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ABSTRACT 

This work proposes a comparison of three data-driven signal reconstruction methods, i.e. Auto-

Associative Kernel Regression (AAKR), Fuzzy Similarity (FS) and Elman Recurrent Neural 

Network (RNN), for fault detection based on the difference between the signal observations and the 

reconstructions of the signal in normal condition. The aim is to show the capabilities and 

drawbacks of the methods and propose a strategy for the aggregation of their outcomes, in order to 

overcome their limitations. For this purpose, the performance of each method is evaluated in terms 

of fault detection capability, considering accuracy, robustness and resistance to the spillover effect 

of the obtained signal reconstructions. The comparison is supported by the application to a real 

industrial case study regarding temperature signals collected during operation of a rotating 

machine in an energy production plant. An ensemble of the three methods is proposed to overcome 

the limitations of the three methods. 

 

Keywords – fault detection, signal reconstruction, Auto-Associative Kernel Regression 

(AAKR), Fuzzy Similarity (FS), Elman Recurrent Neural Network (RNN), Ensemble of 

methods. 

Formattato: Non Evidenziato

mailto:piero.baraldi@polimi.it


1 Introduction 

Accurate monitoring of the health state of Systems, Structures and Components (SSCs) can 

contribute significantly to the safe and efficient functioning of power plants, assuring timely 

detection of malfunctions and anomalies during operations. In particular, fault detection allows to 

determine whether faults are present and to localize them early in their development [Ma et al., 

2011]. 

In order to prevent over/under estimation of anomalous conditions, a desideratum for fault detection 

methods is the reliability of their residuals estimates [Far et al., 2009]. In practice, two phenomena 

may occur if the signal reconstruction is not reliable: i) false alarms in case of over-estimation of 

anomalous conditions and ii) missing alarms in case of under-estimation of anomalous conditions 

[Chetouani, 2006; Arinton et al., 2012; Di Maio et al., 2013]. 

Typically, fault detection algorithms compare the signal values measured during operation with 

those estimated (reconstructed) by a model as if the system were in normal conditions. The 

calculated residuals between observed and reconstructed values reveal the presence of anomalous 

conditions [Reifman, 1997]. Signal reconstruction can be accomplished through a variety of 

methods that can be classified into analytical and empirical, where the former are based on the 

knowledge of the physical equations describing normal and anomalous conditions, whereas the 

latter are trained using signal measurements collected during the range of operating conditions of 

the plant [Hines et al., 2008; Baraldi et al., 2011; Di Maio et al., 2013]. 

Analytical methods are applied when the underlying mechanism of a system is well understood, and 

can be used to reconstruct its expected normal behavior based on the measured signals. The 

application of these methods in large and complex systems is limited due to the large efforts 

necessary for the development of the analytical models, especially when the involved phenomena 

are not well understood [Coble et al., 2012]. 

Recently, the increasing availability of large datasets of signal measurements has been favoring the 

use of empirical rather than analytical methods for signal reconstruction [Coble et al., 2012]. 
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Empirical methods do not require an explicit understanding of the underlying physical mechanism 

of the system [Hines et al., 2008; Zhao et al., 2013]. They are classified according to two 

characteristics: parametric versus non parametric and inferential versus auto-associative [Coble et 

al., 2012]. Parametric methods aim at building the best fitting of signal values using the present and 

historical available information to reconstruct new observations. On the other hand, non-parametric 

methods combine present and historical data through an algorithm to reconstruct each new 

observation. Inferential methods concentrate on a set of explanatory signals to reconstruct another 

signal values [Zhang et al., 2011]. On the contrary, auto-associative methods use a set of measured 

signals to provide the reconstruction of the same signal values. Among these categories, several 

empirical methods have been developed. Typical examples include Artificial Neural Networks 

(ANNs) [Hines et al., 1996] and Recurrent Neural Networks (RNNs) [S. Seker et al., 2003], 

Principal Component Analysis (PCA) [Hines et al., 2008; Luh et al., 2011] and Independent 

Component Analysis (ICA) [Al-Bazzaz et al., 2004], Auto-Associative Kernel Regression (AAKR) 

[Garvey et al., 2006; Baraldi et al., 2012], Multivariate State Estimation Technique (MSET) 

[Zavaljevski et al., 2000], Support Vector Machines (SVMs) [Zavaljevski et al., 2000; Zio et al., 

2012] and Fuzzy Similarity (FS) [Zio et al., 2010a]. 

