

delay-time model. The main difference is that, in [25], the

inspection procedure is considered to be perfect, and has no

effect on the reliability of the system.

Let RTM (t) denote the reliability function of the system

under inspection every T units of time and preventive replace-

ment at MT . RTM (t) represents the probability that a system

new at t = 0 survives up to t, for all t > 0. In addition, let

r
(m)
TM denote the reliability function for the system at time t

with (m− 1)T ≤ t < mT . It follows that

r
(1)
TM (t) = R(t), 0 ≤ t < T

is just the component reliability. When developing r
(m)
TM for

m > 1, we have to take into account the possibility of a false

positive at each inspection prior to the replacement at MT of

a non-failed system.

Therefore, for T ≤ t < 2T ,

r
(2)
TM (t) = (1− α)R(t) + αR(T )r

(1)
TM (t− T ).

For 2T ≤ t < 3T , it follows that

r
(3)
TM (t) = (1− α)2R(t) +

αR(T )r
(2)
TM (t− T ) + (1− α)αR(2T )r

(1)
TM (t− 2T ).

Let us now develop the expression of r
(3)
TM (t) to explain its

meaning. Replacing the corresponding expressions of r
(2)
TM (t)

and r
(1)
TM (t), we obtain

r
(3)
TM (t) =

(1− α)2R(t) + αR(T )(1− α)R(t− T ) +

α2R2(T )R(t− 2T ) +

(1− α)αR(2T )R(t− 2T ).

The first term represents the probability that the system, new

at t = 0, survives up to t with no false positive either at T or

at 2T . The second term indicates that the system is renewed

at T due to a false positive. There is no false positive at 2T ,

and the system survives up to t. The third term corresponds

to the case that there are two false positives at T and 2T , and

the component installed at 2T survives to t. In the forth term,

there is no false positive at T , but one occurs at 2T , and the

system renewed at 2T survives up to t.
For 3T ≤ t < 4T ,

r
(4)
TM (t) = (1− α)3R(t) +

αR(T )r
(3)
TM (t− T ) + (1− α)αR(2T )r

(2)
TM (t− 2T ) +

(1− α)2αR(3T )r
(1)
TM (t− 3T ).

The general formulation for (m− 1)T ≤ t < mT is

r
(m)
TM (t) = (1− α)m−1R(t) +

m−1
∑

i=1

α(1− α)i−1R(iT )r
(m−i)
TM (t− iT ).
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For MT ≤ t < (M + 1)T ,

r
(M+1)
TM (t) = r

(M)
TM (MT )r

(1)
TM (t−MT ).

For kMT + (j − 1)T ≤ t < kMT + jT with

k = 0, 1, . . ., and j = 1, 2, . . . ,M , the general formula

turns out to be

RTM (t) = r
(kM+j)
TM (t) = (r

(M)
TM (MT ))kr

(j)
TM (t− kMT ).

Observe that there is no effect of false negatives on the

operational reliability; these only affect availability.

III. NUMERICAL EXAMPLES

In this section, we present some results that aim to illus-

trate the mathematical dependence on the parameters of both

the optimum inspection frequency and optimum number of

inspections previous to the preventive maintenance.

A. A discrete mixture failure time distribution

The time to failure is assumed to be a mixture of two

Weibull distributions. The failure rate of a Weibull distribution

is given by

r(t) = sη−sts−1.

The reliability function of the Weibull mixture is

R(t) = pe−(t/η1)
s1

+ (1− p)e−(t/η2)
s2
.

The characteristic lives, and shape parameters of the mixture

are η1 = 500, η2 = 7000, and s1 = 2.5, s2 = 4.5, respectively.

The sub-populations in the mixture verify that r1(t) ≥ r2(t),
t ≥ 0; that is, sub-population 1 is smaller than sub-population

2 in hazard rate order. This mixture is used to model early

failures caused by a proportion p of weak items represented by

sub-population 1. For additional insight on stochastic orders,

see Shaked and Shantikumar [26].

Parameter values in the example relate to a case study

considered in Berrade et al. [12] regarding a protection device

in a soft drink production process. The optimum policy, T and

M , for different values of the model parameters is contained

in Table I. Table I shows that the inspection interval increases

when the probability of false positives, α, increases, whereas

T decreases when β increases. Both results are as expected

because of the risk of incurring unnecessary replacements in

the first case, and to mitigate false negatives in the second.

