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Abstract—Maintenance is a necessity for most multi-
component systems, but its benefits are often accompanied by
considerable costs. However, with the appropriate number of
maintenance teams and a sufficiently tuned maintenance strategy,
optimal system performance is attainable. Given system com-
plexities and operational uncertainties, identifying the optimal
maintenance strategy is a challenge. A robust computational
framework, therefore, is proposed to alleviate these difficulties.
The framework is particularly suited to systems with uncertain-
ties in the use of spares during maintenance interventions, and
where these spares are characterised by delayed availability. It is
provided with a series of generally applicable multi-state mod-
els that adequately define component behaviour under various
maintenance strategies. System operation is reconstructed from
these models using an efficient hybrid load-flow and event-driven
Monte Carlo simulation. The simulation’s novelty stems from its
ability to intuitively implement complex strategies involving mul-
tiple contrasting maintenance regimes. This framework is used
to identify the optimal maintenance strategies for a hydroelectric
power plant and the IEEE-24 RTS. In each case, the sensitivity
of the optimal solution to cost level variations is investigated
via a procedure requiring a single reliability evaluation, thereby
reducing the computational costs significantly. The results show
the usefulness of the framework as a rational decision-support
tool in the maintenance of multi-component, multi-state systems.

Index Terms—Monte Carlo Simulation, Complex System, Un-
certainty, Maintenance Optimization, Multi-State System.

NOTATIONS

A-B elements in A but not in B.
[a] smallest integer greater than a.

min (A) the least element of set/vector A.

min (A,b)  the least element of A greater than b.

Exp(a) exponential distribution with rate 1/a.

U (a,b) uniform distribution with bounds on a, b.

LogN (a,b) log-normal distribution with mean a, std. b.

Wb (a,c) Weibull distribution with scale parameter a
and shape parameter, c.

Gu(a,b) Gumbel distribution with mean a, std. b.

G (a,b) gamma distribution with shape parameter a
and scale parameter, b.

u ~ [0,1] uniform random number between 0 and 1.

[a, b] maint. strategy based on regimes a and b.

numel (A)  number of elements in set/vector A.
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ABBREVIATIONS
APM Awaiting Preventive Maintenance state.
CM Corrective Maintenance state.
EENS Expected Energy Not Supplied.
(EENS), ;; total EENS.
D Diagnosis state
F Failed state.
I Idle state
PF Partial Failure state
PM Preventive Maintenance state.
S Shutdown state.
w Working state.
NOMENCLATURE

Di probability of spares for CM of component .
q; probability of spares for PM of component <.
tom preventive maintenance duration.
k; proportion of t,,, spent before spares request.
A; minimum threshold load for component .
w number of maintenance groups.
1y total number of teams in group j.
ni, number of CM teams in group j.
n2; number of PM teams in group j.
n* a combination of maintenance teams
m; total number of components in group j.
M total number of maintainable components.
M’ total number of system nodes.
T mission time.
T; transition matrix for component i.
N Number of Monte Carlo samples.
N Set of possible maintenance team combinations
N“™ number of CM actions on component .
N number of PM actions on component .
t;»{cm} time spent by component i in CM.
tiP™ " time spent by component i in PM.
sz{cm} number of CM spares used for component i.
sz{p ™} number of spares used in PM of component i.

gcm} CM suspension indicator for component 1.
u,b{p ™ PM suspension indicator for component %.
ts current simulation time.
x current state.
Unext  NEXt transition state.
tnert ~ NEXt transition time.

Ym

next maintenance state.
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y next failure state of a component in APM.
t/ maximum lifetime of a component in APM.
tspent time spent in PM before maint. suspension.
tspare  Spares delay time.
trem remaining lifetime of a component.
91} set of components repaired by group j.

J p P y group j
9}1’ ™} set of components assigned to group j for PM.
9]' (ej{cm} U ej{pm})

)\;;cm} number of busy CM teams from group j.
/\]{-p ™} humber of busy PM teams from group j.
II1 matrix defining the number of maint. teams.
%) shared/dedicated maintenance indicator.

hy set of components in CM queue.

ha set of components in PM queue.

hiy final content of h; after normalization.

hay final content of ho after normalization.

I. INTRODUCTION

WING to the rapid growth in human population and

the proliferation of new electrical energy-driven tech-
nologies, the demand for sustainable electricity is on a steady
rise. Coupled with a competitive market, the electrical power
operator is under increasing pressure to deliver an adequate,
safe, affordable, and uninterrupted supply. They, however, are
constrained by the impossibility to continuously operate the
system without outages, consequent of component failure and
maintenance. To minimize the impact of these outages on con-
sumer satisfaction, the maintenance strategy adopted should
be robust, meet operator expectation, extend the life of the
system, and be carefully executed [1], [2]. From an operator
perspective, a robust strategy is one that ensures maximum
system throughput and keeps the operating cost to a minimum.
In addition to its impact on system performance, maintenance
accounts for a significant proportion of the total operating cost
of power systems. It, therefore, to a significant extent, defines
the revenue generated and the overall investment sustainability.
In summary, the principles of modern maintenance engineering
do not only require meeting technical and operational goals,
but achieving them through the most cost effective means. This
constraint dictates, maintenance follow a strategy imposing
minimum system output loss and at the least possible cost.

A. Maintenance Strategy Optimization

In the most general sense, maintenance can be optimized
against various reliability and performance indices. The in-
dices used depend on the application and the goal of the
analyst. For instance, in nuclear and other safety-critical sys-
tems, failure probability and recovery likelihood are the most
frequently used indices. However, regardless of the application
and the indices used, the goal is, finding the optimum balance
between costs and benefits, whilst not ignoring any important
system constraints [2]. This process involves comparing the
monetary equivalent of the benefits, to the costs incurred in
their attainment. A limiting factor, therefore, would be the con-
vertibility to monetary gains, of these benefits. Consequently,
cost minimization has been the subject of many maintenance

optimization models [1], [3]-[12]. While some of these models
consider the system as a single unit (for instance [1], [6],
[13]), many are enhanced for multi-component systems. With
respect to implementation effort, multi-component models are
more demanding, due to the presence of multiple system
dynamics and structural complexities. Notwithstanding, var-
ious researchers have successfully implemented maintenance
optimization models on multi-component systems [3]-[5], [8]-
[11]. A comprehensive review and historical overview can be
found in [14]-[16].

The cost of maintaining a system constitutes various param-
eters, varying according to the external dynamics surrounding
the system and the intrinsic properties of its building block.
Prominent amongst these are the reliability and maintainability
of components, cost of spares, labour cost, and the frequency
and duration of preventive maintenance actions. An accurate
model, therefore, accounts for all of these parameters. With
a few exceptions focusing on reliability-centered maintenance
[5], [8] or maintenance contract assessment [17], most models
are dedicated to determining either the optimal preventive
maintenance schedule, inspection, or component replacement
intervals. Often, they are hinged on the assumption that there
are sufficient maintenance teams to accomplish maintenance
functions, [4]-[9], [11], [17], and delays imposed by logistic
and administrative constraints are usually ignored [3]-[9],
[11], [17]. Instantaneous preventive maintenance or inspection
is another assumption frequently invoked [3], [4], [9], [11],
[13]. While these assumptions are reasonable for some sys-
tems, they may be completely unrealistic for many. A notable
instance being, a system with large maintenance durations and
operated under limited maintenance team conditions. These
large durations, normally due to logistic or human resource
constraints, affect system performance negatively. They also
render the cost and number of spares used worth considering,
a factor many maintenance optimization models have ignored.

When the possibility of maintenance interruptions exists,
constraints on the states of components during periods of
maintenance suspension become important. A component’s
maintenance is suspended if it requires spares which availabil-
ity is delayed or if the maintenance team is reassigned to a
more critical component. During suspensions, the component
may either be put back into operation (assuming it is only
partially failed or under preventive maintenance) or kept out of
operation until maintenance is completed. The careful schedul-
ing of these maintenance actions may also mitigate their
effect on throughput losses. This is the case, especially for
planned preventive maintenance and corrective maintenance
of partially failed components. Hence, there is the need for
an optimization framework that derives the combination of
procedures (maintenance strategy) minimizing system losses,
as well as the maintenance cost. Maintenance strategy here
refers to a set of procedures specifying,

1) The number of maintenance teams employed and how

they are assigned to components.

2) Whether or not preventive and corrective maintenance

should be carried out by the same team.

3) Whether preventive maintenance interventions and cor-

rective maintenance of partially failed components
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should consider the state of the system or a relevant
subsystem.

4) What happens to a component when its maintenance is
suspended.

Significant strides have already been made toward mainte-
nance strategy optimization in the presence of some of these,
including other dynamic considerations like ageing, imperfect
and condition-based maintenance [3], [4], [18], [19]. However,
the techniques proposed in these works are suited mainly
to binary-state systems. An approach considering all the
constraints in question and in a multi-state, multi-component
environment is yet to emerge. In this work, a simulation frame-
work that can be used to identify the optimal maintenance
strategy for a multi-state system prone to the range of possible
operational dynamics listed is proposed. A detailed account of
its theoretical and modelling principles is provided, thereby
setting the tone for its wide applicability.

B. Advantages of the Proposed Approach

The dependability of the optimal solution obtained from
any maintenance strategy optimization scheme is determined
by the accuracy of its system performance measures. This,
in turn, is influenced by the suitability to the system, of the
reliability modelling technique employed. These modelling
techniques fall into one of two broad categories; analytical
and dynamic reliability models. The former are inapplicable
to certain reliability problems, especially those involving com-
plex maintenance strategies and other dynamic considerations.
When forced to suit such problems, the resulting models
are often oversimplified to an extent that compromises the
credibility of the outcome. In fact, most of the limitations of
the existing maintenance optimization models discussed in the
preceding section are associated with analytical models.

