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Abstract
We are interested in the analysis of very large continuous-
time Markov chains (CTMCs) with many distinct rates.
Such models arise naturally in the context of reliability
analysis, e. g., of computer network performability anal-
ysis, of power grids, of computer virus vulnerability, and
in the study of crowd dynamics. We use abstraction tech-
niques together with novel algorithms for the computation
of bounds on the expected final and accumulated rewards
in continuous-time Markov decision processes (CTMDPs).
These ingredients are combined in a partly symbolic and
partly explicit (symblicit) analysis approach. In particular,
we circumvent the use of multi-terminal decision diagrams,
because the latter do not work well if facing a large number
of different rates. We demonstrate the practical applica-
bility and efficiency of the approach on two case studies.
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Abbreviations
ACTMC abstract continuous-time Markov chain
BDD binary decision diagram
CD time-abstract, history-abstract, counting,

deterministic scheduler
CR time-abstract, history-abstract, counting,

randomised scheduler
CSL continuous stochastic logic
CTMC continuous-time Markov chain
CTMDP continuous-time Markov decision

process
DTMC discrete-time Markov chain
DTMDP discrete-time Markov decision process
ECTMC extended abstract continuous-time

Markov chain
EVBDD edge-valued decision diagram
HR time-abstract, history-dependent,

randomised scheduler
MDD multiple-valued decision diagram
MTBDD multi-terminal binary decision diagram
OBDD reduced ordered binary decision diagram
PM Prism model
symblicit method combining symbolic and explicit

aspects
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ZDD zero-suppressed decision diagram

Notation
µ probability distribution
Distr(A) set of probability distributions over the

set A
D discrete-time Markov model
S states of a Markov model
P probability matrix of a Markov model
XD,s0 stochastic process of a Markov model
s state of a Markov model
(Ω,Σ) measurable space
Pr probability measure
E expectation
R rate matrix of a Markov model
u uniformisation rate
Act action set of a Markov decision process
α action of a Markov decision process
Âct action set of an extended abstract Markov

chain
I`, Iu intervals of an extended abstract Markov

chain
α̂ action of an extended abstract Markov

chain
JCK continuous-time Markov decision pro-

cess semantics of an extended abstract
Markov chain

σ scheduler of a Markov decision process
β history of a Markov model
ΣHR set of time-abstract, history-dependent,

randomised schedulers
ΣCR set of time-abstract, history-abstract,

counting, randomised schedulers
ΣCD set of time-abstract, history-abstract,

counting, deterministic schedulers
σ scheduler
r = (rc, r f ) reward structure with cumulative reward

rate rc, and final reward value r f

rmax
f maximal final reward value over model

states

rmax
c maximal cumulative reward rate over

model states
t time bound
V reward value of a stochastic process or

Markov model
m Prism model
Var variables of a Prism model
init initial state of a Prism model
C commands of a Prism model
succ successors function of a Prism model
Rc cumulative rewards of a Prism model
R f instantaneous rewards of a Prism model
succ qualitative successor function of a Prism

model
S m reachable states of a Prism model
Cm induced CTMC of a Prism model
rm induced reward structure of a Prism

model
P partitioning of state space of a Prism

model
z abstract state
V BDD variables
x BDD variable
b graph of BDD
N set of nodes of a BDD
nroot root node of a BDD
v(n) label of a BDD terminal node n
h(n) high successor of a BDD node n
l(n) low successor of a BDD node n
v variable valuation of a BDD
Val set of variable valuations of a given BDD
JbK function represented by a BDD b
bdd0, bdd1 zero, and one BDDs
bP BDD representation of a state space par-

titioning
V set of BDD variables to encode the num-

ber of an abstract state
x BDD variable to encode the number of

an abstract state
φλ Poisson distribution with rate λ
ψλ cumulative Poisson distribution with rate

λ
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ε precision to compute value bounds
Dom domain of a partial function

1 Introduction

The analysis of large Markov chains is a recurring chal-
lenge in many important areas ranging from computer
network dependability and performance [71, 36] to quan-
titative security [52]. To evaluate properties of such sys-
tems, a standard approach is to perform numerical anal-
ysis, nowadays often embedded in a stochastic model
checker [55, 47, 20, 27]. At its core, the model checker has
to operate with a very large matrix induced by the Markov
chain. In this context, the use of symbolic representa-
tions, in particular variations of decision diagrams, such
as multi-terminal decision diagrams (MTBDDs) [67, 41],
multiple-valued decision diagrams (MDDs) [79], or zero-
suppressed decision diagrams (ZDDs) [60], have made it
possible to store and manipulate very large matrices in
a symbolic manner (either of transition rates or just of
adjacency). Many of the applications occurring in prac-
tice lead to very large continuous-time Markov chains
(CTMCs) that nevertheless contain only a very small num-
ber of different transition rates. This is a primary reason
why decision

diagrams, where distinct rates are stored as distinct val-
ues in the structure, are effective. Whenever there are many
pairwise different rates occurring, the decision diagram de-
generates to a decision tree, and thus its size explodes.
Edge-valued binary decision diagrams (EVBDDs) [59]
often can avoid this representation explosion, at the price
of a more involved reconstruction of matrix entries. This
trade-off makes them less suited for direct numerical com-
putations, as needed for the model checking of CTMCs.
Therefore, models with a large number of different rates
are a notorious problem for symbolic representations, and
hence for the stochastic model checkers available to date.

However, there is a growing spectrum of important
applications that give rise to excessive numbers of dis-
tinct rates. Computer network performability analysis
[37, 22, 2, 32, 76], power grid stability [72, 35], crowd
dynamics [62, 63], as well as (computer) virus epidemi-
ology [84, 86, 85] are important examples where Markov
models are huge, and rates change from state to state. The
study of these phenomena is of growing importance for

the assurance of their reliability. Several of these exam-
ples can in some way be regarded as Markov population
models [38, 43], where the rates change with population
counts, similar to models appearing in systems biology
[64], and also in classical performance and dependability
engineering [37, 22].

This paper targets the analysis of transient properties
of CTMCs with both a large number of states as well as
a large number of distinct transition rates. It presents a
combination of abstraction techniques, an explicit represen-
tation of a small abstract model, and symbolic techniques.
The latter use reduced ordered binary decision diagrams
(OBDDs), not MTBDDs or MDDs. As our method in-
volves both symbolic and explicit state space representa-
tions, we call it symblicit. The abstraction method relies on
visiting all concrete states of the abstract model to obtain
bounds on the transition matrix, but without having to store
the state space explicitly. We also present ideas how to
speed up this admittedly time-consuming process. On the
one hand, the approach can be seen as a continuation of
our previous work on symblicit algorithms [81, 23]. On
the other hand, we harvest work done on the abstraction
of Markov chains to abstract Markov chains or Markov
decision processes [50, 73, 46, 12, 26, 48, 42].

A number of related methods exist. Our solution method
uses results for explicit-state model analysis using uni-
formisation (randomisation) [45, 34]. In this method,
a continuous-time Markov model is transformed into a
discrete-time Markov model and a Poisson process. Intu-
itively, the discrete-time model describes in which state the
model resides after a state change, while the Poisson pro-
cess describes the process of the state changes. Analyses
using uniformisation then usually perform computations to
obtain intermediate results on the discrete-time model, and
later combine these results by weighting them using the
Poisson process. As the number of possible state changes
is unbounded, this process needs to be truncated, thereby
only considering a finite number of potential state changes.
However, the probability residing beyond that truncation
point can be bounded [31], so that the precision of the
results obtained via uniformisation can be precomputed.
Uniformisation is well understood, numerically stable, and
generally performs well in practice for non-stiff models.
Because of this, a number of contributions have since been
based on this method. Advanced methods for explicit-state
Markov reward models have been pioneered by Trivedi et
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al. [77]. Based on a variant of uniformisation using quasi-
stationary detection, Carrasco has developed a method
[18] to speed up the computation of transient reward prop-
erties for large stiff models where the state space can be
partitioned into a transient set and an absorbing state set.
Models with a similar structure are amenable to the effi-
cient analysis of cumulative reward properties with a very
general state-based reward notation [19].

We also build on many ideas for analyses using abstract
Markov chains by Klink et al. [50, 46]. This paper extends
their works by describing a widely applicable abstraction
method, and also by handling more general transient prop-
erties.

MTBDD-based methods [67, 41] work well for some
models, but have the disadvantages described above. The
method of Wan et al. [79] uses a slightly different data
structure to represent concrete models, and focuses on
steady-state properties rather than transient ones. It does
not rely on Markov decision models, and, though it works
well in practice for certain model classes, it cannot guaran-
tee safe bounds for properties of the concrete model.

There are techniques in which a symbolic representa-
tion of the transition matrix is used, but in which values
assigned to the states of the model (such as probabili-
ties) have to be stored explicitly and separately for each
state of the model. Examples include the so-called hy-
brid method [67, 56], other variants of decision diagrams
[60], and also methods using Kronecker representations
[25, 14, 5, 30, 16]. These kinds of methods are more
precise, and might be faster than the method we propose.
They are however not applicable in case the state space is
excessively large, too large to store one value per state.

Smith [73] developed means for the compositional ab-
straction of CTMCs given in a process calculus. This way,
he obtains an abstract Markov chain, which is then anal-
ysed by a method of Baier et al. [4] to obtain bounds for
the time-bounded reachability probability. Our approach
uses a different abstraction method, and can handle a more
general class of properties.

A paper by Buchholz [12] describes how bounds on
long-run average (thus, non-transient) properties can be
obtained from abstract Markov chains. It is based on a com-
bination of policy and value iteration [68], and discusses
the applicability of several variants of these methods on
typical examples from queueing theory and performance
evaluation.

The magnifying-lens abstraction [26] by de Alfaro et
al. is similar to our approach in that it also builds on (re-
peated) visits of concrete model states without storing the
whole concrete state space. It discusses a different model,
discrete-time Markov decision processes (DTMDPs), and
a different property, time-unbounded reachability probabil-
ities.

D’Argenio et al. [24] discuss how DTMDPs given as
MTBDDs can be abstracted to obtain a smaller abstract
model, which is also a DTMDP, but small enough to be
represented explicitly. In addition, a heuristic abstrac-
tion refinement method is presented. The target there was
to obtain bounds for unbounded reachability probabili-
ties. Works by Hermanns et al. [42] and by Kattenbelt
et al. [48] later developed methods to use probabilistic
games to provide tighter value bounds and predicate ab-
straction to handle larger or even infinitely large models,
as well as refinement methods based on these frameworks.
In contrast to the state of the art for discrete-time mod-
els, the discussed refinement method we consider is more
preliminary.

Other methods work with a finite subset of concrete
states of the model under consideration, rather than sub-
suming concrete states in abstract ones. There exists a wide
range of methods based on this principle for the analysis
of CTMCs [33, 78, 65, 39]. Recently, this approach was
extended to infinite-state Markov decision processes [13].
Here, two finite submodels are constructed which guaran-
tee to bound the values over all policies from below and
above. They can also be used to obtain a policy which is
ε-optimal in the original model.

Such methods are applicable if during a transient anal-
ysis the probability mass stays concentrated on a small
subset of states at each point of time. If, however, the
probability spreads evenly among too many states of the
model, then such methods are not appropriate. The reason
is that, in this case, either too many states need to be stored,
or a too large amount of the probability mass is lost as too
many states have to be disregarded.

In Section 2, we provide basic notations, and describe
the symbolic data structures used for the later abstraction.
We also describe the formal models we use, as well as
the properties we are interested in. Section 3 describes
algorithms to efficiently obtain an abstract model from a
description of a concrete model, and discusses how they
can be used to bound properties of the concrete model.
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In Section 4, we apply this method on two case studies
from the area of computer network performability analysis,
thus to show its practical applicability. Finally, Section 5
concludes the paper.

2 Preliminaries
This section introduces basic notations, and formally de-
fines the models and data structures that are used in the
later parts of the paper.

In Subsection 2.1, we discuss the stochastic models that
build the theoretical foundation of the method described
in this paper. We start by describing Markov chains, the
mechanism in which the models to analyse are formulated
originally (Definitions 1 and 2). Next, we define Markov
decision processes, which extend Markov chains by non-
deterministic decisions (Definitions 3 through 5). We then
state a model type which allows a compact representa-
tion of Markov decision processes with an infinite number
of nondeterministic choices per state, and which we will
later use to obtain abstractions of Markov chains (Defini-
tion 6). Afterwards, we discuss how the nondeterminism
of Markov decision processes can be resolved using an
entity called scheduler (Definitions 7 through 10). This
process is necessary to obtain a stochastic process, which is
needed to reason about their properties. Finally, we assign
rewards to the states of the discussed stochastic models
(Definition 11). These reward structures allow us to define
time-dependent reward values (Definition 12), which allow
us to express a wide variety of interesting properties.