Whenever η1, η2, s1, s2 increase, the inspection frequency

is relaxed, and the optimum cost-rate decreases. When the pro-

portion of weak items p increases, more intensive inspection

is required, and therefore the optimum cost-rate is also higher.

The form of the cost-rate is illustrated in Fig. 1.

Fig. 2 illustrates the behaviour of the operational reliability.

An inspection of Fig. 2 reveals interesting features. For small

values of p, as in Fig. 2(a), RTM (t) > R(t). Thus, mainte-

nance tends to increase the reliability. For large values of time

t, the reliability is greater when inspection is carried out at kT
than when no inspection is carried out. When the proportion of

weak items is high, the reliability function is not monotonic

with T as in Fig. 2 (b) and (c). That is, RTM (t) does not

always increase when the inspection frequency increases. The

high proportion of weak items p = 0.15 and p = 0.3 explains

the non-monotonic behavior. The risk of replacement with a

weak item is large; therefore, as T decreases, the risk of a

poor quality replacement increases.

Nevertheless, RTM (t) increases as T decreases when the

proportion of weak items is low as in Fig. 2(a) (p = 0.005).
The same reason as before explains this fact: provided that

the risk of low quality replacement is low, increasing the

inspection frequency is beneficial from the reliability point

of view. Moreover, when p increases to very high values as in

Fig. 2(c) (p = 0.3), RTM (t)) drops dramatically, and tends to

be even below the reliability when no maintenance is carried

out, (baseline reliability R(t)).
Fig. 3 illustrates the interaction effect between parameters.

In Fig. 3(b), when α increases, the reliability decreases. The

same argument as before applies here: the high probability of

a low quality replacement (p = 0.15) after a false positive

makes RTM (t) decrease. In Fig. 3(a), where the value of p is

small (p = 0.005), the behaviour is just the opposite: when α
increases, so does the reliability.

B. Continuous mixture failure time distribution

Following Gupta and Gupta [27], we consider the following

mixture.

Let X be a continuous random variable with baseline failure

rate r(x), and Z be a nonnegative random variable that models

the environmental effect responsible for the heterogeneity in

the population. The reliability function conditional upon Z =
z is

R(t|z) = e−z
∫

t

0
r(x)dx,

and the conditional failure rate is

r(t|z) = zr(t)

In this case, a greater value of z implies harder environmental

conditions, and therefore r(t|z1) ≥ r(t|z2), z1 > z2.

The reliability function of the mixture, R⋆(t), is expressed

as

R⋆(t) =

∫

∞

0

g(z)e−z
∫

t

0
r(x)dxdz,

with g(z) being the density function of Z.

In what follows, we assume the baseline failure rate corre-

sponding to a Weibull distribution. Hence,

R(t|z) = e−z(t/η)s ,

and Z is inverse Gaussian, so

g(z) =
1

(2πbz3)
1
2

e−
(dz−1)2

2bz , z, b, d > 0.

It can be verified ( [27], [28]) that the failure rate of the

mixture r⋆(t) is

i) decreasing for s ≤ 1,

ii) increasing s ≥ 2, and

iii) non-monotonic of type U for 1 < s < 2.

The form of r⋆(t) of the type U case implies that there

exists a t0 such that the derivative of r⋆(t), r⋆′(t), is such that

r⋆′(t) > 0 for t < t0, r⋆′(t0) = 0, r⋆′(t) < 0 for t > t0.
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Table II shows some results corresponding to the Weibull-

inverse Gaussian mixture.

Note that in all the cases where the mixture has a decreasing

failure rate the corresponding M⋆ is not finite for moderate

values of alpha and beta. This result makes sense provided that

in both cases an improvement in the reliability of the system

takes place as time goes by. However, we can see that, for

β large, or α large and β 6= 0, then M⋆ 6= ∞; in fact, pure

replacement M = 1 is the best policy. In those cases such that

β = 0, then M⋆ = ∞ no matter what the value of α is, and

so we conjecture that the result in Theorem 2 also holds for

DFR distributions.

When comparing cases 1 (IFR) and 3 (DFR) in Table II,

both mixtures present the same mean time to failure. However,

in the DFR case, the cost-rate is higher because in spite of the

fact that the failure rate is decreasing it is initially high in

comparison to the IFR case so that undetected early failures

are likely.