Although a large number of signal reconstruction methods has been developed, comparative 

analyses of their performance when applied to real industrial case studies have seldom been 

proposed in practical settings and guidelines for the choice of the adequate performing methods of 

fault detection in different settings have not been provided. 

In the present work, we propose a comparison of three signal reconstruction methods used for fault 

detection, i.e. AAKR, FS and Elman RNN. The objective is to compare their performances in 

different situations with respect to general fault detection targets: fast detection speed, and low false 

and missing alarms rates [Wang et al., 2005]. A real case study concerning the monitoring of a 

rotating machine in an energy production plant has been considered for the comparison study. 

Furthermore, a strategy for the aggregation of the individual outcomes of AAKR, FS and Elman 
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RNN is proposed in order to overcome the limitations of the three independent reconstruction 

methods by resorting to an ensemble strategy. 

The remainder of the paper is organized as follows: Section 2 describes the problem, Section 3 

illustrates the signal reconstruction methods employed and Section 4 shows their application to a 

case study regarding the signals collected during the operational transients of a rotating machine. 

Finally, Section 5 introduces the ensemble of the three methods and Section 6 draws the 

conclusions. 

2 Problem statement 

We consider a training set 
trX  containing the values of J signals measured during normal plant 

conditions at N different time instants. The generic element ),( jkx tr
 of 

trX indicates the value of 

signal j, with j=1,…J and k=1,…,N. 

The objective of a signal reconstruction method is to provide the reconstruction, ),(ˆ jtx , of the 

value the j-th signal observed at time t, ),( jtx . Then, the deviation (residual), 

ˆ( , ) ( , ) ( , )r t j x t j x t j  , between the signal reconstruction and the observation can be compared 

with a properly defined threshold d, and if ( , )r t j d  an anomalous condition is identified [Yu et 

al., 2006]. The threshold d is typically fixed considering the reconstruction error on a validation set 

made by measurements performed at Nval time instants, different from those of the training set. In 

the present work, the threshold for the residuals of the j-th signal is set to: 

   4 MSEd j j       (1) 

where MSE(j) is the Mean Square Error (MSE) of the j-th signal residuals computed considering the 

validation set: 

 

2

1

ˆ( ( , ) ( , ))
valN

k

val

x k j x k j

MSE j
N








     (2) 
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Since the residuals are expected to be Gaussian-distributed with mean equal to 0 and variance 

MSE(j), a constant value equal to 4 has been used in Eq. (1) in order to reduce the false alarm rate 

and to guarantee the detection of the abnormal conditions when the residuals exceed process noise 

in normal conditions. Other advanced statistical techniques for the analysis of the residuals and the 

detection of abnormal conditions can be found in [Di Maio et al., 2013]. 

Three reconstruction methods are considered in the present work, i.e. AAKR, FS and RNN, and 

their performance is compared with respect to three metrics: accuracy, robustness and spillover. 

These metrics are computed considering a test set made by Ntest measurements different from those 

of the training and validation sets. 

For the generic signal j, accuracy is the ability of providing correct reconstructions of observed data 

in normal conditions and is evaluated in terms of the global MSE on the test set:  

 

2

1

ˆ( ( , ) ( , ))
testN

k

test

x k j x k j

MSE j
N








     (3) 

Robustness with respect to anomalous behavior is the ability of reconstructing the values of signal j 

expected in normal conditions and is computed as the difference between the reconstruction of the 

j-th signal in anomalous conditions, ˆ ( , )acx k j , and the observation of the same signal in normal 

conditions, ( , )x k j : 

 

2

1

ˆ( ( , ) ( , ))
T

ac
k

x k j x k j

S j
T








     (4) 

 

Therefore, a low value of S(j) means high robustness [Baraldi et al., 2011]. When a real dataset 

containing real abnormal conditions measurement is not available for the computation of the metric 

in (4), the abnormal conditions are simulated by adding a random noise of fixed variance to 

historical normal conditions values.  

