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Bounded reordering in the distributed test

architecture
Robert M. Hierons, Mercedes G. Merayo and Manuel Núñez

Abstract—In the distributed test architecture, the system un-
der test interacts with its environment at multiple physically
distributed ports and the local testers at these ports do not
synchronise their actions. This presents many challenges and,
in particular, apparently incorrect behaviours can be the con-
sequence of an erroneous assumption about the exact order in
which actions were performed at different ports. In previous
work, we defined a conformance relation for the distributed
test architecture. Essentially, the system under test is faulty if
we observe a trace σ such that no admissible reordering of
the actions in σ could have been produced by the specification.
However, this notion can be weak if the compared traces might be
too different. This paper introduces conformance relations where,
for a given metric, a reordering is only considered if the distance
between the two traces is at most a certain bound k. We introduce
two different metrics and provide algorithms to construct finite
automata accepting these close, with respect to each metric,
sequences. We also study the computational complexity of the
two main problems associated with the new framework: deciding
whether a trace is accepted by the new automaton and deciding
whether one system conforms to a specification with respect to
the new conformance relation.

I. INTRODUCTION

Software testing [2], [37] is the de facto standard technique

to validate the correctness of software systems. Testing con-

sists of providing inputs to a system, observing its reactions

and deciding whether the resultant behaviour is valid. Tradi-

tionally, testing activities have mainly been manual and, as a

result, costly and error prone. This situation is changing; it

has been shown that it is possible to formalise the classically

informal testing techniques [15] and that the combination of

formal methods and testing facilitates test automation.

Normally, testing is seen as a process where a single tester

interacts with the system under test (SUT). However, some-

times a system interacts with its environment at physically

distributed locations (ports) and one places a separate tester at

each port. As a result, a local tester only observes the events at

its port and it might not be possible to reconstruct the global

sequence of events that occurred. For example, if the tester at

port 1 observes output !o1 and the tester at port 2 observes !o2
then the global trace might have been !o1!o2 or !o2!o1. This

complicates testing and leads to the following results when

there is a finite model M that acts as the specification: the
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problem of deciding whether an observation is allowed by

M is NP-complete [19] and the problem of deciding whether

a finite model N conforms to M (all observations that can

be made of N are allowed by M ) is undecidable [18]. In

contrast, when testing is not distributed the first problem can be

decided in low-order polynomial time and the second problem

is decidable and can be solved in polynomial time if N and

M are deterministic finite automata (or an observable finite

state machine or input-output transition system).

As noted above, in distributed testing the separate testers

cannot synchronise and so we cannot know the relative order

of events at different ports. This leads to a notion of obser-

vational equivalence in which traces σ1 and σ2 are equivalent

if and only if, for every port p we have that σ1 and σ2

have the same projections at p. Under this, !o1!o2 and !o2!o1
are observationally equivalent as noted above. Indeed, for

every natural number m we have that !om1 !o2 and !o2!o
m
1

are observationally equivalent. This seems sensible for small

values of m but, assuming that processes are non-Zeno, it

will cease to make sense if m becomes sufficiently large.

For example, if each event takes at least one second and

m = 100, 000 then in the trace !om1 !o2 we have that the

occurrence of !o2 and the first occurrence of !o1 are separated

by more than one day; one might then expect to be able to

distinguish between !om1 !o2 and !o2!o
m
1 . We might therefore

want to strengthen our notion of observational equivalence,

or similarity, in a way that leads to these traces not being

equivalent. This paper explores a method that achieves this

based on defining the distance between two traces. As usual,

for two traces σ1 and σ2 to be observationally equivalent we

require them to have the same set of projections at the ports.

However, we will also require that the distance between σ1

and σ2 is at most k for a notion of distance. We consider two

ways of defining the distance between traces σ1 and σ2 that

have the same sets of projections.

1) The distance between σ1 and σ2 is the length of the

shortest sequence of swaps of adjacent events, that occur

at different ports, that can transform σ1 into σ2.

2) For every event a, we measure the difference between

the location (index) of a in σ1 and σ2 and the distance

between σ1 and σ2 is the maximum such value (over

events in σ1 and σ2).

