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Abstract

In this short note we give and discuss a general multilinear
expression of the structure function of an arbitrary semi-
coherent system in terms of its minimal path and cut sets.
We also examine the link between the number of minimal
path and cut sets consisting of 1 or 2 components and the
concept of structure signature of the system.

Keywords: System reliability, semicoherent system,
structure function, reliability function, minimal path and
cut sets.

Notation

[n] set {1, . . . , n}
C set of components of the system
φ(x) structure function of the system
φD(x) dual structure function
h(p) reliability function of the system
s signature of the system
sk k-th coordinate of s

1 Introduction

Consider an n-component system (C, φ), where C is the set
[n] = {1, . . . , n} of its components and φ : {0, 1}n → {0, 1}
is its structure function which expresses the state of the
system in terms of the states of its components. We assume
that the system is semicoherent, which means that the
structure function is nondecreasing in each variable and
satisfies the conditions φ(0, . . . , 0) = 0 and φ(1, . . . , 1) = 1.

Throughout we identify Boolean n-vectors x ∈ {0, 1}n

and subsets A ⊆ [n] in the usual way, that is, by set-
ting xi = 1 if and only if i ∈ A. This identification en-
ables us to use the same symbol to denote both a func-
tion f : {0, 1}n → R and the corresponding set function
f : 2[n] → R interchangeably. For instance, we write
φ(0, . . . , 0) = φ(∅) and φ(1, . . . , 1) = φ(C).

As a Boolean function, the structure function can always
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be written in the multilinear form

φ(x) = φ(x1, . . . , xn)

=
∑

A⊆C

φ(A)
∏

i∈A

xi

∏

i∈C\A

(1− xi). (1)

Since the coefficients in this form are exactly the struc-
ture function values, we will refer to this form as the self-
descriptive form of the structure function. By expanding
the second product in Eq. (1) and then collecting terms, we
obtain the simple form of the structure function, namely

φ(x) =
∑

A⊆C

d(A)
∏

i∈A

xi , (2)

where the link between the new coefficients d(A) and the
values φ(A), which can be obtained from the Möbius in-
version theorem, is given through the following linear con-
version formulas (see, e.g., [15, p. 31])

φ(A) =
∑

B⊆A

d(B)

and
d(A) =

∑

B⊆A

(−1)|A|−|B| φ(B) .

Recall that a path set of the system is a component
subset P ⊆ C such that φ(P ) = 1. A path set P of the
system is said to be minimal if φ(P ′) = 0 for every P ′  P .
It is well known [3, Ch. 2] that if P1, . . . , Pr denote the
minimal path sets of the system, then

φ(x) =
∐

j∈[r]

∏

i∈Pj

xi = 1−
∏

j∈[r]

(
1−

∏

i∈Pj

xi

)
, (3)

where [r] = {1, . . . , r} and ∐ is the coproduct operation
(i.e., the dual of the product operation) defined by ∐ixi =
1−Πi(1− xi).

Example 1. Consider the bridge structure as indicated in
Figure 1. This structure is characterized by four minimal
path sets, namely P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5},
and P4 = {2, 3, 4}. Equation (3) then shows that the struc-
ture function is given by

φ(x1, . . . , x5) = x1 x4 ∐ x2 x5 ∐ x1 x3 x5 ∐ x2 x3 x4 . (4)

The simple form of the structure function can be easily
computed by expanding the coproducts in (4) and simpli-
fying the resulting algebraic expression using x2

i = xi. We
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then obtain

φ(x1, . . . , x5)

= 1− (1− x1x4)(1− x2x5)(1 − x1x3x5)(1 − x2x3x4)

= x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x2x3x4

− x1x2x3x5 − x1x2x4x5 − x1x3x4x5 − x2x3x4x5

+ 2 x1x2x3x4x5 ,

which reveals the coefficients d(A) of the simple form of
the structure function.
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Figure 1: Bridge structure

