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Abstract 

    This paper develops a maintenance policy for a multi-component system subject to hidden 

failures. Components of the system are assumed to suffer from hidden failures, which can only 

be detected at inspection. The objective of the maintenance policy is to determine the inspection 

intervals for each component such that the long-run cost rate is minimized. Due to the 

dependence among components, an exact optimal solution is difficult to obtain. Concerned with 

the intractability of the problem, a heuristic method named “base interval approach” is adopted 

to reduce the computational complexity. Performance of the base interval approach is analyzed 

and the result shows that the proposed policy can approximate the optimal policy within a small 

factor. Two numerical examples are presented to illustrate the effectiveness of the policy. 

    Key words: Hidden failure, multi-component system, maintenance optimization, inspection-

replacement policy, base interval approach 

 

1. Introduction 

    With the integration of technologies, modern systems are often complex systems consisting of 

multiple components. For multi-component systems, interactions among components cannot be 
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neglected when making maintenance decisions. Optimal maintenance strategy for an individual 

component may not necessarily remain optimal for a system consisting of multiple dependent 

components. If no dependence exists among components, maintenance strategy for multi-

component systems is identical with that for a single-component systems (Wang, 2002). 

Dependency among components however brings a lot of challenges to multi-component 

maintenance optimization (Gustavsson et al, 2014; Phan & Zhu, 2015; Liu et al, 2015).  

    In the literature, two strategies have been widely used to deal with the multi-component 

maintenance issue, namely, group maintenance and opportunistic maintenance (Nicolai & 

Dekker, 2008). Group maintenance implies that multiple components are replaced in groups at 

predetermined times (Xiao et al, 2016). Vu et al (2014) proposed a dynamic group maintenance 

strategy for multi-component systems. Gao et al (2015) proposed a dynamic interval 

maintenance policy, which is more effective in reducing unnecessary maintenance actions 

compared with periodic preventive maintenance. Opportunistic maintenance occurs in the case 

that components are maintained when a maintenance opportunity arises, e.g., unexpected system 

shutdown. Pandey et al (2016) proposed a preventive maintenance scheduling model where 

maintenance actions are implemented during system breakdown. Recently, more advanced 

maintenance policies (e.g., condition-based maintenance) have been applied for multi-component 

systems (Camci, 2009). Liu et al (2014) proposed a value-based maintenance policy for multi-

component systems with degrading components. In the work of Tian & Liao (2011), a condition 

based maintenance strategy with proportional hazards model was developed for multi-component 

systems.  

Although numerous maintenance policies for multi-component systems have been proposed in 

literature, most of the models focus on catastrophic or sudden failures (failures that are self-

announcing). However, in many cases, failures are not self-announcing, that a failure remains 

dormant before being exposed by inspection techniques or other system disturbances. This type 

of failure is referred to as hidden failure or soft failure (Ye et al, 2014; Ye & Xie, 2015; Wang et 

al, 2016). Hidden failure itself does not lead to system breakdown, but the existence of hidden 

failure may cause performance loss during system operation. Hidden failure is very common in 

modern systems, particularly in stand-by redundant systems and protection systems (Xiao & Ye, 

2016). Yang et al (2006) reported that hidden failure in protection system may cause multiple 
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component outages and even spread power system disturbances. Cheng et al (2013) pointed out 

that hidden failure of relay protection system is the main contributor of cascading failures and 

blackouts.   

A common practice to deal with hidden failure is to implement an inspection policy to detect 

the existence of hidden failures (Lam & Banjevic, 2015). Based on the interval between two 

consecutive inspections, inspection policy can be classified into two types: periodic inspection 

and sequential inspection (non-periodic). A common practice in industry is to implement 

periodic inspection at constant intervals, due to its feasibility and applicability. In literature, there 

exist plentiful research works on dealing with hidden failures. Wang & Pham (2011) investigated 

a multi-objective maintenance optimization for systems with dependent competing risks of 

degradation wear and random shocks. Ahmadi & Kumar (2011) studied cost based risk of system 

with hidden failures, where the optimal inspection and restoration intervals are determined based 

on the cost criterion. He et al (2015) considered an imperfect inspection policy for system subject 

to hidden failures, in which the interval of imperfect inspection interval and the number of 

imperfect inspections are determined so as to achieve an optimal maintenance strategy. Liu et al 

(2017) proposed a condition-based maintenance policy for a system with age- and state-

dependent operating cost, where the side effect of degradation is investigated. 

Although numerous studies have accommodated to hidden failures, most focus on 

maintenance/inspection policy for a single-component system. However, modern systems are 

usually subject to multiple hidden failures. For example, a protection system contains multiple 

components such as transducer and relays, and hidden failure may occur in any of the 

constituents. It is thus necessary to investigate hidden failure in a multi-component context. Yet 

few efforts have been devoted to multiple-component maintenance policy with hidden failures. 

Zhu et al (2016) established a multi-level maintenance model for a system with multiple failure 

modes. Taghipour & Banjevic (2011) developed a periodic inspection policy for a repairable 

system, where the components are subject to hidden failures. In that work, the optimal inspection 

interval was applied for all the components. Huynh et al (2014) proposed a multi-level 

maintenance policy, where the system was intervened at both the component and the system 

level. Long-run cost rate was minimized by jointly optimizing the inspection interval and 

preventive maintenance thresholds. One deficiency of the above methods is that all the 



4 
 

components are inspected simultaneously or a common metric is used for all the components. 