Subsection 2.2 discusses a high-level specification lan-
guage (Definition 13), the semantics of which is again a
stochastic model (Definition 14). Such a language allows
us to express stochastic models in a compact way, and is
thus both more memory-efficient and easier to read by hu-
mans than an explicit state-wise representation. However,
in contrast to an explicit-state representation (or certain
symbolic representations), it is not amenable to a direct
analysis of its properties. In this paper, we target to avoid
constructing the semantics of such high-level models ex-
plicitly. Instead, we define abstract state spaces (Defini-
tion 15) in which we subsume sets of concrete states to
abstract states. We emphasise that, with the method of this
paper, we do not have to explicitly store all such concrete
states at the same time to generate abstractions.

In Subsection 2.3, we describe the concrete data struc-
ture we are going to use to store such a partitioning in
a compact way (Definition 19). In addition, we use this
data structure to store whether there is a non-zero rate be-
tween two states of the semantics of a high-level model
(Definition 18). For our method, we do not need to store
concrete values of non-zero rates in this representation,
however. Thus, we can use simple OBDDs (Definitions 16
and 17), because this data structure already fulfils these
requirements.

2.1 Stochastic Models
A distribution over a finite or countable set A is a function
µ : A → [0, 1] such that

∑
a∈A µ(a) = 1. By Distr(A), we

denote the set of all distributions over A.
The simplest stochastic model we consider is as follows.

Definition 1 A discrete-time Markov chain (DTMC) is a
tupleD = (S ,P) where

• S is a finite set of states, and

• P : (S × S ) → [0, 1] is the probability matrix such
that

∑
s′∈S P(s, s′) = 1 for all s ∈ S .

By XD,s0 : (ΩD×N)→ S with s0 ∈ S we denote the unique
stochastic process [74] of D with initial state s0, where
ΩD is the sample space to be used.

The time in a DTMC proceeds in discrete steps, and in
each step a transition with non-zero probability is taken.
At step 0 the model starts in a given initial state s0 ∈ S .
The model moves to the next state, and will be in s1 with
probability P(s0, s1) for all s1 ∈ S . From there, again the
next state is chosen according to P, and so on.

By Pr, we denote the probability measure on the measur-
able spaces (ΩD,ΣD) of the DTMCD under consideration,
with sample space ΩD, and set ΣD of events, which is de-
fined by the standard cylinder set construction over finite
paths [49]. For instance, Pr(XD,s0

n = s1 ∨ XD,s0
n+1 = s2) de-

scribes the probability that, having started in state s0, in
step n we are in s1, or in step n + 1 we are in s2. For
a measurable function X : ΩD → R, we thus also have
an expectation E(X) def

=
∫

ΩD
X(ω) Pr(dω). For instance,

consider X def
=

∑n−1
i=0 ( f ◦ XD,s0

i ) such that f (s1) def
= 1, and
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f (s) def
= 0 for s , s1. Then E(X) denotes the average num-

ber of steps within the first n steps in which the DTMC is
in s1, under the condition that we started in s0.

We now discuss our basic stochastic model described
informally in the introduction.

Definition 2 A (uniform) continuous-time Markov chain
(CTMC) is a tuple C = (S ,R) where

• S is a finite set of states, and

• R : (S ×S )→ R≥0 is the rate matrix such that there is
a uniformisation rate u(C) > 0 with

∑
s′∈S R(s, s′) =

u(C) for all s ∈ S .

If C is clear from context, we write u instead of u(C). In a
non-uniform CTMC, the requirement

∑
s′∈S R(s, s′) = u(C)

does not hold for all states. Every finite non-uniform
CTMC can be transformed into an equivalent uniform
CTMC with the same stochastic behaviour by increasing
R(s, s) such that the total sum is the same for all states [74].
We require uniformity only for ease of presentation; it does
not restrict the applicability of the methods developed here
to general CTMCs.

The behaviour of a CTMC C = (S ,R) is similar to a
DTMC. However, the durations until state changes are
now real numbers. They are chosen according to statisti-
cally independent negative exponential distributions with
parameter u. Thus, the probability that a state change
takes place within time t is 1 − e−u·t. The successor state is
then selected according to the distribution µ : S → [0, 1]
with µ(s′) = R(s0, s′)/u for all s′ ∈ S . We assume that
the process runs until a certain point of time t is reached.
By XC,s0 : (ΩC × R≥0) → S with s0 ∈ S , we denote the
uniquely defined stochastic process [74] of C with initial
state s0, where ΩC is the sample space to be used. As for
DTMCs, we assume that we have probability measures
and expectations on the sample spaces.

Example 1 In Fig. 1(a), we give an example for a CTMC.
We represent its states as circles, and non-zero rates be-
tween states are given as arrows labelled with the rates.
The uniformisation rate is 6.

We need to specify another discrete- and a continuous-
time model [44, 6], which will later be used to abstract
large CTMCs. In addition to stochastic behaviour, these

models also feature a nondeterministic choice over the suc-
cessor distributions. Nondeterministic choices are choices
which cannot be assigned a probability a priori. Instead,
different stochastic behaviours result according to the reso-
lution of the nondeterminism.

Definition 3 A discrete-time Markov decision process
(DTMDP) is a tuple D = (S ,Act,P) where S is as in
Definition 1,

• Act is a set of actions, and

• P : (S × Act × S ) → [0, 1] is the probability matrix
such that

∑
s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and

α ∈ Act.

For s ∈ S , we denote the set of enabled actions with
Act(s) def

=
{
α ∈ Act

∣∣∣ ∑s′∈S P(s, α, s′) = 1
}
. We require that

either |Act| < ∞, or that for all s ∈ S and all p : S → R≥0
the set

{∑
s′∈S P(s, α, s′) · p(s′)

∣∣∣α ∈ Act(s)
}

is compact.

The behaviour of a DTMDP is such that, upon entering a
state s ∈ S , an action α ∈ Act(s), or possibly a distribution
over actions, is chosen. This choice determines the prob-
abilities of the state the model moves to in the next time
step. Notice that we do indeed allow uncountably many
actions, with the given restriction.

Definition 4 A (uniform) continuous-time Markov deci-
sion process (CTMDP) is a tuple C = (S ,Act,R). Here, S
and Act are as in Definition 3. By R : (S ×Act×S )→ R≥0,
we denote the rate matrix such that there is a fixed value
u(C) with

∑
s′∈S R(s, α, s′) ∈ {

0,u(C)
}

for all s ∈ S and
α ∈ Act. If C is clear from the context, we write u instead
of u(C). For s ∈ S , we denote the set of enabled actions
with Act(s) def

=
{
α ∈ Act

∣∣∣ ∑s′∈S R(s, α, s′) = u
}
. We re-

quire that either |Act| < ∞, or that for all s ∈ S and all
p : S → R≥0 the set

{∑
s′∈S R(s, α, s′)/u·p(s′)

∣∣∣α ∈ Act(s)
}

is compact.

As in a DTMDP, upon entering a state s, an action
α ∈ Act(s) (or a distribution over this set) is chosen to
determine the distribution over the successor states. As for
CTMCs, the model moves to this successor state after a
time given according to the negative exponential distribu-
tion with parameter u.
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(a) CTMC
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z0
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z2
6

1
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4

3
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4
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14

2

(b) CTMDP

z0

z1

z2
[6, 6]

[1, 3]

[3, 5]

[4, 4]

[1, 1]

[1, 1][4, 4]

[2, 2]

(c) ECTMC

ctmc
module example
n : [0..2] init 0;
m : [1..4] init 1;
[] n=0 -> 6 : (n’=2);
[] n=1 -> m : (n’=0) & (m’=1);
[] n=1 & (m=4) -> (n’=2) & (m’=1);
[] n=2 -> 1 : (n’=1) & (m’=1);
[] n=2 -> 1 : (n’=1) & (m’=2);
[] n=2 -> 1 : (n’=1) & (m’=3);
[] n=2 -> 1 : (n’=1) & (m’=4);

endmodule

rewards
n=0 : 0;
n=1 : 0.25*m;
n=2 : 1;

endrewards

(d) PRISM

z′0

z′1 z′2

z′3
[6, 6]

[1, 2]

[4, 5]

[3, 3]

[3, 3]

[4, 4]
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[1, 1]
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(e) ECTMC 2
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[1, 4]
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[0, 1][4, 4]

[2, 2]

(f) ACTMC
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n1 n1

m0 m0

m1 m1

k0 k0 k0

k1 k1

0 1

(g) OBDD abstraction

Figure 1: Example models.
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Example 2 In Fig. 1(b), we give an example for a CTMDP.
The nondeterministic choices, available in each state, are
represented by the arrows leading to a filled circle. From
such a circle, a distribution leads to the successor states.
As for the CTMC in Example 1, its uniformisation rate is
6.

We need the following transformation from continuous-
time to discrete-time models.

Definition 5 Given a CTMDP C = (S ,Act,R), the em-
bedded DTMDP is defined as emb(C) def

= (S ,Act,P) with
P(s, α, s′) def

= R(s, α, s′)/u for all s, s ∈ S , and α ∈ Act(s).

We introduce a formalism to specify CTMDPs, extend-
ing the abstract Markov chains by Klink et al. [50, 46, 53],
which is also a specific form of a constraint Markov
chain [17]. The purpose of this model is to efficiently
represent CTMDPs with a large number of actions. In-
stead of explicitly enumerating all possible choices over
successor distributions, it allows us to specify lower and
upper bounds on the rates between states.

Definition 6 An extended abstract continuous-time
Markov chain (ECTMC) is a tuple C = (S , Âct, I`, Iu)
where S is as in Definition 3, and Âct is a finite set of
actions. We consider the uniformisation rate u(C) of the
model. The intervals are partial functions of the form
I`, Iu : (S × Âct) ⇀ (S → [0,u]). We require I` and Iu to
have the same domain. In addition, for each s ∈ S , there
must be at least one α̂ ∈ Âct such that I`(s, α̂) is defined.

The CTMDP semantics of an ECTMC is defined as
JCK def

= (S ,Act,R). We have (α̂, v) ∈ Act if α̂ ∈ Âct, and
if v is of the form v : S → [0,u] with

∑
s∈S v(s) = u. It

is (α̂, v) ∈ Act(s) if I`(s, α̂) and Iu(s, α̂) are defined, and
v(s′) ∈ [

I`(s, α̂)(s′), Iu(s, α̂)(s′)
]

for all s′ ∈ S . We let
R
(
s, (α̂, v), s′

) def
= v(s′).

An ECTMC thus represents a CTMDP in which, for each
state s, one chooses a possible action α̂ of Âct. In addition,
one has to choose an assignment of successor rates which
fulfill the requirement on the intervals. This way, the action
set is uncountably large, but satisfies the requirements of
Definition 4. The difference to the model of Klink et al. is
the choice of α̂ ∈ Âct before the choice of the successor
rates. This difference allows us to obtain more precise
abstractions than we could obtain if we were using (non-
extended) abstract Markov chains, while it still allows us

to implement efficient analysis methods, as seen later in
Sections 3 and 4.

Example 3 We give an example for an ECTMC in
Fig. 1(c) with uniformisation rate 6. Compared to the
CTMDP in Fig. 1(b), the ECTMC allows rate intervals
instead of rates.

To obtain a stochastic process from nondeterministic
models, the nondeterminism must be resolved. Schedulers
(or policies) formalise the mechanism to do so. Below, we
define the most powerful class of schedulers we consider
in this paper, and the stochastic processes they induce. A
scheduler of this class can resolve the nondeterminism
according to the states and actions (and their sequence)
that were visited before the model moved to the current
state. It may also decide not to pick one specific action,
but rather involve a probabilistic choice over the enabled
actions of a state. It is however neither aware of the exact
time at which former events happened nor of the current
time.

Definition 7 A time-abstract, history-dependent, random-
ised scheduler (HR) for a DTMDP D = (S ,Act,P) or a
CTMDPC = (S ,Act,R) is a functionσ :

(
(S×Act)∗×S

)→
Distr(Act) such that, for all β ∈ (S × Act)∗, and s ∈ S , we
have that if σ(β, s)(α) > 0 then α ∈ Act(s). With ΣHR, we
denote the set of all HRs.

Definition 8 Assume we are given a CTMDP C =

(S ,Act,R), and a HR σ :
(
(S × Act)∗ × S

) → Distr(Act).
We define the induced CTMC as Cσ def

= (S ′,R′) with

• S ′ def
= (S × Act)∗ × S ,

• R′
(
(β, s), (β, s, α, s′)

) def
= σ(β, s)(α)·R(s, α, s′) for β ∈

(S × Act)∗, s, s′ ∈ S , α ∈ Act, and R′(·, ·) def
= 0

otherwise.