Dynamic reliability models, on the other hand, possess
sufficient flexibility to model the dynamic considerations and
uncertainties that normally characterize the operation of realis-
tic systems. Stochastic Petri Nets [20], Stochastic Hybrid Sys-
tems [21], and Monte Carlo Simulation [3], [22]-[24] are the
most popular in this category. Stochastic Petri Nets, however,
require the enumeration of the entire state space of the system,
which makes them infeasible for complex multi-state systems,
even of moderate size. They also suffer a serious setback
when the system can undergo non-Markovian transitions, in
which case Tuffin et al. [25] recommend simulation. Stochastic
Hybrid Systems are an emerging modelling formalism with
promising prospects for dynamic reliability modelling. They
are built around the Markov reward model of the system, when
solicited for problems involving performance optimization or
system operating cost minimization [21]. Consequently, like
Stochastic Petri Nets, they are intractable for complex multi-
state systems, due to their susceptibility to the state explosion
conundrum. In addition, they proceed by translating the dy-
namic reliability problem into a set of differential equations,
which closed-form solution, in some cases, may be difficult
to obtain analytically. Some researchers [26] have even had to
resort to a Monte Carlo Simulation approach to solving these
differential equations. Given the structural complexity of most

power systems and their multi-state attributes, Monte Carlo
Simulation, therefore, remains the most feasible approach,
regardless of its higher computational intensity.

However, most Monte Carlo simulation algorithms [23],
[27], [28] require prior knowledge the system’s structure
function or its path or cut set, which for complex multi-
state systems is tedious. In [22], a simple load flow-based
simulation approach, applicable to any system configuration
was introduced. It allows the simulation of a multi-state
system without the need to define its structure function, path
or cut sets. Notably, it enables the replication of realistic
system operating principles like, shut down and restart of
components. These shut down events can be as a result of
the unavailability of another component or loading restric-
tions imposed on the components themselves. When dealing
with maintainable systems, it’s vital to consider this form of
functional interdependency between components, as the failure
and preventive maintenance of most components depend on
the effective time spent in operation. Most reliability and
performance analysis approaches disregard this feature be-
cause, it’s either impossible or difficult to determine the actual
flow through system components. We adapt this modelling
approach to systems with limited maintenance teams and prone
to maintenance delays and other operational uncertainties. The
modified approach is a credible pathway via which system
performance indices relevant to the maintenance model are
derived, without making unrealistic assumptions.

Appreciating that most power systems exhibit multi-state
characteristics, each system component is modelled as a semi-
Markov stochastic process. The multi-state model is modified
to incorporate additional stochasticity induced by the opera-
tional dynamics surrounding the system. Thus, the resultant
component model is also a translation of system dynamics,
from the system to the component level. This model simplifies
the simulation procedure, rendering it more intuitive and gen-
erally applicable. Most importantly, the simulation procedure
supports the complex scenario where various components
follow different maintenance strategies; another limitation of
existing models.

The remainder of this work is organised as follows; Section
2 is dedicated to defining key terms, presenting a general
overview of the problem under consideration, the proposed
cost model, and a description of the solution procedure.
In Section 3, a background to the component and system
models is presented. The simulation algorithm and details on
how components are modelled to account for various system
dynamics are also described here. Section 4 presents two case-
studies, illustrating the application of the models developed to
realistic systems. Finally, in Section 5 a conclusion is drawn
on the proposed framework, with insights on its applicability.

II. PROBLEM FORMULATION

Consider a multi-component system of arbitrary structure,
composed of either binary-state components, multi-state com-
ponents, or both. These components can undergo corrective
maintenance when in a degraded state and preventive main-
tenance which interval is determined by the effective time
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spent in operation since the last maintenance action (i.e.,
periods when the component is unavailable do not count).
State transition times of components may be constant or
follow any probability distribution. On entering a degraded
state, a component is added to the maintenance queue and
its repair process follows two stages; a diagnosis stage and a
stage dedicated to actual repairs. At the end of diagnosis, the
maintenance team may proceed to the second stage or initiate
a spares request, if spares are required. The probability of
the latter happening is p;, where i, a positive integer arbi-
trarily assigned, is the index of the component in the system.
There’s a delay between initiation of spares request and their
delivery, which may vary from component to component and
may again follow any probability distribution. Like corrective
maintenance, preventive maintenance is prone to interruptions
at a probability, ¢;. This normally is realised after an average
time k;tpm | 0 < k; < 1, t,,, being the component’s expected
preventive maintenance duration, and k;, the proportion of this
time to elapse before the need for spares is realised. Whilst
the crew awaits the spares, they can be assigned to another
job, if there are no other idle maintenance teams.

At the system level, components are arranged into w main-
tenance groups, and each group maintained by ny, | j =
1,2, ...,w maintenance teams. Under dedicated maintenance,
ng, is expressed in the form, (nlj,nzj) | ny; +ne, = ny,
where ny; is the number of teams dedicated to corrective
maintenance, and na;, the number of teams dedicated to
preventive maintenance. It’s assumed each of these n;, teams
has the expertise to maintain any of the m; components in
group j. Maintenance is outsourced, and its cost constitutes
three parts; a fixed cost per unit time per maintenance team,
a fixed cost per maintenance call, and a fixed cost per unit
time of actual maintenance service. There are no penalty
costs on the system operator for failing to meet demand, but
consumers only pay for the quantity of output supplied. The
lost revenue accrued, with the total maintenance cost over a
period, provides a measure of the performance of the system
for that period. It’s desired to find the maintenance strategy and
the value of ny,Vj € {1,2,...,w}, ensuring optimum system
performance. The objective of the optimization procedure, is
the minimization of system maintenance cost, as well as the
cost incurred from unmet demand. A given strategy, therefore,
is optimal if it minimizes the total cost.

There are a few attributes of the system described that
pose some challenges. From a modelling point of view, the
fact that the system could be multi-state and of any archi-
tecture, disqualifies most of the existing system reliability
evaluation techniques (see Section I-B). Similarly, the limited
number of maintenance teams, the uncertainties associated
with the need for spares to complete a maintenance action,
and the delays in the availability of these spares, present a
serious planning and scheduling dilemma. For instance, if the
maintenance crew knew every preventive maintenance action
would require spares, they would place a spares request in
advance. Conversely, they could carry with them a few spares
in anticipation, but this would be applicable only to non-
bulky components, since there is a limit to how much could
be carried. The need, therefore, for an optimal maintenance

strategy cannot be overemphasised.

A. Definition of key terms

1) Expected Output-not-supplied: A measure of the ex-
pected amount by which the actual system output de-
viates from its expected level, within a given period,
T,.. This quantity, in power systems, is known as the
Expected Energy Not Supplied (EENS), and it accounts
for the periods the system performance curve is below
the load curve. If Y (¢) and Yy(t) respectively denote
the instantaneous system output and demand, then, for
a demand-driven system (i.e., Y (t) < Yq(t)),

T
EENS :/0 (Ya(t) — Y () dt (1)

For a given system reliability problem, Y;(¢) is normally
known, and Y'(¢) is computed from the system reliabil-
ity analysis outcome. When obtained via Monte Carlo
simulation, Y (¢) is defined by a collection of discrete
sets of system performance levels, as a function of time.
Therefore, the discrete form of (1) should be used to
compute the system EENS. Given Y (¢) is random, the
EENS is computed as the average of the performance
deficiencies of all the samples of Y (t). For N Monte
Carlo samples of Y (t), let the i** sample contain n;
performance level transitions, y;; = Yy(t) — Y(¢) at
the j'" transition, and t = t;; | 0 < t;; < Tp,; the
corresponding transition time, then,

EENS = N
N
YO = Z (yzm (Tm - tini) + Yl) (2)

Jj=2

where y;,, and t;,, are respectively the final per-
formance level and last transition time of sample 3.
Alternatively, if instead of Y'(t) and Yy(t), only the
possible system performance and demand levels with
their corresponding occurrence probabilities are known,
the EENS is computed through a different approach.
Let the system exist in n distinct output levels as
defined by vector C, with probability of occurrence
within the period, T},,, defined by vector P. The expected
performance deviation per unit time, 3, and EEN S are,

/8 = Z (]7 Pd) éj}
j=1

) n 3
=3 maz ((j.€q) — (i,€),0) (i, P) ®
=1

EENS =T,

where « is the number of possible demand levels, Cg,
the vector defining these levels, and P,, the vector
specifying their corresponding probabilities of occur-
rence. For systems like power distribution networks with
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multiple load points, the effective EENS, (EENS), e
is given by the sum of the EENS at all the load points.

2) Shared Maintenance: In this maintenance strategy, the
same team is assigned to perform both preventive and
corrective maintenance on a component or a group of
components.

3) Dedicated Maintenance: Unlike shared maintenance,
separate teams carry out preventive and corrective main-
tenance on the same group of components. This implies,
a failed or a component due for preventive maintenance
remains unattended if its dedicated maintenance team is
unavailable.

B. The Cost Model

The resultant effect of component failure, maintenance
strategy and operational dynamics on the system is expressed
in terms of the expected total loss, L, incurred. Assuming zero
inflation, its components are expressed thus;

e Loss, Lj, due to lost output, which in turn is due to
system outages, consequent of component failure and
maintenance. If Cy is the cost of a unit output, Ly is
expressed as,

Ly = Co (EENS),;; (4)

For commercial power systems, EENS is in kW h and
Co, the cost of a kWh (e.g in £/kWh).

« Fixed maintenance cost, Ly, emanating from fixed wages
for maintenance personnel. If each team of group j is
paid r; units of currency per unit time, Lo is given by,

Lo = Tmz?"jnt,- (5
=1

o Total cost, L3, associated with the fixed cost per main-
tenance action. This cost normally is associated with
transportation of crew, contribution to offset purchasing
cost of tools, or both. If m, is the cost per maintenance
action, Ni{cm} and Ni{p m} respectively the number of
successful corrective and preventive maintenance actions
for component i, L3 is given by,

M
L3 — Z Me (Ni{cm} + Ni{pm})
s (6)

w
M = ij
j=1

where M is the number of maintainable components of
the system. When expressed in closed form, (6) takes the
form,

Ly = {m 31 { NS NP o {1 a0

(7N
li=1,2,...M

e Cost, Ly, of maintaining system components; a function
of the time spent by each component in maintenance
and the cost per unit time of maintenance. If C{“™
and C’Zf{p m} respectively are the costs of corrective and
preventive maintenance of component ¢ per unit time,

¢l and 7™ its total time spent in corrective and

preventive maintenance, L4 is expressed as,

M
L= (il 4 glrmhdrm) g

i=1
In closed form, (8) is given by,
Ly ={1}hxml{1}2xa
L= ({Cz{m}a ™" Y o {tz'{cm}’t;'[pm}}sz)
9)

The ‘o’ operator denotes element-wise multiplication of
two matrices.

e Cost, Ls, of spares used in maintaining system compo-
nents. For most systems, on average, the spares used
during preventive maintenance are minor and cheaper
when compared to those used in corrective maintenance.
Let sl{cm} and sl{p m} respectively be the number of
spares used in corrective and preventive maintenance
of component ¢. If their corresponding unit costs are
respectively Cs{fm} and C’S{ip m}, then Ls is expressed as,

L= 3" (Clemidem) 4 ofom o)

i=1

(10)

which in closed form condenses to,
Ls = {1}1xml{1}ax1
1= ({Cv‘;{ic'rrb}7 C;{ipm}}JWXQ o {Si{cm}, S;-{pm}}sz)

(11
The overall system lost revenue, L, is given by,
5
L= Z L; (12)
i=1

Normally, the nominal system output and the various costs are
known. Determination of L, therefore, effectively reduces to
the task of estimating (EENS)eff, {Ni{cm}, Ni{pm}}ng,

{ti{cm},t;{pm}}ng, and {s;-{cm},s;.{pm}}ng via reliability
evaluation. These parameters are a function of the failure
and maintenance events of the system components, and are
therefore random. As a consequence, their mean/expected
values are used in calculating the system lost revenue, L.