However, as the components in the system vary in degradation process and maintenance cost, it 

is more desirable to apply different maintenance metrics for heterogeneous components. 

In this paper, we aim to develop a maintenance policy for a multi-component system subject to 

hidden failures. The objective of this study is to determine the inspection intervals for each 

component such that the long-run cost rate is minimized. Here, we focus on the effect of 

economic dependence since economic dependence is the most common interaction in a multi-

component system. With respect to the maintenance optimization of the multi-component system, 

the difficulty lies in the computational complexity. Actually, optimization of multi-component 

maintenance scheduling with economic dependence has been proven to be an NP-complete 

problem (Levi et al, 2014). To deal with the intractability of this problem, we adopt a heuristic 

method named “base interval approach” on the basis of Laggoune et al (2009) and Hopp & Kuo 

(1998). The base interval approach reschedules the inspection interval of each component as an 

integer multiplier of a base interval, so as to share the common downtime cost and reduce 

maintenance cost. In addition, we investigate the performance of the base interval approach, 

where the effectiveness of proposed approach is demonstrated both analytically and numerically. 

  The remainder of this paper is organized as follows. Section 2 describes the problem and 

formulates the maintenance model. Maintenance policy using base interval approach is proposed 

in Section 3 and performance analysis of the approach is presented in Section 4. Numerical 

examples are presented in Section 5. Finally, concluding remarks and future discussions are 

given in Section 6. 

 

Notations  

IC  Common downtime cost due to inspection 

i

dc  Downtime cost per unit time of component i 

i

Ic  Inspection cost of component i 

i

rc  Replacement cost of component i 

i

dT (t) Downtime of component i till time t 
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( )G  Long-run cost rate of the system 

( )iG  Long-run cost rate of component i, without considering the common cost 

ik  Integer multiplier, indicating the rescheduled inspection interval of component i 

i=1,2,…,n Component index 

dN (t) Number of system shutdown due to inspection till time t 

i

IN (t) Number of inspections of component i till time t 

 n Number of components 

( )iR t  Reliability function of component i at time t 

iS  Length of a renewal cycle of component i 

iT  Time to failure of component i 

i  Mean time to failure of component i 

  Base inspection interval  

i  Inspection interval of component i 

 

2. Maintenance model formulation 

2.1 General description and assumptions 

Consider a he system consisting of multiple non-identical components. Each component 

suffers an underlying deteriorating process and fails randomly according to specific lifetime 

distribution. The components are non-repairable; if a component is found to have failed, it has to 

be replaced by a new one. Note that although the components are restored to the ‘as-good-as-

new’ condition after replacement, the whole system is not perfectly maintained except that all the 

components are replaced simultaneously. 

    An inspection-replacement policy is implemented on each component. The components are 

inspected at periodic intervals with the individual inspection cost i

Ic . When an inspection is 

performed on a component, the whole system has to be shut down, which incurs a common 

downtime cost IC . The common cost due to inspection can be shared when multiple inspections 

are carried out simultaneously. Without loss of generality, it is assumed that the set-up cost and 

system shutdown cost due to component replacement are included in IC . Once a failure is 
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detected at inspection, the associated component is replaced immediately. During the period of 

hidden failures, additional cost is incurred due to performance loss of the component, denoted as 

i

dc . 

    In terms of constructing a realistic model, the following assumptions are made: 

1. Failure of a component is not self-announcing; it can only be revealed at inspection. 

2. Inspection can be implemented on each component; inspection on a component is perfect. 

When a failure occurs, it can always be discovered at the next inspection.  

3. A common cost is incurred at each inspection time, which can be shared when multiple 

inspections are carried out simultaneously. The assumption of constant common cost is 

reasonable when multiple maintenance crews are available to inspect the components. 

4. Only economic dependence exists between components. Structural dependence and 

stochastic dependence are not considered. 

5. The component is non-reparable; only replacement is applicable when a failure is 

revealed on a component. Replacement is instantaneous and restores the component to 

the ‘as-good-as-new’ condition. 

6. Deterioration of a component remains unchanged during inspection.  

2.2 Cost model  

    Consider a system consisting of n heterogeneous components. Let i , i=1,2,…,n, be the 

inspection intervals for component i. The cost items can be divided into two categories. One is 

the component-level cost, which is related to specific component and varies for different 

components. The other category is the system-level cost, which is irrelevant to the component 

and can be shared by multiple maintenance actions.  

    Component-level cost: component inspection cost i

Ic , component replacement cost i

rc , 

performance loss (due to hidden failures of  components) cost per unit time i

dc . 

    System-level cost: common downtime cost due to inspection IC .  