Fig. 4 illustrates the point that if the mixture is DFR then

the effect of increasing α is to decrease the reliability, while

if the mixture is IFR then the effect of increasing α is to

increase the reliability. Thus, if the mixture is DFR, increasing

the inspection frequency can produce a negative effect on the

reliability. The higher α, the greater this negative effect will

be. In addition, increasing α also increases the cost-rate. Note

that the reliability function does not depend on the value of

β.

IV. CONCLUSION

This paper focuses on the effect of inspection errors and low

quality maintenance when determining the optimal inspection

interval and preventive maintenance time for a protection sys-

tem or cold standby system in which failures are unrevealed.

We develop a number of results that characterise the minimum

cost-rate policy, and which allow us to quantify circumstances

in which inspection is cost-inefficient.

When a safety requirement is prescribed, and it is therefore

natural to consider the operational reliability of the system,

false negatives affect availability ((3) and (4)), but not re-

liability. On the other hand, the effect of false positives on

operational reliability is complex, and depends on the nature

of the component reliability distribution. If this is IFR, then

false positives increase operational reliability, so that false

positives are a cost issue. For discrete mixtures, false positives

provide also a positive effect on the reliability when the

proportion of weak items is low. However, if the reliability

distribution is not IFR, and replacement is imperfect (in the

sense of Scarf et al. [2]), then the unnecessary replacements

at false positives not only increase the cost-rate but may also

decrease operational reliability and decrease availability. The

same effect is detected when the proportion of weak items is

high. This result is true because a new component introduced

at replacement may be worse than the one in use.

When the system under inspection is DFR, and inspections

are perfect, no preventive maintenance is recommended. How-

ever, we observe that this recommendation is no longer valid

when false negatives can occur. If so, preventive maintenance

can protect against the occurrence of a failure that remains

undetected and causes unavailability and potential catastrophic

failure of the protected system.

Thus, when one is dealing with a protection system, it would

seem essential to inspect this system because inspection is

the only way to know the state of the system. However, we

show in this paper that, even if inspection is the only way to

know the system state, and hence if the protection system is

performing its required function (to protect a critical system),

if maintenance is poorly executed (with high probability to

commit mistakes at inspection and to introduce poor quality

or badly installed components at preventive replacement), then

it may be more prudent to do nothing. This kind of conclusion

is not according to common engineering sense because in

practice one might tend to act more frequently when an action

is perceived to be only moderately effective.

APPENDIX

PROOF OF LEMMA 1

The cost-rate can be alternatively expressed as

Q(T,M) = cd +
c0
T

+
cren − cdE[U ]

T (E[K1] + E[K2])
.

The expected uptime is given by

E[U ] =

∫ T

0

R(t)dt+

M
∑

i=2

(1− α)i−1

∫ iT

(i−1)T

R(t)dt.

The second term in the previous expression is bounded as

T
M
∑

i=2

(1− α)i−1R(iT ) ≤
M
∑

i=2

(1− α)i−1

∫ iT

(i−1)T

R(t)dt,

and

M
∑

i=2

(1− α)i−1

∫ iT

(i−1)T

R(t)dt ≤ T
M
∑

i=2

(1− α)i−1R((i− 1)T ).

The upper, and lower bound of the foregoing inequalities

tend to zero in both cases when T tends to zero, and when T
tends to infinity (see Badı́a et al. [29]); and hence the following

conditions hold.

limT→0 E[U ] = 0 and limT→∞ E[U ] = E[X] = µ
In addition,

limT→0 cren = cm, limT→∞ cren = cr
1 ≤ K1 +K2 ≤ M . Hence T ≤ E[(K1 +K2)T ] ≤ MT ,

and the following two limits hold for a fixed M .

limT→0 E[(K1 +K2)T ] = 0, and

limT→∞ E[(K1 +K2)T ] = ∞.

Thus the two limiting conditions in Lemma 1 are proved.

PROOF OF PROPOSITION 1

The total number of inspections in a cycle is bounded as

follows.

E[K1] + E[K2] ≤

M
∑

i=1

(1− α)i−1

(

1− βM+1−i

1− β

)

=

1

1− β

(

1− (1− α)M

α
−

βM+1 − β(1− α)M

β − (1− α)

)
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provided that α+ β 6= 1.

Next, a lower bound for the expected uptime is

E[U ] =

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt >

M
∑

i=1

(1− α)i−1TR(iT ) > TR(MT )
1− (1− α)M

α
.