We explore these approaches and define the corresponding

conformance relations. We also consider two decision prob-

lems for these new conformance relations: the problem of

deciding whether an observation is allowed by specification

M (for finite M ) and the problem of deciding whether N is



a correct implementation of M (finite N and M ). We restrict

attention to finite models since non-trivial decision problems

with infinite models are undecidable.

Finally, we have included a glossary (see Figures 1 and 2)

where, in particular, all the conformance relations presented

in the paper are informally described.

The rest of the paper is organised as follows. In Section II

we present related work. In Section III we provide preliminary

material. Section IV describes our first approach, in which we

bound the number of swaps of adjacent events (at different

ports) that can occur. Section V then describes our second

approach, in which we bound the distance between corre-

sponding events. Both of these sections provide algorithms and

complexity results. Finally, we draw conclusions in Section VI.

II. RELATED WORK

In this section we briefly review related work. First, let us

remark that formal approaches to testing is an active research

area [3], [8], [23]. In addition to having well established

theories and methodologies, there are many tools that allow

potential users to apply techniques developed in this area [35],

[44].

There has been significant recent interest in distributed

testing when testing from a formal model written as a finite

state machine [20], [21], [29], input-output transition system

[25], [26], partial-order automaton [4], [16], or Petri Net [39],

[41]. Previous work on distributed testing has considered a

notion of observational equivalence in which σ1 ∼ σ2, for

traces σ1 and σ2, if σ1 and σ2 have the same projections at

the ports [4], [7], [12], [13], [16], [20], [21], [25], [26], [29],

[31], [32], [34], [38], [39], [40], [41], [42], [43], [45], [46]. An

alternative way of describing this is to say that events x and y

commute (are independent) if they occur at different ports. As

a result, previous conformance relations for distributed testing

relate strongly to the notion of a partial-commutation in which

certain events commute (see, for example, [36]). However, the

conformance relation given in this paper is based on both

observational equivalence and a distance metric and cannot

be expressed in terms of a partial commutation.

A second line of work aims to use standard conformance

relations, devised for the case where testing is not distributed,

and to do so by ensuring that the local testers are sufficiently

synchronised. Synchronisation is typically achieved through

the exchange of messages, called coordination messages. Re-

searchers have explored architectures that can be used to syn-

chronise local testers (see, for example, [7], [42]), approaches

that enrich a test generation technique with synchronisation

messages (see, for example, [9], [28]), and approaches that

minimise the number of synchronisation messages added to a

test sequence (see, for example, [5]).

Interestingly, the notion of observational equivalence (σ1 ∼
σ2) is very similar to sequential consistency, a correctness

condition for concurrent objects [33]. A number of other

correctness conditions have been defined for concurrent ob-

jects and there is a small amount of work that looks at the

complexity of decision problems related to those we consider

in this paper [1], [11]. There has also been some work that

describes quantitative notions of correctness for concurrent

objects and this uses a notion of the distance between two

traces. In fact, the approach we describe in this paper could

be seen as being similar to the notion of k-relaxation [17].

However, there are some important differences between our

work and this one. First, we are concerned with testing

and so there is a need to differentiate between input and

output (they play very different roles in testing). Second, this

approach [17] did not explore the complexity of associated

decision problems.

III. PRELIMINARIES

In this section we first introduce the main notions that we

use throughout this paper. Next, we present the concepts that

we use to define the conformance relations that we will study.

A. Basic notation

Given a set A, we let A∗ denote the set of finite sequences

of elements of A; ǫ ∈ A∗ denotes the empty sequence. Ak

denotes the set of sequences with length k ≥ 1. Given a

sequence σ ∈ A∗, we have that |σ| denotes its length. Given

a sequence σ ∈ A∗ and a ∈ A, we have that σa denotes

the sequence σ followed by a and aσ denotes the sequence σ

preceded by a.

Throughout this paper we let I be the set of inputs and O the

set of outputs. We assume that the SUT, and its specification,

has a set of ports Ports = {1, . . . ,m}. A port is typically a

location at which the SUT interacts with its environment and in

distributed testing we will place a separate local tester at each

port. We assume that the sets I and O are partitioned into sets

I1, . . . , Im and O1, . . . , Om such that for all p ∈ Ports, Ip and

Op are the sets of inputs and outputs at port p, respectively.