For an individual component i, one has to pay the associated cost at time t,  

 ( ; ) ( ; ) ( ; ) ( ; )i i i i i i

i i I I I i r r i d d iH t C c N t c N t c T t                                            (1) 
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where i  is the inspection interval of component i, iH is the total cost of component i 

incorporating the common downtime cost, i

IN  is the cumulative number of inspections for 

component i, ( ; )i

r iN t   is the cumulative number of replacement for component i, and  ( ; )i

d iT t    

is the cumulative downtime of component i. However, for a multi-component system, there may 

be cases that the common cost has already been shared by other components (e.g., due to 

inspection of other components). If this happens all the time, then we can neglect the common 

cost IC .  In such cases, the corresponding cost of a component at time t is 

  ( ; ) ( ; ) ( ; ) ( ; )i i i i i i

i i I I i r r i d d iH t c N t c N t c T t                                               (2) 

    As shown in Eq (1) and (2), the total maintenance cost can be reduced if multiple components 

are inspected simultaneously. As the common cost can be shared when performing inspections 

together, it is of interest to schedule inspections in groups so that multiple inspections can be 

implemented at one scheduled inspection time. However, on the other hand, rescheduling the 

inspection time incurs additional cost. As we will see in the following sections, each component 

has its optimal inspection interval so as to minimize the individual long-run cost rate. If the 

inspection interval is postponed or advanced in order to share common downtime cost IC , 

additional cost is incurred compared with the minimal cost obtained at the optimal inspection 

interval. We have to consider this tradeoff when grouping multiple components to share the 

common downtime cost. An optimal policy should balance the potential benefit and the 

associated additional cost.  

    If the components are inspected with intervals 1 2, ,..., n   , the long-run cost rate of the system 

is expressed as 

1 2

1 2
( , ,..., ) 1

( ; ) ( ; , ,..., )

= limn

n

i i d n I

i

t

H t N t C

G
t

  

   





                           (3) 

where ( )dN t is the number of system shutdown till time t. Obtaining an optimal solution of Eq (3) 

is difficult due to the economic dependence among components. Indeed, optimization of Eq (3) 

is an NP-hard problem as the number of combinations increases exponentially with the number 

of components. Due to the intractability of this problem, we have to resort to heuristic methods 
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that can provide a near optimal solution. In the following, we adopt base interval approach to 

deal with the computational complexity.  

 

3. Maintenance policy with base interval approach 

    Base interval approach was initially proposed to solve the joint replacement issue of an aircraft 

engine (Hopp and Kuo, 1998). It was inspired by the power-of-two replenishment policy in 

inventory management (Jackson et al, 1985). Laggoune et al (2009) applied the base interval 

approach in opportunistic maintenance for a continuously operating system. The basic idea of 

base interval approach is to find a base interval  such that the common cost is charged at every 

 time units and the component is inspected at some integer multipliers of the base interval, ik . 

In other words, at least one component is inspected in each multiple of  . Under this scenario, 

our objective is to find the optimal base interval  and a set of integers  , 1,2,...,ik i n  such that 

the long-run cost rate of the system is minimized. The optimization problem is formulated into  

1 2

1

, , ,...,

( ; )

min lim

. . 0, , 1,2,...,

n

n

i i

i I

k k k t

i

H t k
C

t

s t k Z i n

















   


                                           (4) 

where Z   denotes the set of positive integers.  

    A natural way to calculate the long-run cost rate is to use the renewal cycle theorem and 

compute the expected cost rate in a renewal cycle of the system (Zhang et al, 2015). However, in 

the present case, a renewal cycle occurs only when all the components are replaced 

simultaneously, which takes extremely long time or even never occurs. Hence, it is difficult or 

even impossible to compute the long-run cost rate function based on renewal cycle theorem. 

However, by observing the cost structure of Eq (4), we can decompose the objective function 

from system level into component level, and then apply the renewal cycle theorem individually. 

As we can see, the objective function contains two terms: the first term, 
1

lim ( ; ) /
n

i iit
H t k t


 , is 

a summation of individual cost, while the second term, /IC  , is irrelevant to individual 
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component. By taking advantage of the cost structure, we proceed to study the individual optimal 

maintenance policy so as to reduce the computational complexity.  

3.1 Individual optimal maintenance policy 

    In this section, we formulate a cost model for an individual component and obtain the optimal 

individual inspection interval. When a component is replaced at inspection, the component is 

restored to the ‘as-good-as-new’ state, which constitutes a renewal cycle (Liu et al, 2016). 

According to the renewal cycle theorem, the individual long-run cost rate is given as  

( ; ) [ ( )]
( ) lim

[ ]

i i i i
i i

t
i

H t E H S
G

t E S





   

where iS  is the length of a renewal cycle of component i. Denote Ti as the failure time of 

component i. Let ( )iR t be the reliability function of the component and ( )
iTF t  be the cumulative 

density function (cdf) of the failure time. For notational simplicity, we denote the number of 

inspection in a renewal cycle and the downtime in a renewal cycle for component i as i

IN  and i

dT , 

instead of ( )i

I iN S and ( )i

d iT S . i

IN  is related to the failure time and the inspection interval, which 

is denoted as /i

I i iN T      (Badia et al, 2001). The expectation of i

IN  is calculated as  

 

  

1

1 0

[ ] ( 1)

( ) ( 1) ( )
i i

i

I i i i

j

T i T i i i

j j

E N jP j T j

j F j F j R j

 

  





 

 

   

   



 
  

    The length of a renewal cycle depends on i

IN  and i , according to the assumption that 

replacement can only be carried out at inspection. We have i

i I iS N   and the associated 

expectation 
0

[ ] ( )i i i ij
E S R j 




  (Peng et al, 2010). The component downtime is the period 

between occurrence of a failure and replacement (end of a renewal cycle), i i

d I i iT N T  . The 

expectation is
0

[ ] ( )i

d i i i ij
E T R j  




  , where i  is the mean time to failure (MTTF) of the 

component. Based on the above discussion, the expected cost in a renewal cycle can be obtained 

as 
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0 0

[ ( )] ( ) ( )i i i

i i d i i i i r I i i

j j

E H S c R j c c R j   
 

 

 
    

 
  . 

