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Constraint Handling in NSGA-II for Solving
Optimal Testing Resource Allocation Problems
Guofu Zhang, Member, IEEE, Zhaopin Su, Member, IEEE, Miqing Li, Feng Yue, Jianguo Jiang, and

Xin Yao, Fellow, IEEE

Abstract—In software testing, optimal testing resource al-
location problems (OTRAPs) are important when seeking a
good trade-off between reliability, cost, and time with limited
resources. There have been intensive studies of OTRAPs using
multi-objective evolutionary algorithms (MOEAs), but little at-
tention has been paid to the constraint handling. This paper
comprehensively investigates the effect of the constraint handling
on the performance of nondominated sorting genetic algorithm
II (NSGA-II) for solving OTRAPs, from both theoretical and
empirical perspectives. The heuristics for individual repairs are
first proposed to handle constraint violations in NSGA-II, based
on which several properties are derived. Additionally, the z-score
based Euclidean distance is adopted to estimate the difference
between solutions. Finally, the above methods are evaluated and
the experiments show several results. 1) The developed heuristics
for constraint handling are better than the existing strategy
in terms of the capacity and coverage values. 2) The z-score
operation obtains better diversity values and reduces repeated
solutions. 3) The modified NSGA-II for OTRAPs (called NSGA-
II-TRA) performs significantly better than the existing MOEAs
in terms of capacity and coverage values, which suggests that
NSGA-II-TRA could obtain more and higher-quality testing-
time allocation schemes, especially for large, complex datasets.
4) NSGA-II-TRA is robust according to the sensitivity analysis
results.

Index Terms—Software reliability, testing-resource allocation,
multi-objective optimization, constraint handling, heuristics.

I. INTRODUCTION

SOFTWARE testing, which aims to detect software failures,
discover and correct defects, and thus achieve software

quality for customer satisfaction, has played an essential role
in the validation and verification of output in the software
development industry [1]. Specifically, in the popular parallel-
series modular software systems [2], [3], many parallel and

Manuscript received –; revised –. This work was supported in part by the
National Natural Science Foundation of China under Grant Nos. 61573125,
61329302, and 61371155, in part by the Engineering and Physical Sciences
Research Council under Grant No. EP/J017515/1, in part by the Anhui
Provincial Natural Science Foundation under Grant Nos. 1608085MF131,
1508085MF132, and 1508085QF129, and in part by the Science and Tech-
nology Innovation Committee Foundation of Shenzhen under Grant No.
ZDSYS201703031748284.

G. Zhang, Z. Su, F. Yue, and J. Jiang are with the School of Com-
puter and Information, Hefei University of Technology, Hefei 230009,
China (e-mail: zgf@hfut.edu.cn; szp@hfut.edu.cn; yuefeng@hfut.edu.cn;
jgjiang@hfut.edu.cn).

M. Li is with the CERCIA, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: m.li.8@cs.bham.ac.uk).

X. Yao (the corresponding author) is with the Shenzhen Key Lab of Com-
putational Intelligence, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China,
and also with the CERCIA, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: xiny@sustc.edu.cn).

serial modules need to be assigned available resources to
cope with the testing. However, the number of possible tests
for even simple modules is practically infinite. Accordingly,
a natural and important issue in software testing is how to
efficiently allocate the finite testing resources to modules. That
is, finding an optimal testing resource allocation scheme for
various modules to maximize the overall reliability of the
entire software system. This is also known as Optimal Testing
Resource Allocation Problems (OTRAPs) [4].

From a technical perspective, OTRAPs have been stud-
ied extensively. Most early research in this area addressed
single-objective optimization problems, such as maximizing
the reliability with a cost constraint [5], [6], minimizing the
cost with the constraints on the reliability and time [7], [8],
and minimizing the testing time with the required reliability
[9], [10]. Nevertheless, the traditional linear programming
or dynamic programming are mostly impractical for large-
scale problems because of their computational complexity.
Moreover, it is impossible for the final single solution to be
optimal in terms of reliability, cost, and time altogether.

Recently, especially over the last decade, with the devel-
opment of search-based software engineering, metaheuristic
search techniques are applied to the difficult software engi-
neering problems and to find near-optimal or good-enough
solutions [11]–[16]. Particularly, researchers and practitioners
have become deeply involved in OTRAPs with respect to
multi-objective evolutionary algorithms (MOEAs) [17]–[22],
such as harmonic distance based non-dominated sorting genet-
ic algorithm II (called HaD-MOEA) [18] and multi-objective
differential evolution on the basis of weighted normalized
sum (WNS-MODE) [21]. These algorithms were expected to
seek a good trade-off between reliability, cost, and time under
the given time threshold, in which the system reliability is
as high as possible, the consumed testing cost and time are
as low as possible. Although these algorithms provided a lot
of additional choices in comparison with the single-objective
approaches, they ignored an important question: whether each
solution is feasible? In essence, it is both impossible and
unrealistic for the finite time to satisfy the testing needs of
all the modules. Consequently, in these algorithms, there may
exist a large number of infeasible solutions that violate the
given time constraint. However, to the best of our knowledge,
the constraint handling for repairing infeasible solutions in
solving OTRAPs is quite limited.

In multi-objective approaches to OTRAPs, the constraint
handling plays a valuable role in their exploration and exploita-
tion. The fact was first mentioned in [17] and further discussed
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in [18], [19], [21]. Typically, in HaD-MOEA [18] and WNS-
MODE [21], if the time threshold is violated in a solution, the
infeasible solution will be repaired and migrated randomly
into the feasible region of the search space by reducing each
element value of the solution vector. However, no attempts
have been made to link up the solution repairs with the nature
of the used MOEAs themselves. Specifically, if infeasible
solutions have to be repaired, would the repairs influence the
balance between exploration and exploitation, and destroy the
useful evolutionary information in solutions? Unfortunately,
there is no theoretical analysis found to support the validity
of such a direct reduction operation.

In addition to the above, the three optimization objectives
reliability, cost, and time in OTRAPs have different scales
and distributions. When estimating the difference between
solutions, if we directly adopt the original solution samples,
the difference calculation will mainly depend on the value of
the testing time. Note that in OTRAPs, the system reliability
which has the smallest value range is the most important,
and thus it is inevitable that error will be incurred. In such
a case, HaD-MOEA [18] and WNS-MODE [21] still simply
summed the absolute normalized difference in each objective
value of two individuals. This distance-estimation approach
cannot reflect the true neighbor relationship among individuals
in Euclidean space, when the number of objectives is equal to
three or more.

To address these shortcomings, this paper takes into account
the simple nondominated sorting genetic algorithm II (NSGA-
II) [23] and investigates the potential constraint violations in
the crossover and mutation operators, based on which heuris-
tics for constraint handling are proposed. Our research findings
suggest that the heuristics are computationally simple and
maintain the original evolutionary characteristics in solutions.
Thus, we recommend that the constraint handling in solving
OTRAPs should be favorably combined with the evolutionary
operators of the selected MOEAs. In addition, the Euclidean
distance calculated on the standardized data has been frequent-
ly used to evaluate the difference between solutions [24]–
[26]. In this paper, we adopt the most common z-scores in
mathematical statistics [27] to make each objective value in
solution samples have the same trend before calculating the
Euclidean distance. Our experimental results on four parallel-
series modular software systems with gradual complexities
show that the improved NSGA-II for OTRAPs (called NSGA-
II-TRA) outperforms the existing MOEAs on the capacity,
coverage, and pure diversity values. This means that NSGA-II-
TRA should be able to obtain superior testing-time allocation
schemes. Moreover, NSGA-II-TRA seems quite robust from
the sensitivity analysis results. This paper makes the following
contributions.

1) A group of novel heuristics for constraint handling in
the process of crossover and mutation operations are pro-
posed. Compared with the existing work, the heuristics
only repair the element values that cause the constraint
violation rather than all the element values in the solution
vector.

2) A theoretical analysis of the constraint handling is carried
out, where several theorems are derived to provide evi-
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Fig. 1. The classical structure of a parallel-series modular software system.

dence that the constraint handling maintains the previous
evolutionary tendency of solutions.

3) The z-scores are adopted to standardize the solution
samples with different scales of the reliability, cost, and
time. Then, the standardized Euclidean distance is used
to estimate the neighbor relationship among individuals
instead of the traditional 1-normal distance in NSGA-II.

The remainder of this paper is organized as follows. We
first recall the multi-objective optimization model for OTRAPs
in Section II. In Section III, we present our NSGA-II based
search algorithm (i.e., NSGA-II-TRA) for OTRAPs, showing
how NSGA-II-TRA initializes individuals, how NSGA-II-
TRA repairs the infeasible individuals in the crossover and
mutation operators to ensure the constraints and also preserve
the evolutionary trend, and how NSGA-II-TRA standardizes
the solution samples. After that, Section IV introduces per-
formance metrics, provides an empirical evaluation of our
approaches, and benchmarks NSGA-II-TRA against the ex-
isting algorithms for OTRAPs. Finally, Section V concludes
this paper and outlines future directions of the research.

II. PROBLEM DESCRIPTION

In software engineering, there mainly exist two popular
models for simulating and describing real-world software
systems: the parallel-series modular software model [28] and
the architecture-based model [9], [10]. The architecture-based
model is proposed to characterize the reliability of the object-
oriented and component-based software systems by consid-
ering the system architecture, which is an important char-
acteristic of the system depending on its operational profile
[21]. The parallel-series modular software model is used to
assess the reliability in light of the reliability block diagram
that shows how the components of the system are reliability-
wise connected. Although the parallel-series modular software
model does not fully consider the system architecture in
realistic applications, it is very simple and straightforward.
Accordingly, following the previous work, in this paper we
discuss the OTRAPs on the basis of the parallel-series modular
software model.

Fig. 1 shows the basic structure of a complex parallel-series
modular software system with m (m ∈ N) serial subsystems,
S1, . . . , Sj , . . . , Sm. Each subsystem Sj (j ∈ {1, . . . ,m})
includes nj (nj ∈ N) parallel modules, Mj1, . . . ,Mjnj , which
are tested separately [28].

In software testing, the available testing resources can be
manpower, CPU hours, and executed test-cases [4]. In this
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paper, we assume that the available testing resources are the
given total testing time T ∗, which is a time threshold and can
be calculated according to the number of software testers and
the working hours of each tester [18], [21]. For example, if
10 testers are available for testing the studied software system
and each tester can spend up to 1,000 hours on the testing
task, T ∗ = 10 · 1000 = 10, 000 (hours). We denote tjk (k ∈
{1, . . . , nj}) as the possible testing time invested in a module
Mjk.

The relationship between reliability and testing time can
be described by software reliability growth models [29],
[30], where the fault removing is generally recognized as a
nonhomogeneous Poisson process. In these models, the failure
intensity φjk of module Mjk can be calculated by

φjk(tjk) = ajk · bjk · exp(−bjk · tjk)

where ajk is the mean value of the total errors in module Mjk

and bjk represents the rate of detected errors in Mjk. Given
this, the achieved reliability of Mjk can be calculated by

rjk(λ|tjk) = exp[−φjk(tjk) · λ]

where λ ≥ 0 and denotes the period of workable time or the
estimated life of the studied software system.

For a subsystem Sj , there may be nj parallel modules to
improve its performance. Sj cannot work only when all the
parallel modules in Sj are unavailable. Therefore, the expected
reliability of each Sj is 1 −

∏nj

k=1[1 − rjk(λ|tjk)]. Then,
according to the multiplication rule, the achieved reliability
of the software system is the total reliability of the m serial
subsystems [18], that is,

R =
m∏
j=1

{1−
nj∏
k=1

[1− rjk(λ|tjk)]}

The testing cost refers to all the possible software testing
expenditures. However, there is no hard and fast rules for
prescribing how much software testing cost should be. What
we can do is to estimate the amount being spent on testing
and measuring quality, as well as the cost of corrections [31].
It is generally accepted that the testing cost consumed in a
module Mjk is related to its reliability rjk, and the higher
reliability is required, the more testing cost will be consumed
[32]. As a consequence, the possible testing cost of module
Mjk is usually defined as [18], [32]

Cjk[rjk(λ|tjk)] = cjk1 · exp[c
jk
2 · rjk(λ|tjk)− cjk3 ]

where cjk1 , cjk2 , and cjk3 control the increment rate of the testing
cost corresponding to the reliability of Mjk. According to this,
the possible total testing cost consumed by the system can be
calculated by

C =
m∑
j=1

nj∑
k=1

Cjk[rjk(λ|tjk)]

Recall the following circumstance from [18], [21]. The cycle
of a software development process has become shorter because
of the user request. Then, software testers have to shorten
the testing phase, even if the system reliability may decrease

slightly. In such a case, the total testing time expenditure
should be considered. The actual consumed testing time of
the system is the total amount of testing time consumed by
all the modules in m serial subsystems [7], [33], that is,

T =

m∑
j=1

nj∑
k=1

tjk

Taking reliability, cost, and time altogether, we describe
the multi-objective optimization model for OTRAPs as the
following tri-objective problem.