Example 1 illustrates the important fact that the sim-
ple form (2) of any structure function can be expressed in
terms of the minimal path sets of the system simply by
expanding the coproduct in (3) and then simplifying the
resulting polynomial expression (using x2

i = xi) until it
becomes multilinear. It seems, however, that such a gen-
eral expression for the structure function is unknown in
the literature.
In Section 2 of this note we yield an expression of the

simple form of the structure function in terms of the mini-
mal path sets. The derivation of this expression is inspired
from the exact computation of the reliability function of
the system by means of the inclusion-exclusion principle.
We also provide the dual version of this expression in terms
of the minimal cut sets and discuss some interesting con-
sequences of these expressions. In Section 3 we show that
the number of minimal path and cut sets consisting of 1
or 2 components can be computed easily from the concept
of structure signature of the system.

2 Structure functions and minimal

path and cut sets

By extending formally the structure function to the hyper-
cube [0, 1]n by linear interpolation, we define itsmultilinear
extension (a concept introduced in game theory by Owen

[14]) as the multilinear polynomial function φ̂ : [0, 1]n →
[0, 1] defined by

φ̂(x) =
∑

A⊆C

φ(A)
∏

i∈A

xi

∏

i∈C\A

(1− xi).

Let φD : {0, 1}n → {0, 1} be the dual structure func-
tion defined as φD(x) = 1 − φ(1 − x), where 1 stands for
the n-vector (1, . . . , 1), and let dD(A) be the coefficient of

∏
i∈A xi in the simple form of φD. By using the dual struc-

ture function we can easily derive various useful forms of
the structure function and its multilinear extension (see
also Grabisch et al. [6]). Table 1 summarizes the best
known of these forms (in addition to the minimal path set
representation given in Eq. (3)).

1. Self-descriptive form

∑

A⊆C

φ(A)
∏

i∈A

xi

∏

i∈C\A

(1− xi)

2. Dual self-descriptive form

1−
∑

A⊆C

φD(A)
∏

i∈C\A

xi

∏

i∈C

(1 − xi)

3. Simple form

∑

A⊆C

d(A)
∏

i∈A

xi

4. Dual simple form

∑

A⊆C

dD(A)
∐

i∈A

xi

5. Disjunctive normal form

∐

A⊆C
φ(A)=1

∏

i∈A

xi

6. Conjunctive normal form

∏

A⊆C
φD(A)=1

∐

i∈A

xi

Table 1: Various forms of the structure function φ(x) and

its multilinear extension φ̂(x)

The concept of multilinear extension of the structure
function has the following important interpretation in reli-
ability theory. When the components are statistically inde-
pendent, the function φ̂ is nothing other than the reliability
function h : [0, 1]n → [0, 1], which gives the reliability

h(p) = h(p1, . . . , pn) =
∑

A⊆C

φ(A)
∏

i∈A

pi
∏

i∈C\A

(1− pi)

of the system in terms of the reliabilities p1, . . . , pn of the
components (see, e.g., [3, Ch. 2]).

The exact computation of the system reliability h(p) in
terms of the minimal path sets P1, . . . , Pr is usually done
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by means of the inclusion-exclusion method (see, e.g., [1,
Sect. 6.2] and [3, Ch. 2]). In this section we recall this
method and show how we can adapt it to derive a concise
expression of the simple form of the structure function in
terms of the minimal path sets of the system.
For every j ∈ [r] = {1, . . . , r}, let Ej be the event that

all components in the minimal path set Pj work. Then,
using the inclusion-exclusion formula for probabilities, we
obtain

h(p) = Pr

( ⋃

j∈[r]

Ej

)

=
∑

∅ 6=B⊆[r]

(−1)|B|−1 Pr

( ⋂

j∈B

Ej

)
. (5)

LetDi denote the event that component i works. Then, we
have pi = Pr(Di) and, using the independence assumption,
we have

Pr(Ej) = Pr

( ⋂

i∈Pj

Di

)
=

∏

i∈Pj

pi

and, more generally,

Pr

( ⋂

j∈B

Ej

)
= Pr

( ⋂

j∈B

⋂

i∈Pj

Di

)