If the system reliability and performance indices, for strat-
egy k, are represented by the function R (n*, k), and the set
of costs, by C, then, the system loss function can be expressed
in the form, L (C,R(n* k)). With R(n*, k) known for
all possible strategies, the optimal maintenance strategy can
be identified and its sensitivity to variations in cost levels
investigated without the need for multiple simulations.

C. Proposed Maintenance Regimes

Depending on the type of maintenance strategy in use,
different system performance outcomes are possible, even with
the same number of maintenance teams. For instance, in a
series connected system, it may seem reasonable to postpone
preventive maintenance until system failure. In such a scenario,
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preventive and corrective maintenance actions are performed
concurrently. Ideally, this should result in reduced system
downtime and subsequent improvements in performance. This
is normally the case if preventive maintenance actions are
frequent, require large times, or if some components are
not easily accessible, such that their maintenance inflicts
significant throughput losses on the system. However, post-
poning a component’s preventive maintenance may increase
its likelihood of failure and bring with it additional costs.
These costs are incurred from spares used, longer system
down times, and higher maintenance intervention costs, as
corrective maintenance durations normally are longer. In ad-
dition, more than one maintenance team may be required for
efficient implementation of this strategy, since there may be
multiple components requiring maintenance intervention when
the system fails. On the downside, the teams are idle while
the system is in operation but continue to receive salaries as
the maintenance contract demands. A similar argument can
be proffered for corrective maintenance of partially failed
components, if in spite of the failure, system performance
remains above a certain threshold. This procedure, however,
may be counter productive if component interdependencies
exist in the system, such that a degraded component affects the
operation of healthy ones. Therefore, even for a system this
simple, it’s difficult to determine whether the procedure yields
the most cost effective solution, without a detailed reliability
analysis. In summary, the optimality of a given strategy
depends, amongst other factors (cost levels, for instance), on
the topology of the system and the non-topological functional
relationships between its components.

Generally, the following regimes may be considered when
deciding the promptness of preventive maintenance and major
corrective maintenance of partially failed components.

1) Maintenance can be carried out at any time. The time of
intervention depends only on the availability of mainte-
nance teams.

2) Maintenance is carried out only when system output is
nominal.

3) Maintenance is carried out only when a component is
not in operation. This may coincide with the unavail-
ability of the entire system or the unavailability of the
subsystem to which it belongs.

When the maintenance of a component is interrupted due
to delays in the availability of spares, two possible scenarios
ensue.

4) The component remains shut down until spares are made
available. In this case, there are no risks of incurring
additional costs from failures. However, the maintenance
team may be assigned to another task during the wait
and there will be revenue losses as the system operates
below its nominal performance level.

5) The component is put back into operation, in which case
it continues to perform its normal function. This results
in no loss of system output, provided it doesn’t fail.

D. Solution Sequence

The regimes highlighted in Section II-C can be arranged
into two groups. Regimes 1-3, define the promptness of
maintenance actions and 4-5, the status of a component during
maintenance interruptions. Each system component may be
subjected to a combination of regimes; one from each group,
giving rise to 6 possible maintenance strategies. Depending
on the dynamics surrounding the operation of the system,
additional strategies are applicable. For instance, on the basis
of division of labour, preventive and corrective maintenance
interventions could be shared or dedicated. This would lead to
a total of 12 possible strategies, if considered. The correspond-
ing component and system models are then derived for each
of these strategies, in preparation for system optimization.

The optimization procedure follows a two-stage approach.
In the first stage, the optimal maintenance strategy is identified
by analysing each system model, with no restriction on the
number of maintenance teams. For each case, the performance
function, L, is determined, and the optimal strategy is iden-
tified as the one yielding the least value of L. The second
stage searches for the optimal number of maintenance teams
using this strategy. Here, the system is re-analysed for various
values of ng;, in shared policies and various combinations of
ni; and N, in dedicated policies. Given a component can
undergo only one maintenance intervention at any instance,
each n,; is bounded by (0,m;) and 375, ny; < M. In
dedicated policies, both n;, and ny; are bounded by (0,m;),
with the additional condition, ni, +ng, < my. Additional
constraints may be imposed on the number of maintenance
teams in each group, depending on the maintenance strategy
and certain requirements set by the operator. For example, if
two maintenance groups, ¢ and j have at least one component
in common, then, n;, +n;, <| 6; U0; |. The operator, under
economic constraints, may also impose bounds that are less
than the limits already defined on the maintenance team size.
Let n* | n* = {n¢,,n4,,...,n¢, } represent a combination
of maintenance teams, and N | N = {nj,n3,..,n}}, the
set of all possible maintenance team combinations, with ¢
denoting their total. Deriving N entails obtaining, first, the set
defined by the number of components in each group, such that,
N={1,2,...,m} x{1,2,...,ma} x ... x{1,2,...,m,} and
o = H;”Il m;. Any combinations not satisfying the operator
and maintenance-strategy-imposed constraints are removed.

(Lmaxv kopt) = min ({L (07 R (OO, k;))}U)
k=1,2,.,0 ko <0

(LnLina nzpt) = min ({L (07 R (n;; kopt))}¢)
J=12,..9¢ n:pt EN  Lnin < Linax

13)

(14)

The optimal solution, therefore, is defined by the triplet,
(me,n:pt,kom), where L,in, n:pt, and ko are respec-
tively the minimum system loss, the optimal maintenance
team size combination, and the optimal strategy. If R (oo, k)
represents the reliability/performance indices of the system
under maintenance strategy k with no restrictions on the
number of maintenance teams, and U, the number of strategies,
(13) and (14) summarize the optimization procedure. R (oo, k)
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is obtained by setting the number of teams in each maintenance
group to the number of components in that group. For this,
components belonging to multiple groups are assumed to
belong to the group with the least cost per maintenance team.
Large systems often result in a large number of candidate
solutions. In such cases, it’s advised to exploit smart opti-
mization techniques like, Genetic Algorithm [3], [4], [9] and
Particle Swarm optimization [5]. These, however, have not
been considered, as the objective here is to provide a clear
insight on the component and system modelling procedures.

III. SYSTEM RELIABILITY AND PERFORMANCE ANALYSIS

In this section, a brief description of the component and
system modelling procedures is presented, with details on
the algorithms invoked in the reliability evaluation process.
To ensure simplicity and maintain focus on the modelling
procedures, a perfect maintenance situation is assumed. It’s,
however, worthwhile noting that this is in no way limiting,
as the framework can easily be extended to imperfect mainte-
nance scenarios.

A. Component and System Representation

The multi-state model introduced in [22] is adopted to define
the behaviour of each system component. This model takes
cognisance of the various parameters required for the complete
representation of a component’s attributes. It accounts for the
component’s possible state transitions, their associated proba-
bility distributions, the performance level associated with each
state, and any load restrictions imposed on the component.

The system is modelled as a graph which nodes represent
the components and demand points of the system, and edges;
their physical links. Defining the connectivity of the graph
is a square adjacency matrix, conditioned to incorporate the
efficiency of the physical links. Efficient algorithms were
proposed in [22] to deduce the system flow equations from this
matrix. These equations; a function of the flow properties of
the components are in a format suitable for direct computation
with the interior-point algorithm [29]. Given a system state
vector, the actual flow through every node can be determined
by updating the flow equations matrices and applying the
interior-point algorithm. In addition to the advantages already
outlined in Section I-B, the matrix representation of the system
structure makes the procedure easily implementable on a
digital computer. Readers are referred to [22] for the details
on the multi-state component model and the flow equations.

B. Maintenance Modelling of Components

Consider a hypothetical series system, composed of binary-
state components (components naturally existing in only 2
states) with capacity, ¢, equal to 1 when working, and O,
otherwise. The effects of repairs and preventive maintenance
on the state-space of each system component, without mainte-
nance delays, uncertainties, and maintenance suspensions are
first presented. The resulting models are later modified and
generalised for multi-state components in systems prone to
maintenance delays and operational dynamics. The following

=0 c=0 c=0 c=0 c=0

F: Failed PM: Preventive Maintenance S: Shutdown W: Working

—>»—— Normal Transition ——>»—— Forced Transition

Fig. 1. State-space representation of a binary-state component under various
maintenance scenarios

———> Forced Transition

——> Natural Transition

(b) Returned into operation during spares delays

Fig. 2. Repairable binary-state component under maintenance delays and
operational uncertainties

maintenance scenarios are considered;
1) Each component of the system is non-repairable (Fig. 1