Let XCσ,s0 : (ΩCσ×R≥0)→ (
(S ×Act)∗×S

)
be the stochastic

process of the CTMC Cσ with initial state s0 ∈ S , and let
f :

(
(S × Act)∗ × S

) → S with f (β, s) def
= s. The induced

stochastic process XC,σ,s0 : (ΩCσ × R≥0) → S of C and σ
starting in s0 is then defined as XC,σ,s0

t
def
= f ◦ XCσ,s0

t for
t ∈ R≥0. Definitions for DTMDPs are likewise using P
instead of R.
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We specify a simpler subclass of the schedulers of Def-
inition 7. Schedulers of this class are only aware of the
number of state changes that have happened so far, and
may only choose a specific successor distribution rather
than a distribution over them.

Definition 9 A time-abstract, history-abstract, counting,
deterministic scheduler (CD) for a DTMDP D =

(S ,Act,P) or a CTMDP C = (S ,Act,R) is a function
σ : (S × N) → Act such that for all s ∈ S and n ∈ N
if σ(s, n) = α then α ∈ Act(s). With ΣCD we denote the set
of all CDs.

Definition 10 Assume we are given a CTMDP C =

(S ,Act,R), and a CD σ : (S × N) → Act. We define the
induced CTMC as Cσ def

= (S ′,R′) with

• S ′ def
= S × N,

• R′
(
(s, n), (s′, n + 1)

) def
= R

(
s, σ(s, n), s′

)
for s, s′ ∈ S

and n ∈ N, and R′(·, ·) def
= 0 otherwise.

Let XCσ,s0 : (ΩCσ×R≥0)→ (S×N) be the stochastic process
of the CTMC Cσ, and let f : (S ×N)→ S with f (s, n) def

= s.
The induced stochastic process XC,σ,s0 : (ΩCσ × R≥0)→ S
of C and σ starting in s0 is then defined as XC,σ,s0

t
def
=

f ◦ XCσ,(s0,0)
t for t ∈ R≥0. Definitions for DTMDPs are

likewise using P instead of R.

We equip our models with reward structures, assigning
values to states.

Definition 11 A reward structure for a stochastic process
X : (Ω × R≥0)→ S or a CTMC or CTMDP with state set
S is a tuple (rc, r f ) with rc : S → R≥0 and r f : S → R≥0.
We call rc the cumulative reward rate, and r f the final
reward value. We let rmax

f
def
= maxs∈S r f (s), and rmax

c
def
=

maxs∈S rc(s).

For CTMCs, the cumulative reward rate rc(s) is the
reward obtained per time unit for staying in state s, until
s is left or a given time bound t is reached. The final
reward value r f (s) specifies the reward one obtains for
being in state s at this time bound t. We are interested
in the expected values of these numbers, as formalised in
Definition 12. For CTMDPs, we strive for the maximal
(and analogously the minimal) value under all possible
schedulers in the class we considered.

Definition 12 Given a time bound t ∈ R≥0, the value
of a stochastic process X : (Ω × R≥0) → S with a re-
ward structure r = (rc, r f ) is defined as V(X, r, t) def

=

E
[∫ t

0 rc(Xu) du + r f (Xt)
]
. For a CTMC C = (S ,R) and s0 ∈

S , we let V(C, s0, r, t)
def
= V(XC,s0 , r, t). For a CTMDP C =

(S ,Act,R), the maximal value (minimal value) for s0 ∈ S
is defined as Vmax(C, s0, r, t)

def
= maxσ∈ΣHR V(XC,σ,s0 , r, t)

(Vmin(C, s0, r, t)
def
= minσ∈ΣHR V(XC,σ,s0 , r, t)).

The interpretation of rewards and values depends on the
model under consideration. For instance, in a CTMC
representing a chemical reaction, we might assign a final
reward value of n to state s if s contains n molecules of a
given species. This way, the value of the CTMC represents
the expected number of this species at a given point of
time.

We do not explicitly consider impulse (instantaneous)
rewards ri : (S × S ) → R≥0 for CTMCs here, that is
rewards obtained for moving from one state to another.
However, given cumulative reward rates rc and impulse
rewards ri, we can define cumulative reward rates r′c as
r′c(s) def

= rc(s) +
∑

s′∈S R(s, s′) · ri(s, s′). For the properties
under consideration, this new reward structure is equivalent
to the one which uses impulse rewards (follows from [54,
(6)]). Definition 12 resembles the approach considered in
a recent paper [15], where we maximised (minimised) the
value over a more general class of schedulers than the one
of Definition 7.

An important specific value of a stochastic process is the
time-bounded reachability probability. The computation
of this value is, for instance, necessary to model check the
time-bounded until property of the probabilistic logic CSL
(continuous stochastic logic) [3].

Given a set of target states B, we can express the proba-
bility to be in B at time t by using a reward structure with
rc(s) = 0 for all s ∈ S , and r f (s) = 1 if s ∈ B and r f (s) = 0
otherwise. For the probability to reach B within time t, we
additionally modify the rate matrix R such that R(s, s) = u,
and R(s, s′) = 0 for s′ , s if s ∈ B. For CTMCs, the case
to reach B within an interval [a, b] with 0 < a < b < ∞
can be handled by two successive analyses [3, Theorem
3]. Unbounded intervals [0,∞) and [a,∞) can be handled
similarly [57, Section 4.4].

The fact that Definition 12 involves both final and cumu-
lative rewards for CTMCs allows us to express the values
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at different points of time in the following way. Assume
we want to consider the cumulative reward rates v1, v2, . . .
at consecutive time points t1 = δ1, t2 = t1 + δ2, . . . A
short calculation then shows that v1 = V

(C, s, (rc, 0), δ1
)
,

v2 = V
(C, s, (rc, v1), δ2

)
, . . . The formulation for the final

reward at different points of time is likewise.

Example 4 Reconsider the CTMC from Example 1, the
CTMDP from Example 2, and the ECTMC from Example 3
all sketched in Fig. 1(a) through (c). Assume that for
the CTMC we use a reward structure r def

= (rc, r f ) with
rc(s0) def

= 0.0, rc(s1) def
= 0.25, rc(s2) def

= 0.5, rc(s3) def
= 0.75,

rc(s4) def
= 1, rc(s5) def

= 1, and r f (·) def
= 0. Then we have

that the reward value for s0 for a time bound of t def
= 5 is

V(C, s0, r, t) ≈ 2.70116.
Assume that, for the CTMDP and the ECTMC, we have

rc(z0) def
= 0, rc(z1) def

= 1, rc(z2) def
= 1, and r f (·) def

= 0; and
that we have t def

= 5. Then we have Vmax(C, z0, r, t) ≈
4.30277 for both models. Now assume that the reward val-
ues are rc(z0) def

= 0, rc(z1) def
= 0.25, rc(z2) def

= 1, and r f (·) def
=

0 instead. Then we have Vmin(C, z0, r, t) ≈ 1.82699.

2.2 PRISM’s guarded command language

Prism [55] is a widely used tool, which features a
guarded command language to model CTMCs (among
other classes). For our purposes, it suffices to take a rather
abstract view on the high-level modelling language used
by this tool.

Definition 13 A Prism model (PM) is a tuple m =

(Var, init,C, succ,Rc,R f ). Here, Var is a set of Boolean
variables. With init : Var → {0, 1}, we denote the ini-
tial state, and C is a finite set of commands. Let
S Var

def
=

{
s : Var → {0, 1}} be the set of variable as-

signments for Var. The cumulative reward rate is a
function Rc : S Var → R≥0 as is the final reward value
R f : S Var → R≥0. The successor function is a partial func-
tion of the form succ : (S Var×C) ⇀ (S Var×R>0). We define
succ(s, c) def

= s′ if succ(s, c) = (s′, λ) for some λ ∈ R>0. We
also let

succ(s) def
=

{
(s′, λ)

∣∣∣∣∃c.succ(s, c) = s′∧λ =
∑

λ′;∃c′.(s′,λ′)=succ(s,c′)

λ′
}
.

Further, succ(s) def
=

{
s′

∣∣∣∃λ.(s′, λ) ∈ succ(s)
}
. Let succ0 def

=

init, and succi+1 def
= {succ(s) | s ∈ succi}. The set of reach-

able states (state space) is S m
def
=

⋃∞
i=0 succi. We require

that there is u(m) > 0 such that u(m) =
∑{
λ
∣∣∣∃s′.(s′, λ) ∈

succ(s)
}

for all s ∈ S m (where the latter is a multiset).

The complete Prism syntax also defines models consisting
of several modules, that is, sets of guarded commands,
which may synchronise or interleave. However, as the se-
mantics of a model with several modules is defined as one
with a single module, a single set of commands suffices.
Prism also allows us to specify commands with several
pairs of successors (s′1, λ1), . . . , (s′n, λn). For PMs describ-
ing CTMCs, such a command is equivalent to a set of n
commands ci in the above form. Each of them must be acti-
vated (defined) in the same states as the original command,
and we then have succ(ci) = (s′i , λi). The bounded integers
Prism supports can be represented by a binary encoding.
Impulse rewards can be transformed to cumulative rewards,
as discussed for CTMCs. For models in which there is
no u(m) with the required property, we can add an extra
command to increase the self-loop rate where necessary.

The formal semantics of a PM is as follows.

Definition 14 Consider a PM m = (Var, init,C, succ,
Rc,R f ). The induced CTMC is Cm

def
= (S m,R) such that for

all s, s′ ∈ S m we have R(s, s′) def
= λ if (s′, λ) ∈ succ(s), and

R(s, s′) def
= 0 if no such tuple exists. The induced reward

structure is rm
def
= (Rc,R f ).

In Section 3, we will abstract CTMCs into ECTMCs. To
do so, we will subsume several concrete states of a CTMC
to abstract states of an ECTMC.

Definition 15 Given a PM m, a partitioning of the state
space S m is a finite ordered set P = 〈z0, . . . , zn−1〉 of non-
empty, pairwise disjoint subsets of S m such that S m =⋃n−1

i=0 zi.

Example 5 In Fig. 1(d) we give an example of a Prism
model. The description is given in the textual form which
is used by the tool itself. The first line states that the model
is a CTMC. Then, a single module with the name example
is declared. In this module, there are two variables n,
and m with a specified variable range, and initial value.
Afterwards, the successor function is given in terms of
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guarded commands of the form <guard> -> <rate> :
<successor>.

The induced CTMC is the model in Fig. 1(a) (for read-
ability, we have left out the commands that lead to the self-
loops in this model). Here, s0 corresponds to n = 0, m = 1,
s5 corresponds to n = 2, m = 1, and the other si corre-
spond to n = 1, m = i.

The reward structure is given below the module def-
inition. Prism only supports either final or cumulative
rewards, but not both at the same time. Thus, either the
final or the cumulative reward part is zero. Whether the re-
ward specified this way shall denote the final or cumulative
reward is decided by using a formula specification.

As an example partitioning, we can consider P =

〈z0, z1, z2〉 with z0 = {s0}, z1 = {s1, s2, s3, s4}, and z2 = {s5}.

2.3 Binary decision diagrams
Binary decision diagrams [11] are an efficient tool to sym-
bolically represent structures which are too large to be
represented in an explicit form.

Definition 16 We fix a finite ordered set V def
= 〈x1, . . . , xm〉

of Boolean variables. A binary decision diagram (BDD)
is a rooted acyclic directed graph b with node set N, and
root node nroot. There are two types of nodes in N: ter-
minal nodes, and non-terminal nodes. Terminal nodes
n do not have out-going edges, and are labelled with a
value v(bddNode) ∈ {0, 1}. The remaining nodes are non-
terminal nodes n ∈ N, which have exactly two successor
nodes, denoted by h(n) (high successor), and l(n) (low suc-
cessor). Non-terminal nodes n are labelled with a variable
v(n) ∈ V.

A variable valuation is a function v : V → {0, 1}. We
denote the set of all variable valuations by Val. Each
valuation v induces a unique path in the BDD from the
root node to a terminal node. At a non-terminal node n, we
follow the edge to h(n) if v

(
v(n)

)
= 1, and the edge to l(n)

if v
(
v(n)

)
= 0. The function JbK : Val→ {0, 1} represented

by a BDD b returns for a variable valuation v the value of
the terminal node reached by following the path induced
by v.

Definition 17 A BDD is ordered if for all non-terminal
nodes n the following condition holds. Either h(n) is a
terminal node, or v(n) < v

(
h(n)

)
, and the same for l(n).

A BDD is reduced if all sub-BDDs rooted at the different
nodes of the BDD represent distinct functions. Reduced
and ordered BDDs are called OBDDs.

The OBDD for the constant 0 (or 1) function, which
consists of a single terminal node labelled with a 0 (or a 1),
is denoted in the sequel by bdd0 (or bdd1, respectively).

OBDDs are a canonical representation (up to isomor-
phism) of arbitrary functions f : Val→ {0, 1} [11]. In the
following, we will only use OBDDs. For more details on
(O)BDDs, we refer the reader to [11, 80].