A global robustness measure over all signals can be, finally, constructed as: 
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𝑆 = ∑ 𝑆(𝑗)𝐽
𝑗=1        (5) 

Spillover measures the effect that the anomalous behavior of the monitored signal j has on the 

reconstruction of the other signals. The spillover effect from signal j can lead to incorrect model 

reconstructions of other signals. Thus, the accuracy A in the reconstruction of  signal j1 in normal 

conditions when signal j2 is in anomalous conditions is defined by: 

2

1 1
1

1 2

ˆ( ( , ) ( , ))

( )

testN

t

test

x k j x k j

A j j is anomalous
N








    (6) 

A global spill-over measure over all signals can, then, be constructed as: 

 

𝐴 = ∑

∑ 𝐴(𝑗1|𝑗2 𝑖𝑠 𝑎𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠)
𝐽
𝑗2≠𝑗1=1

𝐽−1

𝐽

𝐽
𝑗1=1       (7) 

 

3 Signal reconstruction methods 

The signal reconstruction methods AAKR, FS and Elman RNN are analyzed and compared in order 

to find i) in which situations it is appropriate to apply one method or another and ii) an ensemble of 

the three methods that overcomes the limitations of the methods. For completeness of the paper, a 

brief introduction on these methods is provided in Sections 3.1, 3.2 and 3.3, respectively. 

3.1 Signal reconstruction using AAKR 

The AAKR method provides the vector of reconstructed signal values, 

)],(ˆ),...,2,(ˆ),1,(ˆ[)(ˆ Jtxtxtxtx  , given the current signal measurement vector, 

)],(),...,2,(),1,([)( Jtxtxtxtx  , whereby each reconstructed value is the sum of the historical 

observations, 
trX , weighted by a Gaussian kernel [Baraldi et al., 2011]: 

2

2

( )

2
1

( )
2

d k

hw k e
h



       (8) 
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The parameter h defines the Gaussian bandwidth and 2d  is the Euclidean distance between the J 

signal measurements )(tx  and the k-th observation in 
trX for every single pattern k: 

2 2

1

( ) ( ( , ) ( , ))
J

tr

j

d k x t j x k j


       (9)     

Reconstruction, ),(ˆ jtx , of the j-th signal, ),( jtx , is obtained by weighting on the weights )(kw : 








N

k

N

k

tr

kw

jkxkw

jtx

1

1

)(

),()(

),(ˆ       (10) 

3.2 Signal reconstruction using FS 

The basic idea of the method is to compare the segment of a test trajectory containing only the most 

recent Lt measurements of signal j at the present time t, ),:1()( jtLtxjx tt  , and the generic 

segment of length Lt of signal j contained in the training set 
trX , which ends at time k, 

),:1(),( jkLkxjkx t

trtr  , with , 1,..,
t t

k L L T  , hereafter called reference trajectory [Baraldi 

et al., 2014]. The comparison is based on a fuzzy definition of trajectory pattern similarity proposed 

in [Zio et al., 2010a] in the context of fault prognostics. 

More specifically, the pattern matching process is based on the evaluation of a fuzzy distance 

between the reference and test trajectory patterns [Angstenberger, 2001]; then, the reconstruction is 

obtained applying a fuzzy distance-weighted sum of the reference trajectories. 

The distance evaluation is based on a pointwise difference ),(2 jk  between the Lt elements of the 

k-th trajectory )( jx tr

k  and the elements of the test trajectory )( jxt  of the j-th signal, given by: 

2
2 )()(),( jxjxjk t

tr

k        (11) 

 

The distances are finally aggregated into [Zio et al., 2010b]:  

J

jk

k

J

j





1

2

2
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

       (12) 
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To account for a gradual transition between ‘similar’ and ‘non-similar’, we introduce an 

“approximately zero” fuzzy set [Zio et al., 2010c] taken, in this work, as a bell-shaped function: 

















)(

)ln( 2

2

)(
k

ek






       (13) 

The parameters   and   are set by the analyst: the larger the value of the ratio 2
)ln(




, the narrower 

the fuzzy set and the stronger the definition of similarity [Zio et al., 2010a].  