Maximize: R
Minimize: C
Minimize: T
Subject to:
m∑
j=1

nj∑
k=1

tjk ≤ T ∗

tjk ≥ 0
j = 1, . . . ,m
k = 1, . . . , nj

where
∑m

j=1

∑nj

k=1 tjk ≤ T ∗ is the upper bound constraint
and tjk ≥ 0 is the lower bound constraint. Note that here
tjk may be 0 because the scheduled T ∗ is limited and cannot
satisfy the needs of all the modules. In addition, if tjk and T ∗

are integers, the objective function R or C is just a nonlinear
resource allocation problem which is NP-Hard [34]. Of course,
when tjk and T ∗ are real numbers, the above continuous multi-
objective optimization model for OTRAPs also falls in the
category of NP-Hard.

III. IMPROVED NSGA-II FOR OTRAPS

There have been several attempts [17], [18] at using
improved NSGA-II for OTRAPs. However, all such work
tackles infeasibility in an arbitrary repair manner and uses
unstandardized solution samples to evaluate the difference
between solutions. Although there are modern MOEAs [35]
in recent years, we prefer to improve the existing NSGA-II
because of its simplicity and wider acceptance in many applied
areas [36]. Moreover, it would be expected that the constraint
handling proposed in this paper can also be used by alternative
MOEAs. Specifically, we plan to enhance NSGA-II with more
advanced genetic operators and statistical operations so that the
improved NSGA-II can solve the constrained multi-objective
OTRAPs effectively and efficiently.

For the purpose of illustration, we start by introducing the
standard NSGA-II. Next, we show the constraint handling
in population initialization, crossover operator, and mutation
operator, respectively. After that, we investigate several funda-
mental properties of the constraint handling. Finally, we show
how to use z-scores to standardize solution samples.

A. Conventional NSGA-II

The overall structure of the basic NSGA-II [23] is shown
in Fig. 2. More specifically, the population is initialized on
the basis of the problem range and constraints. Then, the
current generation population is sorted fast according to non-
domination levels into fronts. An individual is said to dominate
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1. Create a random population of size N

2. Sort the population based on non-domination
3. Assign a rank for each non-dominated solution according to its non-domination

level
4. Compute the crowding distance between any two neighbors in the population
5. repeat
6. Select a parent population, Pt of size N from the new population
7. Create an offspring, Qt of size N by performing the crossover and mutation

operations on Pt

8. Create the mating pool Gt, of size 2 ·N by combining Pt and Qt

9. Sort Gt according to the front rank and the crowding distance
10. Select N best individuals from Gt to generate the new population Pt+1

11. until The maximum number of iterations is reached

Fig. 2. The psuedocode of the most basic NSGA-II.

another if the objective functions of this individual is no
worse than the other and at least in one of the objective
functions this individual is better than the other. In addition
to the front rank, the crowding distance is calculated for each
individual on the basis of the objective functions to measure
how close this individual is to its neighbors, which aims
to effectively maintain diversity and spread of solutions. To
build up the parent population, the individuals are selected
by using a binary tournament selection on the basis of the
assigned front rank and the crowding distance. The select-
ed parent population generates an offspring population after
the operations of simulated binary crossover and polynomial
mutation. Thereafter, the new population which consists of
the current generation population and the offspring population
is sorted again according to the front rank and the crowding
distance. Only the best individuals in the combined population
are selected to guarantee elitism and maintained to create
the next generation. The algorithm repeats the above steps to
precede the population’s evolution until the maximum number
of generations to decide termination is reached.

B. Heuristics for Constraint Handling

In constrained multi-objective optimization, the feasibility
rules, which strongly favor feasible solutions, are very popular
because of their simplicity and flexibility. The feasibility rules
are very suitable to be coupled to any sort of selection
mechanism relatively easily, but they may cause premature
convergence [37], [38]. There are also other studies in which
good infeasible solutions in the population are kept to preserve
diversity, such as the classical Infeasibility Driven Evolution-
ary Algorithm (IDEA) [39], [40]. Nonetheless, the replace-
ment process of IDEA requires to calculate the proportion of
infeasible solutions to remain in the population for the next
generation. Moreover, an additional optimization objective
which consists on the constraint violation measure should
be added. Thus, this approach will significantly increase the
computation pressure.

For multi-objective optimization approaches to OTRAPs,
the feasibility rules would be preferred. This is due to the
fact that the multi-objective optimization approaches produce
a solution set rather than a single solution. In the solution
set, there exit a large amount of solutions which have low
reliability or high cost. These unacceptable solutions are not
available at all for OTRAPs, even if they are feasible. That is,

1. τ ← 0

2. for j := 1 to m do
3. for k := 1 to nj do
4. tjk ← rand(0, T∗)

5. τ ← τ + tjk
6. end for
7. end for
8. if τ > T∗ then
9. for j := 1 to m do

10. for k := 1 to nj do
11. t̂jk ← tjk · rand(0, 1) · (T∗/τ)

12. end for
13. end for
14. end if

Fig. 3. The heuristic for constraint handling in individual initialization.

the available region in the whole search space of OTRAPs is
very tiny. Those impracticable solutions are equivalent to being
“infeasible” for OTRAPs. For this reason, we recommend that
all the infeasible solutions for OTRAPs should be repaired by
constraint handling. It is expected to create more available
solutions in practice so as to match with the original purpose
of multi-objective approaches to OTRAPs.

In NSGA-II, the potential constraint violations may exit in
the process of papulation initialization, crossover operator, and
mutation operator. When handling the violations, the existing
method HaD-MOEA [18] and WNS-MODE [21] changed
all the element values in a solution by random reduction.
These arbitrary repairs, no doubt, may destroy the important
parent information inherited and retained in an individual,
and alter the original evolutionary tendency of the individual.
Furthermore, the changes of all the element values are prone to
reduce the search ability of the algorithm to a simple, random
walk and prevent population from converging into the optimal
region [41]. Hence, in the next three subsections, we will
try to answer the following questions: How to maintain the
evolutionary tendency in constraint handling? How to preserve
the parent information in individual repairs? And how to
achieve a good balance between convergence and diversity in
individual repairs?

1) Population Initialization: We use the following one-
dimensional real value encoding to represent a possible testing-
time allocation scheme.

S1︷ ︸︸ ︷
[t11 . . . t1n1 . . .

Sj︷ ︸︸ ︷
tj1 . . . tjnj . . .

Sm︷ ︸︸ ︷
tm1 . . . tmnm ]

where each partition represents a subsystem Sj and each
element denotes the possible testing time tjk invested in
module Mjk.

The basic idea of population initialization with constraint
handling is shown in Fig. 3, where rand(0, T ∗) represents a
random number in (0, T ∗) and rand(0, 1) denotes a random
number in (0, 1). Both rand(0, T ∗) and rand(0, 1) are gen-
erated from a normal distribution. As Fig. 3 indicates, if the
total amount of the testing time invested in all the modules is
bigger than T ∗, each tjk is correspondingly scaled down to
ensure that the initialized individual is feasible.

2) Simulated Binary Crossover: The crossover in NSGA-
II selects genes randomly from two parents and produces two
new offspring combining the information of the two parents.
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Assume that p1 and p2 are the selected parents, tp1

jk and tp2

jk

are two crossover-gene values in p1 and p2, o1 and o2 are the
produced offspring from p1 and p2, and to1jk and to2jk are two
gene values at the same position jk in p1 and p2, respectively.
Then, the simulated binary crossover can be given as below
[42]: 

to1jk ← ȳ − 0.5 · β · (y2 − y1)

to2jk ← ȳ + 0.5 · β · (y2 − y1)

where 
y2 = max{tp1

jk, t
p2

jk}

y1 = min{tp1

jk, t
p2

jk}

and
ȳ = 0.5 · (y1 + y2) = 0.5 · (tp1

jk + tp2

jk)

From the above, we can obtain

0.5 · (to1jk + to2jk) = ȳ = 0.5 · (tp1

jk + tp2

jk)

This is known as having the average property in which the
average of the decoded parameter values is the same before
and after the crossover operation [42]. Besides, β ≥ 0 is called
the spread factor and is a randomly generated number having
the density that the probability of occurrence of β ≈ 1 is more
likely than any other β value.

The relationship among parents, the spread factor, and chil-
dren is dedicated in Fig. 4. As can be seen, when 0 ≤ β < 1,
to1jk is enlarged relative to y1 and to2jk is reduced relative to y2.
Because y1 and y2 are feasible, both to1jk and to2jk are feasible.
When β = 1, to1jk = y1 and to2jk = y2, it is clear that to1jk and
to2jk are both feasible. When β > 1, to1jk is shrunk relative to y1
and to2jk is enlarged relative to y2. As a result, to1jk may violate
its lower bound constraint or to2jk may violate its upper bound
constraint. It should be noted that no matter whether to1jk < 0
or to2jk > T ∗, when we plan to repair to1jk and to2jk, we must first
consider whether adjusting one of the children may make the
other violate its constraints. For this purpose, see Fig. 4, we
select the minimum interval from (0, y1) and (y2, T

∗) to deal
with the repairs of offspring. Specifically, if y1 ≤ T ∗ − y2,
we first repair to1jk in a random manner and then revise to2jk
according to the average property, namely,

t̂o1jk ← rand(0, y1)

t̂o2jk ← y1 + y2 − t̂o1jk

(1)

where rand(0, y1) represents a random number in (0, y1) with
a normal distribution. Similarly, if y1 > T ∗ − y2, we repair
to2jk and to1jk on the basis of the same idea:

t̂o2jk ← rand(y2, T
∗)

t̂o1jk ← y1 + y2 − t̂o2jk

(2)

where rand(y2, T
∗) denotes a random number in (y2, T

∗)
with a normal distribution.

In addition to the above, another aspect we should not
neglect is that in Fig. 4, to1jk or to2jk may be enlarged relative
to y1 or y2, so the sum of gene values in o1 or o2 may

1y 2y

1o

jkt

1β <

1y 2y

1β >

1y 2y

1β =

2o

jkt

1o

jkt

1o

jkt

2o

jkt

2o

jkt

0 T ∗

0 T ∗

0 T ∗

{ {

Fig. 4. The relationship among parents, the spread factor, and offspring.

violate the upper bound constraint T ∗, and then o1 or o2 is
also infeasible. As a consequence, we still need to check the
feasibility of o1 and o2. For the convenience of presentation,
we give the following notations. τp1 , τp2 , τo1 , and τo2 are
the corresponding sum of all the gene values in the four
individuals p1, p2, o1, and o2, respectively.

Before checking τo1 and τo2 , two important aspects should
be considered. First of all, if τo1 > T ∗, it is certain that
τo2 < T ∗ because of the average property

τo1 + τo2 = τp1 + τp2 ≤ 2 · T ∗ (3)

Similarly, if τo2 > T ∗, we have τo1 < T ∗. Consequently, if
the upper bound constraint is violated, we just need to repair
one of o1 and o2 rather than both o1 and o2. What is more,
in the process of crossover, only the values of the selected
crossover genes in an individual will change. It follows that
all the infeasible cases are caused only by the crossover genes,
but are irrelevant to other non-crossover genes. Of course, all
the repair operations must be done only on the crossover genes
to preserve the parent information in offspring. Based on this
observation, we introduce some new notations. τo1ϵ and τo2ϵ

are the sums of all the crossover-gene values in o1 and o2,
respectively. T o1

ϵ and T o2
ϵ are the total amounts of the testing

time which can be allocated to the crossover genes in o1 and
o2, respectively, satisfying T o1

ϵ = T ∗ − (τo1 − τo1ϵ )

T o2
ϵ = T ∗ − (τo2 − τo2ϵ )

(4)

η is a scale factor, satisfying 0 ≤ η ≤ 1, and is used to control
the change amplitude of to1jk or to1jk.

Now, if τo1 > T ∗, we have τo1ϵ > T o1
ϵ . According to the

average property, the values of the selected crossover genes in
o1 and o2 can be repaired as follows:

t̂o1jk ← to1jk · η · (T o1
ϵ /τo1ϵ )

t̂o2jk ← to1jk + to2jk − t̂o1jk

where we use η to reduce to1jk. Admittedly, if each crossover-
gene value in o1 is decreased to too small numbers, the sum
of crossover-gene values in the repaired o2 may inevitably be
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enlarged excessively because of the average property. Hence,
it is possible that the repaired o2 may violate the upper bound
constraint. Taking the above factor into consideration, we need
to figure out the value range of η. For the repaired o2, the new
sum of all the gene values is

τ̂o2 = τo2 − τo2ϵ + τ̂o2ϵ

where τ̂o2ϵ is the new sum of all the crossover-gene values in
the repaired o2, satisfying

τ̂o2ϵ = τo1ϵ + τo2ϵ − τ̂o1ϵ

τ̂o1ϵ is the new sum of all the crossover-gene values in the
repaired o1 and can be calculated as follows.