We assume that I1, . . . Im, O1, . . . , Om are pairwise disjoint.

In order to distinguish between input and output we usually

precede the name of an input by ? and precede the name of

an output by !. If we label an action with a subindex, then the

value indicates the port where the action is performed. For

example, we might use !o1 for an output at port 1 and so we

have that !o1 ∈ O1. Note that although we will typically use

!oi to denote an output at port i, a set of inputs and outputs (an

Ii or Oi) can contain more than one element. If we label an

action with a superindex, then the value indicates the position

of that action in a sequence of actions.

Since the sets I1, . . . Im, O1, . . . , Om are pairwise disjoint,

it might appear that we cannot, for example, model a system

that can produce the same output at two or more ports.

However, these sets can be seen as sets of events, such as

the output of !a at port p. Thus, for example, we can model a

system that can produce a particular output !a at ports p and

q by introducing two associated events: an event !ap ∈ Op in

which !a is output at port p and an event !aq ∈ Oq in which

a is output at port q.

As is usual in work on testing from an input output transition

system, we will allow the observation of quiescence: the situ-

ation in which the SUT or specification cannot produce output

without first receiving input. Typically, quiescence is observed

through a sufficiently long timeout. In practice, the time used
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Processes, actions and traces

Concept Explanation

IOTS

Def. 1

Input Output Transition System. Labelled transition systems with a distinction between input actions

(preceded by ? and grouped in a set I), output actions (preceded by ! and grouped in a set O) and an

action to denote quiescence (denoted by δ). The set of actions, denoted by Act, is equal to I ∪ O ∪ {δ}.
Inputs and outputs are usually labelled with a number denoting the port where they are performed.

Trace

Def. 3

Sequence of actions that a process can perform.

Relations and distances between traces

Concept Explanation

∼
Def. 4

Original relation to compare traces. Two traces are related if all their local projections are equal. For example,

!o1!o2?i1?i2 ∼!o2?i2!o1?i1.

∼1

Def. 8

Two traces are related if they are related by ∼ and one can be transformed into the other with one swap.

For example, !o1!o2?i1?i2 ∼1!o1?i1!o2?i2 but !o1!o2?i1?i2 ∼1!o2?i2!o1?i1 does not hold (we need at least

three swaps).

d1

Def. 9

First distance between traces. We have d1(σ, σ′) = k if the minimum number of swaps that we need to

transform σ into σ′ is equal to k.

d2

Def. 15

Second distance between traces. We have d2(σ, σ′) = k if the maximum difference in the position of the

same event in each of the traces is equal to k.

Fig. 1: Glossary of concepts (1/2)

in the timeout depends on properties of the SUT and is decided

by the tester. We will assume that it is possible for the testers at

all ports to observe quiescence; the observation of quiescence

is global. In practice the global observation of quiescence

might require the use of a longer timeout period, with that

period potentially depending on properties of the SUT and

also properties of the test case being used. For example, if we

have a bound on the time between events (inputs and outputs)

for the SUT (similar to the bound normally required to observe

quiescence) then the timeout period used might depend on this

bound and how many consecutive events can occur without a

local tester making an observation (in the current test case). As

has previously been noted, there is potential to use different

timeouts for the different ports [6].

B. Input output transition systems

An input output transition system is a labelled transition

system in which we distinguish between input and output. We

use this formalism to define processes. Unusually, we will

use the notion of a final state; usually all the states are final

and all states of a specification will be final. We will see,

in Sections IV and V, how we will take advantage of the

distinction between a state that is final and one that is not in

defining algorithms since this will allow us to define processes

in which the set of corresponding traces is not prefix closed.

Definition 1 An input output transition system (IOTS) is

defined by a tuple M = (Q,QF , I, O, T, qin) in which Q is

a countable set of states, QF ⊆ Q is the set of final states,

qin ∈ Q is the initial state (we assume qin ∈ QF ), I is a

countable set of inputs, O is a countable set of outputs, and

T ⊆ Q × (I ∪ O) ×Q is the transition relation. A transition

(q, a, q′) ∈ T means that from state q it is possible to move

to state q′ with action a ∈ I ∪O.