The long-run cost rate is then formulated as 

0

0

( )
[ ( )]

( )
[ ]

( )

i i i

d i r I i i

jii i
i i d

i
i i i

j

c c c R j
E H S

G c
E S

R j

 



 









  

  




                                 (5) 

Proposition 1. If i i i

d i r Ic c c   , there exists optimal inspection interval *

i  such that the long-

run cost rate reaches its minimum. Otherwise, *

i   . Mathematically,  

 *

*

: ( ) / 0 , if

, otherwise

i i i

i i i i i d i r I

i

dG d c c c    



    


 

 

    The detailed proof is shown in the Appendix.  

Proposition 1 implies that if i i i

d i r Ic c c   , it is beneficial to inspect the system with the 

inspection interval *

i ; otherwise, inspection is unprofitable and we should resort to other 

maintenance policies. In this study, we consider the case that the condition of i i i

d i r Ic c c    can 

always be satisfied; otherwise, the maintenance problem is trivial and makes no sense. This 

assumption is plausible as the downtime cost is relatively high for modern complex systems and 

the inspection cost is becoming lower with the development of inspection techniques. The 

condition in Proposition 1 is equivalent to ( ) /i i i

i I r dc c c   , which implies that whether an 

optimal inspection interval exists or not can be easily judged by comparing the MTTF of a 

component with a constant value. 

3.2 Selection of ik  

    Based on the previous discussions, we can sketch ( )i iG   as shown in Fig 1. Since the system 

is inspected at some integer multiples of the base interval  , the optimal ik  should be either 

* /i     or * /i    , depending on which is more cost-effective. ki can be expressed as 
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* *

0 0*

* * * *

0 0

*

( / ) ( / )

/ , if

/ ( / ) / ( / )

/ , otherwise

i i i i i i

d i r I i i d i r I i i

j j

i

i
i i i i i i

j j

i

c c c R j c c c R j

k R j R j

       

 

           

 

 

 

 

 


            

   
                

  

 

            (6) 

    Therefore, once the base interval is given, the optimal inspection intervals for each component 

can be easily obtained. The objective is reduce to find the optimal base interval * such that the 

long-run cost rate of the system, ( )G  , is minimized, i.e.,  

* *

0 0

0
* * * *1 1

0 0

( / ) ( / )

min ( )

/ ( / ) / ( / )

i i i i i i

d i r I i i d i r I i in n
j jiI

d

i i
i i i i i i

j j

c c c R j c c c R j
C

G c

R j R j


       




           

 

 

 


 

 

 
            

    
 

               
 

 
 

 
 

(7) 

where the operator ( ) min( , )x y x y  . 

 

Fig 1 Sketch of ( )i iG   

    Optimal solution of Eq (7) can be obtained by a simple search algorithm, described as follows: 

1. Initialization:  For each component, compute the individual optimal inspection interval 

*

i , 1,2,...,i n . 

2. Begin with a small  . 
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3. Determine ik  for each component, according to Eq (6).  

4. Compute the value of ( )G   according to Eq (7). 

5. Increase   for a small increment, repeat step 3-4. Stop until  *max : 1,2,...,i i n   . 

6. Output the minimal *( )G   and the associated * . 

The time complexity of the algorithm is  O n . Compared with the traditional approaches such 

as rolling horizon approach and brute-force search approach, the proposed base interval approach 

shows the advantage of computational effectiveness. 

 

4. Performance analysis  

    Now that we have described the base interval policy, we proceed to analyze the effectiveness 

of the policy. A natural way to achieve this purpose is to compare the cost value obtained by our 

approach with the optimum value. However, for the present case, the optimal solution is difficult 

to obtain. Hence, instead, we demonstrate the effectiveness of our policy by comparing the upper 

bound of our approach with the lower bound of the optimal solution. 

4.1 Lower bound of the optimal solution 

    The idea of obtaining a lower bound is to allocate the maintenance cost of the whole system 

on individual components. Let  , 1,2,...lt l  denote the time when the system is shut down due 

to inspection, where l is the number index of system shutdown. Let lt

ix be the action for 

component i at time lt , where 

0, if no inspection is performed for component at

1, if inspection is performed for component at
l

lt

i

l

i t
x

i t


 


 

Let ( )  be the indicator function, where for any 0  , 

0, 0
( )

1, 0

if

if


 




 


 

    With the notations defined above, we can transform the problem of minimizing system long-

run cost rate into finding the optimal 
*lt

ix , 1,2,...l  , 1,2,...,i n , that minimize  
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1 1