OBDDs support a wide number of operations like the
Boolean operations ∧, ∨, and ¬. Given two ordered sets
V1 = 〈xi1 , . . . , xin〉 and V2 = 〈x j1 , . . . , x jn〉 of Boolean vari-
ables, by b′ = b[V1/V2] we denote the OBDD which
results from renaming the variables in V1 to the corre-
sponding variables in x2. For V′ ⊆ V and OBDD b, we
let J∃V′.bK(v) =

∨{
JbK(v′)

∣∣∣∀x < V′.v′(x) = v(x)
}

be the
existential quantification of the variables in V′.

We can use OBDDs to represent PMs in a symbolic
form, if we leave out the stochastic aspects.

Definition 18 Consider a PM m = (Var, init,C, succ,
Rc,R f ). The OBDD representation of m is a tuple bm

def
=(

Var,Var′, init, {succc}c∈C)
. There, Var and Var′ are sets of

Boolean variables with Var ∩ Var′ = ∅ such that there is
a one-to-one mapping between variables x ∈ Var and
x′ ∈ Var′. Further, init, and succc are OBDDs over
the variables Var, and Var ∪ Var′, respectively. We re-
quire that JinitK(v) = 1 iff init(x) = v(x) holds for all
x ∈ Var. For all succc, we require JsucccK(v) = 1 iff for
all x ∈ Var it is true that v(x) = s(x), v(x′) = s′(x), and
succ(s, c) = s′. By succ, we denote the OBDD such that
JsuccK =

∨
c∈CJsucccK.

OBDDs can also be used to symbolically represent a par-
titioning of the state space of a PM. Let P = 〈z0, . . . , zn−1〉
be a partitioning of the PM m = (Var, init,C, succ,Rc,R f ).
The idea is to assign to each block zi of P a unique
block number i, and to use a binary representation of i,
which is encoded using k = dlog2 ne novel BDD variables
V = 〈x0, . . . , xk−1〉.
Definition 19 The OBDD representation of P =

〈z0, . . . , zn−1〉 is the OBDD bP over the variables Var ]V,
where V = 〈x0, . . . , xk−1〉 with k = dlog2 ne. We require
that JbPK(v) = 1 iff there is s ∈ S m such that, for all
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x ∈ Var, we have v(x) = s(x); and there is z ∈ P such
that s ∈ z, and for all x ∈ V we have v(x) = z(x). With
zi(x j)

def
= (i div 2 j) mod 2, we denote the value of variable

x j ∈ V in the binary encoding of the block number i of
zi ∈ P. With bz, we denote the OBDD such that JbzK(v) = 1
iff v represents a state of z.

There are several alternative OBDD-based partition rep-
resentations available. One possibility is to use an MTBDD
with the block numbers in the leaves. However, the algo-
rithms of the tool Sigref [83], which we use for refining
partitions, require us to represent sets of block numbers
within the BDD, which is easily possible using our en-
coding. To do so, the authors of [29] encode such sets as
products of prime numbers. However, in our application
this would yield numbers which are too large to fit into the
standard 32- or 64-bit data types. Therefore this approach
is not directly possible, and requires technical tricks which
might affect the efficiency of the method. Another pos-
sibility is to use one OBDD for each abstract state. In
this representation, finding the abstract state containing
a given concrete state is more expensive (in O(|Var| · |P|)
instead of O(|Var| + |P|)). The logarithmic partition en-
coding proposed by Derisavi [28] has certain advantages
regarding memory consumption, but partition refinement
is much more expensive regarding computation time than
the representation we use [82]. Finally, Bouali and de Si-
mone [9] represent the corresponding equivalence relation
for bisimulation computation. In previous work, [83], we
have observed that this representation is often larger than
the one used by Sigref, slowing down the computations.

Regarding the variable order of Var ]V, we assume in
the following that all variables in Var precede all variables
in V. This ordering leads to more efficient algorithms for
accessing the block number of a given state.

Example 6 Reconsider the Prism model from Example 5.
We can encode each of the variables n and m by two binary
variables n0, n1 and m0, m1 by using the binary representa-
tions n = 0↔ (n1, n0) = (0, 0), n = 1↔ (n1, n0) = (0, 1),
n = 2 ↔ (n1, n0) = (1, 0), m = 1 ↔ (m1, m0) = (0, 0),
m = 2 ↔ (m1, m0) = (0, 1), m = 3 ↔ (m1, m0) = (1, 0),
m = 4 ↔ (m1, m0) = (1, 1). To encode the partitioning of
the previous example (z0 = {s0}, z1 = {s1, s2, s3, s4}, and
z2 = {s5}), we enumerate zi by introducing new binary
variables k0, k1. We sketch the encoding in Fig. 1(g). The

OBDD terminal nodes are given as squares at the bottom
of the diagram. Non-terminal nodes are given as circles,
labelled with their variables. The h successors are con-
nected by solid lines, whereas l successors are connected
by dashed ones. For readability, we leave out the connec-
tions to the 0 terminal node.

3 Algorithms

In this section, we first describe an algorithm to approx-
imate minimal and maximal values of CTMDPs. After-
wards, we describe how to obtain an ECTMC from a PM,
such that its induced CTMDP is a valid abstraction (cf.
Proposition 2) of the CTMC semantics of the PM. We
provide an algorithm which computes an ECTMC over-
approximation of a PM given in an OBDD representation.
Using the first algorithm, we can obtain intervals from this
abstraction which are guaranteed to bound the actual value
(cf. Definition 12) of the CTMC from above and below.

3.1 Computing Reward Values for CT-
MDPs

Let φλ(i)
def
= λie−λ/(i!) denote the probabilities of a

Poisson distribution with parameter λ, and let ψλ(i)
def
=∑∞

j=i+1 φλ( j) = 1 −∑i
j=0 φλ( j).

The algorithm to compute the maximal values of CT-
MDPs is given in Algorithm 1. The input is a CTMDP
C with reward structure r = (rc, r f ), and the precision
ε > 0 up to which the values are to be computed. The
algorithm for the minimum is likewise, replacing max by
min in Line 6.

The choice of k in line 1 of Algorithm 1 is based on the
following lemma, which is proven in the Appendix.

Lemma 1 Given a CTMDP C = (S ,Act,P) with a reward
structure r = (rc, r f ), a precision ε > 0, and k such that

k∑
n=0

ψut(n) > ut − εu
2rmax

c
and ψut(k) · rmax

f <
ε

2
,
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Algorithm 1: Compute maximal values for C =

(S ,Act,R), r = (rc, r f ) up to ε.

1 let k s. t.∑k
i=0 ψut(i) > ut − εu/(2rmax

c ) ∧ ψut(k) · rmax
f < ε/2

2 C′ = (S ,Act,P) := emb(C)
3 forall s ∈ S do qk+1(s) := 0
4 forall i = k, k − 1, . . . , 0 do
5 forall s ∈ S do
6 m := max

α∈Act(s)

∑
s′∈S

P(s, α, s′)qi+1(s′)

7 qi(s) := m + φut(i) · r f (s) + ψut(i) · rc(s)/u
8 return q0

then for all schedulers σ ∈ ΣCR, and all s0 ∈ S , we have
∞∑

i=k+1

φut(i)
∑
s∈S

πemb(C),σ(s0, i, s)r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σ(s0, i, s)
rc(s)

u

 < ε.
Here, πemb(C),σ(s0, i, s) is the probability of being in state
s of emb(C) in step i if having started in s0 when using
scheduler σ. By ΣCR, we denote the set of schedulers which
extend ΣCD by randomised choice over the actions.

The requirement on the actions in Definition 4 assures
that the maximum in Algorithm 1 (line 6) exists. We can
also directly apply this algorithm on ECTMCs without
constructing the uncountably large induced CTMDPs. The
crucial part here is the optimisation over the uncountable
actions, which can be done using a slight adaptation of
methods from [50, Chapter 4.1]. There, optimising the
assignment of successor rates with restrictions given by
lower and upper bounds is already described. For each
s ∈ S , and for each α̂ such that I`(s, α̂) (and thus Iu) is
defined, we can apply the method described in [50, Chapter
4.1], thus to find the optimal vα̂ : S → [0,u] for this α̂.
Afterwards, we choose the optimal vα̂ : S → [0,u] among
all α̂, which is easy as there are only a finite number.

Proposition 1 Let C = (S ,Act,R) be a CTMDP with re-
ward structure r = (rc, r f ). Then, there exists σ ∈ ΣCD

such that Vmax(C, s0, r, t) = V(XC,σ,s0 , r, t) for all s0 ∈ S .
Further, the return value q0 of Algorithm 1 is such that
|Vmax(C, s0, r, t) − q0(s0)| < ε.

Proof sketch: At first, we show that we can simulate
each history-dependent randomised scheduler by a ran-
domised counting scheduler (CR). In contrast to CD, these
schedulers may be randomised. However, as for CDs, de-
cisions of these schedules only depend on the number of
steps which have passed rather than on the full history. The
fact that CR can simulate HR schedulers allows us to use a
result about discrete-time Markov chains. Next, we show
that Algorithm 1 cannot yield values which are larger than
the maximal value resulting from such a CR. Then, we
show that the algorithm does not return values which are
larger than the value obtained by any CR plus the specified
precision.

Looking at the decisions the algorithm takes at Line 6,
we can reconstruct a prefix of the decisions of a CD. By
letting the precision approach 0, we can show that there is
indeed a complete CD yielding the same value. � The full
proof can be found in the Appendix.

Algorithm 1 generalises an approach from a previous
paper about time-bounded reachability [4] using results by
Kwiatkowska et al. [54]. Its correctness also proves that
deterministic counting schedulers suffice to obtain optimal
values, because the algorithm implicitly computes such a
scheduler.

It is also related to an earlier work in queueing theory
[61], which is however different in a number of ways. The
target there was to obtain approximations for a more gen-
eral class of schedulers of CTMDPs than we need here,
and thus does not consider maxima over HRs explicitly.
It assumes a fixed maximal number of steps to happen
in the uniformised DTMDP, rather than deriving the nec-
essary number, as we do in our algorithm. [61] is also
more involved with models featuring a particular structure
rather than computing conservative bounds on properties
of CTMCs.

The next proposition states how CTMDPs can be used
to over-approximate CTMCs.

Proposition 2 Let C = (S ,R) be a CTMC with reward
structure (rc, r f ), and let P = 〈z0, . . . , zn−1〉 be a parti-
tioning of S . Consider the CTMDP C′ def

= (P,Act,R′)
where for each z ∈ P and s ∈ z we find αs ∈ Act such
that for all z′ ∈ P we have R′(z, αs, z

′) def
=

∑
s′∈z′ R(s, s′).

Further, consider a reward structure (r′c, r′f ) such that
for all z ∈ P it is true that r′c(z) ≥ maxs∈z rc(s), and
r′f (z) ≥ maxs∈z r f (s). Then, for all z0 ∈ P and s0 ∈ z0,
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we have V(C, s0, r, t) ≤ Vmax(C′, z0, r′, t).

Proof sketch: We can construct a scheduler σ such that
the embedded DTMDP of C′ mimics the behaviour of the
embedded DTMC of C, so that in each step the probability
to be in a given abstract state z is the sum of the probabili-
ties of being in a state s of C with s ∈ z. By the definition
of reward structures, the value obtained in C′ using σ is as
least as high as the value in C. As the maximal value in C′
is at least as high as the one using σ, the result follows. �
The full proof can be found in the Appendix.

We remark that Algorithm 1 can only compute maximal
bounds up to ε. Thus, when applying it to compute upper
bounds on the values of CTMCs, one has to add ε to get
a number which is guaranteed to bound the value of the
original model from above. Alternatively, one could apply
bounding semantics [88].

As mentioned before, CSL bounded-until properties can
be expressed using rewards. Their probabilities can thus
also be bounded using Algorithm 1.

We remark that, for the case of intervals [a, b] or [a,∞),
the successive application of the algorithm only bounds
the value in the CTMC that has been abstracted. Assume
that one divides the interval into several parts, and suc-
cessively applies the algorithm for each of these parts by
using the result of the previous application as the instan-
taneous reward of the next application. Doing so allows
us to obtain values at different points of time. However,
the last minimal (or maximal, respectively) value is not
guaranteed to be identical to the value which one would
have obtained by a single analysis of the whole interval.

Example 7 Consider the CTMDP C in Fig. 2, which is
adapted from previous publications [87, 15]. The only dif-
ference is that non-uniform CTMDPs were used previously,
i. e., CTMDPs in which the sum of leaving rates may be dif-
ferent for each state. Here, we have increased the self-loop
rates thus to obtain a uniformisation rate of u = 10. States
of the model are given as circles, in which the state name
is written. If there is more than one activated action in a
state, we draw all of them as small black circles connected
to the corresponding states. Non-zero transition rates are
then drawn starting in the corresponding black circle. In
case there is just one possible action in a state, we directly
draw the transitions from this state. Rates with value 0 are
left out.

s0 s1,0

s1,1

. . .

s1,29

s3

s2

s4

α

β

1
9

10

10

10

10

1
9

0.5 0.5

9

10 10

Figure 2: Example demonstrating that successive applica-
tions of Algorithm 1 to sub-intervals are not equivalent to
a single application on the whole interval.