τ̂o1ϵ =
∑

[to1jk · η · (T
o1
ϵ /τo1ϵ )]

= η · (T o1
ϵ /τo1ϵ ) ·

∑
to1jk

= η · (T o1
ϵ /τo1ϵ ) · τo1ϵ

= η · T o1
ϵ

Accordingly,

τ̂o2 = τo2 − τo2ϵ + τo1ϵ + τo2ϵ − η · T o1
ϵ

= τo2 + τo1ϵ − η · T o1
ϵ

To ensure τ̂o2 ≤ T ∗, the following should hold:

τo2 + τo1ϵ − η · T o1
ϵ ≤ T ∗

According to this, we have

η ≥ (τo2 + τo1ϵ − T ∗)/T o1
ϵ

Note that if τo2 + τo1ϵ − T ∗ ≤ 0, we set η ← 0 to ensure
t̂o1jk ≥ 0. If τo2 + τo1ϵ − T ∗ > 0, we know that the crossover-
gene values in o1 cannot be reduced too small. Thus, we set
the scale factor η to be max{0, (τo2 + τo1ϵ − T ∗)/T o1

ϵ } to
control the reduction degree of to1jk. Overall, we can rewrite
the repair operations as follows:

η ← max{0, (τo2 + τo1ϵ − T ∗)/T o1
ϵ }

t̂o1jk ← to1jk · rand(η, 1) · (T o1
ϵ /τo1ϵ )

t̂o2jk ← to1jk + to2jk − t̂o1jk

(5)

where rand(η, 1) denotes a random number in (η, 1) which
is drawn from a normal distribution. Here we use rand(η, 1)
to promote population diversity.

Similarly, if τo2 > T ∗, we have τo1 < T ∗. Then, o2 and o1
can be repaired as below:

η ← max{0, (τo1 + τo2ϵ − T ∗)/T o2
ϵ }

t̂o2jk ← to2jk · rand(η, 1) · (T o2
ϵ /τo2ϵ )

t̂o1jk ← to1jk + to2jk − t̂o2jk

(6)

The procedure of constraint handling based simulated binary
crossover is presented in Fig. 5, where at most one of the
situations τo1 > T ∗ or τo2 > T ∗ will occur.

1. Choose two parents p1 and p2

2. τo1 ← 0, τo2 ← 0, τo1
ϵ ← 0, τo2

ϵ ← 0, T o1
ϵ ← 0, T o2

ϵ ← 0

3. for j := 1 to m do
4. for k := 1 to nj do
5. if jk is selected as a crossover gene then
6. y2 ← max{tp1jk , t

p2
jk}, y1 ← min{tp1jk , t

p2
jk}, ȳ = 0.5·(y1+y2)

7. Generate a random number β
8. t

o1
jk ← ȳ − 0.5 · β · (y2 − y1), to2jk ← ȳ + 0.5 · β · (y2 − y1)

9. if to1jk < 0||to2jk > T∗ then
10. if y1 ≤ T∗ − y2 then
11. t

o1
jk ← rand(0, y1), to2jk ← y1 + y2 − t

o1
jk

12. else
13. t

o2
jk ← rand(y2, T

∗), to1jk ← y1 + y2 − t
o2
jk

14. end if
15. end if
16. τo1

ϵ ← τo1
ϵ + t

o1
jk , τo2

ϵ ← τo2
ϵ + t

o2
jk

17. else
18. t

o1
jk ← t

p1
jk , to2jk ← t

p2
jk

19. end if
20. τo1 ← τo1 + t

o1
jk , τo2 ← τo2 + t

o2
jk

21. end for
22. end for
23. if τo1 > T∗ then
24. T o1

ϵ ← T∗ − (τo1 − τo1
ϵ ), η ← max{0, (τo2 + τo1

ϵ − T∗)/T o1
ϵ }

25. for j := 1 to m do
26. for k := 1 to nj do
27. if jk is a crossover gene then
28. t̂

o1
jk ← t

o1
jk ·rand(η, 1) · (T

o1
ϵ /τo1

ϵ ), t̂o2jk ← t
o1
jk + t

o2
jk− t̂

o1
jk

29. end if
30. end for
31. end for
32. end if
33. if τo2 > T∗ then
34. T o2

ϵ ← T∗ − (τo2 − τo2
ϵ ), η ← max{0, (τo1 + τo2

ϵ − T∗)/T o2
ϵ }

35. for j := 1 to m do
36. for k := 1 to nj do
37. if jk is a crossover gene then
38. t̂

o2
jk ← t

o2
jk ·rand(η, 1) · (T

o2
ϵ /τo2

ϵ ), t̂o1jk ← t
o1
jk + t

o2
jk− t̂

o2
jk

39. end if
40. end for
41. end for
42. end if

Fig. 5. The simulated binary crossover operator with constraint handling.

3) Polynomial Mutation: The mutation in NSGA-II
changes genes randomly from a parent to produce a new
offspring. Assume that p is the selected parent, tpjk is the
value of the selected mutation gene jk in p, o is the produced
offspring from p, and tojk is the gene value at the same position
in o. Then, the polynomial mutation is performed as below
[42]:

tojk ← tpjk + δ · T ∗

where δ ∈ (−1, 1) is a random number from a polynomial
distribution.

It can be observed that tojk may be reduced or enlarged
relative to tpjk. First, if tojk < 0, to maintain the trend of
decreasing tpjk, we generate a random positive number from
(0, tpjk) to replace the old tojk. That is,

t̂ojk ← rand(0, tpjk) (7)

where rand(0, tpjk) is a random number in (0, tpjk) with a
normal distribution. Second, if tojk > T ∗, to maintain the
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1. Choose a parent p
2. τo ← 0, τo

ϵ ← 0, T o
ϵ ← 0

3. for j := 1 to m do
4. for k := 1 to nj do
5. if jk is selected as a mutation gene then
6. Generate a random number δ
7. tojk ← tpjk + δ · T∗

8. if tojk < 0 then
9. tojk ← rand(0, tpjk)

10. end if
11. if tojk > T∗ then
12. tojk ← rand(tpjk, T

∗)

13. end if
14. τo

ϵ ← τo
ϵ + tojk

15. else
16. tojk ← tpjk
17. end if
18. τo ← τo + tojk
19. end for
20. end for
21. if τo > T∗ then
22. T o

ϵ ← T∗ − (τo − τo
ϵ )

23. for j := 1 to m do
24. for k := 1 to nj do
25. if jk is a mutation gene then
26. t̂ojk ← tojk · rand(0, 1) · (T

o
ϵ /τo

ϵ )

27. end if
28. end for
29. end for
30. end if

Fig. 6. The polynomial mutation operator with constraint handling.

enlargement tendency of tpjk, we create a random positive
number from (tpjk, T

∗) as a substitute for the previous tojk,
namely,

t̂ojk ← rand(tpjk, T
∗) (8)

where rand(tpjk, T
∗) is a random number in (tpjk, T

∗) with a
normal distribution.

Even if each tojk in o is feasible, it is possible that o may
violate the upper bound constraint T ∗. This is due to the fact
that some mutation-gene values may be enlarged too much.
Denote τo as the sum of all the gene values in o. When
τo > T ∗, we are in line with the basic principle that we only
repair the selected mutation-gene values rather than all the
gene values to preserve the parent characteristics in offspring.
For further discussions, we give the following notations. τoϵ
is the sum of all the mutation-gene values in o. T o

ϵ is the
total amount of the testing time which can be allocated to the
mutation genes, satisfying

T o
ϵ = T ∗ − (τo − τoϵ ) ≥ 0 (9)

Now, if τo > T ∗, we reduce all the mutation-gene values in
o according to

t̂ojk ← tojk · rand(0, 1) · (T o
ϵ /τ

o
ϵ ) (10)

where rand(0, 1) is a random coefficient in (0, 1) with a
normal distribution and is used to promote diversity.

The detailed procedure of the polynomial mutation with
constraint handling is presented in Fig. 6.

Generally speaking, the hurdles in solving OTRAPs arise
from the challenge of searching a huge space to locate feasible
solutions with acceptable allocation schemes. As mentioned
earlier, the reason for this challenge is that for OTRAPs, the
feasible and acceptable space is very tiny compare to the whole
search space. The above heuristics for constraint handling
are designed to keep every individual in the population as
feasible as possible. This feasibility rule under tiny feasible
space was found to be useful for the search algorithms in
[18] and [21]. More specifically, to ensure the quality of the
initial solutions, the first heuristic shown in Fig. 3 directs the
selected infeasible individuals in the initial population to move
to the feasible space randomly. Note that the feasibility of
the initial solutions is a basic prerequisite to the evolution
of the population, without which the subsequent crossover
and mutation operators will be invalidated. The heuristic
shown in Fig. 5 ensures the feasibility of each offspring after
the crossover operator, which makes the mutation operator
workable. Similarly, the heuristic shown in Fig. 6 ensures
the feasibility of each offspring after the mutation operator
and makes the repeated crossover operator workable. It is
clear that the above heuristics in the crossover and mutation
operators are interdependent, without one of which the other
will be painful and ineffective. The mutual assistance and
mutual benefit make the whole population always evolve in
tiny feasible space during iterations. Additionally, the two
heuristics maintain the previous evolutionary tendency of
individuals on the basis of (1), (2), (7), and (8). Moreover, the
randomization strategies in (5), (6), and (10) are introduced to
promote population diversity.

C. Properties of Constraint Handling

To begin with, we prove that the new t̂o1jk and t̂o2jk generated
by (1) and (2) are feasible and also maintain the previous
evolutionary trend. That is, t̂o1jk and t̂o2jk satisfy the constraints
and can still enclose the values of the two parents.

Theorem 1: No matter whether to1jk < 0 or to2jk > T ∗, the
new t̂o1jk and t̂o2jk in (1) and (2) satisfy

0 ≤ t̂o1jk ≤ y1 < y2 ≤ t̂o2jk ≤ T ∗

Proof: In (1) and (2), as long as to1jk < 0 or to2jk > T ∗,
we repair offspring on the basis of the intervals (0, y1) and
(y2, T

∗). Hence, we will prove the following cases.
Case 1: y1 ≤ T ∗ − y2. From (1), we can easily obtain

0 ≤ t̂o1jk ≤ y1 < y2 ≤ t̂o2jk

Considering (1) and y1 ≤ T ∗ − y2 altogether,

t̂o2jk ≤ T ∗ − t̂o1jk

Because t̂o1jk ≥ 0, we have

t̂o2jk ≤ T ∗

Case 2: y1 > T ∗− y2. According to (2), we can easily find
that

t̂o1jk ≤ y1 < y2 ≤ t̂o2jk ≤ T ∗
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and
t̂o1jk = y1 + y2 − rand(y2, T

∗)

Recalling y1 > T ∗ − y2, we have

t̂o1jk > T ∗ − rand(y2, T
∗)

Since T ∗ − rand(y2, T
∗) ≥ 0, then

t̂o1jk ≥ 0

Similarly, from (7) and (8), it can be directly observed that
the new t̂ojk satisfies the constraints and maintains the original
evolutionary characteristics.

Theorem 2: The new t̂ojk in (7) has

0 ≤ t̂ojk ≤ tpjk ≤ T ∗

Theorem 3: The new t̂ojk in (8) satisfies

tpjk ≤ t̂ojk ≤ T ∗

Next, we prove that the scale factor η created in (5) or (6)
is in [0, 1].

Theorem 4: The scale factor η in (5) satisfies 0 ≤ η ≤ 1.
Proof: We show the implications separately. On one hand,

in (5), if τo2 + τo1ϵ − T ∗ ≤ 0, we can easily obtain

η = 0

On the other hand, if τo2 + τo1ϵ − T ∗ > 0, we have η > 0
because of T o1

ϵ > 0. Now, we need to prove η ≤ 1.
For convenience, here we give a proof by contradiction. We
assume that η > 1, then

τo2 + τo1ϵ − T ∗ > T o1
ϵ

Substituting (4) into the above inequality, we can obtain

τo1 + τo2 > 2 · T ∗

which is inconsistent with (3), so we have

η ≤ 1

Theorem 5: The scale factor η in (6) is also in [0, 1].
Proof: The result can be proved in the same way as shown

in Theorem 4.
In addition, we prove that, in (5) or (6), no matter how

greatly the crossover-gene values in o1 or o2 have been
decreased, the sum of all the gene values in the repaired o2
or o1 will not go beyond T ∗. We also prove that the new o
repaired according to (10) satisfies the constraint.