Then,

c0(E[K1] + E[K2]) + cr − cdE[U ] <

c0
1− β

(

1− (1− α)M

α
−

βM+1 − β(1− α)M

β − (1− α)

)

+

cr − cdTR(MT )
1− (1− α)M

α
.

In the case that α+ β = 1, it follows that

E[K1] + E[K2] ≤
M
∑

i=1

(1− α)i−1

(

1− βM+1−i

1− β

)

=

1

1− β

(

1− βM

1− β
−MβM

)

.

Conditions (7) and (8) imply that

c0(E[K1] + E[K2]) + cr − cdE[U ] < 0

for some T > 0, and Lemma 1 leads to the result.

PROOF OF LEMMA 2

Result i) is true because

0 ≤

(

α

M−1
∑

i=1

R(iT )(1− α)i−1 + (1− α)M−1R(MT )

)

< 1,

and this follows because

α

M−1
∑

i=1

R(iT )(1− α)i−1 + (1− α)M−1R(MT ) <

α
M−1
∑

i=1

(1− α)i−1 + (1− α)M−1 =

α
1− (1− α)M−1

α
+ (1− α)M−1 = 1.

Result ii) follows from the fact that
(

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt

)

≤

(

M
∑

i=1

(1− α)i−1

∫

∞

0

R(t)dt

)

=

M
∑

i=1

(1− α)i−1µ = µ
1− (1− α)M

α
.

PROOF OF PROPOSITION 2

K1, and K2 are s-dependent random variables such that

K1+K2 ≥ 1, implying that cins ≥ c0. Therefore, for a given

M , condition (9) along with Lemma 2 imply that Q(T,M) ≥
cd for all T > 0, and Lemma 1 leads to the result.

PROOF OF THEOREM 1

Let us analyze the numerator in the expression of the cost-

rate given in (6) as follows.

cins + cren − cd

(

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt

)

The cost derived from inspections in (5) can be alternatively

written as

cins = c0

(

1− βM

1− β
+

βM − β

1− β
R(T )

)

+

c0

M
∑

i=2

R(iT )(1− α)i−1 +

c0

M
∑

i=2

(R((i− 1)T )−R(iT ))(1− α)i−1 1− βM+1−i

1− β
.

Hence,

cins ≥ c0

(

1− βM

1− β
+

βM − β

1− β
R(T )

)

.

For a given M ≥ 1, let us denote by f(β) the function

f(β) =
βM − β

1− β
.

f(β) is a decreasing function, hence f(β) ≥ limβ→1 f(β) =
1−M , and it follows that

cins ≥ c0

(

1− βM

1− β
+ 1−M

)

provided that f(β) is a negative function. Hence, if any of the

conditions given in i) or ii) verify, then for all M ≥ 1 and

T > 0, Lemma 2 implies that

cins + cren ≥ cdE[U ].

Therefore, for a given M ≥ 1, Q(T,M) ≥ cd for all T > 0,

and the result follows from Lemma 1.

PROOF OF COROLLARY 1

g(β,M) = (1−βM )/(1−β) is an increasing function with

β:

∂g(β,M)

∂β
=

h(β)

(1− β)2
,

and h(β) = 1 − MβM−1(1 − β) − βM verifies that h(0) =
1, h(1) = 0, and h′(β) = −M(M − 1)βM−2(1 − β) < 0.

Therefore, h(β) ≥ 0, and g(β,M) is increasing with β. Hence,

conditions i) or ii) in Theorem 1 hold for β ≥ βM0, and thus

the result in Corollary 1 is obtained.
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PROOF OF THEOREM 2

If β = 0, the cost-rate is

Q(T,M) = cd +
c0
T

+
a(T,M)

b(T,M)

with a(T,M), and b(T,M) as

a(T,M) = (cm − cr)α
M−1
∑

i=1

R(iT )(1− α)i−1 +

(cm − cr)(1− α)M−1R(MT ) + cr −

cd

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt,

b(T,M) = T
M
∑

i=1

(1− α)i−1R((i− 1)T ).

In addition,

Q(T,M + 1) = cd +
c0
T

+
a(T,M + 1)

b(T,M + 1)
,

a(T,M + 1) = a(T,M) + g(T,M),

b(T,M + 1) = b(T,M) + h(T,M)

with

g(T,M) =

(cm − cr)(1− α)M (R((M + 1)T )−R(MT ))−

cd(1− α)M
∫ (M+1)T

MT

R(t)dt,

and

h(T,M) = T (1− α)MR(MT ).