= Pr

( ⋂

i∈
⋃

j∈B
Pj

Di

)
=

∏

i∈
⋃

j∈B
Pj

pi . (6)

Substituting (6) in (5), we obtain the following multilinear
expression of h(p) in terms of the minimal path sets of the
system

h(p) =
∑

∅ 6=B⊆[r]

(−1)|B|−1
∏

i∈
⋃

j∈B Pj

pi , (7)

or equivalently,

h(p) =
∑

j∈[r]

∏

i∈Pj

pi −
∑

{j,k}⊆[r]

∏

i∈Pj∪Pk

pi

+
∑

{j,k,l}⊆[r]

∏

i∈Pj∪Pk∪Pl

pi − · · ·

We now show that a similar formula can be obtained for
the structure function without an appeal to the indepen-
dence assumption on the system components. Actually,
our result and its proof are purely combinatorial and does
not need any stochastic setting.

Theorem 1. If P1, . . . , Pr denote the minimal path sets
of the system, then

φ(x) =
∑

∅ 6=B⊆[r]

(−1)|B|−1
∏

i∈
⋃

j∈B
Pj

xi , (8)

or equivalently,

φ(x) =
∑

j∈[r]

∏

i∈Pj

xi −
∑

{j,k}⊆[r]

∏

i∈Pj∪Pk

xi

+
∑

{j,k,l}⊆[r]

∏

i∈Pj∪Pk∪Pl

xi − · · ·

Clearly, Eq. (8) still holds on [0, 1]n if we replace the
structure function with its multilinear extension. In partic-
ular, when the components are statistically independent,
we see that (7) immediately follows from (8).

Example 2. Consider a 4-component system defined by
the three minimal path sets P1 = {1, 2}, P2 = {2, 3},
and P3 = {3, 4}. The constituting elements of the sum in

B (−1)|B|−1
⋃

j∈B Pj

{1} 1 {1, 2}
{2} 1 {2, 3}
{3} 1 {3, 4}
{1, 2} −1 {1, 2, 3}
{1, 3} −1 {1, 2, 3, 4}
{2, 3} −1 {2, 3, 4}
{1, 2, 3} 1 {1, 2, 3, 4}

Table 2: Example 2

Eq. (8) are gathered in Table 2. Summing up the monomi-
als defined by the subsets given in the third column, each
multiplied by the corresponding number (+1 or −1) from
the second column, by (8) we obtain

φ(x1, x2, x3, x4) = x1x2+x2x3+x3x4−x1x2x3−x2x3x4 ,

which is the simple form of the structure function.

Interestingly, Theorem 1 enables us to identify the min-
imal path sets of the system from the simple form of the
structure function by quick inspection. We state this result
in the following immediate corollary.

Corollary 2. The minimal path sets P1, . . . , Pr are ex-
actly the minimal elements (with respect to inclusion) of
the family of subsets defined by the monomials (or equiv-
alently, the monomials with coefficient +1) in the simple
form of the structure function.

Corollary 2 enables us to reconstruct the minimal path
set representation (3) of the structure function from its
simple form. Considering for instance the simple form of
the bridge structure function as described in Example 1,
by Corollary 2 we see that the corresponding minimal path
sets are P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5}, and
P4 = {2, 3, 4}. We then immediately retrieve Eq. (4).
Theorem 1 has the following additional consequence.

Recall that a formation of a subset A of C is a collec-
tion of minimal path sets whose union is A. A formation
of A is said to be odd (resp. even) if it is the union of an
odd (resp. even) number of minimal path sets. Note that a
particular formation can be both odd and even. By equat-
ing the corresponding terms in (2) and (8), we obtain the
following identity

d(A) =
∑

∅ 6=B⊆[r]⋃
j∈B Pj=A

(−1)|B|−1.
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From this identity, we immediately retrieve the important
fact (see, e.g., Barlow and Iyer [2]) that the coefficient d(A)
is exactly the number of odd formations of A minus the
number of even formations of A.
A dual argument enables us to yield an expression of

the simple form of the structure function in terms of the
minimal cut sets of the system. Recall that a subset K of
C is a cut set of the system if φ(C \K) = 0. It is minimal
if φ(C \K ′) = 1 for every K ′  K. If K1, . . . ,Ks denote
the minimal cut sets of the system, then

φ(x) =
∏

j∈[s]

∐

i∈Kj

xi =
∏

j∈[s]

(
1−

∏

i∈Kj

(1− xi)

)
.