Theorem 6: If τo1 > T ∗, the new o2 created by (5) satisfies
τ̂o2 ≤ T ∗.

Proof: As mentioned earlier,

τ̂o2 = τo2 − τo2ϵ + τ̂o2ϵ

= τo2 − τo2ϵ + (τo1ϵ + τo2ϵ − τ̂o1ϵ )

= τo2 + τo1ϵ − τ̂o1ϵ

In (5), if η = 0, we certainly have

τo2 + τo1ϵ − T ∗ ≤ 0

Thus,
τ̂o2 ≤ T ∗ − τ̂o1ϵ

Since τ̂o1ϵ ≥ 0, then
τ̂o2 ≤ T ∗

If 0 < η ≤ 1, from (5) we have

η = (τo2 + τo1ϵ − T ∗)/T o1
ϵ

In (5), each t̂o1jk has

t̂o1jk ≥ to1jk · η · (T
o1
ϵ /τo1ϵ )

Hence, ∑
t̂o1jk ≥

∑
[to1jk · η · (T

o1
ϵ /τo1ϵ )]

Since ∑
t̂o1jk = τ̂o1ϵ

and∑
[to1jk · η · (T

o1
ϵ /τo1ϵ )] = η · (T o1

ϵ /τo1ϵ ) ·
∑

to1jk

= η · (T o1
ϵ /τo1ϵ ) · τo1ϵ

= η · T o1
ϵ

= (τo2 + τo1ϵ − T ∗)/T o1
ϵ · T o1

ϵ

= τo2 + τo1ϵ − T ∗

then
τ̂o1ϵ ≥ τo2 + τo1ϵ − T ∗

That is,
τo2 + τo1ϵ − τ̂o1ϵ ≤ T ∗

Recalling τ̂o2 = τo2 + τo1ϵ − τ̂o1ϵ , we have

τ̂o2 ≤ T ∗

Theorem 7: If τo1 > T ∗, the new o1 created by (5) satisfies
τ̂o1 ≤ T ∗.

Proof: In light of the average property, we have

τ̂o1 + τ̂o2 = τo1 + τo2

From (3), we obtain

τ̂o1 + τ̂o2 ≤ 2 · T ∗

From Theorem 6, it is easily obtained that

τ̂o1 ≤ T ∗

Theorem 8: If τo2 > T ∗, the new o1 created by (6) satisfies
τ̂o1 ≤ T ∗.

Proof: The proof is similar to Theorem 6.
Theorem 9: If τo2 > T ∗, the new o2 created by (6) satisfies

τ̂o2 ≤ T ∗.
Proof: The proof is similar to Theorem 7.

Theorem 10: If τo > T ∗, the new o created by (10) satisfies
τ̂o ≤ T ∗.

Proof: The sum of all the gene values in the new o is

τ̂o = τo − τoϵ + τ̂oϵ
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From (10), each t̂ojk has

t̂ojk ≤ tojk · (T o
ϵ /τ

o
ϵ )

Thus, ∑
t̂ojk ≤

∑
[tojk · (T o

ϵ /τ
o
ϵ )]

Since ∑
t̂ojk = τ̂oϵ

and ∑
[tojk · (T o

ϵ /τ
o
ϵ )] = T o

ϵ /τ
o
ϵ ·

∑
tojk

= T o
ϵ /τ

o
ϵ · τoϵ

= T o
ϵ

then
τ̂oϵ ≤ T o

ϵ

Therefore,
τ̂o ≤ τo − τoϵ + T o

ϵ

Substituting (9) into the above inequality, we have

τ̂o ≤ T ∗

Last, we prove that the proposed heuristics for constraint
handling is computationally simple, considering the computa-
tional complexity to be the number of the required operations
with different values of m and nj .

Theorem 11: The worst case complexity of the individual
initialization shown in Fig. 3 is Θ(n).

Proof: In Fig. 3, it is clear that there are a total of∑m
j=1 nj gene values in an individual, so the number of

operations required to generate an individual is
∑m

j=1 nj .
If the sum of all the gene values is bigger than the upper
bound constraint, all the gene values will be changed, implying
that the number of repair operations is also

∑m
j=1 nj . In

summary, the total number of operations is between
∑m

j=1 nj

and 2 ·
∑m

j=1 nj . Hence, the worst case complexity of the
individual initialization in Fig. 3 is Θ(n).

Theorem 12: The worst case complexity of the simulated
binary crossover shown in Fig. 5 is Θ(n).

Proof: In Fig. 5, no matter whether an element is selected
as a crossover gene, all the

∑m
j=1 nj gene values in an

offspring must be created from the two parents. Thus, the
number of operations required to generate two offspring is
just 2 ·

∑m
j=1 nj . For the two offspring, it is possible that

each gene value may violate the lower bound constraint or
the upper bound constraint, which results in 2 ·

∑m
j=1 nj

repair operations. Worse, the sum of all the gene values in an
offspring would go beyond T ∗, and thus the two offspring have
to be repaired again. To sum up, the total number of operations
is between 2·

∑m
j=1 nj and 6·

∑m
j=1 nj . Accordingly, the worst

case complexity of the simulated binary crossover in Fig. 5 is
Θ(n).

Theorem 13: The worst case complexity of the polynomial
mutation shown in Fig. 6 is Θ(n).

Proof: In Fig. 6, the number of operations required to
create an offspring from the selected parent is just

∑m
j=1 nj .

Moreover, it can be easily observed that the number of possible

repair operations for feasibility is at most 2 ·
∑m

j=1 nj . On the
whole, the total number of operations is between

∑m
j=1 nj and

3 ·
∑m

j=1 nj . It follows that the worst case complexity of the
polynomial mutation in Fig. 6 is Θ(n).

D. Solution Sample Standardization

Before calculating the crowding distance between neigh-
bors, we adopt the z-scores [27] in mathematical statistics to
standardize the solution samples due to the different scales of
R, C, and T . For a papulation of size N , there are N values,
x1, · · · , xN , for an objective in solution samples, and then
each value xι (ι ∈ {1, . . . , N}) will be standardized as below:

x′ι ←
xι − x̄

s

where:

x̄ =
1

N

N∑
ι=1

xι

is the sample mean of the population, and

s =

√√√√ 1

N − 1

N∑
ι=1

(xι − x̄)2

is the standard deviation of the population. Note that the value
of x′ι represents the fluctuation between the raw score and the
population mean in units of the standard deviation, so x′ι may
be negative when xι is below the mean.

Having the normalized solution samples in hand, we first
compute the standardized Euclidean distance between any two
different individuals on a nondominated front. Next, the two
individuals that have the biggest Euclidean distance are set to
the boundary points; if there are several pairs of individuals
with the biggest Euclidean distance, set all of them to the
boundary points. After that, we estimate the crowing degree
of an individual with the harmonic mean distance proposed in
[18].

Assume that the standardized Euclidean distances between
an individual and its κ-nearest neighbors are d1, d2, . . . , dκ,
respectively. If an individual is a boundary point, the crowing
distance of this individual will be set to the maximum value;
otherwise, the harmonic mean distance associated with this
individual can be calculated by [18]

d =
κ

1
d1

+ 1
d2

+ . . .+ 1
dκ

It is known that d is able to reach the maximum value if and
only if d1 = d2 = . . . = dκ [43]. This means that when an
individual and its neighbors are distributed more evenly, the
individual will be assigned a bigger crowding distance. This is
just in line with the diversity-maintenance goal that we aspire
to achieve.

IV. PERFORMANCE EVALUATION

In this section, the proposed constraint handling based
NSGA-II for OTRAPs (henceforth called NSGA-II-TRA) is
compared with existing approaches to OTRAPs. For the sake
of illustration, we first introduce the basic parameter settings
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and the appropriate performance metrics. Next, we demon-
strate the effectiveness of the constraint handling. Thirdly,
we evaluate the z-score operation. After that, we draw a
comparison between NSGA-II-TRA, HaD-MOEA [18], and
WNS-MODE [21], which are all multi-objective optimization
approaches to OTRAPs with different constraint handling tech-
niques. Finally, we conduct sensitivity analysis with respect to
the five modular parameters.

A. Parameter Settings and Performance Metrics

Four parallel-series modular software systems with gradual
complexities are considered in our experiments: a simple
system with 5 sub-systems and 10 modules, a complex system
with 6 sub-systems and 14 modules, a large system with 7
sub-systems and 20 modules, and a larger system with 11
sub-systems and 30 modules, as shown in Fig. 7. Compared
with the existing work [17], [18], [21], the given four systems
in Fig. 7 are significantly large in problem size. This can help
us evaluate the efficiency of different algorithms (in particular,
the proposed NSGA-II-ERA) more comprehensively and draw
a more general conclusion. Following the previous studies, we
assume that T ∗ = 50, 000, λ = 50, T ∗ = 70, 000, λ = 100,
T ∗ = 85, 000, λ = 200, and T ∗ = 150, 000, λ = 200 are
available for testing the simple, complex, large, and larger
systems, respectively.

The modular parameters are recalled from [18] and listed
in Table I, where the serial module indicates that this module
belongs to a subsystem that has only one module (e.g., M11 in
Fig. 7(a)) and the parallel module represents that this module
belongs to a subsystem with more than one module (e.g.,
M31 in Fig. 7(a)). For each system, we generated 30 different
instances randomly from a normal distribution according to
the pre-defined intervals in Table I. Besides, to make the
comparisons as fair as possible, the baseline settings of all
the algorithmic parameters that were recommended in [18],
[21] are adopted and shown in Table II.

In [18], [21], the hypervolume indicator is used to evaluate
the quality of the whole solution set. However, as mentioned
earlier, most of the solutions in the solution set are impracti-
cable and unavailable for OTRAPs. Consequently, measuring
the quality of solutions mainly in terms of the valueless
solutions that account for the vast majority of all the solutions
is very one-sided and biased for OTRAPs. To this end, in
this paper, we adopt the classical coverage metric [44] as the
main performance measure to compare the quality of solutions
obtained by different approaches. Assuming that A and B are
the final solution sets achieved by two different MOEAs, a
point a in A covers a point b in B if a is not worse than b on
any objective. ζ(A,B) denotes the percentage of set B that is
covered by points in A. ζ(A,B) > ζ(B,A) is used to indicate
a win for the algorithm that produces A. A series of such tests
is counted as statistically significant if an algorithm is the
winner suitably often [44]. Besides, OTRAPs are aiming at
achieving software reliability for customer satisfaction. Thus,
we also adopt the capacity measure [45], namely, the num-
bers of satisfactory non-dominated solutions. We evaluate the
capacity and coverage values of the satisfactory solution sets,
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Fig. 7. Structure of the four parallel-series modular software systems.

TABLE I
MODULAR PARAMETERS IN ALL THE NUMERICAL EXPERIMENTS

Module ajk bjk cjk1 cjk2 cjk3

Serial [30.0, 35.0] [5.8E-3, 6.2E-3] [3.4, 3.55] [6.0, 6.2] [4.0, 4.1]

Parallel [200.0, 350.0] [3.0E-4, 9.0E-4] [3.4, 3.55] [6.0, 6.2] [4.9, 5.1]

TABLE II
BASIC ALGORITHMIC PARAMETERS IN ALL THE NUMERICAL

EXPERIMENTS

Parameter NSGA-II HaD-MOEA WNS-MODE NSGA-II-TRA
PS 200 200 200 200
NG 500 500 500 500
CP 0.9 0.9 0.1 0.9

MP/F 0.1 0.1 1.4 0.1

PS: population size. NG: number of generations. CP : crossover
probability. MP : mutation probability. F : mutation factor.

regarding solutions whose reliability is higher than the given
threshold. Furthermore, good convergence, sometimes, may
result in repeated testing allocation schemes or very similar
schemes, which are redundant to software testers. Hence, we
adopt the norm-based pure diversity metric to evaluate the
accumulation of the dissimilarity in the solution set [46].

In our experiments, all the algorithms’ codes are written
in VISUAL C++ 2013. Each test instance is repeated for 30
independent runs with different random seeds on a PC with
Intel 2.50 GHz CPU and 10 GB of RAM.
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B. Comparing Different Constraint Handling Techniques

The repair mechanisms in [18] and [21] (henceforth called
Existing Strategy) execute the same repair operations to check
the whole population after the crossover and mutation oper-
ators, respectively. On the contrary, the proposed constraint
handling in this paper (henceforth called Our Strategy) is
embedded in the whole process of the crossover and mutation
operators. Moreover, the two heuristics (shown in Fig. 5 and
Fig. 6) for constraint handling in the crossover and mutation
operators are as intimate as kins, without one of which the
other will lose its effects for the reason that the essential
conditions for constraint handling in (3) or (9) may not hold.
Accordingly, in this section, we compare the whole constraint
handling schemes rather than each single evolutionary opera-
tor, using the standard NSGA-II shown in Fig. 2.