The distance score )(kd  between two trajectories is, then, computed as: 

)(1)( kkd       (14) 

With respect to AAKR, weighted reconstruction allows all the reference training trajectories 

( , )trx k j  (rather than only the single measurement ( , )trx k j ) carry useful information for the 

reconstruction of the missing data in the currently developing trajectory [Baraldi et al., 2014]. To 

this aim, weights are computed with a decreasing monotone function [Zio et al., 2010a], such that 

the smaller the distance )(kd  the larger the weight given to the k-th reference trajectory: 

)(
1

))(1()(
kd

ekdkw 


   TLk t ,...,     (15) 

The same value of   used in eq. (13) is here employed in order to reduce the number of parameters 

to be set. Finally, the reconstruction, ),(ˆ jtx , of the observed value at time t of the j-th signal, ),( jtx

, in the test trajectory is the weighted sum of the last element ),( jkx tr

 
of each reference trajectory 

[Baraldi et al., 2014]: 











t

t

LN

k

LN

k

tr

kw

jkxkw

jtx

1

1
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),(ˆ                                                             (16) 
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3.3 Signal reconstruction using RNN 

The architecture of the Elman RNN that has been used in this work consists in input, context, 

hidden and output layers which are connected by weights (synapses) [Seker et al., 2003]. This RNN 

is constructed in such a way that the outputs of some layers are fed back to the same or preceding 

layers [Gabrijel et al., 2003]. At a specific time t, the input at time t-1 and at current time t are used 

as inputs to the network. Thus, the input layer entails also considering the input node (neuron) fed 

with the observed value at time t-1 of the j-th signal, ),1( jtx  . The output, ),(ˆ jtx , results into the 

aggregation of previous and current observed values [Elman, 1990; Pham et al., 1996; Gabrijel et 

al., 2003; Seker et al., 2003]. The standard back-propagation learning rule is typically employed to 

train the network [Rumeihart et al., 1986].  

Indicating by ( )
i

u t  the total input to the i-th hidden node, by ( )
i

y t  the output of the i-th hidden 

node and by ( )c

k
y t  the output of the j-th context node, the following equations hold: 

       ,
1

( ) = 1 ,   1 ,
n

x c u

i i k k i
k

u t w l t y t j w t x t j


      (17) 

 ( ) =
i i

x t f u       (18) 

 ( ) = 1,c

k
y t x t j       (19) 

   
1

ˆ( , ) = 1
n

y

i i
i

x t j w t y t


      (20) 

where 
u

i
w , 

,

x

i k
w  and 

y

i
w , i, k:1,2,..., n, are the weights of the links between the input node and the 

hidden layer, between the context layer and the hidden layer, and between the hidden layer and the 

output node, respectively; f is a sigmoidal activation function.  

4 Case study 

A real industrial case study concerning the identification of anomalous operational transients in a 

rotating machine of an energy production plant (whose detailed characteristics cannot be reported, 
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due to confidentiality reasons) has been considered. A dataset containing the measurements of 

5J  temperature signals taken for a total of T=6000 time instants during 1 year is available. 

Figure 1 shows an example of the evolution of one of the measured signals.  

 

An extensive pre-analysis of the available dataset has highlighted a seasonal behavior of the signals, 

which is due to different operational/environmental conditions. Thus, we have divided the original 

dataset into 4 seasonal sets containing 1500 measurements each (as shown in Figure 1). In season 1, 

a constant temperature has been measured between t=197 and t=591 due to a problem of the 

measurement sensor. 

 

A training set 
trX has been built by taking the first 800 measurements of each set. The remaining 

700 measurements in each season are equally divided into a validation set for optimally tuning the 

AAKR, FS and RNN parameters and setting the value of the threshold d (see Section 2), and a test 

set for accuracy, robustness and spillover metrics evaluation. 
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Figure 1. Evolution of signal 1 (name and units are purposely hidden, for confidentiality reasons). The red 

lines divide the data into 4 seasonal behaviors. 
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The parameters of the three reconstruction methods have been set by performing an automatic 

tuning procedure based on trial and error. In practice, with respect to the AAKR method, a possible 

range of values [0.01, 0.4] of the parameter h has been identified, and the reconstruction of the 

validation set has been performed considering 40 equally spaced values. The minimum value of the 

MSE on the validation set has been obtained for h=0.04 (Figure 2). 

 

Figure 2. Evolution of the MSE on the reconstruction of the validation set with the AAKR parameter h. 

 

Similarly, the three parameters, 𝛼, 𝛽 and Lt, of the FS method have been set by considering a three 

dimensional grid with 𝛼, 𝛽 and Lt values in the ranges [0.005, 0.4], [0.01, 0.3] and [2,10], 

respectively. The (𝛼, 𝛽, 𝐿𝑡) triplet with associated minimum MSE in the reconstruction of the 

validation set is (0.05, 0.05, 2) (Figure 3). Finally, The RNN has required setting the number k of 

nodes in the hidden layer. This has been done by developing RNNs with a number of hidden nodes 
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from 6 to 20 and selecting the one with 14 nodes, since it gives the lowest MSE in the 

reconstruction of the validation set. Figure 4 shows the evolution of the MSE on the validation set 

as a function of the number k of nodes. 