(a)).
2) A component can be repaired when failed (Fig. 1 (b)).
3) A component can undergo preventive, as well as correc-
tive maintenance (Fig. 1 (c)).
Unlike the non-repairable case, a failed component is subject
to repairs in scenarios 2 and 3. This is indicated by a
transition from state F to state W, in Figs. 1 (b) and (c).
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TABLE I
COMPONENT STATE ASSIGNMENT
State Designation Description
1 Working Component operates at required capacity level.
) Failed Component is failed and corrective maintenance is yet to
commence; ¢ = 0.
Corrective  Maintenance . .
3 (€M) Component is under repairs; ¢ = 0.
4 Awaiting Preventive | Component is due for preventive maintenance but mainte-
Maintenance (APM) nance is yet to commence; ¢ > 0.
5 Z;i/\l’;:mlve Maintenance Preventive Maintenance in progress; ¢ = 0.
Shutdown Component not failed but taken out of operation; ¢ = 0.
Diagnosis Failure is being diagnosed by maintenance team; ¢ = 0.
Diagnosis is complete but the maintenance team is waiting
8 Idle for spares, to resume maintenance. Required only if delays in
availability of spares is modelled; ¢ = 0.
TABLE II
DESCRIPTION OF STATE TRANSITIONS
Transition Description Transition Description
1-2 Component Failure 7-3 Fault Diagnosis Duration
1-4 PM Interval 5-1 PM Duration
. Failure of component whilst await-
3-1 CM Duration 4-2 ing PM tcam
Forc1ng Diagnosis; spares needed during PM; deter-
determined by . .
2-7 availabilit of 5-8 mined by probability of spares be-
. ¥ ing used
maintenance team
spares are available spares are available and PM re-
and PM resumes; de- . s
8-5 . o 8-3 sumes; determined by availability
termined by availabil- of CM team
ity of PM team
Spares needed during
7.8 CM; determined by 16 Shut down event like failure of
probability of spares system or another component
being used
Component  Restart; PM during shut down; determined
6-1.6-4 suggests correction of 6-5 by availability of maintenance team
’ event leading to shut and whether previous state of com-
down ponent was APM (state 4)
Shut down event Forcing PM; determined by avail-
4-6 whilst component is 4-5 ability of maintenance team and
due for PM spares
5.4 PM interruption due
to spares delay

Whilst the component is in operation, other components of
the system may fail. Given a series system is unavailable with
the unavailability of at least one of its components, available
components are unavoidably taken out of operation during
repairs of failed components. A third state, S, is therefore,
introduced to account for this dependent unavailability of the
operating component, as shown in Figs. 1 (b) and (c). The
component remains in this state until all failed components
are repaired, following which, it is restarted and restored. A
fourth state, PM, is incorporated in Fig. 1 (c), to represent the
period the component is in preventive maintenance.

One can easily deduce that the transitions from W to F

and W to PM are competing, which is due to the perfect
maintenance assumption used. Since PM and repairs make the
component as good as new, any pending failures are eliminated
after PM, and any scheduled PM is reset after repairs. An as
good or bad as old assumption would have been implemented
by replacing the transition from W to PM with a forced
transition. This, however, is outside the scope of this work.
It is also clear none of the three scenarios discussed considers
the effects of external factors on component state transitions.
For instance, there are no delays in the commencement of
maintenance, and the maintenance process once initiated,
suffers no obstructions or suspensions. This, however, is not
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(a) Kept out of operation during spares delays

(b) Returned into operation during spares delays

Fig. 3. Repairable binary-state component under the assumption ‘maintenance only when component is unavailable’

(a) Kept out of operation during spares delays

(b) Returned into operation during spares delays

Fig. 4. Repairable multi-state component under maintenance delays and operational uncertainties

the case for many practical systems.

Suppose the series system is replaced with the system
described in Section II, such that there are more components
than there are maintenance teams. To model such a case, four
additional states are introduced in the state-space diagram in
Fig. 1 (c), as shown in Fig. 2. A description of the state
designations and a summary of the transitions depicted are
presented in Tables I and II respectively. Fig. 2 also reveals
that component state transitions can be classified as either
natural (normal), forced or conditional. Natural transitions
occur randomly and depend only on their associated distri-
butions. Forced transitions occur purely as a consequence of
events outside the component boundary and their distributions
are unknown. Conditional transitions on the other hand, have
a known distribution, but are assigned a lower priority and
only occur on fulfilment of a predefined condition or a set
of conditions. In the transition matrix, T;, of the component,
conditional and and forced transitions are indicated by co in

their relevant positions (see [22]). Unlike natural transitions
in which the next state of a component depends only on its
current state, the next state of a component under a forced
transition may also depend on its previous state. For this
reason, a set of special procedures are defined to execute them
during system simulation.

The component models presented in Fig. 2 are based on
the assumption that preventive maintenance can be carried out
at any time or only when system performance is nominal.
However, if preventive maintenance is carried out only when
a component is out of service, the models are as presented
in Fig. 3. The difference between the two sets of models is
the absence of the transition from state 4 to state 5 in Fig.
3. They share the same modelling principles, as well as the
designations in Tables I and II.

Multi-state component modelling under maintenance delays
follows a similar approach. The models in Figs. 2 & 3 can
easily be generalised for multi-state components by defining



IEEE TRANSACTIONS ON RELIABILITY

one idle state (if components are kept out of operation during
spares delay), a ‘Diagnosis’ state (where necessary), and one
corrective maintenance state for each repairable failure mode,
as shown in Fig. 4. In Fig. 4, states 4 and 5 are a partial
failure mode and its corresponding corrective maintenance
state respectively. States 9 and 10 are an additional ‘Diagnosis’
and ‘Idle’ states respectively, for the partial failure mode. All
the other states and transitions retain their designations and
meanings, as defined in Tables I and II.

C. Determining Component Transition Parameters

A system’s reliability analysis by Monte Carlo simulation
entails the sequential generation of the transition states and
times of its components, with a view to replicating its ac-
tual operation. In a multi-state environment, a component’s
next transition state, Ynez:, and time, t,..¢, are determined
by which of the possible transitions from its current state,
x, occurs first. Given its transition matrix, all the possible
transitions from state x are sampled, and the sampled times
stored in a register, T'te¢mes. The transition corresponding to
the least element of this register gives the next state of the
component whilst the next transition time is given by the sum
of the least element and the current simulation time, 5. In the
event of multiple transitions satisfying this condition, one of
them is randomly selected.

Require: z and ¢,

function SAMPLE(x)

J <—set of possible transitions from state x

f <—set of corresponding distributions

k <~Number of elements in J

for n <1 to k do > Loop over possible transitions
(n, Ttimes) «Sample from (n, f)

end for

tsample < min(Ttimes) > get earliest time

p <—transitions corresponding to ¢sqmpie

if numel(p) > 1 then > if multiple transitions

u~ [0,1] > generate uniform random number
index < ([u* numel(p)], p)

else
index < p

end if

Ynewt < (index, J)
if Ypeor 1S APM then
! — min (T'times, tsample)

> get next state
> survives till PM is due

sample
/ 1 !
y’ <—state corresponding to £7 ...
’ ’
t' <+ tsample - tsample
end if

return (ynexts tsample’ y/’ tl)
end function

tne:vt — tsample + ts

Fig. 5. Algorithm 1: Sampling procedure for transition parameters of a multi-
state component with preventive maintenance, under a limited maintenance
team scenario

The sampling procedure described is pretty straight forward
and directly applicable to most multi-state models. However,

when PM is modelled as a competing transition with failures,
and in the presence of limited maintenance teams, a slight
modification to the procedure is required. For instance, if a
working component is due for preventive maintenance (state
4 in Figs. 2 & 3) and for some reason there is a significant
delay, it may fail (transition from state 4 to 2) before the
commencement of maintenance. The elapsed time depends
on what the failure time would be assuming the component
was not subject to preventive maintenance. Therefore, if on
application of the procedure, the component is found to survive
till PM is due (i.e., its next state is APM), its next failure
state, ', and the maximum period, ¢, it will survive before
failure are also determined. This procedure is summarised by
Algorithm 1 (Fig. 5).

1) Accounting for Non-Markovian Transitions: Algorithm
1 (Fig. 5) is only applicable to Markovian transitions (i.e.,
the next state of a component depends only on its current
state). A second procedure, therefore, is required to implement
the forced and conditional transitions. The transitions to and
from shutdown, except those from shutdown to CM, PM
or Diagnosis (see Figs. 2 to 4), can be implemented by
the shut down and restart procedure described in [22]. The
remaining conditional and forced transitions are dependent
on the availability of maintenance teams or spares, where
required. For these, a maintenance-forcing procedure, hinged
on the assumption that the component is already assigned to
an available maintenance team, is proposed.

When a component makes a transition to a new state, its next
transition parameters are automatically derived, using Algo-
rithm 1. However, for the reasons already stated, this algorithm
cannot derive forced maintenance transition parameters. The
component’s next maintenance state, y,,, from the new state,
is therefore, manually determined from its transition matrix.
With correct modelling according to the models proposed
in Section III-B, each failure mode will have at most one
maintenance state (CM or Diagnosis) associated with it. The
component is added to the corrective maintenance queue, if
Ym exists. If on the other hand, the new state is APM, the
transition parameters of the component are not obtained by
another application of Algorithm 1. They are determined from
y’ and t'; obtained when the algorithm was applied when the
component entered the Working state (state W). In this case,
Ym 1s the only PM state, and the component is added to the
preventive maintenance queue.

In the most general case, y,, could either be Diagnosis, CM
or PM. To force maintenance, y,, is made the current state of
the component, and Algorithm 1 is applied to determine its
next transition parameters. It’s deducible from the component
models presented in Figs. 2 to 4 that a component in Diagnosis
(state 7) can either undergo a normal transition to CM (state 3)
or a conditional transition to Idle state (state 8). However, the
sampling algorithm always yields the normal transition. Given
the conditional transition to Idle state occurs only if spares are
required, a uniform random number, u, between 0 and 1 is
generated and compared to the probability, p;, of spares being
needed to complete the maintenance. The Idle state (state 8)
is made the next transition state if u < p;, and the transition
time yielded by the sampling algorithm is retained. In the case
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Require: p;, q;, ki, Sl{cm}, Sl{pm}, ts» Ymo ﬂz{cm}, Hi{pm}
1: function FORCEMAINTENANCE(%, input)
2 T4 Ym > Force transition
3 (yneacty tsamp167 ~ N) < SAMPLE(7)
4: if = is PM then > In preventive maintenance
5: if 1 17™ 1 then > From suspension
6 tsample < (kil - 1)tspent
7 ujp "m0 > Reset indicator
8 else if © ~ [0,1] < g; then > Spares needed?
o: sPmb M1 & add PM spares used
10: tsample <~ kitsample
11: Tprey < Previous state
12: if T;(x, Zprey) # 0 then > If to restart
13: Yneat < Tprev
14: else
15: Ynewt < Idle’ state linked to x
16: end if
17: plrm 1 > Set indicator
18: end if
19: else if z is Diagnosis then
20: if ,u;.{cm} <+ 1 then > From suspension
21: 2 < CM state connected to x
22: ,uz{cm} +—0 > Reset indicator
23: (Ynewts tsample, ~, ~) <—SAMPLE(x)
24: else if u ~ [0,1] < p; then
25: s;-{cm} — s;{cm} +1 > add CM spares used
26: call lines 12 to 16
{em} I
27: 1y +—1 > Set indicator
28: end if
29: end if
30: thext < tsumple + 15
31: return (ynewta tnemta S;_{CWL}’ S;'{pm}» /J/z{cm}’ prm})