( ; )

min lim

l

tl
i

n n
t

i i i I

i i

tx

H t x C

t

 
 



 
  

  

 
                                               (8) 

It is straightforward to have (Atkins & Iyogun, 1987) 

 
1 1

l l

n n
t t

i i i

i i

x x  
 

 
 

 
   

where 0i  , 1,2,...,i n  , and 
1

1
n

ii



 . Then, the lower bound of   can be readily 

obtained as  

 

 

1 1

1

( ; )

lim

( ; )
lim

l

l

n n
t

i i i i I

i i

t

t
n

i i i i I

t
i

H t x C

t

H t x C

t

  

  

 








 




 



                                               (9) 

For notational simplicity, denote  

 
 ( ; )

, lim

lt

i i i i I

i i i
t

H t x C

t

  
 




   

so that  
1

,
n

i i ii
 


   . Eq (9) implies that the lower bound   can be decomposed into n 

single-unit cost items, with the common constraints 
1

1
n

ii



  and 0i  . For component i, at 

each inspection time, the individual inspection cost i

Ic  and common shutdown cost i IC  are 

charged; at the end of a renewal cycle of the component, the individual replacement cost i

rc  and 

component downtime cost i i

d dc T  are incurred. Therefore, for a fixed i ,  ,i i i  is equivalent 

to the individual long-run cost rate of component i, with additional common downtime cost i IC  

at each inspection. The optimal inspection interval,  *

i i  , is obtained as 
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   

 

* *

0

0

arg min ,

( )

arg min

( )

i

i

i i i i i

i i i

d i r I i I i i

ji

d

i i i

j

c c c C R j

c

R j





   

  

 









 

   

 





                                  (10) 

    Eq (10) implies that if 0i   is given for component i, an optimal inspection interval  *

i i   

can be readily obtained. Let      *

* , |
i i i

i i i i i   
  


   ,  the tightest lower bound becomes  

 *

1

max
i

n

i i

i





    

s.t.   
1

1
n

i

i




 , 0i  , 1,2,...,i n   

    Based on the above discussions, the optimization problem in Eq (8) is transformed into finding 

optimal allocation ( i IC ) of the common downtime cost to each component so that the lower 

bound reaches its maximum. In the work of Hopp & Kuo (1998), it was observed that the lower 

bound increases when allocating higher percentages of the system intervention cost to 

components with smaller replacement interval. Here, we follow the similar procedure and assign 

higher proportion of the common cost to components that are inspected more frequently.  

    Without loss of generality, relabel the number of components according to their individual 

optimal inspection intervals. Component with a smaller inspection interval is associated with a 

smaller index. Assuming that the common downtime cost IC  is allocated to components 

1,2,..., , with the corresponding fraction i , where 
1

1ii





 . The inspection interval of 

component i is   for 1,2,...,i  and *

i  for 1, 2,...,i n    . Then, the lower bound of the 

system’s long-run cost rate is given as 

*

1 1

( ) ( )
n

I
i i i

i i

C
LB G G





 
   

     

4.2 Upper bound of the base interval policy 
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    Followed by the above discussions, we first analyze the upper bound of the base interval 

policy for an individual component, as shown in Lemma 1. 

Lemma 1. For an individual component, the base interval policy for component i is guaranteed 

to have a cost at most  * /i i i    times of the optimal solution. 

    The detailed proof is shown in the Appendix. Generally, the optimal individual inspection 

interval *

i  is much less than the MTTF of the component i  (as shown in the numerical 

examples), which indicates that the proposed base interval policy can perform quite well 

individually. Based on the individual analysis from Lemma 1, we can conclude the upper bound 

of the system long-run cost rate, as shown in Proposition 2. 

Proposition 2. The upper bound of the base interval policy is at most 

  *sup / : 1,2,...,i i i i n     times of the lower bound. 

The detailed proof is shown in the Appendix. Proposition 2 indicates that the base interval 

policy is guaranteed to approximate the optimal solution within a small factor.  

For the problem of multi-component maintenance with hidden failures, the most intuitive 

approaches are the individual inspection policy and common inspection policy (Taghipour & 

Banjevic, 2011). It is interesting to compare the performance of the base interval approach and 

the extant two approaches. Obviously, the base interval approach always outperforms the 

common inspection policy. This is due to the fact that the base interval approach is actually a 

generalization of the common inspection policy. For any determined base interval  , if all the ik  

are set to 1, then the base interval approach is reduced to the common inspection policy.  

    On the other hand, the advantage of base interval approach over the individual inspection 

policy highly depends on the common downtime cost IC . If the common downtime cost is low, 

the additional cost of rescheduling the inspection intervals may overwhelm the shared cost, 

which implies the disadvantage of the base interval approach. This leads to another interesting 

issue that under what condition the base interval approach outperforms the individual inspection 

policy. In addition, for some components, the penalty cost due to rescheduling may exceed the 

common downtime cost, though not usual in reality, then it would be optimal to remain the 

inspection interval identical to that of the individual inspection policy, while the inspection 
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intervals of other components are rescheduled. The proposed base interval approach can be 

further improved by determining which components should be rescheduled and which should 

remain unchanged. 