Starting from the well-known fact that the minimal cut
sets of the system are the minimal path sets of the dual,
and vice versa, from Theorem 1 and Corollary 2 we imme-
diately derive the following dual versions.

Theorem 3. If K1, . . . ,Ks denote the minimal cut sets of
the system, then

φD(x) =
∑

∅ 6=B⊆[s]

(−1)|B|−1
∏

i∈
⋃

j∈B
Kj

xi . (9)

Corollary 4. The minimal cut sets K1, . . . ,Ks are ex-
actly the minimal elements (with respect to inclusion) of
the family of subsets defined by the monomials (or equiv-
alently, the monomials with coefficient +1) in the simple
form of the dual structure function.

Locks [7] described a method for generating all mini-
mal cut sets from the set of minimal path sets (and vice
versa) using Boolean algebra. Interestingly, an alternative
method simply consists in applying Corollary 4 to the dual
structure function

φD(x) = 1− φ(1− x) =
∏

j∈[r]

∐

i∈Pj

xi .

Consider for instance the structure function defined in Ex-
ample 2. The dual structure function is given by

φD(x) = (x1 ∐ x2)(x2 ∐ x3)(x3 ∐ x4)

= x1x3 + x2x3 + x2x4 − x1x2x3 − x2x3x4 .

Corollary 4 then immediately yields the minimal cut sets
of the system, namely K1 = {1, 3}, K2 = {2, 3}, and K3 =
{2, 4}.

Remark 1. It is noteworthy that from (5) and (6) we can
immediately derive a representation of the system relia-
bility function in terms of the reliability functions of the
series systems defined from the unions of minimal path
sets. More precisely, for every t > 0 we have

Pr(T > t) =
∑

∅ 6=B⊆[r]

(−1)|B|−1 Pr

(
min

i∈
⋃

j∈B
Pj

Ti > t

)
,

where T and Ti denote the lifetime of the system and the
lifetime of component i, respectively. This representation,

which holds regardless of the distribution of the component
lifetimes, has been obtained for instance in [4, Eq. (3.1)],
[12, Eq. (2.2)], and [13, Eq. (3.4)]. The corresponding dual
version can be easily derived by considering parallel sys-
tems and minimal cut sets; see for instance [13, Eq. (3.5)].
For every t > 0 we have

Pr(T 6 t) =
∑

∅ 6=B⊆[s]

(−1)|B|−1 Pr

(
max

i∈
⋃

j∈B
Kj

Ti 6 t

)
.

3 Minimal path and cut sets of

small sizes

By identifying the variables x1, . . . , xn in the multilinear
extension φ̂(x) of the structure function, we define its diag-

onal section φ̂(x, . . . , x), which will be simply denoted by

φ̂(x). From the simple form (2) of the structure function,
we immediately obtain the polynomial function

φ̂(x) =

n∑

k=1

dk x
k ,

where
dk =

∑

A⊆C
|A|=k

d(A) .

For instance, considering the bridge structure function de-
fined in Example 1, we obtain φ̂(x) = 2x2+2x3−5x4+2x5.
By definition, the diagonal section of the multilinear ex-

tension of the structure function is also the one-variable
reliability function h : [0, 1] → [0, 1] which gives the sys-
tem reliability h(p) = h(p, . . . , p) of the system whenever
the components are statistically independent and have the
same reliability p.
Using Theorem 1, we can easily express the function

φ̂(x) in terms of the minimal path sets. We simply have

φ̂(x) =
∑

∅ 6=B⊆[r]