32: end function

Fig. 6. Algorithm 2: Procedure for forcing maintenance

of repair from a partial failure mode, such that the component
is returned into operation during spares delay (see states 4
and 9 in Fig. 4 (b)), the partial failure mode is made the next
state, and ul{cm , assigned the value 1. ,ujcm} is an indicator
function that takes the value 1 when CM is suspended, and 0,
otherwise. The component is removed from the maintenance
queue until the spares requested are made available.

tspent = kitprn
tneat = ts + (1 - kl) tpm

1
=ts+ (kl - ]-) tspent

Similarly, a component in preventive maintenance (state 5 in
Figs. 2 and 3) can either return to Working state (state 1), go to
Idle state (state 8), or return to its previous state, if it should
be kept in operation whilst awaiting spares. Like corrective
maintenance, any of the last two outcomes is determined
by the probability, ¢;, of spares being needed to complete
preventive maintenance. The next transition time if spares are

(15)

required is given by ts + k;tp,,, where t,,, is the PM duration
yielded by Algorithm 1, and k;, its proportion spent before the
maintenance team realises spares are required. When PM is
suspended, the component is removed from the maintenance
queue, and u;-{p ™} its indicator function for PM suspension,
set to value 1. On PM resumption, the expected duration of
the remainder of the maintenance exercise is (1 — k;) tpm.
To avoid storing too many variables during simulation, this
period is expressed in terms of tgpen:, the time spent by the
component in PM before maintenance suspension. tgpen: is
computed from the saved transition history of the component,
and the next transition time, t,., is derived as in (15). The
maintenance-forcing procedure described above is summarised
by Algorithm 2 (Fig. 6).

D. Maintenance Strategy Implementation

Algorithm 2 assumes the component has already been as-
signed an available maintenance team. However, with multiple
components requiring maintenance intervention, maintenance
team assignment follows the maintenance strategy in use. Let
h1 and ho respectively be the sets of components requiring
CM and PM, IT = {ny;,n2; fux2 | 7 = 1,2, ...,w, the matrix
defining the number of CM and PM teams in each maintenance
group, and ¢ = {¢; }wx1, an indicator vector which elements

are matched to the rows of II.
1, If maintenance group j is shared

Each indicator element specifies whether its corresponding
maintenance group practices shared or dedicated maintenance,
as defined by (16).

Given the assumption of a component being as good as
new after PM or CM and the additional constraint that the
former is carried out only on the perfect component, the
condition h; N hy = () is imposed. Therefore, prior to
maintenance team assignment, all the elements of hy N ho
are removed from hy (i.e., ho = ho — (hy N hg) or simply
ho = hg — hy). Depending on the maintenance strategy,
additional components may be removed from h; and hs. For
instance, if € is the set of components in Shutdown state,
11, the set of components repairable only while in Shutdown
state, and 73, the set of components which PM is initiated
only when in Shutdown, then, h; = (hy — 1) U (QNn)
and hy = (hg —72) U (2N 12). Similarly, let §; be the set
of components repairable only while system performance is
nominal, and ds, the set for which PM is initiated only at
nominal system performance. If system performance is below
nominal at maintenance team assignment, h; = h; — §; and
ha = hg — 02. Please note 77 applies to partially failed
components only.

With hyf and hyy representing the final contents of h; and
ho respectively, the first maintenance group is considered. Its
assigned components in the maintenance queue are ranked
according to the predefined priority rule and the top ranked
component is assigned to the first available team in the
group. As a consequence, the number of available teams and
the number of ranked components reduce by 1 each. The

. (16)
Otherwise
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Require: (hyyUhos) # 0, ha, ho

1: for j < 1 tow do > Loop over maintenance groups
2: if p; > 0 then > If maintenance is shared
3

Teams + II(j,1)+I1(j,2)— ()\]{cm} + /\}[)m}

4 Xeomp (hlf N ej{cm}) U (hgf N 9}”’”)
5 while Teams > 0 and X omp # 0 do

6: 1 +—top ranked component

7 FORCEMAINTENANCEC(Z, tnput)

8 Teams < Teams — 1

9

Xeomp — Xcomp — 1 > remove component

10: adjust X comp if necessary
11: end while

12: else

13: H «+ {hlf,hgf}

14: G « {ol“™ glrmhy

15: I+ {Aﬁcm},Aij}}

16: for k < 1to 2 do

17: Xeomp < (k, H) N (k, G)
18: Teams < II(j,k) — (k, I)
19: call lines 5 to 11

20: end for

21: end if

22: Remove assigned components from hyy and hyy
23: if (h1s U hay) < 0 then

24: break

25: end if

26: end for

27: Remove assigned components from hy and hs

Fig. 7. Algorithm 3: Procedure for maintenance strategy implementation
during simulation

procedure is repeated until all the ranked components have
been assigned or until there are no available maintenance
teams in the group. At this stage, hiy and hgy are updated
accordingly, and the next maintenance group considered if
hif U hay # 0. This recursive procedure continues until all
the maintenance groups have been covered.

Let 0}67”} be the set of components assigned to maintenance

group j for CM and Gj{p m}, the set assigned for PM. If )\j{-cm}
and )\§p ™} are respectively the numbers of unavailable teams
from group j for CM and PM, Algorithm 3 (Fig. 7) sum-
marises the maintenance strategy implementation procedure.
Line 10 accounts for the case when components maintained
only while system performance is nominal are removed from
the queue following the deviation from nominal performance.
This normally is a consequence of either PM or CM of a
partially failed component of a higher rank in the queue.

E. The Simulation Procedure

A discrete-event simulation model is proposed to replicate
the behaviour of the system. Starting with components in their
initial states, the initial performance level of the system is
computed and recorded. Following which, the next transition

parameters of each component are sampled, and the simula-
tion progresses to the earliest transition time. At this time,
the current state of the appropriate component making the
transition is updated, its new state recorded as a function
of time, its next transition parameters sampled, and the next
simulation time determined. This procedure is repeated for
subsequent transitions until the mission time is exceeded. For
every transition resulting in a change in the flow properties of a
component, the output of the system is computed and recorded
as a function of time. The relevant reliability and performance
indices are determined from the saved component transition
and system output histories.

Let 7 be the vector of next transition times of nodes
(components and output points) and T pqc, the vector holding
the availability times of component spares. If M’ is the
total number of system nodes, the simulation procedure is
summarised as follows,

1) Initialise the system in preparation for simulation. This
involves,

a) initialization of registers to save the current flow
properties of nodes, transition history of com-
ponents, and the performance histories of output
nodes.

b) setting the required number of simulations,
Nsamples, and mission time, T5,,.

2) Set t, = 0, S;{c7rt} _ S;{p77a} _ u;{c’m} _ 'ul{pm} — OVi €
{172, ...,MI}, hi=hy=0,7= T spare = {OO}]W/'

3) Save the initial states of components.

4) Compute the initial performance level of all the output
nodes, and save as a function of .

5) Sample the next transition parameters (Ynez: and tpext)
of nodes, update T and set t5; = min (7).

6) Check for nodes with next transition time equal to t,.

For each node, 17,

a) effect the required transition.

b) with the exception of the case when the new state is
APM, Idle, or partial failure given its previous state
is Diagnosis, sample its next transition parameters
and determine y,,,, where applicable. Update h; or
hg if y.,, exists, set u, ™} and ,uz{pm} to 0, and go
to Step (g).

¢) if the new state is APM, Ypext = Y, tnest = t' +ts,
Ym 18 set to the PM state, and hs updated. However,
ho is not updated if the node is returning from PM,
as the transition depicts a maintenance suspension.
In this case, t,ept = trem + ts, Where t,e, 1S
the remaining life of the component prior to its
maintenance being forced. Go to Step (f).

d) if the new state is partial failure and previous state
Diagnosis, thezt = trem + ts, the expected failure
state before the transition to Diagnosis is made
Unexts and y,, is set to Diagnosis. Go to Step (f).

e) if the new state is Idle, t,cpt = 00. Y, 1S set to
PM if the node is from PM, and CM if it is from
Diagnosis. Go to Step (f).

f) Steps (d) and (e) involve maintenance suspensions.
For these and the case involving PM suspension in
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TABLE III
COMPONENT AND SYSTEM DATA FOR THE HYDRO ELECTRIC POWER PLANT

[ Component [ Valves [ Turbines Gens. Breakers | Synch. Xfmr.
Failure time distribution | Wb(1000,1.5) | Wb(4125,2.1) Wb(2000,2) Exp(3750) Exp(3250) Exp(2500)
Repair time distribution Exp(40) LogN(106,5) Exp(150) Exp(36) Exp(96) Exp(80)
PM interval U(500,625) U(1125,1250) | U(1125,1250) | U(2125,2175) | U(2125,2175) | U(2125,2175)
PM duration Exp(8) Exp(21.2) Exp(30) Exp(7.2) Exp(19.2) Exp(16)
Diagnosis duration Exp(5) Exp(14) Gu(20,3.24) G(5,2) Exp(16) LogN(16,2)
Spares cost(CM) 1624 2100 1944 1006 2245 2700
Spares cost(PM) 1055.6 1365 1263.6 653.9 1459.25 1755
PM cost/hr 162.5 24375 203.13 101.56 24375 264.06
CM cost/hr 250 375 312.5 156.25 375 406.25
Spares delay Exp (24)

Probability of Component Replacement During Maintenance
CM (p;) 0.5 0.55 0.8 0.9 0.7 0.6
PM (q;) 0.8 0.9 0.96 0.42 0.4 0.45
Mean Fraction of PM Duration Before Component Replacement Becomes Eminent
[ Fraction (k;) [ 0.25 [ 0.25 [ 0.25 [ 0.25 [ 0.25 [ 0.25 |

Step (c), the time, ,p4.c, the spares will be delayed
by is sampled from the appropriate distribution.
Update T spare, such that (i, Tspare) = tspare +ts-
g) Update the node’s state history, the flow property
vectors, and T, such that (i, T) = tpext.
7) Identify nodes for which spares have been made avail-
able, that is, (i, Tspare) = ts. For each node, i, update
T spare> Such that (¢, Tspare) = 00, hy if Yy, is CM or
Diagnosis, and ho, otherwise.
8) Compute hiy, hoy and call Algorithm 3 (Fig. 7).
9) If the current and previous flow property vectors differ,
a) restart nodes in shut down, compute system flow
and shut down nodes, as proposed in [22].
b) for each output node, update its performance his-
tory if its current and previous performances differ.
10)
11)

Save the current node flow property vectors.