We assign a cumulative reward rate of 0 to each state.
The final reward is 0 for all states except for s3, where it is
1. Intuitively, if we want to maximise the value, the optimal
choice of the action depends on the amount of time left. If
much time is left, it is best to choose β in s0, because this
action leads to a sequence of states which, given an infinite
amount of time, always reaches s3. If little time is left, it is
better to choose α, because then s3 can be reached quickly,
although there is a significant chance that this state will
not be reached at all.

With this model and reward structure, we can compute
the probabilities of the CSL formula P

(
trueU[0,4] s3

)
by

computing the value for t = 4. Because the state s3 is
absorbing, this value is also the probability of the interval-
bounded until property P

(
trueU[1,4] s3

)
.

In this special case, we can thus compute this proba-
bility using the method developed in this paper, or by the
previous algorithm by Baier et al. [4]. For s0, this value is
Vmax(C, s0, (0, r f ), 4) ≈ 0.659593.

Now we apply two consecutive analyses to bound the
interval-bounded reachability probability. For this proce-
dure, we first compute v(·) def

= Vmax(C, s0, (0, r f ), ·, 3), and
afterwards we consider v′(·) def

= Vmax(C, s0, (0, v), ·, 1). We
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now have v′(s0) ≈ 0.671162, which shows that this value
is an upper bound for the reachability probability in the
original model. It is indeed between the value obtained
using HRs as discussed previously and the one obtained
using time-dependent schedulers [87, 15]. This value is
larger than the one considered in the last paragraph, which
shows that a consecutive analysis does not yield the max-
imum interval-bounded reachability probability over all
HRs in a given CTMDP. The reason that this outcome hap-
pens is that, by dividing the analysis into two parts, the
schedulers of the two analyses can change their decisions
more often, and obtain more information than they are
supposed to have. Instead of only having the information
that the objective is to optimise the reward until t = 4, it is
now also known whether t ≤ 1 or not.

From the discussion of the values of consecutive time
points t1 = δ1, t2 = t1 + δ2, . . ., it follows that we can
also use the algorithm to compute bounds for them in
an efficient way. Instead of doing analyses with time
bounds t1, t2, . . ., we only have to do analyses with val-
ues δ1, δ2, . . ., which might be much smaller than t1, t2, . . .
Thus, the fact that the algorithm allows us to handle final
and cumulative rewards at the same time has the potential
to speed up such a series of analyses.

3.2 Abstracting PrismModels
To take advantage of Proposition 2, we want to avoid
actually constructing the CTMC to be abstracted. Doing
so allows us to handle models which are too large to be
handled in an explicit-state form. For this approach, we
can use non-probabilistic model checkers which feature a
guarded-command language, like NuSMV [21]. Such a
tool can work with an OBDD-based representation of PMs
as in Definition 18, and compute the set of reachable states.
We can then specify some OBDDs representing predicates,
i. e., sets of concrete states. These sets can be used to split
the state space by subsuming all concrete states that are
contained in the same subset of predicates, thus to obtain
an OBDD partitioning as in Definition 19.

Next, we consider the ECTMC abstraction of a given
Prism model.

Definition 20 Consider a PM m = (Var, init,C, succ,
Rc,R f ) with induced CTMC C = (S ,R), and a partition-
ing P = 〈z0, . . . , zn−1〉 of its state space. The ECTMC

abstraction of m is defined as C def
= (P, Âct, I`, Iu) with

Âct def
= {α̂ : C ⇀ P}. We let A(z, α̂) denote the set of all

s ∈ z such that Dom(succ(s, ·)) = Dom(α̂) (that is, the
domains of the two partial functions agree), and for all ap-
plicable c ∈ C we have succ(s, c) ∈ α̂(c). We then choose
the domain of I` and Iu such that, for all z ∈ P, we have

Dom(I`(z, ·)) def
= Dom(Iu(z, ·)) def

= {α̂ ∈ Âct | A(z, α̂) , ∅}.
Then, for z, z′ ∈ P, and α̂ ∈ Dom(Iu(z, ·)) we define

I`(z, α̂)(z′) def
= min

s∈A(z,α̂)

∑
(s′,λ)∈succ(s),

s′∈z′

λ,

and accordingly Iu using max. The abstract reward struc-
ture r def

= (rc, r f ) is defined as rc(z)
def
= maxs∈z Rc(s), and

r f (z)
def
= maxs∈z R f (s).

By construction, the CTMDP semantics of the ECTMC
fulfils the requirements of Proposition 2 for a correct ab-
straction of the CTMC semantics of the Prism model. It is
also monotone in the sense that, by using a refined parti-
tioning, we cannot obtain worse bounds than with a coarser
partitioning.

Proposition 3 Consider a PM m = (Var, init,C, succ,
Rc,R f ) with a partitioning P = 〈z0, . . . , zn−1〉 of the state
space of its induced CTMC, and a further partitioning
P′ = 〈z′0, . . . , z′m−1〉 such that for each zt ∈ P we find
z′t,1, . . . , z

′
t,u ∈ P′ such that zt =

⋃u
j=1 z

′
t, j.

Then, for two ECTMC abstractions C def
= (P, Âct, I`, Iu)

and C′ def
= (P′, Âct′, I`′, Iu′) with corresponding re-

ward structures r and r′, we have Vmax(C, zt, r, t) ≥
Vmax(C′, z′t, j, r′, t).

Proof sketch: We can show that, for an arbitrary ε > 0,
we have that Vmax of a state z of the original partition plus
ε is at least equal to the value of a state z′ of the refined
partition for which we have z′ ⊆ z. This result implies that
the same holds for ε = 0, which means that the value of a
state of the refined partition cannot be higher than the one
of the original abstraction.

We use the fact that we can apply Algorithm 1 to com-
pute values up to any precision ε > 0. Consider the runs
of the algorithm on the original, and refined partitioning.
Before the execution of the main loop at Line 4, we have
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that qk+1(z) = qk+1(z′) = 0. For each execution of the main
loop, we have a maximising decision in z′, leading to vi(z′)
to be added to qi+1(z′) to obtain qi(z′). We can construct
a decision for z such that vi(z′) ≤ vi(z). This result means
that, in each iteration of the main loop, the qi of z′ can
never become larger than the one of z. Thus, after the
termination of the main loop and the algorithm, the value
obtained for the coarser abstraction is at least as high as
the one in the refined abstraction. � The full proof can be
found in the Appendix.

Example 8 Consider the Prism model Fig. 1(d). As
seen in Example 5, its induced CTMC is the model in
Fig. 1(a). With the partitioning of Example 5 (z0 = {s0},
z1 = {s1, s2, s3, s4}, and z2 = {s5}), the model in Fig. 1(b)
is an abstraction of the CTMC. Assume that the reward
specification given denotes cumulative rewards. As we
have already seen in Example 4, the actual value for this
model is ≈ 2.70116 while with the ECTMC abstraction
we can bound the value to ≈ [1.82699, 4.30277]. If we
split z1, yielding the partitioning z′0 = {s0}, z′1 = {s1, s2},
z′2 = {s3, s4}, and z′3 = {s5}, we obtain the refined ECTMC
abstraction of Fig. 1(e). By doing so, the value bounds
improve to ≈ [2.32375, 3.21667].

For comparison, we also provide the abstraction when
using CTMDPs, cf. Fig. 1(b). When using a CTMDP, we
have more transitions, because in this example we basi-
cally have to represent the behaviour of each state by a
distinct nondeterministic choice, such that the abstraction
is not much smaller than the original model. Indeed, as
already discussed in the introduction, this problem is likely
to occur for models in which there is a large number of
different rate values. In the example here, as seen from
Example 4, we obtain the same values when using CTMDP
or ECTMC abstractions.

On the other hand, if we use abstract Markov chains
(ACTMCs) [46] such as in Fig. 1(f), the abstraction would
be even smaller. However, it would also be less precise, as
we would have to subsume the transitions with different
domains of the successor transition Dom(succ(s, ·)). In this
particular example, because of this constraint, we have
a transition from z1 to z2 which states that the transition
probability is between 0 and 1, while for the ECTMC
abstraction we do not have intervals with a lower bound
of 0. The bounds we can obtain are ≈ [1.82699, 4.38].
Thus, the upper bound is larger than if using ECTMC

abstractions.

With a given partitioning, we can apply Algorithm 2 to
obtain an abstraction of the model. The algorithm com-
putes an ECTMC to provide an upper bound of the model
value; a corresponding algorithm for the lower bound can
be defined likewise by minimising over the rewards of a
given abstract state rather than maximising over them. In-
deed, we can use the same partitioning to obtain ECTMCs
for the computation of both lower and upper bounds, and
thus compute abstractions for both directions at the same
time.

The algorithm does some initializations, and afterwards,
in line 6, calls Algorithm 3. This algorithm descends into
the OBDD partitioning (lines 4 to 15), visiting each state
of the model explicitly. When a specific state s contained
in an abstract state z is reached (lines 17 to 30), we extend
the abstracting model to take into account the behaviour
of this state. In lines 18 and 19, we extend the upper
bounds for the reward rates of z such that they are at least
as high as those of s. Notice that to compute the reward
rates of this state we use the original high-level PM, not
the OBDD representation. Then, in lines 21 to 30, we
handle the transition rates, thus to include the rates of the
concrete state. We again use the high-level model, this
time to compute the set of commands that are enabled
in the current state (line 21), the corresponding action α̂
(line 22, cf. Definition 20), and the concrete successor
states with their corresponding rates (line 23). For each of
them, we use the function sAbs to obtain the abstract state
it belongs to. For all successor states, we add up the rates
to the same abstract state (line 27). Then, starting from
line 28, we apply the actual widening of the rates.

Function sAbs works as follows. Because we use a
variable order in which the variables encoding states are
placed above the variables for the abstract states, each state
s ∈ S induces a path in the OBDD P which ends at the
OBDD node that represents the abstract state of s. We
follow the unique path, given by the encoding of s, to the
terminal node labelled with 1. This following yields the
encoding of the abstract state of s. The running time of
sAbs is therefore linear in the number of OBDD variables.

Let n = |S | be the number of concrete states of the model
under consideration, let k be the total number of positive
transitions, and let c be the number of OBDD variables.
Algorithm 3 visits each state and transition once. Because
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the block number variables are placed at the bottom of
the variable order, accessing the block number of a state
in function sAbs has a running time of O(c). From this
result, we have that the overall complexity of Algorithm 2
is O((n + k) · c).

Algorithm 2: Compute ECTMC and reward struc-
ture from a given partitioning P with OBDD bP =

(N, nP, h, l, v) of PM m = (Var, init,C, succ,Rc,R f ).

1 global I`, Iu, rc, r f (cf. Algorithm 3)
2 I`(·, ·)(·) := undefined
3 Iu(·, ·)(·) := undefined
4 rc(·) := r f (·) := −∞
5 A := {0, 1, . . . , |P| − 1}
6 approx(nP, 0)
7 return

(
(A, I`, Iu), (rc, r f )

)
In the discussion so far, we assumed that it is already

clear how the set of concrete states shall be divided into
abstract states. We might however come across models
where this is not clear, or where the results obtained from
the abstraction are unsatisfactory. In these cases, we have
to apply refinement, that is, split existing abstract states
into new ones. For other model types, such refinement
procedures already exist [48, 42]. In the analysis types
considered before, schedulers sufficed which fix a decision
per state, and take neither the past history nor number
of steps before the state was entered into account. Then,
depending on the decisions of the scheduler per state, new
predicates are introduced to split the state space. In our
case, such simple schedulers are not sufficient to obtain
extremal values, as has already been shown for the simpler
case of time-bounded reachability [4]. Thus, it is not clear
how to introduce predicates to split the state space.

As a first heuristic, we do the following. We treat an
OBDD representation of a PM as a labelled transition
system, in which the commands play the role of the labels.
We then use an existing algorithm to symbolically compute
(non-probabilistic) strong bisimulations [83], but stop the
algorithm after a number of steps. This way, we obtain a
partitioning in the form of Definition 19. As we will see
later in Section 4, although the method is not guaranteed
to yield a good abstraction, it can work well in practice.

The method discussed works for a very general class of

Algorithm 3: Procedure approx(n, level).