(−1)|B|−1 x|
⋃

j∈B Pj |

and the coefficient dk of xk in φ̂(x) is then given by

dk =
∑

B⊆[r]
|
⋃

j∈B
Pj |=k

(−1)|B|−1 . (10)

Dually, the coefficient dDk of xk in φ̂D(x) is given by

dDk =
∑

B⊆[s]
|
⋃

j∈B
Kj|=k

(−1)|B|−1 . (11)

For every k ∈ [n], let αk (resp. βk) denote the number of
minimal path (resp. cut) sets of size k of the system. The
knowledge of these numbers for small k may be relevant
when analyzing the reliability of the system. For instance,
if the system has no minimal cut set of size 1, it may be
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informative to count the number β2 of minimal cut sets of
size 2 and so forth.
The following proposition shows that α1 and α2 (resp.

β1 and β2) can be computed directly from the coefficients
d1 and d2 (resp. dD1 and dD2 ), and vice versa.

Proposition 5. We have α1 = d1, β1 = dD1 , α2 =
(
d1

2

)
+

d2, and β2 =
(
dD
1

2

)
+ dD2 .

The following example shows that, in general, for k > 3
neither αk nor βk can be determined only from the coeffi-
cients of φ̂(x) and φ̂D(x).

Example 3. Consider the structure functions

φ1(x) = x1x2 ∐ x3x4

= x1x2 + x3x4 − x1x2x3x4 (12)

and

φ2(x) = x1x2 ∐ x1x3 ∐ x2x3x4

= x1x2 + x1x3 + x2x3x4 − x1x2x3 − x1x2x3x4 .

We have φ̂1(x) = φ̂2(x) = 2x2 − x4 and hence φ̂D
1 (x) =

1− φ̂1(1−x) = 1− φ̂2(1−x) = φ̂D
2 (x). However, we clearly

have α3 = 0 for function φ1 and α3 = 1 for function φ2.

Remark 2. Contrary to the number αk, the number of
path sets (not necessarily minimal) of size k can always

be determined from the coefficients of φ̂(x). Indeed, this
number is given by (see, e.g., [10, Prop. 1])

∑

A⊆C
|A|=k

φ(A) =
k∑

j=0

(
n− j

k − j

)
dj .

Dually, the number of cut sets of size k is given by

∑

A⊆C
|A|=k

φD(A) =

k∑

j=0

(
n− j

k − j

)
dDj .

We end this section by giving expressions for the num-
bers α1, α2, β1, and β2 in terms of the structure signature
of the system.
Recall that the structure signature of the system is the

n-vector s = (s1, . . . , sn) whose k-th coordinate is defined
as

sk =
∑

A⊆C
|A|=n−k+1

1(
n
|A|

) φ(A) −
∑

A⊆C
|A|=n−k

1(
n
|A|

) φ(A) , (13)

or equivalently,

sk =

n−k+1∑

j=1

(
n−k
j−1

)
(
n
j

) dj . (14)

This concept was introduced in 1985 by Samaniego [16]
for systems whose components have continuous and i.i.d.

lifetimes. He originally defined sk as the probability that
the k-th component failure causes the system to fail (hence
the property

∑n

k=1 sk = 1). More recently, Boland [5]
showed that this probability can be explicitly given by
(13). The expression given in (14) was derived later in [8,
Cor. 12] and [10, Prop. 3] (see also [11] for a preliminary
work). Thus defined, the structure signature depends only
on the structure function and can actually be considered
for any system, without any assumption on the distribu-
tion of the component lifetimes.
Combining this concept with Proposition 5 shows that

α1 and α2 (resp. β1 and β2) can be computed directly
from sn and sn−1 (resp. s1 and s2), and vice versa. The
conversion formulas are given in the following proposition.