Compute hiy = h1NQNN1, hoy = h2NQ N7, and call
Algorithm 3 for the second time. This step accounts for
those components maintainable only while in Shutdown.
Set  the next simulation time, ts =
man (min (7) , min (Tspare)).

Repeat Steps 6 to 12 until ¢t; > T, updating 7, the
flow property vectors, node state histories, and output
performance histories at every transition.

Repeat Steps 2 to 13, Nsamples times, saving the final
node histories at every trial.

15) Determine the system performance indices.

The desired performance indices are, (EENJS)
{Ni{cm}’ Ni{pm}}MXQ’ {t;[cm}’tl{pm}}MX%

{stemd glemiy 5. The latter is yielded directly by
the simulation algorithm, (EENS), I is computed from the
performance histories of output nodes, and the remainder,
from the state transition histories of components. tl{p ™ s
given by the average time spent by component 4 in PM state
(e.g., state 5 in Figs. 2 and 3), tz{cm}, the average time spent
in Diagnosis and CM (e.g., states 7 and 3 in Figs. 2 and 3,
states 3, 5, 7 and 9 in Fig. 4), Ni{cm}, the average number
of transitions from all CM states to Working state (e.g.,
transition 3-1 in Figs. 2 and 3, transitions 3-1 and 5-1 in Fig.
4) and Ni{p m}, the average number of transitions from PM

12)

13)

14)

eff
and

state to Working state (e.g., transition 5-1 in Figs. 2 and 3).
These indices are substituted in the equations proposed in
Section II-B, to compute the system loss function.

The simulation procedure, with its associated algorithms,
accounts for most of the forced and conditional transitions.
As a result, an appreciable number of these transitions could
be omitted from the component model with no adverse ef-
fects on the simulation outcome. For instance, the Shutdown
state and its related transitions could be omitted altogether.
This, however, does not mean shut down and restart are not
accounted for during simulation. Of the remaining forced
and conditional transitions, only those to and from Diagnosis
state, from PM to Idle state, and from PM to APM state (if
applicable) are required, the rest could be omitted. Applying
this new information to the component models presented in
Figs. 2 to 4, for instance, would result in much simpler models.

IV. CASE-STUDIES

The proposed framework is implemented in the open source
MATLAB-based toolbox, OpenCOSSAN ([30], [31], and used
to identify the optimal maintenance strategies for two power
systems.

A. Case-Study 1: A 50MW Hydroelectric Power Plant

In this case-study, a two-unit hydroelectric power plant is
analysed. It is a slightly modified model of the Bumbuna
hydroelectric power plant; a SOMW plant in Sierra Leone.
Its two units are similar, and each, rated 25MW consists a
butterfly valve, turbine, generator, and circuit breaker. Their
generated power is synchronized in the synchronizing unit
and fed to the step-up transformers for onward transmission.
These transformers are also rated 25MW, and when one is
unavailable, the plant is reconfigured such that only one unit
operates. The plant’s schematic representation is shown in Fig.
8 and its reliability data, in Table III. All failure and repair
times are in hours, and costs, in British Pounds (£). The unit
cost of electricity is £ 0.5, the fixed wage per maintenance
team is £ 7 per hour, and a negligible cost per maintenance
call. It is worthwhile noting that the data presented in Table
IIT are assumed, and therefore for illustrative purposes only.
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Fig. 10. State Space diagrams of components

Ideally, such data are based on actual field data extracted from
component maintenance history.

1) Modelling the Plant and its Components: The following
assumptions are considered;

1) All components operate at only two distinct performance
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Fig. 12. Plant reliability

levels.

2) Components are ranked for maintenance in their order
of arrival in the maintenance queue.

3) There is only one maintenance group.

4) The load on the plant is fixed at S0OMW, and there is
sufficient water in the reservoir to meet this demand.

5) The failure rates of the control gate and penstock are
negligible.

Fig. 9 shows the network model of the plant. The components
of unit 1; valve-1, turbine 1, generator-1 & breaker-1 are
respectively represented by nodes 1 to 4 and their counterpart
in unit 2, by nodes 5 to 8. Nodes 9 to 14 respectively repre-
sent the synchronizer, breaker-3, transformer-1, transformer-2,
dam, and the external load. Assuming perfect links between
components, the parameters of the network are obtained as
proposed in [22]. For this system, the number of nodes, M’,
is 14 while the number of maintainable components, M,
is 12. The state-space diagrams of the components, without
maintenance delays are shown in Fig. 10. Under the range of
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possible maintenance regimes proposed in Section II-C, these
state space diagrams can be transformed into those in Figs. 2
and 3. Since the demand and source (dam) capacity are fixed
at SOMW, nodes 13 and 14 have a single state of capacity 50
units.

The reconfiguration procedure used in the simulation shuts
down nodes when their load flow drops below a threshold.
To enable plant reconfiguration when only one transformer
is available, a minimum load restriction is imposed on the
turbines. The choice of the turbines, however, is arbitrary, as
any of the unit nodes would do, due to their being connected in
series. With only node 11 or 12 available, the load flow from
node 13 drops to 25MW, which is divided equally between
the two units if they both are in operation. The threshold flow
for each turbine, therefore, is set to a value slightly greater
than 12.5 units (say 12.52), and 0, for all the other nodes.

2) The Effects of Maintenance on System Performance
and Reliability: The plant is analysed separately under the
assumptions that its components are non-repairable, subject
to PM only, CM only and both maintenance types. With the
exception of the non-repairable case, there is no restriction
on the number of parallel maintenance actions that can take
place. The maintenance team size in each case, therefore, is
expressed as (0 0), (0 12), (12 0) and (12 0) respectively.
Dedicated maintenance is used in the second and third cases
to ensure only the intended maintenance type is carried out
(e.g., no CM during a PM only policy). This stage of the
optimization is aimed at investigating the relative effects of
the various maintenance strategies on the plant’s reliability,
performance and loss function. It identifies the candidates for
the optimal maintenance strategy and determines whether or
not to proceed with the search for the optimal maintenance
team size. This prevents searching in unlikely regions or
strategies, thereby reducing the computational cost.

Figs. 11 and 12 respectively show the reliability and instan-
taneous performance of the plant as a fraction of its nominal
output, for a mission time of 104 hours and 5 x 10° Monte
Carlo samples. Plant reliability is defined with respect to
complete outages, however, excluding those due to preventive
maintenance (scheduled outages). The objective is to study
the survivability of the plant, which scheduled outages would
underestimate. For instance, more frequent outages may be
experienced under a maintenance strategy incorporating both
PM and CM than one with CM only. In practice, scheduled
outages do not count toward a systems’s survivability, since
they are out of choice rather than failure. Hence, the need
for their disregard in its survivability analysis. In summary,
plant reliability at time, ¢, is the non-occurrence probability of
complete-outage-inducing failures in the interval [0, t].

The reliabilities and instantaneous performances defined by
Figs. 11 and 12 depict the upper bounds for the various mainte-
nance strategies. As expected, both types of maintenance (PM
& CM) action, indeed improve the reliability and performance
of the plant. The impact of PM, however, is only slight,
given that 50% of the components exhibit an exponential
failure characteristic. For such components, PM only reduces
their availability without an improvement in reliability [23].
Preventive maintenance, therefore, is most effective in systems

TABLE IV
PLANT EXPECTED OUTPUT AND LOSS

[ Strategy | Output (GWh) | L (£105) |
None 23.6646 238.17
PM only 26.0639 237.82
CM only 3822114 60.98

1.4] 370.9891 66.38
5] 384.2075 5901
2.4] 369.1798 6751
PM+CM 7753 383.5723 61.42
(3.4] 396.2899 33.63
[3.5] 388.2218 53.07
TABLE V

OPTIMAL PLANT LOSS AS A FUNCTION OF MAINTENANCE STRATEGY

Strategy | L (£10%) | Number of teams
[1,4] 65.6617 2
[1,5] 59.2353 2
[2,4] 66.8779 3
[2,5] 59.6466 3
[3,4] 52.8917 5
[3,5] 57.3184 4
CM only 60.1399 4

with ageing components. Table IV presents the upper bound of
the expected plant output and the corresponding loss for each
maintenance strategy. The notation [a,b] denotes a strategy
made up of a combination of regimes a and b, as described in
Section II-C. A review of the trend portrayed in Figs. 11, 12,
and Table IV suggests a maintenance strategy incorporating
both PM and CM is desirable. The losses in Table IV are
yielded by the maximum number of maintenance teams, the
optimal loss in each case, therefore, will be provided by
fewer maintenance teams. These teams are determined by the
procedure proposed in Section II-D.

3) Optimal Maintenance Strategy Identification: It’s clear
the non-repairable and ‘PM only’ strategies are very ineffi-
cient. The plant, therefore, is analysed for the other strategies,
using the same mission time and number of samples as in
the preceding section. The optimal solution for each strategy
is identified and recorded as shown in Table V. From these,
the best maintenance strategy and the optimal number of
maintenance teams are deduced as [3,4] and 5 respectively.
To explore the existence of a more optimal solution for this
strategy, the plant is re-analysed under dedicated maintenance.
It’s observed that for the same number of teams, shared
maintenance strategies produce a better plant performance.

The optimal strategy being [3,4] is in agreement with
the preliminary results presented in Table IV. Therefore,
the optimal solution would have been obtained using this
strategy alone. However, the other strategies were considered
to establish a relationship between the optimal maintenance
team size and maintenance strategy.