Then Q(T,M +1) ≤ Q(T,M) is equivalent to the inequality

a(T,M) + g(T,M)

b(T,M) + h(T,M)
≤

a(T,M)

b(T,M)

which in turn is equivalent to

g(T,M)

h(T,M)
≤

a(T,M)

b(T,M)

provided that b(T,M) ≥ 0, and h(T,M) ≥ 0.

The foregoing inequality can be also expressed as

(cm − cr)R((M + 1)T )−R(MT )

R(MT )

−
cd
∫ (M+1)T

MT
R(t)dt

R(MT )
≤ (10)

(cm − cr)α
∑M−1

i=1 R(iT )(1− α)i−1

∑M
i=1(1− α)i−1R((i− 1)T )

+

(cm − cr)(1− α)M−1R(MT ) + cr
∑M

i=1(1− α)i−1R((i− 1)T )
−

cd
∑M

i=1(1− α)i−1
∫ iT

(i−1)T
R(t)dt

∑M
i=1(1− α)i−1R((i− 1)T )

.

If the time to failure follows an exponential distribution with

rate λ = 1/µ, then we get

(

α
M−1
∑

i=1

(1− α)i−1R(iT ) + (1− α)M−1R(MT )

)

=

αe−λT + (1− α)Me−λMT
(

1− e−λT
)

1− (1− α)e−λT
,

and

M
∑

i=1

(1− α)i−1R((i− 1)T ) =
1− (1− α)Me−λMT

1− (1− α)e−λT
.

Also,

M
∑

i=1

(1− α)i−1

∫ iT

(i−1)T

R(t)dt =

(

1− e−λT
) (

1− (1− α)Me−λMT
)

λ (1− (1− α)e−λT )
.

Then, the inequality in (10) is given by

(cm − cr)
(

e−λT − 1
)

≤

(cm − cr)
(

αe−λT + (1− α)Me−λMT
(

1− e−λT
))

1− (1− α)Me−λMT
+

cr
(

1− (1− α)e−λT
)

1− (1− α)Me−λMT
.

Given that 1 − (1 − α)Me−λMT ≥ 0 for all T , the previous

inequality is in turn equivalent to

cm
(

e−λT − 1
)

≤ cmαe−λT ,

which is always true for all M and T as the left hand side of

the previous expression is less than or equal to zero.

Note that, if α = 0, then the last inequality also holds and

proves the result for perfect inspections (Barlow and Proschan

[22]).

Therefore, under the conditions of Theorem 2, Q(T,M+1) <
Q(T,M) for all M , and the result holds. This completes the

proof.
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Table I: Discrete two component mixture; minimum cost-rate policy 

for various parameter values. 