1 global I`, Iu, rc, r f (cf. Algorithm 2)
2 if n = bdd0 then return
3 else if level < leafLevel then
4 // We are still at a variable level.
5 x = varAtLevel(level)
6 if n , bdd1 and x = v(n) then
7 nl := l(n), nh := h(n)
8 else
9 nl := n, nh := n

10 if x ∈ V then
11 z(x) := 0, approx(nl, level + 1)
12 z(x) := 1, approx(nh, level + 1)
13 else
14 s(x) := 0, approx(nl, level + 1)
15 s(x) := 1, approx(nh, level + 1)
16 else
17 // We have traversed all variable levels.
18 rc(z) := max(rc(z),Rc(s))
19 r f (z) := max(r f (z),R f (s))
20

21 C := Dom(succ(s, ·)) // commands enabled in s
22 α̂ =

{
(c, sAbs(nP, s′))

∣∣∣ c ∈ C ∧ s′ = succ(s, c)
}

23 A := succ(s)
24 Λ(·) := 0
25 forall (s′, λ) ∈ A do
26 z′ := sAbs(nP, s′)
27 Λ(z′) := Λ(z′) + λ

28 forall z′ ∈ A do
29 I`(z, α̂)(z′) := min

(
I`(z, α̂)(z′),Λ(z′)

)
30 Iu(z, α̂)(z′) := max

(
Iu(z, α̂)(z′),Λ(z′)

)
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PMs and arbitrary state partitionings. However, because it
is based on explicitly visiting each concrete state at least
once, it may take much time to perform for large models.
To tackle this problem, a parallel implementation of the
technique is possible. Given a computing system with
a number of processors, one can symbolically divide the
states of the model, such that each processor works on a dif-
ferent part of the OBDD representing the state space. Each
processor can then process the model part it is assigned to.
The only point of interaction is the widening of the rates
and reward rates of the abstract model. On a shared mem-
ory architecture, one could use different semaphores for
the reward rates and successor transitions of each abstract
state to avoid delays. Without shared memory, the proces-
sors can compute partial abstractions separately, which are
merged after the computations are finished. This technique
is faster, but has the disadvantage of having to store several
(partial) copies of the abstraction. If the state space is di-
vided such that all states of an abstract state are assigned to
a single processor, no locking is needed, and the overhead
is reduced.

As an alternative to parallelisation, it should also be
possible to use optimisation methods over variants of
BDDs [58, 51, 66, 79] to compute the rate and reward
intervals symbolically rather than rely on explicit enumer-
ation of all possible variable assignments.

4 Case Studies
To show the practicality of the method, we applied it on two
case studies from classical performance and dependability
engineering [37, 22]. We implemented the techniques of
Algorithm 1, and Algorithm 2. To represent the ECTMCs,
we used a sparse-matrix-like data structure.

Where possible, we compared the results to Prism.
Prism always starts by building an MTBDD representation
of the model under consideration. The subsequent analysis
is then performed using value iteration in the CTMC se-
mantics similarly to Algorithm 1. The data structure used
here is either an MTBDD, a sparse matrix, or a hybrid
structure [56]. In the latter, values for the model states are
stored explicitly, but parts of the transition structure are
stored implicitly.

For all experiments, we used a Quad-Core AMD
OpteronTM Processor 8356 (of which we only used one

Table II: Number of repairs in the workstation cluster until
time t = 500

ECTMC Results
N |P| Time Memory Interval

32 19 420 107.15 90.03 [64.176, 64.199]
64 19 420 109.43 86.28 [127.980, 128.490]

128 19 420 115.93 89.54 [255.455, 259.797]
256 19 420 132.89 94.58 [509.000, 580.485]
512 19 420 181.99 91.87 [869.749, 900.052]

1 024 19 420 412.43 107.22 [905.018, 905.200]
2 048 19 420 1 335.54 103.31 [905.766, 905.767]
4 096 19 420 5 298.29 104.89 [905.955, 905.955]
8 192 19 420 28 361.36 132.48 [906.040, 906.040]

16 384 19 420 147 691.30 139.56 [906.084, 906.084]

core) with 2300 MHz, and 64 GB of main memory.
We consider a fault-tolerant workstation cluster [37].

It consists of two sub-clusters, which, in turn, contain
N workstations connected via a central switch. The two
switches are connected via a backbone. Each component
of the system can break down, and is then fixed by a single
repair unit responsible for the entire system.

We are interested in the expected number of repairs
until a time bound of t = 500. This property can be
expressed using cumulative rewards. For N up to 512,
the model has been successfully analysed before using
Prism1. While the existing analysis methods worked well
for model instantiations up to this N, and somewhat above,
the techniques do not work well anymore for a very large
number of workstations. Constructing the model using
MTBDDs seems not to be problematic, but the subsequent
analyses cannot be performed successfully. The sparse-
matrix and the hybrid method fail at some point, because
they rely on an explicit representation of the state space,
and thus run out of memory. Also, the MTBDD-based
value iteration fails at some point, and works rather slowly.
The reason for this failure is probably that, during the value
iteration, a large number of different non-terminal nodes
appear, which make the MTBDD complex, and thus large
and slow to operate on. Detailed information about the
performance of Prism on this case study is given in Table I.

By |S |, and |R|, we give the approximate number of

1http://www.prismmodelchecker.org/casestudies/
cluster.php#mc, Property R{"num_repairs"}=?[ C<=T ].
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Table I: Prism results for the number of repairs in the workstation cluster until t = 500
sparse engine hybrid engine symbolic engine

N |S | |R| Time Memory Time Memory Time Memory Result
32 3.87 · 104 1.86 · 105 9.29 36.67 14.90 37.48 13 791.20 184.49 64.17635
64 1.51 · 105 7.33 · 105 62.11 42.92 88.93 41.69 – Time out – 127.98101

128 5.97 · 105 2.91 · 106 380.51 60.18 585.55 54.48 – Time out – 255.48297
256 2.37 · 106 1.16 · 107 3 182.73 141.71 4 737.73 98.27 – Time out – 509.58417
512 9.47 · 106 4.62 · 107 10 540.54 817.39 14 965.74 284.66 – Time out – 896.80612

1 024 3.78 · 107 1.85 · 108 13 242.08 3 154.91 25 513.31 1 014.79 – Time out – 905.19921
2 048 1.51 · 108 7.39 · 108 – Time out – – Time out – – Time out – ??
4 096 6.04 · 108 2.95 · 109 – Memory out – – Time out – – Time out – ??
8 192 2.42 · 109 1.18 · 1010 – Memory out – – Memory out – – Time out – ??

16 384 9.66 · 109 4.72 · 1010 – Memory out – – Memory out – – Time out – ??

states, and transitions, resp., of the original CTMC model.
For each of the three Prism engines, we give the running
time (columns labelled with Time), and memory consump-
tion (columns labelled with Memory) for computing the
expected rewards. An entry of – Time out – means that
Prism did not terminate within 160,000 seconds, while an
entry of – Memory out – indicates that more than 60 GB of
memory are required to complete the analysis.

In Table II, we apply the method developed in this paper
on several instantiations of the number of workstations
N. The results we obtained by our method are given in
ECTMC Results. Besides the running time and memory
consumption, we give in the column titled |P| the number
of abstract states we used for the corresponding analysis.
The column labelled Interval gives the lower and upper
bounds of the actual value of the expected reward.

As we see from the time and memory usage, for smaller
models, it is advantageous to use an explicit-state method
as implemented in Prism, because of the additional over-
head our method introduces. As instantiations become
larger, using the method of this paper becomes worthwhile.
While we do not always get precise bounds for all analyses
performed with this number of abstract states, we always
were able to compute the order of magnitude. Interestingly,
the value bounds get tighter with an increasing number of
model states.

As discussed in Section 3, we apply a heuristic refine-
ment algorithm based on bisimulations for labelled tran-
sition systems. We use the symbolic algorithm [83] for
computing (non-stochastic) strong bisimulations to obtain

a suitable state partitioning. We abort its fix-point iteration
prematurely after a user-specified number n of iterations.
In Fig. 3, we show how the quality of the approximation
evolves depending on n. The behaviour of the cluster case
study is shown on the left. One can observe that the width
of the computed interval converges quickly to the actual
value when increasing the number of iterations.

Notably, if we use the same number of refinement steps,
for all model instantiations considered, |P| stayed constant,
although the number of model states |S | was different for
each instantiation (cf. Table II).

Table III contains more detailed running times for the
cluster benchmark with N = 2048 workstations using the
ECTMC abstraction for different numbers of bisimulation
iterations, which are given in the first column. The second
column contains the number of abstract states. The run-
ning times in seconds are given separately for the different
main operations. The running times include the call to
NuSMV to generate the OBDDs for the underlying tran-
sition system (col. 3), the given number of bisimulation
iterations (col. 4), the construction of the ECTMC from
the partitioning (col. 5), the value iteration to compute the
reward interval (col. 6), and finally the total computation
time (col. 7). The last two columns contain the memory
consumption in Megabytes, and the computed reward in-
terval.

We additionally consider a replicated file system as used
as part of the Google search engine [22, 2]. Originally, the
model was given as a generalised stochastic Petri net, but
was transformed to a PM for the analysis.
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(a) Workstation cluster with N = 128. (b) Google file system with M = 256.

Figure 3: Quality of the ECTMC approximation for different numbers of bisimulation iterations.

Table III: Detailed experimental results for the workstation cluster (N = 2048, t = 500) using the ECTMC abstraction
Running Times

Iterations |P| NuSMV Refinement ECTMC Value Iter. Total Memory Interval
5 2440 64.75 0.93 991.16 13.45 1070.34 56.13 [902.092, 905.771]

10 9216 68.46 6.96 1135.57 41.68 1252.79 70.11 [905.739, 905.767]
15 19420 65.25 18.26 1029.23 116.89 1229.78 103.31 [905.766, 905.767]
20 34596 73.93 43.71 1150.70 213.72 1482.29 134.62 [905.767, 905.767]
25 52600 69.82 78.88 1070.13 321.43 1540.49 180.85 [905.767, 905.767]
30 76176 66.43 126.85 1052.87 466.31 1712.76 227.80 [905.767, 905.767]

Table V: Google file system with property 12 and t = 60,
N = 100 000, C = 5000

ECTMC Results
M |P| Time Mem. Interval
32 6 138 30.28 72.28 [0.0000, 0.0000]
64 18 042 251.86 86.53 [0.5071, 0.5071]

128 29 515 822.08 142.23 [0.5071, 0.5071]
256 29 515 1 531.46 147.66 [0.5071, 0.5071]
512 29 515 2 951.37 129.72 [0.5071, 0.5071]

1 024 29 515 6 776.42 128.40 [0.5071, 0.5071]
2 048 29 515 14 957.94 137.47 [0.5071, 0.5071]

Files are divided into chunks of equal size. Several
copies of each chunk reside at several chunk servers. There
is a single master server which knows the location of the
chunk copies. If a user of the file system wants to access a
certain chunk of a file, it asks the master for the location.

Data transfer then takes place directly between a chunk
server and the user. The model describes the life cycle of a
single chunk, but accounts for the load caused by the other
chunks.

The model features three parameters: M is the number
of chunk servers, with C we denote the number of chunks
a chunk server may store, and the total number of chunks
is N.

We consider the minimal probability over all states in
which severe hardware problems have occurred (the master
server is down, and more than three quarters of the chunk
servers are down), that within time t a state will be reached
in which a guaranteed quality-of-service level (all three
chunk copies are present, and the master server is available)
holds. This is a bounded-reachability property, and thus
based on final rewards.

We fix C = 5000, N = 100 000, and t = 60; and we
provide results for several M in Table V. In the analyses
with Prism (see Table IV), we used an improved OBDD
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Table IV: Prism results for the Google file system
sparse engine hybrid engine symbolic engine

N |S | |R| Time Memory Time Memory Time Memory Result
32 6.15 · 103 4.03 · 104 1.60 607.42 1.68 607.78 67.95 624.01 0.000000
64 2.46 · 104 1.66 · 105 34.72 614.24 71.04 616.84 66319.89 791.23 0.507119

128 9.83 · 104 6.77 · 105 464.25 624.81 1 890.41 627.23 – Time out – 0.507119
256 3.93 · 105 2.74 · 106 3 083.24 683.27 26 132.52 701.11 – Time out – 0.507119
512 1.57 · 106 1.11 · 107 41 901.82 938.10 – Time out – – Time out – 0.507119

1 024 6.29 · 106 4.44 · 107 – Time out – – Time out – – Time out – ??
2 048 2.52 · 107 1.78 · 108 – Time out – – Time out – – Time out – ??

variable order, such that the performance results are better
than in [2]. In contrast to the previous case study, Prism’s
sparse matrix engine was faster, and did not use more
memory compared to the hybrid engine. The symbolic
engine was again the slowest. The MTBDD representation
of the model requires more memory per concrete state
compared to the previous case study. We assume that
this requirement is because the number of different rates
occurring is much higher, and because some of the rates
are obtained by multiplying state variables, thus leading
to a more complex MTBDD structure. Notice that in this
model, from a certain value of M onward, the probability
discussed is almost the same.

We give detailed information on the instance with
M = 128 of the Google file system in Table VI and Fig. 3
(right-hand side) for different numbers n of bisimulation
iterations. We can again observe that the computed interval
for the bounded-reachability property quickly converges
to the actual probability with increasing n.