 

Figure 3. Evolution of the MSE on the validation set for the FS method. The x-axis reports different β values, the 

line style corresponds to different Lt values (continuous, dashed and dotted lines for Lt = 2, 5 and 10, 

respectively). 
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Figure 4. Evolution of the MSE on the reconstruction of the validation set patterns with the parameter k. 

 

Although the obtained parameter values are specific for the application considered in this work, the 

proposed trial and error procedure for parameters setting can be adopted in other applications. The 

interested reader can refer to [Baraldi et al., 2011] for an application of the AAKR and the 

parameters setting procedure to the monitoring of a reactor coolant pump of a nuclear power plant. 

The application of the FS and the parameters setting procedure has been discussed in [Baraldi et al., 

2014] with respect to the reconstruction of missing data in shut-down transients of a turbine. 

Application of the RNN and discussion of the parametesr setting can be found in [Gabrijel et al., 

2003] in the context of on-line identification and reconstruction of finite automata. 

4.1 Accuracy 

Figure 5 shows the reconstruction residuals (continuous line) of the test set formed by 1600 values 

(400 measurements for each season) and the corresponding thresholds 4 MSEd   (dashed lines) 
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obtained with the MSE of the validation set. Residuals obtained using the AAKR reconstruction 

method are shown in the upper box, those obtained using the FS reconstruction method are in the 

middle box, and residuals obtained using the RNN reconstruction method are in the lower box. 

 

As shown in Figure 5, RNN is by far the most accurate among the three methods, with threshold 

much narrower (that is, smaller MSE) than those of FS and AAKR. The test residuals of all three 

reconstruction methods remain within the region defined by the respective thresholds for almost the 

entire test set, although residuals of the FS reconstruction show a larger variance with respect to 

AAKR and RNN. This leads to a larger MSE of the FS reconstruction method, as shown in Table 1. 

 

 

Reconstruction method MSE 

AAKR 8.6×10-3 

FS 7.4×10-2 

RNN 1.1×10-6 
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Figure 5. Residuals (continuous line) of the reconstruction of the normal 

conditions test set with the corresponding thresholds (dashed lines) for the 

three reconstruction methods: AAKR (upper box), FS (middle box), RNN 

(lower box). Notice the different scale of the residuals in the lower box. 

 



 

4.2 Robustness 

Robustness with respect to the reconstruction of the j-th signal is computed by applying Eq. 4 to 

simulated anomalous conditions such as linear and step drifts that are typical for these signals. 

Figures 6 and 7 show the residuals of the reconstructions of the test set for the first and the fourth 

seasons, respectively, when the i-th signal observation is affected by the same linear drift (dotted 

line): AAKR residuals in the upper box, FS residuals in the middle box, RNN residuals in the lower 

box. 
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Figure 6. Residuals (continuous line) of the reconstruction of the first season 

of the test set affected by linear drift (dotted line), with the corresponding 

thresholds (dashed lines) for the three reconstruction methods: AAKR (upper 

box), FS (middle box), RNN (lower box). 

 

Table 1. Accuracy of AAKR, FS and RNN in the reconstruction of the test set values.  

 



 

RNN is the worst performing method, whereas FS and AAKR are robust with respect to the linear 

drift anomaly. In particular, FS tends to perform better than AAKR, as its residuals follow the linear 

drift more closely and regularly, avoiding multiple alarm triggering (as AAKR would do during the 

fourth season for measurements at time 1276 and 1302). On the other hand, concerning the fault 

detection speed, AAKR is less prompt than FS in triggering the alarm. This is due to the fact that 

FS, even though is more robust, is less accurate and thus has associated an higher threshold (see 

previous Figure 5). Furthermore, FS tends to delay the anomalous conditions detection due to the 

need of collecting Lt measurements for the comparison of the test trajectory with the reference 

trajectories. Table 2 summarizes the results in terms of the robustness metric of Eq. (5). 

Reconstruction method Robustness 

AAKR 0.7479 

FS 0.3306 

RNN 13.75 
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Table 2. Robustness of AAKR, FS and RNN in the reconstruction of the test set 

affected by a linear drift.  