To measure the convergence ability, Tables III and IV show
the coverage values of the standard NSGA-II on OTRAPs
with different numbers of generations (i.e., NG), population
size (i.e., PS), repair strategies, and systems, respectively,
regarding the mean and standard deviation values. The better
result regarding the mean value between the two compared
strategies for each test instance is highlighted in boldface. We
used the Wilcoxon rank-sum test [47] at a 0.05 significance
level to measure the significance of the differences among
the results obtained by the two strategies. It was found that
all the differences between the two strategies are statistically
significant. Besides, it can be observed that with the increase of
NG or PS, the coverage values of Our Strategy vs Existing
Strategy are much better than those of Existing Strategy vs
Our Strategy on almost all the test instances. In particular,
on most of the test instances for the complex, large, and
larger systems, the coverage values of Existing Strategy vs
Our Strategy are almost only half of the corresponding values
of Our Strategy vs Existing Strategy. This observation suggests
that Our Strategy should be able to keep a better convergence
and obtain higher-quality testing-time allocation schemes.

For further illustrations of exploration ability, we select
solutions with a high reliability (R ≥ 0.99) in each test
instance to evaluate whether Our Strategy can achieve higher
reliability, lower cost, and less time. Tables V and VI show
the capacity and coverage values of the two repair strategies,
respectively, regarding solutions whose reliability is higher
than or equal to 0.99 in all the 30 runs for each test instance. It
can be seen that Our Strategy obtains much more satisfactory
testing time allocation schemes than Existing Strategy, espe-
cially under small NG and PS. Additionally, the coverage
values of Our Strategy vs Existing Strategy are much greater
than those of Existing Strategy vs Our Strategy. On most of the
test instances, the satisfactory solutions of Our Strategy can
completely cover the solutions of Existing Strategy but not be
covered by the latter at all. Our Strategy achieved a very high
reliability under lower cost and less time, but Existing Strategy
often failed in exploration, especially for the complex, large,
and larger systems. As a result, Our Strategy can explore more
and higher quality testing time allocation schemes and works
much better in promoting convergence than Existing Strategy.
An explanation is that Existing Strategy might destroy useful

genetic information that should be inherited from parents
because of mutating all the gene values in offspring to ensure
feasibility. On the contrary, Our Strategy only repairs the gene
values that are supposed to be changed.

C. Evaluating the Z-score Operation

Since the z-score operation is adopted to estimate the dis-
tance between neighbours more reasonably, in this subsection,
we evaluate the diversity of the solution set to analyze the
effectiveness of the z-score operation.

To measure the diversity quality, Tables VII and VIII
show the pure diversity values [46] of the basic NSGA-II
and the z-score operation based NSGA-II on OTRAPs with
different numbers of generations, population size, and systems,
respectively, regarding the mean and standard deviation values.
The results are analyzed using the Wilcoxon rank-sum test
[47]. It can be observed that the z-score operation improves
the diversity of the solution set on almost all the test instances.
When NG is fixed, the improvement becomes greater with
the increase of PS. When PS is fixed, the improvement has
not changed much with the increase of NG. This implies
that the z-score operation estimates the distance between
neighbors more accurately when the population size is bigger.
To conclude, the z-score operation reduces the repeated or
similar solutions and can provide more information to software
testers.

D. Comparing MOEAs

The existing HaD-MOEA [18] and WNS-MODE [21] are
both multi-objective optimization approaches and used the
constraint handling to improve their performance for solving
OTRAPs. In this subsection, on the basis of the termination
criterion of 100,000 evaluations, we compared our IR-NSGA-
TRA with WNS-MODE and HaD-MOEA to further verify our
approaches on OTRAPs.

To measure the convergence quality, the coverage values
of IR-NSGA-II, WNS-MODE, and HaD-MOEA on OTRAPs
under different instances and software systems are shown in
Table IX, which are analyzed using the Wilcoxon rank-sum
test [47]. For all the 120 testing instances, the coverage values
of IR-NSGA-TRA vs WNS-MODE are far greater than those
of WNS-MODE vs IR-NSGA-TRA. In particular, IR-NSGA-
TRA covers almost half of the solutions obtained by WNS-
MODE on each testing instance, especially in the case of larger
system. Besides, the coverage values of IR-NSGA-TRA vs
HaD-MOEA are much better than those of HaD-MOEA vs
IR-NSGA-TRA on 111 instances, but are inferior on only 2
instances. Thus, we can say that IR-NSGA-TRA outperforms
WNS-MODE and HaD-MOEA in terms of convergence on
most test instances.

Table X show the capacity and coverage values of IR-
NSGA-TRA, WNS-MODE, and HaD-MOEA on OTRAPs
under different instances and software systems, respectively,
regarding solutions whose system reliability is higher than or
equal to 0.99 in all the 30 runs for each test instance. It can
be observed that for all the 120 testing instances, the capacity
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TABLE III
COVERAGE VALUES (MEAN AND STANDARD DEVIATION) OF THE BASIC NSGA-II ON OTRAPS UNDER NG = 250, DIFFERENT PS , REPAIR

STRATEGIES, AND SOFTWARE SYSTEMS

PS
Simple system Complex system Large system Larger system

ζ(A,B) ζ(B,A) ζ(A,B) ζ(B,A) ζ(A,B) ζ(B,A) ζ(A,B) ζ(B,A)

50 0.2140(9.54%) 0.1780(7.80%) 0.2967(9.10%) 0.1953(5.48%) 0.3107(13.48%) 0.2100(8.83%) 0.3013(11.96%) 0.2420(11.84%)
100 0.2203(5.14%) 0.1523(5.64%) 0.3387(10.10%) 0.1787(4.04%) 0.3283(10.00%) 0.1667(6.54%) 0.3867(14.13%) 0.1557(6.91%)
150 0.2298(5.78%) 0.1456(3.83%) 0.3224(9.19%) 0.1769(4.15%) 0.3687(10.29%) 0.1473(5.43%) 0.3540(14.83%) 0.1696(8.80%)
200 0.2110(4.28%) 0.1435(2.98%) 0.3335(7.00%) 0.1543(4.07%) 0.3482(11.59%) 0.1807(10.85%) 0.3562(10.13%) 0.1568(7.13%)
250 0.2079(4.96%) 0.1216(2.69%) 0.3361(7.82%) 0.1613(5.03%) 0.3653(13.53%) 0.1396(6.50%) 0.3963(11.60%) 0.1395(6.66%)
300 0.2211(3.36%) 0.1277(2.69%) 0.3294(7.74%) 0.1734(5.61%) 0.3468(9.05%) 0.1588(8.55%) 0.3975(16.03%) 0.1537(8.60%)
350 0.2032(3.86%) 0.1266(3.06%) 0.3310(8.11%) 0.1678(5.00%) 0.3630(13.74%) 0.1696(10.73%) 0.3749(11.75%) 0.1713(7.12%)
400 0.2156(3.23%) 0.1212(2.21%) 0.3499(5.48%) 0.1573(2.22%) 0.3678(12.44%) 0.1651(10.40%) 0.3825(14.49%) 0.1978(10.70%)
450 0.2087(3.08%) 0.1243(2.86%) 0.3500(5.84%) 0.1541(3.73%) 0.3767(13.10%) 0.1623(9.62%) 0.3561(11.58%) 0.1876(11.54%)
500 0.2151(2.93%) 0.1187(2.30%) 0.3345(5.23%) 0.1741(3.51%) 0.3763(14.68%) 0.1754(10.73%) 0.3817(12.97%) 0.1730(8.78%)

A and B denote the solution sets obtained by Our Strategy and Existing Strategy, respectively.

TABLE IV
COVERAGE VALUES (MEAN AND STANDARD DEVIATION) OF THE BASIC NSGA-II ON OTRAPS UNDER PS = 250, DIFFERENT NG, REPAIR

STRATEGIES, AND SOFTWARE SYSTEMS

NG
Simple system Complex system Large system Larger system

ζ(A,B) ζ(B,A) ζ(A,B) ζ(B,A) ζ(A,B) ζ(B,A) ζ(A,B) ζ(B,A)

50 0.1960(5.95%) 0.1648(4.50%) 0.3039(9.86%) 0.2009(6.06%) 0.3583(12.13%) 0.1937(8.25%) 0.3181(15.97%) 0.2365(11.07%)
100 0.2272(6.48%) 0.1328(3.72%) 0.3135(6.40%) 0.1863(6.22%) 0.3224(11.20%) 0.1835(7.63%) 0.3357(15.83%) 0.2029(9.73%)
150 0.2385(5.23%) 0.1335(3.83%) 0.3356(6.76%) 0.1763(3.96%) 0.3864(12.78%) 0.1497(7.20%) 0.3869(11.09%) 0.1525(7.74%)
200 0.2112(4.31%) 0.1312(3.57%) 0.3419(6.37%) 0.1639(4.39%) 0.3697(10.86%) 0.1543(6.20%) 0.4308(17.83%) 0.1627(13.53%)
250 0.2079(4.96%) 0.1216(2.69%) 0.3361(7.82%) 0.1613(5.03%) 0.3653(13.53%) 0.1396(6.50%) 0.3963(11.60%) 0.1395(6.66%)
300 0.2007(5.02%) 0.1303(3.49%) 0.3275(8.10%) 0.1663(5.64%) 0.3191(9.87%) 0.1660(6.80%) 0.3689(10.38%) 0.1677(9.66%)
350 0.1999(3.78%) 0.1233(3.09%) 0.3352(5.35%) 0.1520(4.58%) 0.3447(13.83%) 0.1659(9.44%) 0.3460(13.71%) 0.1912(11.16%)
400 0.2177(4.13%) 0.1259(2.75%) 0.3268(7.46%) 0.1685(4.67%) 0.3045(10.59%) 0.1975(9.68%) 0.3685(8.30%) 0.1473(6.27%)
450 0.2075(4.23%) 0.1241(2.41%) 0.3225(6.85%) 0.1664(4.17%) 0.3681(14.88%) 0.1551(8.77%) 0.3496(12.63%) 0.1664(11.00%)
500 0.2192(5.64%) 0.1253(3.02%) 0.3456(5.63%) 0.1551(3.00%) 0.3065(12.36%) 0.1748(10.60%) 0.3077(11.98%) 0.2243(16.17%)

A and B denote the solution sets obtained by Our Strategy and Existing Strategy, respectively.

TABLE V
CAPACITY AND COVERAGE VALUES OF THE BASIC NSGA-II ON OTRAPS UNDER NG = 250, DIFFERENT PS , REPAIR STRATEGIES, AND SOFTWARE

SYSTEMS, REGARDING THE SOLUTIONS WHOSE RELIABILITY IS HIGHER THAN 0.99 IN ALL THE 30 RUNS

PS
Simple system Complex system Large system Larger system

|A| |B| ζ(A,B) ζ(B,A) |A| |B| ζ(A,B) ζ(B,A) |A| |B| ζ(A,B) ζ(B,A) |A| |B| ζ(A,B) ζ(B,A)

50 64 4 100.00% 3.13% 42 0 100.00% 0.00% 24 0 100.00% 0.00% 0 0 0.00% 0.00%
100 141 7 100.00% 0.00% 80 0 100.00% 0.00% 55 0 100.00% 0.00% 2 0 100.00% 0.00%
150 218 13 100.00% 0.00% 142 0 100.00% 0.00% 130 0 100.00% 0.00% 11 0 100.00% 0.00%
200 267 31 100.00% 0.00% 177 0 100.00% 0.00% 125 0 100.00% 0.00% 20 0 100.00% 0.00%
250 366 38 100.00% 0.00% 178 0 100.00% 0.00% 185 0 100.00% 0.00% 51 0 100.00% 0.00%
300 369 33 100.00% 0.00% 220 2 100.00% 0.00% 186 0 100.00% 0.00% 89 0 100.00% 0.00%
350 480 84 100.00% 2.71% 270 3 100.00% 0.00% 271 0 100.00% 0.00% 111 0 100.00% 0.00%
400 522 143 98.60% 2.49% 309 0 100.00% 0.00% 247 0 100.00% 0.00% 133 0 100.00% 0.00%
450 572 184 100.00% 2.45% 293 0 100.00% 0.00% 310 0 100.00% 0.00% 188 0 100.00% 0.00%
500 632 261 100.00% 0.00% 300 6 100.00% 0.00% 359 0 100.00% 0.00% 229 0 100.00% 0.00%

A and B denote the satisfactory solution sets obtained by Our Strategy and Existing Strategy, respectively.