4) Sensitivity to Cost Levels: The robustness of the optimal
maintenance strategy to variations in cost of electricity (EC),
fixed cost per maintenance team (FMC), fixed cost per hour of
maintenance (CPHM), and cost of spares (CS) is investigated.
Fig. 13 shows how the number of maintenance teams required
for optimal performance varies with k¢ |0 <k < 100, where
ky is the ratio of new cost to the original cost provided in Table
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TABLE VI
OPTIMAL MAINTENANCE STRATEGY SENSITIVITY TO COSTS
Cost Element
EC FMC CPHM CS
00, kf =0 3,4, 0 < ky < 70.9
Strategy 3.4] ky >0 [3,4] Vky 3,5], k> 70.9 (3,4] Vky
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Fig. 13. Optimal maintenance team size sensitivity to costs
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Fig. 14. Optimal system loss sensitivity to cost level variation

III. It’s evident from the figure that the optimal maintenance
team size is insensitive to the cost of spares but exhibits a fair
degree of sensitivity to the other costs. In contrast, the optimal
maintenance strategy is insensitive to all four cost elements up
to ky = 70.9 (for CPHM), beyond which [3,5] becomes the
optimal strategy, as shown in Table VI.

In practice, when inflation occurs, it affects all the cost
elements concurrently. The sensitivity of the optimal solution
in such a scenario is investigated. It is observed that with
ks = 0, the maintenance strategies are all equivalent, since
all the services are basically provided free-of-charge. Beyond
this value, the optimal maintenance strategy and the number of

Fig. 15. Sensitivity of optimal solution to concurrent variation in FMC and
CPHM

teams remain constant at [3,4] and 5 respectively, for the entire
range of kr. The optimal loss, however, increases according to
Fig. 14. This strange behaviour is explained by the dominance
of the cost of electricity in the loss equation (see Section
II-B). When all the four costs change by the same factor,
the resultant effect is dominated by the electricity cost, for
ky > 0.4, and the other costs, otherwise. A comparison of the
trends portrayed in Figs. 13 and 15 supports this theory. Fig. 15
is obtained by holding fixed, the cost of electricity and varying
the maintenance costs. Expectedly, it shows a decrease in the
optimal maintenance team size, with rising maintenance costs.
Indeed, with high maintenance costs, the only logical decision
is downsizing the maintenance team to ensure sustainability.

5) Computational costs: The simulations were run on a
48 core, 1895.257MHz AMD Opteron(tm) 6168 processor
using 19 cores running in parallel. Less than one minute was
required for the non repairable system and an average of 8.95
minutes per candidate solution for the system under preventive
and corrective maintenance.

6) Discussions: Analytical approaches do not make a fea-
sible option for the analysis of complex systems with realistic
attributes. Simulation algorithms on the other hand are disad-
vantaged by their large computational costs, made worse when
employed in optimization procedures. This, often, is attributed
to the large number of samples required for a dependable esti-
mate of the system performance indices. Therefore, the trade-
off between accuracy and moderate computational burden is
worth adequate attention. Another limiting constraint of great
importance is the mission time, which should be selected such
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that, the performance indices obtained reflect the true long-
term indices of the system. This requires that the mission time
be sufficiently greater than the time the system takes to attain
steady-state. In the case-study presented, 5000 samples are
just enough to provide an acceptable degree of accuracy and a
manageable computational burden. Also, as deduced from Fig.
11, the plant’s steady-state attainment time is about a fifth of
its mission time. These attributes endorse the dependability of
the optimization outcome.

The analyses suggest the optimal number of maintenance
teams is maintenance strategy-dependent. They also reveal,
returning components into operation during maintenance sus-
pensions improves system performance. This improvement is
attributable to the increased availability of the components
culminating in a lower EENS. The exception is the case when
PM is initiated only while components are not in operation. In
this regime, the initiation of a component’s PM is determined
by the failure characteristics of other components. Therefore,
when the component is returned into operation, its PM resumes
only on the occurrence of another shut down event. The
likelihood that the component fails in this interval is higher
than in the other regimes, due to the longer wait times. The
result is, a fewer PM actions, more failures, longer component
downtimes, and a higher EENS. These consequences are
minimized by keeping the component out of operation until
PM resumes. However, in both cases, initiating PM only while
components are not in operation yields the best performance.

The range of k¢ used in the sensitivity analysis is a little
unrealistic for practical applications. The range of interest,
therefore, is conservatively chosen to be 0 < k¢ < 2, depicting
an inflation of —100% to +100%. In this range, the optimal
maintenance strategy is unaffected by variations in cost levels,
though the number of teams required for optimal performance
varies with the cost of electricity. The following, therefore, is
recommended for the hydro electric power plant.

1) Preventive maintenance should be carried out only when

a component is not in operation. That is, it should coin-
cide with a shut down event that renders the component
inactive.

2) Components should be kept out of operation during
maintenance interruptions.

3) At the current cost levels, 5 maintenance teams; in a
shared maintenance strategy are required for optimal
performance. However, this should be scaled down to
3, 2, 1 and 0 when the cost of electricity deflates by
50%, 60%, 90% and 100% respectively (see Fig. 13).

4) As evidenced in Figs. 11 and 12, preventive maintenance
does not quite improve the overall performance of the
system, contrary to anticipations. This, as explained
earlier, could be due to subjecting components exhibiting
exponential failure characteristics to needless preventive
maintenance. It’s anticipated that if preventive mainte-
nance is not carried out on these components, additional
gains could be made from improved plant availabil-
ity and reduced maintenance costs. This hypothesis is
tested, and as expected, results in an output gain of
1.82% and a corresponding system loss reduction by 7%.
Preventive maintenance, therefore, should not be carried

Fig. 16. Single line diagram of the IEEE-24 bus Reliability Test System

out on the breakers, synchronizer and transformers.

B. Case-Study 2: The IEEE-24 Bus Reliability Test System

In this case-study, we consider a more realistic system, in
order to showcase the applicability of the proposed approach to
systems of practical nature. Shown in Fig. 16 is the single line
diagram of the IEEE-24 bus one-area test system, adapted from
[32]. It is composed of 24 buses, 34 power lines, 10 generation
stations, and 17 load points. Its total generating capacity is
3405MW and a varying load which annual peak is 2850MW.
The total generating capacity and load are distributed across
the network as described in [33]. The buses are assumed
perfectly reliable and the transmission lines, binary-state. We
retain the failure and repair characteristics of the transmission
lines but modify a few other properties to make the system
more realistic and compatible with the proposed approach.
These modifications are summarised thus;

o Multiple generation units at a bus, have been represented
by a single unit with a generating capacity equivalent to
the sum of the generating capacities of the units.

« To make the network more sensitive to the unavailability
of transmission lines and generation units, the maximum
transmission capacities of the former and minimum al-
lowable loads of the latter are considered in the analysis.
These capacities and limits, are respectively given in [33]
and [32]. Please note that the minimum load for the
unit at bus 22 is set to 25MW instead of the 300MW
suggested in [32]. The reason for this is, its contribution
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TABLE VII

MAINTENANCE DATA FOR GENERATION UNITS

Spare Usage Prob. PM Transition Distribution Parameters
Gen. Type | Bus Number |——cxr—T""pM | Tnterval | Duration 2 | 21 23 13 [ 31
1 22 0.7 0.9 1200 U(156,180) Wb(2234,2) Exp(20)
2 1&2 0.9,0.25 0.9 1200 U(60,66) | Exp(980) | Exp(20) | Wb(1106,2.3) | Wb(2212,2) | Exp(40)
3 7 0.8,0.4 0.9 1200 U(60,66) Exp(600) | Exp(25) Wb(677,2.3) Whb(1354,2) Exp(50)
4 15,16 & 23 0.8,0.3 0.9 1000 U(81,87) Exp(480) | Exp(20) Wb(542,2.3) Wb(1083,2) Exp(40)
5 13 1.0,0.5 0.9 1000 U(102,108) | Exp(575) | Exp(50) Wb(649,2.3) Wb(1298,2) | Exp(100)
6 18 & 21 1,0.6 0.9 1000 U(123,129) | Exp(550) | Exp(75) Wb(621,2.3) Whb(1241,2) | Exp(150)
TABLE VIII associated with states 3 and 2. Where applicable, the diagnosis

MAINTENANCE COSTS FOR GENERATION UNITS

Gen. Type M PM
CS | CPHM | CS [ CPHM
1 180 20 108 12
2 180 20 108 12
3 180 20 108 12
4 200 25 120 15
5 280 40 168 24
6 300 50 180 30

to the total load when every component works correctly
is only about 37.5MW. A minimum allowable load of
300MW, therefore, would mean it operates only on failure
of another unit. This, in other words, reduces the unit to
cold standby, thereby defeating our intention of making
every component useful to the system throughout the
mission.

o The buses are assigned maximum capacities according to
the following rules;

1) For load and generation buses, the maximum capac-
ity is arbitrarily set to 3 times the capacity of the
generation unit or load.

2) For buses with both a generation unit and load, the
capacity is set to 3 times the generating capacity or
load, whichever is greater.

3) For all other buses, the capacity is set to 3 times
the maximum of the capacities of the buses they
are connected to.

o Each generation unit, with the exception of the unit at bus
22, is assumed to exist at three possible distinct output
levels; 100%, 50%, and 0% of its rated capacity. Unit 22
operates at only two levels; 100% and 0% rated capacity.

1) Maintenance Information: The failure times of the trans-
mission lines are exponentially distributed. As a consequence,
they undergo corrective maintenance only, with an assumed
0.9 likelihood of spares being used. Due to their less bulkiness,
it’s assumed the maintenance crew are able to carry with
them these spares. The maintenance of the lines, therefore,
is immune to delays in the availability of spares.

The generation units, on the other hand, undergo both PM
and CM, and are susceptible to all the operational dynamics
described in Section II. Table VII contains their failure and
maintenance parameters, where states 1, 2, and 3 respectively

and CM durations have the same distribution, with means in
the ratio, 1 : 4. For instance, the transition of the unit at bus
13 from state 3 to 1, denoting repairs from complete failure,
is exponentially distributed with mean 100. Therefore, the
diagnosis and CM durations are also exponentially distributed
with means 20 and 80 respectively. All transition times are in
hours and k; for generation units is conservatively assumed to
be 0.3. Please also note that the data presented in Table VII
are for illustrative purposes only.

2) Maintenance Grouping and Costs: The network com-
ponents are arranged into three maintenance groups, and
each group maintained by a separate maintenance company.
The transmission lines above buses 11, 12, and 24 make
maintenance group 1, the remaining lines, group 2, and the
generation units constitute group 3. Each maintenance team in
groups 1 and 2 is paid a fixed £5 per hour and a fixed £100
per successful maintenance action. Teams in group 3 earn £8
every hour and £120 for every successful maintenance action.
Due to economic constraints, the operator imposes the total
number of maintenance teams to not exceed 16. The cost of
one transmission line spare is averaged at £150, the cost per
hour of transmission line maintenance, at £15, and the cost
levels for the generation units, as defined in Table VIII.