Figure 7. Residuals (continuous line) of the reconstruction of the fourth 

season of the test set affected by linear drift (dotted line), with the 

corresponding thresholds (dashed lines) for the three reconstruction methods: 

AAKR (upper box), FS (middle box), RNN (lower box). 

 



The residuals obtained in the reconstruction of a test set characterized by the application of a step 

drift on a signal are shown in Figures 8 and 9 (for the fourth and second seasons, respectively). The 

obtained results (Table 3) confirm that FS is the most, and RNN the least robust of the 

reconstruction methods. In both cases of linear and step drifts, the RNN method is not capable of 

reconstructing the expected value of the signal in normal conditions: the provided reconstruction is 

indeed very similar to the measurements and from the analysis of the residuals it is not possible to 

detect abnormal conditions. For these reasons, we consider RNN unsuitable for the detection of 

failures in this case. 

 

Reconstruction method Robustness 

AAKR 1.0843 

FS 0.2462 

RNN 13.0428 

 

 

Table 3. Robustness of AAKR, FS and RNN in the reconstruction of the test set 

affected by a step drift. 
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Figure 9. Residuals (continuous line) of the reconstruction of the second 

season of the test set affected by the step drift (dotted line), with the 

corresponding thresholds (dashed lines) for the three reconstruction methods: 

AAKR (upper box), FS (middle box), RNN (lower box). 

 

Figure 8. Residuals (continuous line) of the reconstruction of the fourth 

season of the test set affected by the step drift (dotted line), with the 

corresponding thresholds (dashed lines) for the three reconstruction methods: 

AAKR (upper box), FS (middle box), RNN (lower box). 

 



4.3 Spillover 

The spillover effect is evaluated by considering the reconstruction of a signal different from that to 

which a step drift has been applied. The obtained results are summarized in Table 4: a deviation of 

the residuals out of the region of normal conditions is a symptom that the reconstruction method is 

affected by spillover, which can lead to false alarms. Figures 10 and 11 show the residuals of the 

reconstruction of a signal which is not affected by any step, considering the second and third 

seasons, respectively and the application of a step on another signal. 
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Figure 10. Residuals (continuous line) of the reconstruction of the second 

season of the test set affected by step drift on a signal different from the 

plotted one, with the corresponding thresholds (dashed lines) for the three 

reconstruction methods: AAKR (upper box), FS (middle box), RNN (lower 

box).  

 



 

As expected, RNN is not affected by spillover, since (by definition of the model) reconstructions of 

the j-th signal is based exclusively on the j-th signal itself, which is not affected by any drift. The 

AAKR reconstruction method is the most affected by spillover effect which causes the triggering of 

false alarms on signal j, whereas the residuals provided by the FS always remain below the 

threshold in the normal conditions region. This difference of the two methods can be explained by 

the following two observations: 1) since FS is less accurate than AAKR, its failure threshold is 

higher and thus alarms are more difficult to be triggered 2) among the input of the FS model there 

are the previous normal condition values of signal i which are, instead not used by the AAKR 

method and which can reduce the spillover effect. 

Reconstruction method MSE – Spillover 

AAKR 0.7552 

FS 0.2516 

RNN 0 
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Table 4. Spillover effect of AAKR, FS and RNN in the reconstruction of signal j 

Figure 11. Residuals (continuous line) of the reconstruction of the third season 

of the test set affected by step drift on a signal different from the plotted one, 

with the corresponding thresholds (dashed lines) for the three reconstruction 

methods: AAKR (upper box), FS (middle box), RNN (lower box).  

 



5 Ensemble 

The comparison of the three methods for signal reconstruction has shown their different capabilities 

on the data considered. RNN has proven to be the most accurate in the reconstruction of normal 

conditions and to be not affected by the spillover effect, but it is not robust with respect to the 

reconstruction of anomalous conditions. Thus, RNN cannot be used as reconstruction method for 

our fault detection purposes. FS has shown to be satisfactory from the point of view of robustness 

and spillover effects, but the least accurate, whereas AAKR is the fastest in triggering alarms in 

case of anomalous conditions. Both FS and AAKR are suitable for our fault detection purposes, 

although their not completely satisfactory accuracy requires setting high residuals thresholds for the 

anomalous condition detection. This may cause delays in the triggering of the alarm by the fault 

detection system. 