 

5. Numerical examples 

    In this section, two examples are presented to illustrate the effectiveness of the base interval 

approach. For the first example, we consider a 3-component system, where each component 

follows an exponential lifetime distribution. In the second example, the proposed maintenance 

policy is applied in a centrifugal compressor of a catalytic reforming unit. 

5.1 An illustrative example with a 3-component system 

    A system consisting of three components is used to illustrate the base interval approach. The 

components are assumed to follow an exponential lifetime distribution, with the reliability 

function ( ) exp( )i iR t t  , where i  is the failure rate of component i, 1,2,3.i   At first, we 

analyze the optimal inspection policy for an individual component. Based on the discussion in 

Section 3.1, we have 

0

[ ] ( )
1

i i

i i

i

I i i

j

e
E N R j

e










 


                                                  (11) 

By substituting Eq (11) into Eq (5), long-run cost rate is expressed as 

[ ( )]
( )

[ ] i i

i i
i i id d
r I r

ii i i i
i d

i i i

c c
c c c

E H S
G c

E S e


 


 

  

                                      (12) 

The optimal inspection can be obtained by setting the derivative of to 0, i.e., 

2 2

( 1)
( )

0
i i

i i
i i id d
r i i I r

ii i i

i i i

c c
c c c

G

e



 

  

 
    

    


                              (13) 

The individual optimal inspection interval can be obtained by solving Eq (13). After some 

simplifications, we have 
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* : ( 1) 0i i

i i
i i id d

i i r i i I r

i i

c c
c c c e

  
 

     
          
     

, where 
i

i id
r I

i

c
c c


   

    The parameters of the failure rate and cost items are listed in Table 1. By use of numerical 

methods, the individual optimal inspection interval is obtained as *

1 1.19  , *

2 1.39  , *

3 2.26  , 

and the corresponding optimal individual long-run cost rate is respectively *

1 1( ) 121.9G   , 

*

2 2( ) 187.9G   , *

3 3( ) 202.4G   . In addition, we plot the variation of individual long-run cost 

rate ( )i iG   with respect to the individual inspection interval 
i , as shown in Fig 2. 

Table 1 Parameters of component-specific failure rate and cost items 

Component 
Failure rate 

i  
MTBF i  

Replacement cost 
i

rc  

Inspection cost 
i

Ic  

Downtime 

cost i

dc  

1 0.02 50 200 70 5000 

2 0.05 20 420 115 2500 

3 0.1 10 640 150 750 

 

 

Fig 2 Variation of ( )i iG  with i  

With regard to the whole system, the common downtime cost is set as 60IC  . The 

relationship between ( )G   and   is given in Eq (7). Fig 3 shows how the long-run cost rate 

( )G   changes with the base interval  . As we can see, when the base interval is 1.4  , the 

long-run cost rate ( )G  reaches its minimum, 
*( ) 559.1G   . The associated ik  is given as 
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1 1k  , 2 1k  , 3 2k  . The result implies that based on the base interval approach, when we 

inspect component 1 every 1 1.4k   unit time, component 2 every 2 1.4k    unit time, and 

component 3 every 3 2.8k    unit time, we have the optimal maintenance policy. Table 2 shows 

the comparison of the base interval approach, the individual inspection policy and the common 

inspection policy (Taghipour & Banjevic, 2011). The result shows that the proposed base 

interval approach dominates the other policies.  

 

Fig 3 Variation of ( )G  with respect to   

 

Table 2 Comparison of the rescheduled inspection policy, the individual inspection policy and 

common inspection policy 

Component inspection interval 1  2  3  Cost rate 

Individual inspection policy 1.19 1.39 2.26 692.2 

Common inspection policy  1.69 1.69 1.69 562.9 

Rescheduled inspection policy 1.4 1.4 2.8 559.1 
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In addition, Proposition 2 implies that the upper bound of the base interval policy is at most  

  *sup / : 1,2,3 1.226i i i i      times of the lower bound. Here, the lower bound is 

calculated as LB = 556.4. The long-run cost rate obtained by the base interval approach is 

actually 1.005 times of the lower bound, which indicates that the base interval approach performs 

quite effectively.  

We are interested in the value of the common downtime cost IC , since IC  characterizes the 

economic dependence among components and affects the necessity of performing base interval 

approach. Sensitivity analysis is carried out on IC  to find out how IC  influences the optimal 

base interval and the optimal long-run cost rate. Fig 4 shows how the optimal inspection interval 

* and the associated long-run cost rate *( )G   vary with different IC . As can be observed, 

*( )G   increases monotonically with IC  and * shows a non-decreasing trend. This can be 

explained by the fact that the long-run cost rate ( )G   consists of two items: one is related to the 

common cost, and the other is determined by the individual cost rate. When the common cost IC  

increases, the cost item /IC   has an increasing effect on ( )G  . Therefore, the optimal base 

interval   increases with IC  to reduce the number of system shutdowns. 