TABLE VI
CAPACITY AND COVERAGE VALUES OF THE BASIC NSGA-II ON OTRAPS UNDER PS = 250, DIFFERENT NG, REPAIR STRATEGIES, AND SOFTWARE

SYSTEMS, REGARDING THE SOLUTIONS WHOSE RELIABILITY IS HIGHER THAN 0.99 IN ALL THE 30 RUNS

NG
Simple system Complex system Large system Larger system

|A| |B| ζ(A,B) ζ(B,A) |A| |B| ζ(A,B) ζ(B,A) |A| |B| ζ(A,B) ζ(B,A) |A| |B| ζ(A,B) ζ(B,A)

50 40 0 100.00% 0.00% 1 0 100.00% 0.00% 1 0 100.00% 0.00% 0 0 0.00% 0.00%
100 213 9 100.00% 1.88% 54 0 100.00% 0.00% 16 0 100.00% 0.00% 0 0 0.00% 0.00%
150 281 2 100.00% 0.00% 124 0 100.00% 0.00% 82 0 100.00% 0.00% 0 0 0.00% 0.00%
200 325 33 100.00% 1.23% 190 0 100.00% 0.00% 127 0 100.00% 0.00% 9 0 100.00% 0.00%
250 366 38 100.00% 0.00% 178 0 100.00% 0.00% 185 0 100.00% 0.00% 51 0 100.00% 0.00%
300 363 58 96.55% 7.44% 211 3 100.00% 0.00% 202 0 100.00% 0.00% 106 0 100.00% 0.00%
350 364 105 98.10% 1.65% 238 10 100.00% 0.00% 236 1 100.00% 0.00% 179 0 100.00% 0.00%
400 357 141 97.87% 1.96% 216 14 100.00% 0.00% 235 0 100.00% 0.00% 230 2 100.00% 0.00%
450 350 145 99.31% 2.00% 251 15 100.00% 0.40% 247 6 100.00% 0.00% 270 11 100.00% 0.00%
500 367 168 98.81% 35.69% 238 26 100.00% 0.00% 252 1 100.00% 0.00% 242 24 100.00% 0.00%

A and B denote the satisfactory solution sets obtained by Our Strategy and Existing Strategy, respectively.
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TABLE VII
PURE DIVERSITY VALUES (MEAN AND STANDARD DEVIATION) OF THE BASIC NSGA-II, Z-SCORE OPERATION BASED NSGA-II ON OTRAPS UNDER

NG = 250, DIFFERENT PS , AND SOFTWARE SYSTEMS

PS
Simple system Complex system

Z-score Basic Z-score Basic
50 4.202e+07±9.555e+06 4.222e+07±7.368e+06 4.324e+07±1.022e+07 4.283e+07±9.53e+06
100 7.228e+07±8.929e+06 5.375e+07±7.477e+06 7.247e+07±1.243e+07 6.326e+07±6.45e+06
150 7.875e+07±9.571e+06 6.684e+07±7.353e+06 9.277e+07±9.921e+06 7.809e+07±9.138e+06
200 8.746e+07±5.506e+06 7.12e+07±7.931e+06 1.089e+08±9.291e+06 8.436e+07±8.07e+06
250 1.022e+08±8.119e+06 7.901e+07±5.947e+06 1.236e+08±1.129e+07 9.226e+07±1.02e+07
300 1.098e+08±1.006e+07 8.212e+07±7.483e+06 1.338e+08±8.753e+06 9.846e+07±8.925e+06
350 1.182e+08±8.745e+06 8.82e+07±8.055e+06 1.429e+08±7.093e+06 1.062e+08±1.042e+07
400 1.258e+08±1.009e+07 9.214e+07±7.119e+06 1.547e+08±9.425e+06 1.088e+08±8.431e+06
450 1.331e+08±8.812e+06 9.663e+07±8.598e+06 1.631e+08±8.185e+06 1.198e+08±9.562e+06
500 1.408e+08±1.042e+07 1.029e+08±8.199e+06 1.708e+08±9.419e+06 1.214e+08±9.337e+06

PS
Large system Larger system

Z-score Basic Z-score Basic
50 3.699e+07±1.482e+07 4.082e+07±1.063e+07 3.075e+07±3.327e+07 3.632e+07±3.26e+07
100 7.444e+07±1.067e+07 6.507e+07±1.026e+07 1.206e+08±1.981e+07 1.017e+08±2.513e+07
150 9.801e+07±1.165e+07 7.79e+07±1.052e+07 1.527e+08±1.854e+07 1.239e+08±1.516e+07
200 1.167e+08±1.323e+07 8.808e+07±9.527e+06 1.811e+08±1.791e+07 1.33e+08±1.842e+07
250 1.334e+08±1.217e+07 9.845e+07±1.019e+07 2.083e+08±2.109e+07 1.469e+08±1.356e+07
300 1.436e+08±8.006e+06 1.047e+08±9.595e+06 2.266e+08±1.859e+07 1.661e+08±1.587e+07
350 1.594e+08±1.316e+07 1.111e+08±9.606e+06 2.453e+08±1.603e+07 1.725e+08±1.593e+07
400 1.655e+08±1.22e+07 1.153e+08±7.927e+06 2.728e+08±1.739e+07 1.866e+08±1.673e+07
450 1.784e+08±1.11e+07 1.209e+08±1.079e+07 2.825e+08±1.584e+07 1.881e+08±1.581e+07
500 1.864e+08±1.045e+07 1.292e+08±1.018e+07 3.011e+08±1.392e+07 1.959e+08±1.611e+07

TABLE VIII
PURE DIVERSITY VALUES (MEAN AND STANDARD DEVIATION) OF THE BASIC NSGA-II, Z-SCORE OPERATION BASED NSGA-II WITH Z-SCORES ON

OTRAPS UNDER PS = 250, DIFFERENT NG, AND SOFTWARE SYSTEMS

NG
Simple system Complex system

Z-score Basic Z-score Basic
50 9.438e+07±8.685e+06 7.768e+07±8.131e+06 1.046e+08±9.712e+06 9.062e+07±9.635e+06
100 9.616e+07±8.036e+06 8.011e+07±7.986e+06 1.156e+08±1.438e+07 9.377e+07±1.011e+07
150 1.001e+08±9.968e+06 7.981e+07±6.951e+06 1.152e+08±7.874e+06 9.248e+07±9.03e+06
200 1.023e+08±9.467e+06 8.139e+07±8.751e+06 1.181e+08±1.004e+07 9.016e+07±8.044e+06
250 1.022e+08±8.119e+06 7.901e+07±5.947e+06 1.236e+08±1.129e+07 9.226e+07±1.02e+07
300 1.04e+08±7.981e+06 8.015e+07±7.47e+06 1.276e+08±1.113e+07 9.483e+07±8.871e+06
350 1.036e+08±8.409e+06 7.735e+07±7.148e+06 1.246e+08±1.089e+07 9.174e+07±1.137e+07
400 1.032e+08±9.468e+06 7.855e+07±6.871e+06 1.227e+08±8.809e+06 9.187e+07±9.191e+06
450 1.055e+08±1.108e+07 7.956e+07±8.839e+06 1.252e+08±9.534e+06 9.361e+07±9.968e+06
500 1.026e+08±8.206e+06 7.903e+07±7.145e+06 1.265e+08±9.638e+06 9.366e+07±9.818e+06

NG
Large system Larger system

Z-score Basic Z-score Basic
50 1.049e+08±8.821e+06 8.948e+07±8.299e+06 1.435e+08±1.398e+07 1.348e+08±1.359e+07
100 1.196e+08±1.069e+07 9.239e+07±9.053e+06 1.773e+08±1.74e+07 1.489e+08±1.46e+07
150 1.24e+08±1.231e+07 9.526e+07±1.08e+07 1.89e+08±1.572e+07 1.434e+08±1.532e+07
200 1.275e+08±1.159e+07 9.769e+07±1e+07 1.962e+08±1.226e+07 1.515e+08±1.748e+07
250 1.334e+08±1.217e+07 9.845e+07±1.019e+07 2.083e+08±2.109e+07 1.469e+08±1.356e+07
300 1.287e+08±1.145e+07 9.615e+07±9.994e+06 2.098e+08±1.643e+07 1.401e+08±1.198e+07
350 1.351e+08±1.146e+07 9.735e+07±9.643e+06 2.092e+08±1.497e+07 1.458e+08±1.607e+07
400 1.37e+08±1.024e+07 9.832e+07±1.126e+07 2.182e+08±2.204e+07 1.52e+08±1.777e+07
450 1.366e+08±1.33e+07 9.557e+07±8.701e+06 2.174e+08±1.223e+07 1.455e+08±1.502e+07
500 1.372e+08±9.728e+06 9.686e+07±1.069e+07 2.227e+08±1.825e+07 1.519e+08±2.11e+07

values of NSGA-II-TRA are far greater than those of WNS-
MODE on 111 instances and HaD-MOEA on 103 instances,
respectively. In the case of larger system, both WNS-MODE
and HaD-MOEA can almost find no satisfactory solution. The
coverage values of NSGA-II-TRA vs WNS-MODE are better
than those of WNS-MODE vs NSGA-II-TRA on 95 instances.
In addition, the coverage values of NSGA-II-TRA vs HaD-
MOEA are much better than those of HaD-MOEA vs NSGA-
II-TRA on 111 instances in which NSGA-II-TRA can almost

completely cover the solutions given by HaD-MOEA.

In brief, NSGA-II-TRA outperforms WNS-MODE and
HaD-MOEA on both the quantity and the quality of the
available testing-time allocation schemes. However, an impor-
tant aspect that should not be ignored is that the coverage
difference between NSGA-II-TRA and HaD-MOEA which are
both developed based on NSGA-II is smaller than that between
Our Strategy and Existing Strategy in the first experiment. The
reason is that better diversity inevitably brings about a more
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TABLE IX
COVERAGE VALUES (MEAN AND STANDARD DEVIATION) OF IR-NSGA-II, WNS-MODE, AND HAD-MOEA ON OTRAPS UNDER DIFFERENT

INSTANCES AND SYSTEMS

Instance
Simple system Complex system

ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A) ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A)