Proposition 6. We have

α1 = d1 = nsn , (15)

β1 = dD1 = ns1 , (16)

α2 =
(
d1

2

)
+ d2 =

(
nsn
2

)
+
(
n
2

)
(sn−1 − sn) , (17)

β2 =
(
dD
1

2

)
+ dD2 =

(
ns1
2

)
+
(
n
2

)
(s2 − s1) . (18)

For instance, consider again the structure function φ1

given in (12). We have φ̂1(x) = 2x2 − x4, φ̂D
1 (x) = 4x2 −

4x3 + x4, and therefore d1 = dD1 = 0, d2 = 2, and dD2 = 4.
Using Proposition 6, we finally obtain α1 = β1 = 0, α2 =
2, β2 = 4, and s = (0, 2

3 ,
1
3 , 0).

Example 4. Consider an n-component system having β2

minimal cut sets of size 2 and no cut set of size 1. By
(16) and (18) we necessarily have s1 = 0 and s2 = β2/

(
n
2

)
.

This result was expected since sk is the probability that,
assuming that the component lifetimes are continuous and
i.i.d. (and hence exchangeable), the system fails exactly at
the k-th component failure. Thus, s1 is clearly zero and
s2 is the ratio of the number β2 of minimal cut sets of
size 2 (favorable cases) over the number

(
n
2

)
of pairs of

components (possible cases).

Remark 3. It is noteworthy that, combining (10) with (14),
we obtain a simple way to compute the structure signature
of the system directly from the minimal path sets. Dually,
combining (11) with the immediate formula (see also [10,
Sect. 3.5])

sk =
k∑

j=1

(
k−1
j−1

)
(
n
j

) dDj

shows how we can compute the structure signature directly
from the minimal cut sets.

Remark 4. One can easily show that, when the compo-
nents have exchangeable lifetimes, the system reliability
function can be expressed as

Pr(T > t) =

n∑

k=1

dk Pr
(
min{T1, . . . , Tk} > t

)
.

This result shows that the n-vector d = (d1, . . . , dn) can
be interpreted as a signature vector, called “minimal sig-
nature” in [13, Def. 4.1]. The structure signature s can
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then be computed from this minimal signature by using
(14) and vice versa (see, e.g., [10]). Dually, one can show
that

Pr(T 6 t) =

n∑

k=1

dDk Pr
(
max{T1, . . . , Tk} 6 t

)
,

and this formula then shows that the coefficients
dD1 , . . . , dDn can be used to define the “maximal signature”
[13, Def. 4.2], which also determines the structure signa-
ture s (as indicated in Remark 3) and the n-vector d (and
vice versa).
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Appendix

Proof of Theorem 1. The proof relies on the classical poly-
nomial inclusion-exclusion identity

1−
∏

j∈[r]

(1− zj) =
∑

∅ 6=B⊆[r]

(−1)|B|−1
∏

j∈B

zj ,

which holds for all z1, . . . , zn ∈ R. Setting zj =
∏

i∈Pj
xi

in the latter identity and then combining the resulting for-
mula with the right-hand expression in (3), we immediately
obtain

φ(x) =
∑

∅ 6=B⊆[r]

(−1)|B|−1
∏

j∈B

∏

i∈Pj

xi.

Formula (8) then follows by simplifying the latter expres-
sion using x2

i = xi.

Proof of Proposition 5. On the one hand, setting k = 1 in
(10) and (11) shows that d1 = α1 and dD1 = β1. On the
other hand, setting k = 2 in (10), we obtain

d2 =
∣∣{i ∈ [r] : |Pi| = 2

}∣∣−
∣∣{{i, j} ⊆ [r] : |Pi∪Pj | = 2

}∣∣ ,

that is d2 = α2 −
(
α1

2

)
. Dually, we obtain dD2 = β2 −(

β1

2

)
.

Proof of Proposition 6. From Eq. (14) we immediately de-
rive the equations d1 = nsn and d2 =

(
n
2

)
(sn−1−sn). Now,

if sD = (sD1 , . . . , sDn ) denotes the structure signature asso-
ciated with the dual structure function φD, then we have
sDk = sn+1−k for k = 1, . . . , n. Combining this observation
with the previous two equations, we obtain immediately
dD1 = ns1 and dD2 =

(
n
2

)
(s2 − s1). We then conclude by

Proposition 5.
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