 

Fig 4 Sensitivity analysis on IC  
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Fig 5 Variation of *  and 
*( )G   in terms of individual downtime cost

i

dC   

(a) component 1 
1

dC  (b) component 2 
2

dC  (c) component 3 
3

dC  

Additionally, Fig 5 presents the variation of *  and 
*( )G   in terms of the individual downtime 

cost 
i

dC . Obviously, the optimal long-run cost rate 
*( )G   shows a monotone increasing trend 

with 
i

dC . The optimal inspection interval * , however, presents a non-increasing trend. This is 

due to the fact that a more frequent inspection takes effect in reducing the downtime cost. With 

the increase of the individual downtime cost, a smaller inspection interval is expected to balance 

the effect of increasing downtime cost. 
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Fig 6 Variation of *  and 
*( )G   in terms of individual inspection cost 

i

IC   

(a) component 1 
1

IC  (b) component 2 
2

IC  (c) component 3 
3

IC  

Fig 6 investigates the effect of individual inspection cost on the optimal maintenance policy. 

For component 1 and component 2, the optimal inspection interval *  shows a non-decreasing 

trend. The optimal maintenance policy calls for a larger inspection interval so as to balance the 

tradeoff of an increased inspection cost. However, component 3 shows a non-conform trend. *  

increases for 
3 (100,130)IC   and 

3 (140,200)IC   respectively. However, there is a drop-off for 

3 (130,140)IC  . This is due to the fact that the integer multiplier k3 varies for 
3 (130,140)IC  . In 

the present setting, k3 increases from 1 to 2 when 
3

IC  changes from 130 to 140. Although the 

optimal base interval decreases, the inspection interval of component 3 still increases, due to the 

increase of k3.  
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5.2 Application in refinery centrifugal compressor 

    In this section, we apply the base interval inspection policy to a centrifugal compressor of a 

catalytic reforming unit. A centrifugal compressor is an essential constitute of a catalytic 

reforming unit, which plays a vital role in oil refinery. As reported in Laggoune et al (2009), a 

compressor dysfunction may cause pressure loss in the reforming unit and consequently lead to 

performance loss of the system. In addition, the centrifugal compressor is responsible for pre-

heating and providing air to guarantee that the unit operates under proper condition. A 

centrifugal compressor comprises multiple components, such as sheathing, tightness and so on. 

Here, we assume that the components of a compressor operate in a redundant mode, where 

failure of a component is not self-evident. The base interval inspection policy is adopted to 

reduce the maintenance cost and enhance system performance.  

Table 3 Component-specific Weibull parameters and cost items 

Compone

nt 
code 

Shape 

parameter

i  

Scale 

parameter

i  

MTBF

i (day) 

Replacemen

t cost i

rc (€) 

 

Inspection 

cost i

Ic (€) 

(assumed) 

Downtime 

cost i

dc (€) 

(assumed) 

Sheathing C286 1.73 486 483 14868 1200 350 

Sheathing C285 1.88 507 475 39204 320 1100 

Tightness C275 2.43 286 240 44880 330 1000 

Stub 

bearing 
C230 2.53 898 787 57876 1180 1600 

Tightness 

ring 
C460 2.14 905 844 73860 420 1900 

Carrying 

bearing 
C419 3.55 736 636 46752 360 1600 

Stub 

bearing 
C401 2.68 1094 888 48568 1670 1700 

Labyrinth 

support 
C780 2.09 1388 1047 74232 1700 1800 

 

    The compressor consists of eight components, wherein each component is associated with a 

code, as shown in Table 3. The components are assumed to follow a two-parameter Weibull 

distribution. The reliability function of component i is denoted as  ( ) exp /i i iR t t       , 
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where i  is the scale parameter and i  is the shape parameter. Table 3 gives the value of 

Weibull parameters and the associated cost items of each component. The shape parameter i  

and the scale parameter i  are obtained from the study of Laggoune et al (2009), where failure 

data were sampled to estimate the two parameters. The cost parameters related to inspection and 

hidden failure are introduced for illustration purpose, including the individual inspection cost i

Ic  

and the individual downtime cost i

dc .      

    Based on the discussions in Section 3.2.1, we obtain the optimal inspection interval *

i  and the 

associated long-run cost rate *( )i iG   for each component, as shown in Table 4. For the purpose 

of illustration, we also plot the variation of ( )i iG   with respect to 
i . Four components are 

selected for illustration: tightness (C275), stub bearing (C230), carrying bearing (C419) and stub 

bearing (C401). Fig 7 shows how ( )i iG   varies with 
i  of the four components.  

Table 4 Optimal inspection policy for individual component 

Component code 

Optimal individual 

inspection interval 
*

i (day) 

Optimal individual 

long-run cost 

rate *( )i iG  (€) 

Sheathing C286 58 37 

Sheathing C285 17 65 

Tightness C275 15 275 

Stub bearing C230 36 159 

Tightness ring C460 19 36 

Carrying bearing C419 18 175 

Stub bearing C401 48 269 

Labyrinth support C780 54 390 
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Fig 7 Plot of individual long-run cost rate 

    The common downtime cost is given as CI = €2500. According to Eq (7), the variation of 

long-run cost rate ( )G   with respect to the base interval  is plotted in Fig 8. From Fig 8, the 

minimum long-run cost rate of €1517, obtained at the optimal base interval * 29  days. After 

obtaining the optimal base interval * , we can determine the integral multiple ik  for each 

component. The result is shown in Table 5. By comparing the results of Table 5 with the optimal 

individual inspection interval, it is observed that the inspection period of stub bearing (C230) is 

shifted in advance, the inspection period of sheathing (C286) remains unchanged, and the 

inspection period of other components are postponed. Proposition 2 implies that the upper bound 

of the base interval policy is at most   *sup / : 1,2,..,8 1.201i i i i      times of the lower 

bound. In this section, the lower bound can be computed as LB = 1501. The long-run cost rate 

obtained by base interval approach is actually 1.011 times of the lower bound. 
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Fig 8 Variation of ( )G  with respect to base interval   