1 0.5125(3.60%) 0.0667(1.45%) 0.1953(3.98%) 0.0558(1.31%) 0.5340(3.79%) 0.1035(3.58%) 0.2677(8.34%) 0.0917(3.16%)
2 0.4828(3.34%) 0.0658(2.42%) 0.2162(4.57%) 0.0520(1.63%) 0.5500(3.35%) 0.1052(3.85%) 0.2190(5.75%) 0.1032(3.43%)
3 0.4815(3.14%) 0.0707(3.01%) 0.2043(5.35%) 0.0463(2.10%) 0.5215(3.20%) 0.1150(3.22%) 0.2290(6.69%) 0.1132(3.21%)
4 0.5402(2.95%) 0.0780(2.07%) 0.2213(4.48%) 0.0492(1.64%) 0.5555(3.35%) 0.1020(1.77%) 0.2188(5.01%) 0.1082(2.29%)
5 0.5593(2.25%) 0.0512(1.78%) 0.2535(5.33%) 0.0427(1.37%) 0.5240(3.42%) 0.1150(3.67%) 0.2225(6.26%) 0.1117(3.49%)
6 0.5098(3.67%) 0.0690(3.25%) 0.2243(6.15%) 0.0548(2.95%) 0.5387(3.73%) 0.1043(3.63%) 0.2152(6.61%) 0.0907(3.19%)
7 0.4987(3.66%) 0.0657(2.29%) 0.1977(5.38%) 0.0587(2.41%) 0.5760(3.13%) 0.1008(4.00%) 0.1923(6.52%) 0.1033(3.64%)
8 0.5372(3.26%) 0.0733(1.93%) 0.2590(6.23%) 0.0590(1.58%) 0.5138(4.26%) 0.1197(3.85%) 0.2030(11.03%) 0.1135(4.12%)
9 0.5462(2.79%) 0.0587(2.28%) 0.2053(4.07%) 0.0580(1.97%) 0.5972(3.34%) 0.1077(5.87%) 0.1853(6.09%) 0.1355(4.62%)
10 0.5462(2.80%) 0.0910(4.27%) 0.2063(5.83%) 0.0495(1.93%) 0.5455(3.58%) 0.1053(6.43%) 0.2500(7.76%) 0.0987(4.02%)
11 0.5462(2.81%) 0.0713(2.42%) 0.2257(5.26%) 0.0530(1.81%) 0.5505(3.92%) 0.1348(5.46%) 0.1723(7.68%) 0.1335(5.64%)
12 0.5462(2.82%) 0.0705(2.13%) 0.2240(4.78%) 0.0472(1.47%) 0.5695(3.11%) 0.0983(2.58%) 0.2293(4.61%) 0.0985(2.64%)
13 0.5462(2.83%) 0.0687(1.96%) 0.2492(5.62%) 0.0580(1.91%) 0.5672(3.03%) 0.0887(3.68%) 0.1945(6.47%) 0.1088(4.11%)
14 0.5462(2.84%) 0.0558(1.45%) 0.2308(6.18%) 0.0408(1.11%) 0.5697(3.47%) 0.1168(4.20%) 0.2282(7.34%) 0.1220(3.58%)
15 0.5462(2.85%) 0.0615(1.89%) 0.2013(4.16%) 0.0660(1.65%) 0.5110(3.26%) 0.1260(4.73%) 0.2148(5.59%) 0.1153(4.22%)
16 0.5462(2.86%) 0.0553(1.66%) 0.1888(3.72%) 0.0613(2.26%) 0.5532(3.44%) 0.1265(4.97%) 0.2105(7.42%) 0.1162(4.26%)
17 0.5462(2.87%) 0.0545(1.72%) 0.2310(5.31%) 0.0465(1.12%) 0.5177(3.75%) 0.1223(3.25%) 0.2160(9.57%) 0.1190(4.27%)
18 0.5462(2.88%) 0.0693(2.57%) 0.2238(7.80%) 0.0513(1.73%) 0.5647(3.21%) 0.1047(3.67%) 0.2367(7.05%) 0.0995(3.41%)
19 0.5462(2.89%) 0.0635(2.37%) 0.2662(6.04%) 0.0530(1.74%) 0.5597(3.18%) 0.1022(3.76%) 0.2077(4.52%) 0.1040(2.84%)
20 0.5462(2.90%) 0.0528(1.51%) 0.1907(4.91%) 0.0422(2.22%) 0.5187(2.71%) 0.1080(3.05%) 0.2363(8.47%) 0.1015(2.30%)
21 0.5462(2.91%) 0.0838(2.46%) 0.2200(4.85%) 0.0662(1.88%) 0.5272(3.39%) 0.1203(4.10%) 0.2272(6.89%) 0.0950(3.51%)
22 0.5462(2.92%) 0.0677(3.91%) 0.2207(5.21%) 0.0523(1.83%) 0.5550(2.93%) 0.1108(4.01%) 0.2275(6.94%) 0.1070(3.94%)
23 0.5462(2.93%) 0.0650(1.84%) 0.2588(6.31%) 0.0595(2.01%) 0.5518(3.71%) 0.1097(4.32%) 0.2323(8.07%) 0.1067(3.41%)
24 0.5462(2.94%) 0.0595(1.72%) 0.1938(3.41%) 0.0772(2.22%) 0.5600(3.16%) 0.0928(1.77%) 0.2087(6.33%) 0.0997(2.67%)
25 0.5462(2.95%) 0.0553(1.80%) 0.1893(4.20%) 0.0633(1.94%) 0.5817(3.94%) 0.1058(3.11%) 0.2462(9.09%) 0.1033(2.84%)
26 0.5462(2.96%) 0.0635(1.99%) 0.2132(5.24%) 0.0533(1.56%) 0.5488(2.94%) 0.0983(4.08%) 0.2133(5.53%) 0.1008(3.49%)
27 0.5462(2.97%) 0.0577(2.27%) 0.2118(4.65%) 0.0500(2.06%) 0.5493(3.39%) 0.1143(3.32%) 0.2245(7.98%) 0.1138(2.79%)
28 0.5462(2.98%) 0.0775(3.36%) 0.2328(5.63%) 0.0512(2.07%) 0.5377(4.06%) 0.1080(4.98%) 0.2328(7.30%) 0.1068(3.91%)
29 0.5462(2.99%) 0.0482(1.98%) 0.2152(4.64%) 0.0420(1.47%) 0.5448(3.53%) 0.1292(5.87%) 0.2157(9.27%) 0.1142(6.04%)
30 0.5462(2.10%) 0.0642(1.83%) 0.2360(5.62%) 0.0605(2.03%) 0.5302(4.55%) 0.1050(3.47%) 0.2232(7.98%) 0.0987(3.25%)

Instance
Large system Larger system

ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A) ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A)

1 0.5833(4.55%) 0.0988(3.94%) 0.1692(7.15%) 0.1512(6.66%) 0.5995(4.01%) 0.1315(4.41%) 0.3362(13.86%) 0.0958(7.60%)
2 0.6048(6.28%) 0.0915(5.00%) 0.1978(9.31%) 0.1362(5.92%) 0.6253(4.04%) 0.1040(3.08%) 0.2983(12.93%) 0.1330(12.42%)
3 0.6032(5.46%) 0.0815(3.57%) 0.2355(10.08%) 0.1283(5.77%) 0.6313(4.58%) 0.1093(4.80%) 0.3130(12.82%) 0.0933(5.99%)
4 0.5857(4.30%) 0.0863(4.20%) 0.1873(7.23%) 0.1357(5.28%) 0.6167(4.39%) 0.1288(4.94%) 0.2695(17.50%) 0.1665(17.78%)
5 0.5838(4.64%) 0.1185(5.88%) 0.2138(7.70%) 0.1627(9.05%) 0.6240(5.66%) 0.1138(4.57%) 0.2497(13.56%) 0.1773(17.17%)
6 0.5865(4.92%) 0.1018(4.66%) 0.2398(9.77%) 0.1422(6.34%) 0.5920(5.71%) 0.1310(5.67%) 0.3403(18.42%) 0.1207(9.92%)
7 0.5768(4.97%) 0.1137(5.58%) 0.2230(9.99%) 0.1503(6.87%) 0.6033(5.16%) 0.1347(4.90%) 0.3445(13.30%) 0.1048(7.41%)
8 0.5610(4.26%) 0.1087(3.98%) 0.2198(10.64%) 0.1410(6.39%) 0.6127(4.48%) 0.1185(4.21%) 0.2767(11.18%) 0.1213(10.55%)
9 0.5952(5.44%) 0.1048(5.33%) 0.1275(5.68%) 0.1860(6.25%) 0.6192(4.46%) 0.1170(3.94%) 0.2875(16.35%) 0.1492(13.20%)
10 0.5963(4.56%) 0.0943(3.95%) 0.2378(9.52%) 0.1378(5.66%) 0.6168(5.34%) 0.1220(4.92%) 0.2768(12.70%) 0.1318(8.91%)
11 0.5952(6.33%) 0.0958(5.97%) 0.2262(10.92%) 0.1357(8.51%) 0.6187(5.89%) 0.1190(4.67%) 0.3277(16.99%) 0.1627(17.75%)
12 0.5995(3.65%) 0.1003(4.20%) 0.2252(8.07%) 0.1422(5.01%) 0.6220(5.68%) 0.1345(6.68%) 0.3010(16.67%) 0.1288(10.65%)
13 0.5952(3.88%) 0.0868(3.54%) 0.2222(9.80%) 0.1260(4.96%) 0.6192(5.59%) 0.1220(4.99%) 0.2545(14.56%) 0.1430(10.22%)
14 0.6063(4.66%) 0.0892(3.74%) 0.2067(6.77%) 0.1383(6.01%) 0.5955(5.46%) 0.1187(3.97%) 0.3257(16.13%) 0.1097(10.53%)
15 0.5875(4.88%) 0.0977(5.73%) 0.2097(9.03%) 0.1363(6.24%) 0.6050(5.22%) 0.1290(5.61%) 0.3050(17.14%) 0.1410(10.11%)
16 0.6058(6.02%) 0.1032(7.73%) 0.1998(9.27%) 0.1737(9.65%) 0.6067(5.32%) 0.1380(5.65%) 0.3145(22.33%) 0.1645(14.01%)
17 0.5813(6.25%) 0.1143(5.43%) 0.2005(12.83%) 0.1720(10.19%) 0.6330(3.91%) 0.1110(3.55%) 0.2823(13.79%) 0.1442(11.81%)
18 0.5652(4.26%) 0.1122(4.56%) 0.2265(10.39%) 0.1507(6.66%) 0.6107(7.01%) 0.1178(5.38%) 0.2340(13.52%) 0.1650(16.15%)
19 0.6047(3.88%) 0.0855(3.67%) 0.2140(7.95%) 0.1383(4.61%) 0.6278(5.77%) 0.1120(4.01%) 0.3215(13.88%) 0.1060(9.52%)
20 0.6062(4.56%) 0.0898(4.01%) 0.1945(6.97%) 0.1485(4.78%) 0.6298(3.90%) 0.1092(3.38%) 0.3047(14.92%) 0.1245(10.99%)
21 0.6122(4.99%) 0.0817(3.13%) 0.2213(6.89%) 0.1157(4.96%) 0.6248(5.08%) 0.1132(4.90%) 0.2762(12.81%) 0.1282(12.52%)
22 0.6002(4.54%) 0.0950(5.23%) 0.1980(8.37%) 0.1473(6.93%) 0.5912(5.50%) 0.1615(7.24%) 0.3493(18.62%) 0.1275(12.27%)
23 0.5837(4.91%) 0.1017(3.61%) 0.1857(11.16%) 0.1672(7.28%) 0.6060(5.99%) 0.1228(4.57%) 0.3627(18.97%) 0.1182(12.52%)
24 0.6005(3.72%) 0.0768(2.36%) 0.2055(9.20%) 0.1292(3.85%) 0.5970(4.61%) 0.1268(4.28%) 0.3103(9.73%) 0.1003(6.42%)
25 0.6063(5.33%) 0.0800(2.94%) 0.1673(6.19%) 0.1410(4.63%) 0.6238(4.76%) 0.1133(3.49%) 0.3580(17.01%) 0.1097(10.98%)
26 0.6113(5.12%) 0.1037(6.39%) 0.1918(10.11%) 0.1678(8.38%) 0.6447(7.52%) 0.1145(5.40%) 0.2628(17.18%) 0.1880(16.19%)
27 0.5743(3.93%) 0.1193(5.43%) 0.2070(10.88%) 0.1557(7.48%) 0.6075(3.98%) 0.1352(4.74%) 0.3320(17.44%) 0.1183(13.04%)
28 0.5970(5.66%) 0.1005(4.49%) 0.1590(6.91%) 0.1645(7.97%) 0.6308(6.68%) 0.1175(5.41%) 0.3163(20.59%) 0.1752(18.82%)
29 0.6065(4.77%) 0.0942(5.34%) 0.1902(9.94%) 0.1487(10.36%) 0.6155(4.73%) 0.1303(4.33%) 0.3362(15.64%) 0.1135(10.49%)
30 0.6107(4.79%) 0.0965(4.03%) 0.2140(7.34%) 0.1382(6.27%) 0.6118(6.46%) 0.1330(6.46%) 0.3220(22.73%) 0.1650(20.59%)

A, B, and C denote the solution sets obtained by IR-NSGA-II, WNS-MODE, and HaD-MOEA, respectively.
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TABLE X
CAPACITY AND COVERAGE VALUES OF IR-NSGA-II, WNS-MODE, AND HAD-MOEA ON OTRAPS UNDER DIFFERENT INSTANCES AND SYSTEMS

Instance
Simple system Complex system

|A| |B| |C| ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A) |A| |B| |C| ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A)