To overcome this hurdle and further improve reconstruction performance, an ensemble approach 

can be embraced by way of which a combination of the outcomes of the methods is used so as to 

benefit from their different capabilities [Baraldi et al., 2010]. The development of an ensemble 

approach requires the aggregation of the outcomes provided by the three reconstruction methods. A 

detailed discussion of possible strategies of aggregation (e.g.,  based on the computation of the 

simple mean or median of the individual model outcomes) can be found in [Baraldi et al, 2010]. In 

this work, we consider the median of the reconstruction provided by AAKR, FS and RNN since it 

allows discarding possible outlying outcomes which could, on the contrary, negatively influence the 

mean. 

Table 5 (columns 1-6) compares the performance of the ensemble with those of FS and AAKR. 

RNN has not been considered in Table 5 since, due to its low robustness, it cannot be employed 

alone within our FD system. It is, however, interesting to observe that the ensemble is more 

accurate and resistant to spillover than the other methods, thanks to the contribution of the RNN 

reconstructions. Furthermore, with respect to the robustness in the reconstruction of an anomalous 

condition, the performance of the ensemble is close to that of the AAKR and FS. In practice, in case 
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of an anomalous condition, the ensemble outcomes, obtained as the aggregation of the AAKR, FS 

and RNN outcomes, are not remarkably influenced by the RNN outcomes which are affected by 

large errors. 

In order to further compare the ensemble with the AAKR and FS from the point of view of fault 

detection performance, an indicator of overall performance, 
Overall

P , which aggregates the three 

metrics of accuracy (MSE), robustness (S) and spillover (A) has been defined according to [Baraldi 

et al., 2011]: 

 =MSE S A
Overall

P        (21) 

In Table 5 (last column), it can be noticed that 
Overall

P  of the proposed ensemble is more satisfactory 

than that of FS and AAKR. This confirms that a fault detection system based on an ensemble of the 

three reconstruction methods considered is capable of overcoming the limitations of each method 

and of exploiting their strengths, leading to overall satisfactory results with respect to our fault 

detection purposes. 

Future research work will consider the possibility of further improving the reconstruction 

performance of the ensemble by using other aggregation methods, such as those based on weighted 

sum of the method outcomes, with weights proportional to the local performance of the methods in 

the reconstruction of training patterns similar to the test pattern. 

 

Reconstruction 

method 

Accuracy Robustness Spillover Overall Performance 

Value Ranking Value Ranking Value Ranking Value Ranking 
AAKR 8.6×10-3 2 1.0843 3 0.7552 3 7×10-3 2 

FS 7.4×10-2 3 0.2462 1 0.2516 2 4.5×10-3 3 
ENSEMBLE 6.3 ×10-3 1 0.8712 2 0.1451 1 0.79×10-3 1 

 

Table 5. Reconstruction performance of AAKR, FS, RNN and an ensemble approach 

Codice campo modificato

Codice campo modificato

Codice campo modificato



6 Conclusions 

A comparison of the performance of three reconstruction methods has been presented in the context 

of fault detection in industrial components. To this aim, real temperature data collected during one 

year of operation in a rotating machinery has been considered. The comparison has regarded 

reconstruction methods based on Auto-Associative Kernel Regression (AAKR), Fuzzy Similarity 

(FS) and Recurrent Neural Network (RNN). The methods have been evaluated from the point of 

view of accuracy, robustness, spillover effect and speed of anomaly detection. 

The results have shown different capabilities and drawbacks of each method. In particular, although 

RNN has proven to be the most accurate in the reconstruction of normal conditions and to be not 

affected by the spillover effect, it cannot be effectively used for our fault detection purposes since it 

is not robust with respect to the reconstruction of anomalous conditions. On the other hand, FS is 

satisfactory from the point of view of robustness and resistance to the spillover effects, but is the 

least accurate. Finally, AAKR is the fastest in triggering alarms in case of anomalous conditions, 

but the least resistant to the spillover effect. 

To improve the reconstruction performance, the AAKR, FS and RNN methods have been combined 

within an ensemble framework. The obtained results have shown that the overall performance of the 

proposed ensemble is more satisfactory than that of the single methods and is capable of 

overcoming the limitations of each method while exploiting their strengths. 

Future research activity should focus on the optimization of the aggregation of the outcomes of each 

reconstruction method in the ensemble for further improving accuracy, robustness and resistance to 

spillover. 
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