We say that a state q ∈ Q is quiescent if from q it is not

possible to take a transition whose action is an output without

first receiving an input. We extend T to Tδ by adding transition

(q, δ, q) for each quiescent state q. We say that M is input-

enabled if for all q ∈ QF and ?i ∈ I there is some q′ ∈ Q

such that (q, ?i, q′) ∈ T .

We let IOTS(I, O,Ports) denote the set of IOTSs with

input set I , output set O and port set Ports.

We also define some supporting notation that will be used

throughout the paper.

Definition 2 Given sets of inputs and outputs, I and O

respectively, we let Act denote the set of actions, that is,

Act = I ∪ O ∪ {δ}. Given port p ∈ Ports, Actp denotes

the set of observations that can be made at p, that is, Actp =
Ip ∪Op ∪ {δ}. We define the function port : I ∪O −→ Ports
such that port(a) = p if a ∈ Actp; this is a function since

the Ii and Oi are pairwise disjoint. Abusing the notation, we

will assume that port(δ) = p holds for all p ∈ Ports.

We will not require the notion of a final state when we

consider the SUT or the specification; here, all states will be

final states. However, later we will construct IOTSs in which

it makes no sense to observe a particular trace and so we

will then require the notion of a final state. Let us suppose,

for example, that we consider an IOTS M such that M can

produce trace !o1!o2 but it cannot produce trace !o2. Further, let

us suppose that we wish to construct a new IOTS M ′ whose

set of traces is the union of the following two sets: the set of

traces of M ; and the set of traces that differ from traces of M

by at most swapping two adjacent events that are at different

ports. Then M ′ must have the trace !o2!o1, since this differs

from the trace !o1!o2 by swapping !o1 and !o2. However, M ′

should not have the trace !o2 and so we must have that M ′ has

3



Conformance relations and related results

Concept Explanation

N dioco M

Def. 5

Conformance relation in the distributed architecture [27]. An implementation N should not show

behaviours that are not planned in a specification M , with the exception of the order between events

performed at different ports.

N dioco
k
sw M

Def. 11

Conformance relation associated with the first distance. The behaviours of the implementation N can

be transformed into behaviours of the specification M in a maximum of k swaps.

Proposition 2 Alternative characterisation of diocok
sw

.

Theorem 1 Automaton (Ma(M,k)) recognising the alternative characterisation (L1
k(M)) of diocok

sw.

Theorems 2

& 3

Corresponding correctness problem, and its bounded version, for d1.

Theorems 4

& 5

Membership problem, and its bounded version, for d1.

N dioco
k
dis M

Def. 18

Conformance relation associated with the second distance. For each behaviour of the implementation

N there exists a behaviour of the specification M such that the maximum difference in the position

of the events is equal to k.

Proposition 5 Alternative characterisation of dioco
k
dis.

Theorem 6 Automaton (Mb(M,k)) recognising the alternative characterisation (L2
k(M)) of diocok

dis
.

Theorems 7

& 8

Corresponding correctness problem, and its bounded version, for d2.

Theorems 9,

10 & 11

Membership problem, and its bounded versions, for d2.

Fig. 2: Glossary of concepts (2/2)

trace !o2!o1 but not !o2. Thus, the set of traces of M ′ is not

prefix closed. We cannot define such an IOTS if we do not

have the notion of final state; essentially, we will require that

!o2 takes M ′ to a state q that is not a final state but from q

we can reach a final state through a transition with output !o1.

A process can be identified with its initial state and we can

define a process corresponding to a state q of M by making

q the initial state. Thus, we use states and processes and their

notation interchangeably. By default, all the states of an IOTS

are final (as we already said, non-final states will be used in

the construction of some auxiliary processes). An IOTS can

be represented by a diagram. Figure 3 shows an example of the

graphical representation of an IOTS. Nodes represent states of

the IOTS and transitions are represented by arcs between the

nodes. We use a double circle to denote the initial state, q0,

while dotted/non-dotted circles denote non-final/final states.

In this case, all the states are final except q2. In this IOTS,

for example, if input ?i1 is received when the IOTS is in

state q0 then the IOTS moves to state q1; a state from which

it can produce output !o2 and move to q3. A sequence of

actions labelling a transition denotes different transitions, one

per action. For example, we have two transitions departing and

reaching q1 labelled, respectively, by ?i1 and ?i2.