From Table II, we see that the obtained reward con-
verges to a fixed value with increasing model parameter N.
Therefore, if one is interested in the value obtained if the
model parameters go towards infinity, methods concerned
with the limiting behaviour [7, 8, 40, 1] might be more
appropriate. As discussed in the introduction, our method
targets at finding conservative bounds for the model under
consideration. The asymptotic methods we are aware of
do not provide such guaranteed bounds in the general case.
Also, the models which we used are specified in a very
general guarded commands language, and cannot be ade-
quately modelled in a restricted input language, as usually
required as the input format of asymptotic analyses. Our
method provides correct results for all choices of the pa-

rameters, whereas for smaller or medium model sizes the
results obtained by asymptotic analyses would be very far
off, even if it would be possible to perform such an analysis
for increasing parameter sizes. Many scalable models (e.g.
many of the ones from the homepage of the probabilistic
model checker Prism) behave in a similar way.

5 Conclusion
We developed an efficient method to compute extremal
values of CTMDPs over HR schedulers. It can be used
to safely bound quantities of interest of CTMCs, by ab-
stracting them into a special class of CTMDPs, and then
applying this method. Experimental results have shown
that the approach works well in practice.

There are a number of possible future works. The cur-
rent refinement technique surely does not yield an optimal
partitioning of the state space in all cases. We thus want
to see how the scheduler we implicitly obtain by Algo-
rithm 1 can be used to refine the model. The abstraction
technique could also be extended to other property classes
and models. For instance, models already involving non-
determinism could be abstracted and approximated using
Markov games [10, 69, 70]. It would also be interesting
to see how a parallelised or symbolic abstraction method
sketched at the end of Section 3 performs against the one
currently implemented. Using a three-valued logic [50],
the technique could also be integrated into an existing
probabilistic (CSL) model checker.
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Table VI: Detailed experimental results for the Google file system (M = 128, t = 60) using the ECTMC abstraction
Running Times

Iterations |P| NuSMV Refinement ECTMC Value Iter. Total Memory Interval
5 3204 0.86 3.19 1.80 70.42 76.98 65.00 [0.000000, 0.999999]

10 15564 0.81 15.44 2.01 426.32 445.42 92.08 [0.000000, 0.614823]
15 29515 0.83 41.24 2.20 716.67 761.89 142.23 [0.507119, 0.507119]
20 42725 0.83 82.54 2.41 1040.74 1127.53 177.59 [0.507119, 0.507119]
25 57472 0.79 137.50 2.57 1349.73 1491.65 249.21 [0.507119, 0.507119]
30 69932 0.82 191.83 2.62 1652.66 1849.04 279.13 [0.507119, 0.507119]
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Appendix

Proof of Proposition 1
Definition 21 LetD = (S ,P) be a DTMC. For s0, sk ∈ S ,
and k ∈ N, we define πD(s0, k, sk) = Pr(XD,s0

k = sk).

Definition 21 specifies the transient probability to be in
state sk at step k when having started in state s0.

Corollary 1 Notice that, for D = (S ,P), k ∈ N, and
s0, sk ∈ S , it holds that

πD(s0, k, sk)

= Pk(s0, s)
def
=

∑
s1∈S

P(s0, s1) ·
∑
s2∈S

P(s1, s2) ·
∑
s3∈S

P(s2, s3)

· · · · ·
∑

sk−1∈S
P(sk−2, sk−1) · P(sk−1, sk),

i. e., the transient probability in a DTMC can be expressed
using matrix multiplications.

We extend the definition of values to discrete-time mod-
els, which will be used in the further parts of the proof.

Definition 22 LetD = (S ,P) be a DTMC, let r = (rc, r f )
be a reward structure, and let u, t ≥ 0. We define

V(D, s0, r, t,u)

def
=

∞∑
i=0

φut(i)
∑
si∈S

πD(s0, i, si)r f (si)

+ ψut(i)
∑
si∈S

πD(s0, i, si)
rc(si)

u

 .
We define a type of schedulers which are simpler than

the HRs of Definition 7, and at the same time generalise
the CD of Definition 9.

Definition 23 A time-abstract, history-abstract, counting,
randomised scheduler (CR) for a DTMDPD = (S ,Act,P)
or a CTMDP C = (S ,Act,R) is a function σ : (S × N)→
Distr(Act) such that, for all s ∈ S , and n ∈ N, if
σ(s, n)(α) > 0, then α ∈ Act(s). With ΣCR, we denote
the set of all CRs.

Definition 24 Assume we are given a CTMDP C =

(S ,Act,R), and a CR σ : (S ×N)→ Distr(Act). We define
the induced CTMC as Cσ def

= (S ′,R′) with

• S ′ def
= S × N,

• R′((s, n), (s′, n + 1)) def
=

∑
α∈Act σ(s, n)(α) · R(s, α, s′)

for s, s′ ∈ S and n ∈ N, and R′(·) def
= 0 else.

Let XCσ,s0 : (ΩCσ×R≥0)→ (S×N) be the stochastic process
of the CTMC Cσ, and let f : (S ×N)→ S with f (s, n) = s.
Induced DTMCs of DTMDPs are defined accordingly. The
induced stochastic process XC,σ,s0 : (ΩCσ × R≥0) → S of
C and σ starting in s0 ∈ S is then defined as XC,σ,s0

t =

f ◦ XCσ,(s0,0)
t for t ∈ R≥0. Definitions for DTMDPs are

likewise using P instead of R.

We extend the notation of transient probabilities to
scheduled nondeterministic models. It is known that, for
DTMDPs, CR schedulers are as powerful as HR sched-
ulers.

Definition 25 For a DTMDP D = (S ,Act,P), and a
scheduler σ ∈ ΣHR∪ΣCD∪ΣCR, we define πD,σ(s0, k, sk) =

Pr(XD,σ,s0
k = sk) for all k ∈ N and s0, sk ∈ S .

Lemma 2 Consider a DTMDPD = (S ,Act,P), and a HR
σhr. Then there is a CR σcr such that, for all s0, sn ∈ S ,
and n ∈ N, we have πD,σhr (s0, n, sn) = πD,σcr (s0, n, sn).

Proof: The proof is given in [75] and [68, Theorem
5.5.1], where CR are denoted as MR (Markov randomised)
policies. �

Definition 26 For a CTMC C = (S ,R), we let emb(C) def
=

(S ,P) denote the DTMC such that, for all s, s′ ∈ S , we
have P(s, s′) def

= R(s, s′)/u(C).

The following lemma states how values of CTMCs can
be computed using the embedded discrete-time model.

Lemma 3 Let C = (S ,R) be a CTMC with a reward struc-
ture r = (rc, r f ). Let u = u(C). Then, for t ≥ 0, and all
s0 ∈ S , the following holds.

V(C, s0, r, t) = V(emb(C), s0, r, t,u)
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Proof: By Definition 12, for s0 ∈ S , it holds that

V(C, s0, r, t) = E
[∫ t

0
rc(XC,s0

u ) du
]

︸                  ︷︷                  ︸
accumulated

+ E
[
r f (X

C,s0
t )

]︸         ︷︷         ︸
final

.

Thus, we can divide V(C, s0, r, t) into a sum of
accumulated and final. We have

final = E
[
r f (X

C,s0
t )

]
=

∑
s∈S

Pr(XC,s0
t = s)r f (s)

=
∑
s∈S

 ∞∑
i=0

πemb(C)(s0, i, s)φut(i)

 r f (s)

=

∞∑
i=0

φut(i)
∑
s∈S

πemb(C)(s0, i, s)r f (s).

Further, Kwiatkowska et al. [54, Theorem 1] have shown
that

accumulated =

∞∑
i=0

ψut(i)
∑
s∈S

πemb(C)(s0, i, s)
rc(s)

u
.

Thus,

V(C, s0, r, t) = accumulated + final

=

∞∑
i=0

φut(i)
∑
s∈S

πemb(C)(s0, i, s)r f (s)

+ ψut(i)
∑
s∈S

πemb(C)(s0, i, s)
rc(s)

u


= V(emb(C), s0, r, t,u).

�
We can now show that the restricted class CR suffices

to obtain optimal values.

Lemma 4 Given a CTMDP C = (S ,Act,P), and σhr ∈
ΣHR, there is σcr ∈ ΣCR such that V(XC,σhr ,s0 , r, t) =

V(XC,σcr ,s0 , r, t). Further, for all σ′cr ∈ ΣCR, we can find
σ′hr ∈ ΣHR such that V(XC,σ

′
cr ,s0 , r, t) = V(XC,σ

′
hr ,s0 , r, t).

Proof: Consider a CTMDP C = (S ,Act,P), and σhr ∈
ΣHR. By Lemma 2, we can find a scheduler σcr ∈ ΣCR such
that

πemb(C),σhr = πemb(C),σcr . (1)

Define

• rhr def
= (rhr

c , rhr
f ) with

• rhr
c (β, s) def

= rc(s), and

• rcr
f (β, s) def

= r f (s);

and let

• rcr def
= (rcr

c , rcr
f ) with

• rcr
c (s, n) def

= rc(s), and

• rcr
f (s, n) def

= r f (s)

for β ∈ (S × Act)∗, n ∈ N, and s ∈ S . Then for all s0 ∈ S ,
we have

E[r f (X
C,σhr ,s0
t )]

= E[r f ( f (X
Cσhr ,s0

t ))]

=
∑
s∈S

Pr( f (X
Cσhr ,s0

t ) = s)r f (s)

=
∑
s∈S

Pr(∃β ∈ (S × Act)∗. X
Cσhr ,s0

t = (β, s))r f (s)

=
∑
s∈S ,

β∈(S×Act)∗

Pr(X
Cσhr ,s0

t = (β, s))r f (s)

=
∑
s∈S ,

β∈(S×Act)∗

Pr(X
Cσhr ,s0

t = (β, s))rhr
f (β, s)

= E[rhr
f (X

Cσhr ,s0

t )],

similarly

E
[∫ t

0
rc(XC,σhr ,s0

u ) du
]

=

∫ t

0
E

[
rc(XC,σhr ,s0

u )
]

du

=

∫ t

0
E

[
rhr

c (X
Cσhr ,s0
u )

]
du

= E
[∫ t

0
rhr

c (X
Cσhr ,s0
u ) du

]
,
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and in turn

V(XC,σhr ,s0 , r, t) = V(XCσhr ,s0 , rhr, t). (2)

In the same way, using n ∈ N instead of β ∈ (S × Act)∗,
one can show

V(XC,σcr ,s0 , r, t) = V(XCσcr ,s0 , rcr, t). (3)

Notice that, for σ ∈ ΣCR ∪ ΣHR, it is

emb(Cσ) = emb(C)σ. (4)

In addition,

V(emb(C)σhr , s0, rhr, t,u)

=

∞∑
i=0

φut(i)
∑

s∈(S×Act)∗×S

πemb(C)σhr (s0, i, s) · rhr
f (s)

+ ψut(i)
∑

s∈(S×Act)∗×S

πemb(C)σhr (s0, i, s)
rhr

c (s)
u


=

∞∑
i=0

φut(i)
∑
s∈S

πemb(C),σhr (s0, i, s) · r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σhr (s0, i, s)
rc(s)

u

 (5)

Eqn. 1
=

∞∑
i=0

φut(i)
∑
s∈S

πemb(C),σcr (s0, i, s) · r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σcr (s0, i, s)
rc(s)

u


=

∞∑
i=0

φut(i)
∑

s∈S×N
πemb(C)σcr ((s0, 0), i, s) · rcr

f (s)

+ ψut(i)
∑

s∈S×N
πemb(C)σcr ((s0, 0), i, s)

rcr
c (s)
u


= V(emb(C)σcr , s0, rcr, t,u).

From these facts, we have

V(XC,σhr ,s0 , r, t)
Eqn. 2
= V(XCσhr ,s0 , rhr, t)

Lemma 3
= V(emb(Cσhr ), s0, rhr, t,u)

Eqn. 4
= V(emb(C)σhr , s0, rhr, t,u)

Eqn. 5
= V(emb(C)σcr , s0, rcr, t,u)

Eqn. 4
= V(emb(Cσcr ), s0, rcr, t,u)

Lemma 3
= V(XCσcr ,s0 , rcr, t)

Eqn. 3
= V(XC,σcr ,s0 , r, t).

(6)

If we start with a CR σ′cr, we can define the HR σ′hr such
that, for β ∈ (S × Act)n with n ∈ N, we have σ′hr(β, s) def

=

σ′cr(s, n), and then the result can be shown in the same way.
�

From Lemma 4, we can conclude that the maximum is
obtained by a scheduler in ΣCR.

Corollary 2 Given a CTMDP C, and reward structure r,
for all s0 ∈ S , we have

Vmax(C, s0, r, t) = max
σ∈ΣCR

V(XC,σ,s0 , r, t).

Because of Corollary 2, we only have to show that Al-
gorithm 1 computes the maximum over all σ ∈ ΣCR up to
the specified precision.

We first show that, to compute the value of a given
CTMDP for a given scheduler up to a required precision,
it suffices to consider a limited number of steps in the
embedded model.