 
Case Mixed failure distribution 

parameters 

Cost parameters False -ve 

and +ve 

probabilities 

Optimum policy 

  s1 η1 s2 η2 p c0 cm cr cD    β   α M* T* Q* 

1 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 7 606 0.067 

2 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.4 6 733 0.088 

3 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.6 5 847 0.114 

4 2.5 500 4.5 7000 0.1 5 55 105 1.35 0 0 10 410 0.042 

5 2.5 500 4.5 7000 0.1 5 55 105 1.35 0 0.2 6 687 0.056 

6 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.4 0.2 8 527 0.082 

7 2.5 500 4.5 7000 0.1 5 55 105 1.35 0.6 0.2 9 449 0.107 

8 1.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 7 593 0.069 

9 3.5 500 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 6 656 0.065 

10 2.5 400 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 7 588 0.068 

11 2.5 600 4.5 7000 0.1 5 55 105 1.35 0.2 0.2 6 670 0.066 

12 2.5 500 3 7000 0.1 5 55 105 1.35 0.2 0.2 7 533 0.077 

13 2.5 500 6 7000 0.1 5 55 105 1.35 0.2 0.2 7 655 0.062 

14 2.5 500 4.5 5000 0.1 5 55 105 1.35 0.2 0.2 6 509 0.079 

15 2.5 500 4.5 9000 0.1 5 55 105 1.35 0.2 0.2 8 675 0.060 

16 2.5 500 4.5 7000 0.01 5 55 105 1.35 0.2 0.2 1 2557 0.029 

17 2.5 500 4.5 7000 0.05 5 55 105 1.35 0.2 0.2 5 740 0.051 

18 2.5 500 4.5 7000 0.25 5 55 105 1.35 0.2 0.2 11 469 0.114 

19 2.5 500 4.5 7000 0.1 2 55 105 1.35 0.2 0.2 7 588 0.062 

20 2.5 500 4.5 7000 0.1 10 55 105 1.35 0.2 0.2 6 686 0.074 

21 2.5 500 4.5 7000 0.1 5 55 70 1.35 0.2 0.2 7 608 0.065 

22 2.5 500 4.5 7000 0.1 5 55 140 1.35 0.2 0.2 7 605 0.069 

23 2.5 500 4.5 7000 0.1 5 55 105 0.8 0.2 0.2 6 724 0.053 

24 2.5 500 4.5 7000 0.1 5 55 105 2.2 0.2 0.2 8 510 0.085 




Figure 1. Cost-rate, ),( MTQ , as a function of T for M=4 (

__
+

__
); M =5 (

__
o

__
);  

M =6 (- - -); M =7(
__□__

); M =8 (
__∆__

); M =9(
__◊__

); M=10(
__

 X
__

).  

Parameter values: s s p = 0.10, α = 0.2,     
c0 = 5, cm = 55 cr =105, cD = 1.35.
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

 
        (a)          (b)         (c) 

 

Figure 2. Reliability function )(tRTM as a function of t for M=5 and α =0.2, for various values of T:  

T(- - - -) T(─◊─) T(─Δ─)   T(─X─) T (─ + ─); T (─○─) ; 
baseline reliability R(t) (──). Discrete mixture (a)  p = 0.005; (b) p = 0.15; (c) p = 0.3;  

other parameter values: sscosts as base case. 




        
          (a)               (b) 

 

Figure 3. Reliability function )(tRTM  as a function of t for M=7 and T= 655, for various values of α: α =0.05 

(- - - -); α =0.1 (─◊─); α =0.3 (─∆─); α =0.5(─X─); baseline reliability R(t) (──). Discrete mixture:  

(a) p=0.005; (b) p=0.15. Other parameter values: s scosts as base case.  
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Table II: Continuous mixture: Weibull-inverse Gaussian. Minimum 

cost-rate policy for various parameter values. 

 
Case Mixed failure 

distribution 

parameters 

Cost parameters False -ve 

and +ve 

probabilities 

Optimum policy 

  s η b d c0 cm cr cD    β   α M* T* Q* 

1 2 5008 1 1 5 55 105 1.35 0.2 0.2 2 731 0.076 

2 1.5 5008 1 1 5 55 105 1.35 0.2 0.2 ∞ 340 0.094 

3 1 2897 1 1 5 55 105 1.35 0.2 0.2 ∞ 272 0.157 

4 1 2897 1 1 5 55 105 1.35 0.4 0.2 ∞ 217 0.189 

5 1 2897 1 1 5 55 105 1.35 0.6 0.2 2 348 0.236 

6 1 2897 1 1 5 55 105 1.35 0.8 0.2 1 578 0.238 

7 1 2897 1 1 5 55 105 1.35 0.2 0.4 ∞ 339 0.198 

8 1 2897 1 1 5 55 105 1.35 0.2 0.6 ∞ 395 0.230 

9 1 2897 1 1 5 55 105 1.35 0.2 0.8 1 578 0.238 

10 1 2897 1 1 5 55 105 1.35 0.0 0.8 ∞ 529 0.218 

11 1 2897 1 1 5 55 105 1.35 0.0 0.6 ∞ 475 0.195 

12 1 2897 1 1 5 55 105 1.35 0.0 0.5 ∞ 444 0.182 

13 1 2897 1 1 5 55 105 1.35 0.0 0.4 ∞ 412 0.168 

14 2 5008 1 1 5 55 105 1.35 0.1 0.1 6 392 0.069 



        
       (a)                (b)


Figure 4. Reliability function )(tRTM  as a function of t for M=7 and T , for various  values of α: 

α=0.05 (- -  -); α =0.1 (─Δ─); α =0.3 (─o─); and α =0.5 (─×─)  baseline reliability R(t) (──). 

Continuous mixturea sDFR)bsIFR)ther parameter values: bd 
costs as base case. 