In this paper, whenever we compare two IOTSs we will

assume that they have the same set of ports and the same

set of actions Actp for all p ∈ Ports. Moreover, as usual,

we assume that implementations are input-enabled1. We also

require that specifications are input-enabled since this assump-

tion simplifies the analysis. However, it is possible to remove

1If an input cannot be applied in some state of the SUT, then we can assume
that there is a response to the input that reports that this input is blocked.

q0

q2 q1

q3

δ

?i1

!o2

?i2

?i1, ?i2

!o1

?i1, ?i2, δ

Fig. 3: A diagrammatic representation of an IOTS

this restriction in our framework [22], [26]. As usual, for

work related to distributed testing from IOTSs, we require

that processes are not output-divergent: there cannot be a

state from which there is an infinite sequence of consecutive

transitions whose labels are all outputs. A trace is a sequence

of observable actions that can be performed from the initial

state of a process and reaches a final state.

Definition 3 Let M = (Q,QF , I, O, T, qin) be an IOTS. We

use the following notation.

1) If (q, a, q′) ∈ Tδ, for a ∈ Act, then we write q
a−−→ q′.

2) Let σ = a1 . . . ak ∈ Act∗ be a finite sequence of actions.

We write q
σ

==⇒ q′ if there exist q0, . . . , qk ∈ Q such

that q = q0, q′ = qk and for all 1 ≤ i ≤ k we have that

qi−1
ai

−−→ qi.

3) We write q
σ

==⇒ if there exists q′ ∈ Q such that q
σ

==⇒
q′.

4



4) We write M
σ

==⇒ if qin
σ

==⇒ .

5) Let ρ = (q0, a
1, q1)(q1, a

2, q2) . . . (qk−1, a
k, qk) be a

sequence of consecutive transitions. We say that the label

of ρ, denoted by label(ρ), is the sequence of actions

associated with the transitions, that is, label(ρ) =
a1 . . . ak.

We define the language of M as L(M) = {σ|qin
σ

==⇒
q ∧ q ∈ QF }. We say that σ ∈ L(M) is a trace of M . We let

Lδ(M) = {σ|qin
σδ

==⇒ q ∧ q ∈ QF}; the set of traces of M

that can take M to a quiescent final state.

Note that for every state q, we have that q
ǫ

==⇒ q holds.

Therefore, ǫ ∈ L(M) for every process M .

Previous conformance relations, devised for distributed

testing, are based on an equivalence relation ∼ on traces.

Essentially, the relation ∼ reflects the fact that in distributed

testing each tester observes only the events at its port and this

corresponds to a projection of the global trace that occurred.

Definition 4 Let p ∈ Ports and σ ∈ Act∗ be a sequence of

actions. We let πp(σ) denote the projection of σ onto port p

and πp(σ) is called a local trace. Formally,

πp(σ) =






ǫ if σ = ǫ

aπp(σ
′) if σ = aσ′ ∧ a ∈ Actp

πp(σ
′) if σ = aσ′ ∧ a ∈ Act \ Actp

Given σ, σ′ ∈ Act∗ we write σ ∼ σ′ if σ and σ′ cannot

be distinguished when making local observations, that is, for

all p ∈ Ports we have that πp(σ) = πp(σ
′). Obviously, ∼ is

an equivalence relation and we denote by [σ] the equivalence

class of σ, that is, [σ] = {σ′ ∈ Act∗|σ ∼ σ′}.

Next we define the conformance relation dioco. The ver-

sion that we use in this paper is taken from our previous

work [27] and it is slightly different from the original defi-

nition [25], [26] because the latter used tuples of outputs, one

for each port, instead of single outputs like we consider in

this paper. We chose to use this definition in order to simplify

the analysis since, for example, there is no need to separate

outputs that appear together in a tuple.

Definition 5 Let M,N ∈ IOTS(I, O,Ports). We write

N dioco M if and only if for every quiescent trace σδ ∈
L(N), there exists a trace σ′ ∈ L(M) such that σ′ ∼ σδ.

The main aim of this paper is to define conformance rela-

tions following the pattern of the previous one. The difference

is that we will place additional restrictions on σ′ ∼ σδ in the

above definition.