Lemma 5 Given a CTMDP C = (S ,Act,P) with a reward
structure r = (rc, r f ), a precision ε > 0, and k such that

k∑
n=0

ψut(n) > ut − εu
2rmax

c
and ψut(k) · rmax

f <
ε

2
,

then for all schedulers σ ∈ ΣCR, and all s0 ∈ S , we have

∞∑
i=k+1

φut(i)
∑
s∈S

πemb(C),σ(s0, i, s)r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σ(s0, i, s)
rc(s)

u

 < ε.
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Proof: Consider a CTMC C′ = (S ′,P′) with reward
structure r′ = (r′c, r′f ), and

V(C′, s0, r′, t) = E
[∫ t

0
r′c(XC

′,s0
u ) du

]
︸                   ︷︷                   ︸

accumulated

+ E
[
r′f (X

C′,s0
t )

]︸          ︷︷          ︸
final

for any s0 ∈ S . It is known [54, remark below Theorem 2]
that, if

k∑
n=0

ψut(n) > ut − εu
2r′max

c
,

then

accumulated

def
=

∞∑
n=k+1

ψut(i)
∑
s∈S ′

πemb(C′)(s0, i, s)
r′c(s)

u

<
ε

2
;

and if
ψut(k) · r′max

f <
ε

2
,

then

final

def
=

∞∑
i=k+1

φut(i)
∑
s∈S ′

πemb(C′)(s0, i, s) · r′f (s)

≤
∞∑

i=k+1

φut(i)
∑
s∈S ′

πemb(C′)(s0, i, s) · r′max
f

=

∞∑
i=k+1

φut(i)r′max
f

= ψut(k) · r′max
f

<
ε

2
.

Thus,
∞∑

i=k+1

φut(i)
∑
s∈S

πemb(C′)(s0, i, s)r′f (s)

+ ψut(i)
∑
s∈S

πemb(C′)(s0, i, s)
r′c(s)

u


= accumulated + final
< ε.

(7)

Now, with r′ def
= (r′c, r′f ) where r′c(s, n) def

= rc(s), and

r′f (s, n) def
= r f (s), because rmax

c = r′max
c and rmax

f = r′max
f

the following holds.

∞∑
i=k+1

φut(i)
∑
s∈S

πemb(C),σ(s0, i, s) · r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σ(s0, i, s)
rc(s)

u


=

∞∑
i=k+1

φut(i)
∑

s∈S×N
πemb(C)σ (s0, i, s) · r′f (s)

+ ψut(i)
∑

s∈S×N
πemb(C)σ (s0, i, s)

r′c(s)
u


< ε.

�

Algorithm 4: Compute value of C = (S ,Act,R), re-
ward structure (rc, r f ) and CR σ up to precision ε.

1 let k s.t.∑k
n=0 ψut(n) > ut − εu/(2rmax

c ) ∧ ψut(k) · rmax
f < ε/2

2 C′ = (S ,Act,P) := emb(C)
3 forall s ∈ S do qk+1(s) := 0
4 forall i = k, k − 1, . . . , 0 do
5 forall s ∈ S do
6 m :=

∑
α∈Act σ(s, k)(α)

∑
s′∈S P(s, α, s′)qi+1(s′)

7 qi(s) := m + φut(i) · r f (s) + ψut(i) · rc(s)/u
8 return q0

We can show that Algorithm 4 computes the values
of a CTMDP given a certain scheduler up to a required
precision.

Lemma 6 Consider a CTMDP C = (S ,Act,R), a time
bound t, a scheduler σ ∈ ΣCR, and let q be the return value
of Algorithm 4. Then |q(s0) − V(XC,σ,s0 , r, t)| < ε for all
s0 ∈ S .
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Proof: Consider the values q = q0 returned by Algo-
rithm 4. It holds that

q(s0)

= φut(0) · r f (s0) + ψut(0)
rc(s0)

u
+

∑
α0∈Act

σ(s0, 0)(α0)
∑
s1∈S

P(s0, α0, s1)

· (φut(1) · r f (s1) + ψut(1)
rc(s1)

u
+

∑
α1∈Act

σ(s1, 1)(α1)
∑
s2∈S

P(s1, α1, s2) · · ·

= φut(0) · r f (s0) + ψut(0)
rc(s0)

u
+

∑
α0∈Act

σ(s0, 0)(α0)
∑
s1∈S

P(s0, α0, s1)(φut(1) · r f (s0)

+ ψut(1)
rc(s0)

u
)

+
∑
α0∈Act

σ(s0, 0)(α0)
∑
s1∈S

P(s0, α0, s1)
∑
α1∈Act

σ(s1, 1) · · ·

+ · · ·
Cor. 1
=

k∑
i=0

φut(i)
∑
s∈S

πemb(C),σ(s0, i, s)r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σ(s0, i, s)
rc(s)

u


= V(emb(C), s0, r, t,u)−

∞∑
i=k+1

φut(i)
∑
s∈S

πemb(C),σ(s0, i, s)r f (s)

+ ψut(i)
∑
s∈S

πemb(C),σ(s0, i, s)
rc(s)

u


Lemma 1

= V(emb(C), s0, r, t,u) − ε′
(8)

for some ε′ with 0 ≤ ε′ < ε, and thus |q(s0) −
V(XC,σ,s0 , r, t)| < ε. �

The value obtained from Algorithm 1 will be no smaller
than the one obtained from applying Algorithm 4 on an
arbitrary scheduler.

Lemma 7 Consider a CTMDP C = (S ,Act,R), a time
bound t, and an arbitrary scheduler σ ∈ ΣCR; let q be the
return value of Algorithm 4, and let q′ be the return value
of Algorithm 1. Then q(s0) ≤ q′(s0) holds for all s0 ∈ S .

Proof: Let qi be as given in Algorithm 4, and let q′i be
the corresponding vector of Algorithm 1. We show the
lemma by backward induction on the program variable i.

Induction start: i = k + 1. Before the main loop at the
lines 3, both algorithms assign qk+1(s) = q′k+1(s) = 0 for
all s ∈ S .

Induction assumption: Assume it is qi+1(s) ≤ q′i+1(s) at
the beginning of the main loops, that is before line 4.

Induction step: Consider m of Algorithm 4, and corre-
sponding m′ of Algorithm 1 after the assignment to this
variable at line 6. We have

m =
∑

α∈Act(s)

σ(s, k)(α)
∑
s′∈S

P(s, α, s′)qi+1(s′)

≤ max
α∈Act(s)

∑
s′∈S

P(s, α, s′)qi+1(s′)

Ass.≤ max
α∈Act(s)

∑
s′∈S

P(s, α, s′)q′i+1(s′)

= m′.

Because lines 7 are identical in both algorithms, also qi ≤
q′i at the end of the main loops. �

With these preparations, we can now prove the first part
of Proposition 1.

Lemma 8 Consider a CTMDP C = (S ,Act,R), a re-
ward structure r, a time bound t, and let q′ be the re-
turn value of Algorithm 1. Then, for all s0 ∈ S , it is
|q′(s0) − Vmax(C, s0, r, t)| < ε.

Proof: Let σ ∈ ΣCR be such that

V(XC,σ,s0 , r, t) = Vmax(C, s0, r, t). (9)

Then, because of Lemma 6, |q(s0) − V(XC,σ,s0 , r, t)| < ε is
true, where q is the return value of Algorithm 4. Because
of Lemma 7, we know that q(s0) ≤ q′(s0). By adding the
assignment

σ′cd(s, i) := arg max
α∈Act(s)

∑
s′∈S

P(s, α, s′)qi+1(s′)

into the inner loop of Algorithm 1 after Line 7, we can
obtain a prefix of the scheduler σ′cd ∈ ΣCD. Consider
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σ′cr ∈ ΣCR such that σ′cr(s, i)(α) = 1 if σ′cd(s, i) = α, and
σ′cr(s, i)(α) = 0 else. It can easily be shown that applying
Algorithm 4 on σ′cr also yields the value q′. Thus, again
by Lemma 6, we have |q′(s0) − V(XC,σ,s0 , r, t)| < ε. �

We can now show that deterministic schedulers suffice,
by using the fact that Algorithm 1 indeed maximises only
over this class.

Lemma 9 Let C = (S ,Act,R) be a CTMDP with reward
structure r = (rc, r f ). Then there exists σ ∈ ΣCD such that
Vmax(C, s0, r, t) = V(XC,σ,s0 , r, t).

Proof: Assume the lemma does not hold. Then, for
each σ ∈ ΣCD, there is a ε > 0 such that, for some state
s0 ∈ S , we have |V(XC,σ,s0 , r, t) − Vmax(C, s0, r, t)| ≥ ε.
Now consider σ′cd ∈ ΣCD obtained by Algorithm 1 as
in the proof of Lemma 8 using the same required preci-
sion ε. By the correctness of Algorithm 1, we then have
|V(XC,σ

′,s0 , r, t) − Vmax(C, s0, r, t)| < ε. This result contra-
dicts the assumption, because with the extension in the
proof of Lemma 8, the algorithm also computes a CD
which obtains this precision. � The idea of using the
fact that the optimising algorithm computes a scheduler
of a more restricted class than the class considered was
adapted from various proofs for similar problems in the
discrete-time setting [68].

Proof of Proposition 2

Consider (S ,P) = D def
= emb(C), and (S ,P′) = D′ def

=

emb(C′). We define the HR σ :
(
(A × Act)∗ × A) →

Distr(Act) so that for β = z0αs0z1αs1 . . . αsn−1zn we have

σ(β)(αs)
def
= Pr(XD,s0

n = s | XD,s0
n ∧

n−1∧
i=0

XD,s0
i = si).

By induction, for all n ∈ N, and z ∈ A, we have

Pr(XD,s0
n ∈ z) = Pr(XD

′,σ,z0
n = z).

Thus, using Definition 22, Definition 24, and the definition
of the reward structures r, r′ it is

V(D, s0, r, t,u) ≤ V(D′σ, z0, r, t,u);

and thus using Lemma 3 we obtain

V(XC,s0 , r, t) ≤ V(XC
′,σ,z0 , r′, t) ≤ Vmax(C′, z0, r′, t).

Proof of Proposition 3
We only show that, by using a finer abstraction, the max-
imal bound cannot increase. The case for the minimal
bound is likewise. We have to show

Vmax(C, zt, r, t) ≥ Vmax(C′, z′t, j, r′, t). (10)

We will first show that, for each ε > 0, it holds that

Vmax(C, zt, r, t) + ε ≥ Vmax(C′, z′t, j, r′, t). (11)

To do so, we show by a backward induction on Algo-
rithm 1 that, for the value q0 obtained for C, and the value
q′ obtained for C′, we have q ≥ q′0, using a precision
of ε. By the precision guarantee of the algorithm from
Proposition 1, doing so in turn shows (11) for the given ε.

Induction start with i = k + 1. Before the main loop,
at Line 3, both runs assign qk+1(zt) = q′k+1(z′t, j) = 0 for all
zt ∈ P, z′t, j ∈ P′.

Induction assumption. Assume qi+1(zt) ≥ q′i+1(z′t, j) holds
for all zt ∈ P, z′t, j ∈ P′ with zt =

⋃u
j=1 z

′
t, j at the beginning

of the main loops, before Line 4.
Induction step. Consider m for zt of C, and correspond-

ing m′ for z′t, j of C′, after the assignment to this variable at
Line 6. Let (α̂′, α′) be a maximising decision for some z′t, j
at this line. By the definition of the abstraction, for zt, we
find a corresponding (α̂, α) such that

• Dom(α̂′) = Dom(α̂), and

• for each c ∈ Dom(α̂′) we have α̂′(c) = (z′v,l, I) and
α̂(c) = (zv, I) with z′v,l ⊆ zv.

Then we have

m′ = max
(α̂′,α′)∈Act(z′t, j)

∑
z′v,l∈P′

P(zt, j, (α̂′, α′), z′v,l)qi+1(z′v,l)

=
∑
z′v,l∈P′

P(z′t, j, (α̂
′, α′), z′v,l)qi+1(z′v,l)

Ass.≤
∑
zv∈P

P(zt, (α̂, α), zv)qi+1(zv)

≤ max
(α̂,α)∈Act(zt)

∑
zv∈P

P(zt, (α̂, α), zv)qi+1(zv)

= m.
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The rewards for the refined abstraction cannot be larger
than the ones for the coarser one. Thus, after Line 7, we
still have qi ≥ q′i at the end of each iteration.

The validity of (11) then also shows that the in-
equality (10) holds for ε = 0: if Vmax(C, zt, r, t) <

Vmax(C′, z′t, j, r′, t), then ε′ def
= Vmax(C′, z′t, j, r′, t) −

Vmax(C, zt, r, t) is positive. By subtracting Vmax(C, zt, r, t)
from (11), we have

ε ≥ ε′.
This equation must hold for all ε, for instance ε′/2. Thus,
we would obtain a contradiction if it would not hold for
ε = 0.
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