1 52 15 7 66.67% 44.23% 100.00% 1.92% 14 0 0 100.00% 0.00% 100.00% 0.00%
2 20 2 0 50.00% 0.00% 100.00% 0.00% 58 21 1 95.24% 48.28% 100.00% 0.00%
3 33 16 0 31.25% 96.97% 100.00% 0.00% 28 2 0 50.00% 46.43% 100.00% 0.00%
4 116 58 94 72.41% 92.24% 100.00% 6.90% 73 16 10 81.25% 19.18% 100.00% 0.00%
5 141 62 156 90.32% 50.35% 100.00% 3.55% 28 11 0 63.64% 39.29% 100.00% 0.00%
6 68 47 4 70.21% 85.29% 100.00% 2.94% 68 16 4 93.75% 25.00% 100.00% 0.00%
7 51 16 4 75.00% 19.61% 100.00% 13.73% 109 40 74 90.00% 58.72% 100.00% 2.75%
8 88 52 75 88.46% 78.41% 100.00% 5.68% 32 5 0 0.00% 28.13% 100.00% 0.00%
9 130 60 170 76.67% 65.38% 99.41% 21.54% 155 54 181 90.74% 35.48% 99.45% 12.90%
10 41 18 9 50.00% 82.93% 100.00% 12.20% 37 5 0 100.00% 10.81% 100.00% 0.00%
11 131 61 103 95.08% 41.22% 100.00% 6.87% 67 23 22 78.26% 22.39% 100.00% 10.45%
12 6 0 0 100.00% 0.00% 100.00% 0.00% 101 33 68 84.85% 31.68% 100.00% 1.98%
13 134 65 107 89.23% 41.04% 100.00% 1.49% 77 20 2 80.00% 38.96% 100.00% 0.00%
14 16 1 0 0.00% 6.25% 100.00% 0.00% 78 26 41 69.23% 74.36% 100.00% 3.85%
15 66 34 30 85.29% 42.42% 100.00% 3.03% 7 0 0 100.00% 0.00% 100.00% 0.00%
16 114 51 128 88.24% 43.86% 97.66% 19.30% 88 38 20 84.21% 45.45% 100.00% 2.27%
17 82 33 21 75.76% 53.66% 100.00% 10.98% 33 1 0 0.00% 63.64% 100.00% 0.00%
18 108 49 94 91.84% 79.63% 98.94% 17.59% 90 32 46 81.25% 20.00% 100.00% 1.11%
19 203 95 258 94.74% 59.11% 100.00% 36.95% 97 29 49 89.66% 25.77% 100.00% 0.00%
20 50 12 10 66.67% 52.00% 100.00% 8.00% 1 0 0 100.00% 0.00% 100.00% 0.00%
21 128 60 106 76.67% 42.19% 100.00% 2.34% 42 16 0 43.75% 57.14% 100.00% 0.00%
22 141 61 158 77.05% 54.61% 99.37% 18.44% 64 20 1 75.00% 54.69% 100.00% 0.00%
23 115 42 29 95.24% 38.26% 100.00% 0.87% 66 17 9 82.35% 33.33% 100.00% 1.52%
24 79 40 26 80.00% 75.95% 100.00% 1.27% 86 20 20 95.00% 12.79% 100.00% 1.16%
25 110 65 151 84.62% 74.55% 98.01% 15.45% 141 64 142 87.50% 55.32% 100.00% 5.67%
26 81 30 56 76.67% 50.62% 98.21% 13.58% 53 5 0 80.00% 52.83% 100.00% 0.00%
27 39 20 0 60.00% 64.10% 100.00% 0.00% 72 23 15 73.91% 40.28% 100.00% 1.39%
28 61 34 4 64.71% 83.61% 100.00% 8.20% 20 1 0 0.00% 10.00% 100.00% 0.00%
29 22 5 0 20.00% 27.27% 100.00% 0.00% 64 18 9 72.22% 45.31% 100.00% 0.00%
30 123 47 73 89.36% 59.35% 100.00% 0.81% 23 7 0 57.14% 0.00% 100.00% 0.00%

Instance
Large system Larger system

|A| |B| |C| ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A) |A| |B| |C| ζ(A,B) ζ(B,A) ζ(A,C) ζ(C,A)

1 8 0 0 100.00% 0.00% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%
2 39 5 3 100.00% 17.95% 100.00% 2.56% 38 0 0 100.00% 0.00% 100.00% 0.00%
3 37 0 0 100.00% 0.00% 100.00% 0.00% 95 0 0 100.00% 0.00% 100.00% 0.00%
4 14 1 0 100.00% 0.00% 100.00% 0.00% 21 0 0 100.00% 0.00% 100.00% 0.00%
5 19 0 0 100.00% 0.00% 100.00% 0.00% 7 0 0 100.00% 0.00% 100.00% 0.00%
6 24 0 0 100.00% 0.00% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%
7 16 2 0 0.00% 18.75% 100.00% 0.00% 21 0 0 100.00% 0.00% 100.00% 0.00%
8 24 0 0 100.00% 0.00% 100.00% 0.00% 55 0 0 100.00% 0.00% 100.00% 0.00%
9 72 15 23 86.67% 36.11% 100.00% 0.00% 22 0 0 100.00% 0.00% 100.00% 0.00%
10 33 2 0 50.00% 6.06% 100.00% 0.00% 72 0 2 100.00% 0.00% 100.00% 0.00%
11 35 4 0 75.00% 8.57% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%
12 52 10 10 100.00% 21.15% 100.00% 0.00% 45 0 0 100.00% 0.00% 100.00% 0.00%
13 35 3 0 33.33% 31.43% 100.00% 0.00% 49 0 0 100.00% 0.00% 100.00% 0.00%
14 38 3 0 66.67% 31.58% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%
15 0 0 0 0.00% 0.00% 0.00% 0.00% 3 0 0 100.00% 0.00% 100.00% 0.00%
16 59 12 13 75.00% 27.12% 100.00% 1.69% 23 0 0 100.00% 0.00% 100.00% 0.00%
17 12 0 0 100.00% 0.00% 100.00% 0.00% 77 1 0 100.00% 5.19% 100.00% 0.00%
18 28 5 0 40.00% 78.57% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%
19 35 1 2 0.00% 11.43% 100.00% 0.00% 13 0 0 100.00% 0.00% 100.00% 0.00%
20 45 1 0 0.00% 8.89% 100.00% 0.00% 58 0 0 100.00% 0.00% 100.00% 0.00%
21 14 0 0 100.00% 0.00% 100.00% 0.00% 58 0 0 100.00% 0.00% 100.00% 0.00%
22 49 12 0 75.00% 32.65% 100.00% 0.00% 14 0 0 100.00% 0.00% 100.00% 0.00%
23 36 4 0 50.00% 55.56% 100.00% 0.00% 9 0 0 100.00% 0.00% 100.00% 0.00%
24 34 0 0 100.00% 0.00% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%
25 73 13 42 69.23% 39.73% 100.00% 2.74% 20 0 0 100.00% 0.00% 100.00% 0.00%
26 61 4 4 100.00% 6.56% 100.00% 0.00% 97 0 0 100.00% 0.00% 100.00% 0.00%
27 33 4 0 50.00% 45.45% 100.00% 0.00% 24 0 0 100.00% 0.00% 100.00% 0.00%
28 0 0 0 0.00% 0.00% 0.00% 0.00% 15 0 0 100.00% 0.00% 100.00% 0.00%
29 54 5 12 60.00% 38.89% 100.00% 0.00% 60 0 0 100.00% 0.00% 100.00% 0.00%
30 21 0 0 100.00% 0.00% 100.00% 0.00% 0 0 0 0.00% 0.00% 0.00% 0.00%

A, B, and C denote the satisfactory solution sets obtained by IR-NSGA-II, WNS-MODE, and HaD-MOEA, respectively.
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Fig. 8. Sensitivity analysis for NSGA-II-TRA on the five modular parameters, respectively.

even distribution of solutions and thus reduces the number
of repeated and similar solutions to a certain extent. This
suggests that excessive pursuit of high diversity values may
not be beneficial for MOEAs to solve OTRAPs.

E. Sensitivity Analysis

To evaluate the sensitivity of NSGA-II-TRA with respect to
the five modular parameters in Table I, we examine how much
the coverage value fluctuates with the increase of the value of

the modular parameters in the pre-defined intervals. From 30
independent runs and 100,000 evaluations in each run, the
relative changes of the coverage values corresponding to the
increases of ajk, bjk, cjk1 , cjk2 , and cjk3 , respectively, are shown
in Fig. 8, in which the coverage value is the percentage of the
solutions in the previous case that is covered by the solutions
in the current case.

In Fig. 8(a), the initial case is that the values of ajk are 30.0
for each serial module and 200.0 for each parallel module,
respectively. The average coverage value changes little and is
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often small with the increase of the value of ajk. The reason is
that ajk is the mean value of the total errors in Mjk, and with
the increase of the value of ajk, the same amount of consumed
testing time may result in lower reliability. It means that the
obtained solutions under bigger values of ajk hardly cover the
solutions under smaller values of ajk.

In Fig. 8(b), the initial case is that the values of bjk are
0.0058 for each serial module and 0.0003 for each parallel
module, respectively. The average coverage value is often great
with the increase of the value of bjk. This is because bjk is
the rate of detected errors in Mjk, and with the increase of
the value of bjk, the same amount of consumed testing time
may produce higher reliability. This implies that the obtained
solutions under bigger values of bjk may easily cover the
solutions under smaller values of bjk. Another noteworthy
aspect is that the average coverage value in Fig. 8(b) is in
a downward trend, which suggests that when bjk increases
to a certain value, it may be difficult for the reliability to be
greatly improved. This is due to the fact that the number of
possible tests for even simple modules is practically infinite.

In Fig. 8(c), the initial case is that the value of cjk1 is 3.4
for each module. In Fig. 8(d), the initial case is that the value
of cjk2 is 6.0 for each module. It can be seen that, in Fig. 8(c)
and Fig. 8(d), the average coverage value and its fluctuations
are small. An explanation is that with the increase of the value
of cjk1 or cjk2 , the same amount of consumed testing time may
generate higher cost. This means that it is difficult for the
obtained solutions under bigger values of cjk1 or cjk2 to cover
the solutions under smaller values of cjk1 or cjk2 .

In Fig. 8(e), the initial case is that the values of cjk3 are
4.0 for each serial module and 4.9 for each parallel module,
respectively. It is clear that the average coverage value in
Fig. 8(e) is higher than that in Fig. 8(c) and Fig. 8(d). This is
because with the increase of the value of cjk3 , the same amount
of consumed testing time may bring lower cost, and thus the
obtained solutions under bigger values of cjk3 may easily cover
the solutions under smaller values of cjk3 . However, the average
coverage value in Fig. 8(e) is lower than that in Fig. 8(b),
which suggests that the effect of cjk3 on testing cost is smaller
than that of bjk on reliability. This is in line with the natural
characteristic of these two parameters.

In general, the curves for the coverage value fluctuate a little
between some ranges. These fluctuations may be attributed
to the fact that NSGA-II-TRA gets trapped in local optima.
However, the changes are small and the sensitivities are at
acceptable levels. NSGA-II-TRA seems robust on the five
modular parameters. The goodness of the solutions obtained
by NSGA-II-TRA does not fluctuate greatly with the change
of the parameter values.

V. CONCLUSIONS AND OUTLOOK

Software testing is recognized as the most costly and
resource-consuming part of software development [21]. One of
the most challenging problems that arise in the software testing
phase is the optimal testing resource (or time) allocation. This
involves allocating limited testing resources to each module in
a software system such that the reliability of the entire system

is maximized, the testing cost is minimized, and the consumed
testing time is minimized simultaneously [18]. In this paper,
we have developed and evaluated a NSGA-II and constraint
handling based multi-objective optimization approach (called
NSGA-II-TRA) that finds high quality testing-time allocation
schemes effectively. The strength of our approach is founded
upon two main components:

1) We devise a group of novel heuristics for constraint
handling in solving OTRAPs. Unlike previous work,
these heuristics only repair the values of the selected
genetic genes rather than all the gene values in off-
spring. By applying these heuristics, NSGA-II-TRA is
able to preserve parental characteristics in offspring and
also maintain useful genetic information. This is helpful
to strengthen the effectiveness of genetic operators in
NSGA-II-TRA and to improve the quality of solutions.

2) We introduce the z-scores and use the standardized Eu-
clidean distance to estimate the neighbor relationship
among individuals more accurately. By applying this
approach, NSGA-II-TRA is able to reduce repeated or
similar solutions.

Altogether, these components allow NSGA-II-TRA to make
good performance gains over the existing MOEAs (e.g.,
WNS-MODE and HaD-MOEA) on the capacity, coverage,
and pure diversity values. The experimental results illustrate
that NSGA-II-TRA is robust on the modular parameters and
obtains more and higher quality satisfactory solutions that are
not dominated by those obtained by WNS-MODE and HaD-
MOEA on almost all the testing instances, especially when the
problem size is large. Therefore, compared to WNS-MODE
and HaD-MOEA, NSGA-II-TRA can provide a software tester
with a lot of additional better choices to achieve different
practical goals on reliability, cost, and time, and thus benefit
organizing the whole testing phase.

We do not imply in this paper that NSGA-II-TRA is always
superior to WNS-MODE and HaD-MOEA. From a more prac-
tical viewpoint, this work can be seen as an initial step toward
a more reasonable guide to solving OTRAPs and evaluating
the solution quality from the perspective of multi-objective
optimization, which may be helpful for designers and testers
of software systems. This work still has some limitations to be
improved in future research: our analysis was based only on
four simulated software systems; these algorithms (i.e., WNS-
MODE, HaD-MOEA, and NSGA-II-TRA) are not evaluated
on real-world test instances and compared with a real-world
testing resource allocator that is actually in use by a human
manager; the strengths and weaknesses of these algorithms
are not studied on OTRAPs in comparison with alternative
MOEAs. In addition to the above, it would be interesting to
investigate the following topics:

1) Software testing is a costly and unavoidable task, so more
constraint conditions such as reliability, budget, and skill
constraints could be considered in OTRAPs.

2) The results in this paper show that valuable Pareto-
optimal solutions for OTRAPs are in the upper boundary
region and thus raise an open question: how to make
MOEAs search only in the pre-defined acceptable region
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for user satisfaction?
3) In practice, users may put forward higher requirement

of reliability or functionality. This could lead to the
change of the number of modules during the optimization
process, which is a dynamic constrained multi-objective
optimization problem, needing more constraint-handling
techniques and population-maintenance methods.
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