It is worth briefly commenting on why the definition of

dioco only concerns quiescent traces of N . To see this, con-

sider what might happen if we did not include this restriction

in Definition 5 and consider processes M and M ′, with outputs

!o1 and !o2 at different ports, such that:

1) M can do !o1!o2 and then is in a state from which all

future events must be inputs or quiescence

2) M ′ can do !o2!o1 and then is in a state from which all

future events must be inputs or quiescence.

We have that M can do !o1 while M ′ cannot. Therefore, if

we use non-quiescent traces when comparing these processes

then we conclude that they are not equivalent. However, in

a distributed environment we have that !o1!o2 and !o2!o1 are

equivalent since in each case the tester at port 1 will observe

!o1 and the tester at port 2 will observe output !o2. Thus,

we cannot distinguish between these two processes if we

do not have additional information. However, sometimes we

can partially overcome this problem if we can label actions

with the time when they were performed [27], [40] but local

clocks, one per port, might not be available and it is very

likely that they are not synchronised. The definition of dioco

solves this problem by using quiescent states to combine the

traces observed at each port and reach a verdict. This can

be done because the testers can choose to stop testing in a

quiescent state and, in addition, we assume that quiescence

can be observed by all of the testers. The use of distributed

testers also leads to the requirement for us to compare the

set of local observations made with the global traces from

the specification; if we make observations in non-quiescent

states then we cannot know that the observed local traces are

all projections of the same global trace of the SUT and we

can then appear to be able to distinguish processes that are

observationally equivalent. This is the problem we observed

above.

In Definition 4, note that δ ∈ Actp for all port p ∈ Ports.

This fact will be relevant when we define valid swaps because

swaps must involve actions in two different ports and δ belongs

to all the ports.

Throughout this paper we will need to consider an action

appearing in a trace together with its position in the trace. In

order to distinguish between different occurrences of an action

in one trace we will need to decorate actions with further

information.

Definition 6 Let σ = a1 . . . an ∈ Act∗ be a sequence of

actions. We let E(σ) denote the set of events of σ, where

e = (ai, k) belongs to E(σ) if and only if there are exactly

k − 1 occurrences of ai in a1 . . . ai−1.

We introduce notation that allows us to find the position of

an event in a trace and map a trace to a sequence of events.

Definition 7 Let σ = a1 . . . an ∈ Act∗ be a sequence of

actions. We define the function posσ : E(σ) −→ IN such that

for all e = (a, k) ∈ E(σ) we have that posσ(e) = i if a = ai

and there are exactly k − 1 occurrences of a in a1 . . . ai−1.

We define the annotated sequence of σ, denoted by σ̃, as the

sequence (a1, k1) . . . (a
n, kn).

Usually, we will decorate an event with its position. For

example, ei denotes that posσ(e) = i.

Example 1 Consider the trace σ =?i1!o1?i2!o1!o2, where the

index denotes the port at which the action is performed. The

corresponding set of events is

E(σ) = {(?i1, 1), (!o1, 1), (?i2, 1), (!o1, 2), (!o2, 1)}
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where, for example, posσ((?i1, 1)) = 1 and posσ((!o1, 1)) =
2. We will refer to event (?i2, 1) by e3.

It is trivial to prove that observationally equivalent traces

produce the same sets of events. We will use this result when

we define the distance between traces.

Lemma 1 Let σ, σ′ ∈ Act∗ be sequences of actions such that

σ ∼ σ′. We have E(σ) = E(σ′).

IV. PLACING A BOUND ON THE NUMBER OF SWAPS

REQUIRED

In this section we provide our first notion of distance and

the corresponding conformance relation that is based on this

metric. The essential idea is that the local testers might have

local clocks that are not exactly synchronised but that are

close to agreeing. In such situations, the local testers might

timestamp observations and we can then order the observations

based on these timestamps to form a trace σ1. Since local

clocks provide the timestamps, σ1 need not be the same as the

trace σ2 that actually occurred. However, since the local clocks

are close to being synchronised, we should expect σ1 and σ2

to be ‘similar’. We capture this notion of similarity through

the use of a metric on traces without explicitly representing

time. Since one can always use local projections to distinguish

between traces that are not related under ∼, it will only be

necessary to define the distance between traces σ1 and σ2 if

σ1 ∼ σ2.