 

Table 5 Optimal inspection interval for base interval policy 

Component code ik associated with 

optimal base interval 

Optimal inspection 

interval ik (days) 

Sheathing C286 2 58 

Sheathing C285 1 29 

Tightness C275 1 29 

Stub bearing C230 1 29 

Tightness ring C460 1 29 

Carrying bearing C419 1 29 

Stub bearing C401 2 58 

Labyrinth support C780 2 58 

     

    Furthermore, in order to investigate how the components are grouped with various base 

interval , we plot ik  with respect to  in Fig 9. When  increases from 15 to 50 days, ik  of the 

components show a non-increasing trend. When  is no less than 41 days, ik  reduces to 1 for 

1,2,...,8i  , which implies that all the components are inspected at the same time. Note that we 

only plot ik  of four components (C286, C230, C401 and C780). ik  of the other four components 

are not shown in Fig 6, as they always remain 1 when  varies within the range of [15, 50].  



26 
 

 

Fig 9 Plot of ik  with respect to base interval   

    Fig 10 shows how the optimal base interval *  and the optimal long-run cost rate *( )G   vary 

with the common downtime cost IC . When IC  increases from €500 to €4500, *( )G   increase 

monotonically from €1434 to €1582. In addition, the optimal base interval * shows an 

increasing trend with IC , changing from 9 to 26 days. The result indicates that common 

downtime cost has a significant influence on the optimal inspection policy. It is therefore 

suggested that maintenance engineers or managers should take into account the common cost 

(interactions among components) when making maintenance decisions for a multi-component 

system.  

 

Fig 10 Sensitivity analysis on IC  
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6. Conclusions 

    This paper develops a maintenance policy for multi-component systems subject to hidden 

failures. Failure of a component can only be detected at inspection and a failed component is 

replaced once the failure is revealed. Different from previous works where an optimal inspection 

interval is applied for the whole system, we obtain the optimal inspection interval for each 

component. Concerned with the difficulty of the optimization problem, a heuristic method named 

base interval approach is adopted to reduce the computational complexity. Upper bound of the 

policy is analyzed, followed by two numerical examples. It is illustrated that that the base 

interval policy can approximate the optimal policy within a small factor. The result of a 

numerical example shows that our approach outperforms the individual inspection policy and the 

common inspection policy. 

    The proposed maintenance strategy can be applied in various complex systems such as power 

generators and processing facilities, especially for systems with a high common downtime cost. 

One advantage of the proposed maintenance policy lies in its feasibility and applicability in 

industry. Maintenance crews only need to inspect the components at fixed intervals and replace 

the failed components, while no other tricky implementations are required. 

    Future research can be conducted by extending the present inspection-replacement policy into 

a more general maintenance context. For example, consider a multi-component reparable system 

where various maintenance actions such as minimal repair and imperfect maintenance are 

allowed. In addition, if the components of the system follow a continuously degrading process 

and the degrading state can be observed by inspection devices, one can integrate the concept of 

base interval approach into condition-based maintenance and develop a more efficient 

maintenance policy.  
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Appendix  

1. Proof of Proposition 1.   

( )i iG  can be rewritten as 

( )
( ) i i

i i d

i

U
G c





  , 
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0 0
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After some simplifications, ( )iU  is expressed as  
0

( ) / ( )i i i

i I d i r i ij
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Obviously, 
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 is a decreasing function of i and 
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i ij
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that i i i
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 , leading to the conclusion that *
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If the condition i i i

d i r Ic c c   holds, we can conclude that ( )iU   is decreasing with i . Also, we 

have 

0
lim ( )= 0
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The monotonicity of ( )iU   and the above limit property imply that there exists a 0

i such that  
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Hence, ( )i iG   has the following properties: 
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The above properties imply that there exits an optimal * 0( , )i i    such that ( )i iG  reaches its 

minimum. The optimal inspection interval *

i can be obtained by setting the derivative to zero, 

i.e.,   * : ( ) / 0i i i i idG d     .  

 

2. Proof of lemma 1. 

For notational simplicity, define 
0

( ) ( )i i ij
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Taking expectation of the above expression leads to 
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Thus, we have 
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( ) +i i i i iQ       

The individual optimal inspection interval *

i is limited within the range  
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Then, we can obtain  
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The first inequality is due to the expression that ( )i i iQ   ; the second inequality is due to the 

fact that *

i ik  and that ( )iQ  is a non-increasing function. The follows the inequality  
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Therefore, we have 

*

*

( )

( )

i i i i

i i i

G k

G

  

 


  

which completes the proof.  

 

3. Proof of Proposition 2. 

Let the inspection interval of component i is  for 1,2,...,i  and ik for 1, 2,...,i n    . As 

shown in lemma 1, 
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the upper bound is   
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which concludes the proof.  
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