3) Objective: The current maintenance strategy, hereafter
referred to as the base strategy, assumes CM of partially failed
components and PM can be initiated at any time, subject to the
availability of maintenance teams. For one annual load cycle
of 8736 hours (see [33]) and £100 per MWh of electricity
consumed, we determine the optimal maintenance team size
for this strategy and compare its effectiveness with three
complex strategies. The base strategy, for simplicity, is labelled
strategy 1, and the complex strategies, as outlined thus;

o Strategy 2: PM, and CM of partially failed generation
units only when they are not required.

o Strategy 3: PM, and CM of partially failed generation
units only when system performance is nominal.

o Strategy 4: PM of generation units only when system
performance is nominal but CM of partially failed units
can be carried out at any time.

Each maintenance strategy is computed for the case when the
units,

« (a) Are kept out of operation during maintenance suspen-

represent nominal performance, partial, and complete failure. sions
Their replacement probability during CM is represented by ¢ (b) Are returned into operation during maintenance sus-
a pair which elements respectively define the probabilities pensions
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4) System modelling: Since the goal is to identify the
optimal maintenance strategy, a DC flow analysis, using the
procedure proposed in [22], is employed to compute the
system reliability and performance indices. The buses, gen-
eration units, and load points are modeled as nodes, while
the transmission lines are modeled as edges, in the system
graph model. In this case-study, we have retained the edge
attribute of the transmission lines, to keep the number of
nodes moderate and improve performance. Consequently, the
vector of maximum edge capacities is modified after every
transition involving a transmission line, and both this vector
and the vector of node capacities are required for system flow
calculation. Fig. 17 (a) shows the graph model of the system,
where Un and Ln respectively denote the generation unit and
load point at bus n. Fig. 17 (b) is the same graph but with
only one edge of each reciprocal pair [22] shown for clarity. In
both cases, the number along each edge defines the maximum
flow along that edge, as a fraction of the annual peak load.

The effective EENS of the system (given the multiple load
points) could be computed as proposed in Section II. However,
the computation is rendered less complicated by representing
the global system output by a virtual node which flow is
the sum of the flows through all 17 load points. The flow
history of this virtual node is recorded during simulation, and
subsequently used to compute the effective EENS, instead of
all 17 nodes. Being mindful of the computational demand
of simulation algorithms, we employ a smart procedure to
treat the variable demand on the system. Recall the objective
of system reliability analysis is to determine the maximum
achievable system performance as a consequence of com-
ponent failure and maintenance. For this reason, we obtain
the instantaneous system performance, Y (t), assuming the
demand is fixed at its peak annual value. However, under this
assumption, the system is no longer strictly demand-driven
(since the actual demand varies with time), and Y'(¢) has to
be normalized to make it compatible with (1) and (2). The
normalization entails expressing Y (¢) as a function of the same
time-step as the instantaneous demand, Yy(t), such that they
both have equal lengths, and applying the following;

Y (t) = min{Y (t), Ya(t)} 17)

Normally, variable demand is treated by performing the simu-

lation with respect to the time-step defined by the demand and
the events generated by component failures and maintenance.
It is, therefore, easy to deduce the computational efficiency of
the procedure employed here, relative to the widely practised.
The procedure is correct for all single load point systems,
as well as multiple load-point systems where the quantity of
interest is the total output, and not the output through the
individual load points.

To derive the set, N, of possible maintenance team combi-
nations, we ignore the possibility of a 0 maintenance team
in any of the maintenance groups. This is due to the fact
that we already know (from the previous case-study) non-
repairable maintenance strategies to be grossly inefficient.
Recall also that maintenance groups 1 and 2 are composed
of equal number of components with the same failure and
repair characteristics. They, therefore, have the same optimal

TABLE IX
OPTIMAL SYSTEM LOSS AS A FUNCTION OF MAINTENANCE STRATEGY

; Optimal number of teams

Strategy | EENS(%) | L(£10°) Groul:) T [ Group 2 | Group 3
| a 0.3940 6.6324 1 1 3
b 0.2468 44712 2 2 3
N a 24218 37.6617 1 1 4
b 2.4780 38.6764 3 3 4
3 a 1.3592 21.3563 1 1 3
b 1.5049 23.6498 I 1 4
4 a 0.3373 5.9026 1 1 5
b 0.2128 3.9513 2 2 3

maintenance team size. Given these constraints and the upper
bound imposed by the operator on the total number of mainte-
nance teams, N contains 50 maintenance team combinations.

5) Component Modelling: Figs. 18 and 19 are the system’s
simplified component models, showing only the required tran-
sitions, as discussed in Section III-E. Since the transmission
lines are not susceptible to maintenance interruptions, their
failure diagnosis and actual repair have been collectively rep-
resented by the CM state. This, however, implies the number
of spares used cannot be directly obtained from the simulation,
as spares used are accounted for only if the component enters
Diagnosis or PM state (see Algorithm 2). The total spares used,
therefore, is obtained from the product of the spares usage
probability and the number of CM to W transitions. Please
note the models in Figs. 18 and 19 are based on the assumption
that components are kept out of operation during maintenance
suspensions. Those for the case when components are returned
into operation can be easily deduced from Figs. 2 to 4. It is
also worthwhile noting that, the simplified component models
for regimes 1 to 3 of Section II-C are equivalent.

6) Results and Discussions: The system was analysed on
the same computer used for the previous case-study, and
the outcome is summarized in Table IX. The table provides
the EENS as a percentage of the total expected output, the
expected loss, and the optimal maintenance team combination,
for each strategy. Each sample of a candidate solution took an
average of 0.8 seconds, using 10 MATLAB workers. Given the
large number of candidate solutions, the number of samples
per candidate solution was set to 500. The sensitivity of
the optimal solution to the costs considered in the previous
case-study and a few other costs, was also investigated. The
additional costs considered are;

¢ Cost per hour of CM and cost per CM call (CPHM1).

o Cost per hour of PM and cost per PM call (CPHM2).

o Total maintenance cost (MC); a combination of FMC,

CPHM1, CPHM2, and the cost per CM and PM call.

o All costs relevant to the system loss function (ALL).

Deducing from the data in Table IX, the optimal mainte-
nance strategy is strategy 4 (b). In this strategy, CM of partially
failed generation units can be initiated at any time, but PM,
only when system performance is nominal, with components
returned into operation during maintenance suspensions (see
the beginning of this subsection). Postponing both CM and
PM until component shut-down (strategy 2) appears to be the
most inefficient, contrary to what obtained in the previous
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(a) Both reciprocal edges shown

Fig. 17. System graph model

(a) Transmission lines

Fig. 18. Simplified multi-state model for binary-state components

S
D@

Fig. 19. Simplified multi-state model for multi-state generation units

case-study. This observation reiterates the point that the opti-
mality of a given maintenance strategy depends on specific
properties of the system. For 0 < k;y < 100, strategy 4
(b) remains optimal, but the optimal number of maintenance
teams varies as depicted by Fig. 20. It should be noted that
cost parameters with no effect on the optimal number of
maintenance teams have been left out in Figs. 20 (a) and 20

(b) Only one reciprocal edge shown

(b) Generation unit at bus 22

(b). Given maintenance groups 1 and 2 are made up of the
transmission lines only (which do not undergo PM), CPHM
and CPHM1 are equivalent, explaining the absence of CPHM 1
and CPHM?2 in Fig. 20 (a). A notable conclusion drawn from
Fig 20 is that the optimal number of maintenance teams is
most affected by the cost of electricity (EC) and the fixed
cost per maintenance team (FMC). It is also easily deducible
that the number of teams required for optimality reduces and
increases with reduction in EC and FMC respectively, both
observations conforming to common reasoning.

Fig. 21 shows the variation in system loss with changes
in cost levels in the range, 0 < ky < 2. For clarity, system
response over the ranges 0 < ky < 1and 1 < k¢ < 2 has been
presented separately in Figs. 21 (a) and 21 (b) respectively.
With ky = 1 as reference, Fig. 21 (a) defines the sensitivity of
the total system loss to cost reductions and Fig. 21 (b), to cost
increments. In both cases, the cost of electricity and the overall
maintenance cost impact system loss the most. However, the
system shows very little sensitivity to both the cost of spares
and the cost per hour of PM action, suggesting a few PM
actions and low spares usage. The low system loss sensitivity
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to CPHM2 is explained by the fact that only 10 of the 44
system components undergo PM. Given strategy 4 imposes
PM be initiated only if system performance is nominal, a good
number of these components fail before their PM commences.

V. CONCLUSIONS

It is realistic to think increasing the number of maintenance
teams improves the performance and reliability of a multi-
component system. However, a threshold exists exceeding
which no gains are realised. Rather, it results in increased
operational costs, borne from the imbalance between income
and expenditure. This threshold, as expected, varies with the
maintenance strategy, the input costs to the system’s cost
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model, the topology of the system, and the non-topological
functional relationships between its components.

In this work, a maintenance strategy optimization frame-
work, aiding proper maintenance scheduling and robust main-
tenance decisions has been presented. Applicable to both
binary and multi-state systems of any structure, the framework
proposes a multi-state model to define the behaviour of com-
ponents under various maintenance strategies. A non-system-
specific, event-driven Monte Carlo simulation, based on the
load-flow approach proposed in [22] is employed to repli-
cate the operation of the system. This simulation algorithm,
together with the multi-state component model, enhances
the implementation of complex maintenance strategies. For
instance, a component may belong to two maintenance groups
practising dedicated and shared maintenance respectively. It
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is also possible to have the situation where the preventive
maintenance of a certain group of components can be initiated
as soon as they are due, and another group, delayed to coincide
with a shut down event or nominal system performance.
Many more contrasting combinations of regimes are possible,
without the need to modify the simulation algorithm. The
framework is also built on a cost model structured to allow
the sensitivity analysis of the optimal solution from a single
reliability evaluation. These attributes render it novel, efficient,
and generally applicable to power and other systems alike.
The framework has been successfully used to optimize
the maintenance strategies for two realistic power systems,
obtaining insightful information on their maintenance. The
relationship derived between the optimal number of main-
tenance teams and the cost of electricity, for instance, is
a very useful tool, given a volatile electricity market. The
framework, therefore, can shape the quality of maintenance-
related decisions, even in the presence of external dynamics.
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