The metric we define will say that the distance between

traces σ1 and σ2, with σ1 ∼ σ2, is the number of swaps of

adjacent events required to transform σ1 into σ2. First, we

introduce an equivalence relation ∼1 that only allows one pair

of events to be swapped and requires that these events are at

different ports.

Definition 8 Let σ, σ′ ∈ Act∗ be sequences of actions. We

write σ ∼1 σ′ if there exist p, q ∈ Ports, with p 6= q, σ1, σ2 ∈
Act∗, a ∈ Actp\{δ} and b ∈ Actq\{δ} such that σ = σ1abσ2

and σ′ = σ1baσ2.

Note that in the previous definition, we have that a and b

must be different from δ because we require that they are

performed at different ports. The previous relation induces our

distance in the expected way: we simply count the number of

swaps.

Definition 9 Let σ, σ′ ∈ Act∗ be sequences of actions such

that σ ∼ σ′. We define the distance between these two traces,

denoted by d1(σ, σ′), to be the smallest integer k such that

there exist σ0, σ1, . . . , σk where σ = σ0, σ′ = σk , and for all

0 ≤ i < k we have that σi ∼1 σi+1.

In a minor abuse of notation, we let d1 be defined over

each equivalence class [σ], that is, it induces a function d1σ :
[σ] × [σ] −→ N in the obvious way. We will usually remove

the σ index.

Example 2 Consider the traces σ1 =?i1!o1?i2!o1!o2 and

σ2 =?i2!o2?i1!o1!o1, where the index denotes the port at

which the action is performed. Both traces have the same

associated set of events (see Example 1). The following is one

of the shortest sequences of swaps to transform σ1 into σ2

σ1 =?i1!o1?i2!o1!o2 ∼1 ?i1?i2!o1!o1!o2 ∼1?i2?i1!o1!o1!o2
∼1 ?i2?i1!o1!o2!o1 ∼1?i2?i1!o2!o1!o1
∼1 ?i2!o2?i1!o1!o1 = σ2

Therefore, we have d1(σ1, σ2) = 5.

Note that ∼1 is simply an auxiliary notion: we still need

to work on classes induced by ∼. Next we show that the

previously defined notion induces a metric space on each

equivalence class with respect to ∼. A metric space is a set in

which a notion of distance, between the elements of the set,

has been defined. A distance must fulfil certain properties:

distances must be positive (equal to zero only if we compute

the distance from one element to itself), symmetric (that is,

the distance from element a to element b is equal to the

distance from element b to element a) and satisfy the triangle

inequality. More formally, if X is the space then the function

f : X×X −→ IR is a metric if the following properties hold:

1) For all x, y ∈ X we have that f(x, y) ≥ 0;

2) For all x, y ∈ X we have that f(x, y) = 0 if and only

if x = y;

3) For all x, y ∈ X we have that f(x, y) = f(y, x); and

4) For all x, y, z ∈ X , f(x, z) ≤ f(x, y) + f(y, z).

In our case, given a sequence of actions, our set includes

all the allowed permutations of this sequence. In this section,

the distance between two sequences is given, as we have

already explained, by the minimum number of swaps needed

to transform one sequence into the other. The proof of the

following result can be found in the appendix.

Proposition 1 Let σ ∈ Act∗ be a sequence of actions. The

pair ([σ], d1) is a metric space.

Based on the metric d1, we can define what it means for a

trace to be allowed if the specification is M and we allow at

most distance k.

Definition 10 Let M ∈ IOTS(I, O,Ports), k ≥ 0, and σ ∈
Act∗. We say that σ is allowed by M given d1 and k if there

is some trace σ′ ∈ L(M) such that σ′ ∼ σ and d1(σ, σ′) ≤ k.

We can extend the previous notion of allowed to define a

new conformance relation for distributed testing.

Definition 11 Let M,N ∈ IOTS(I, O,Ports) and k ≥ 0.

We write N dioco
k
sw M if every trace σ ∈ Lδ(N) is allowed

by M given d1 and k.

Given an IOTS M we can define the set of sequences that

are within a certain distance of traces of M .

Definition 12 Let M ∈ IOTS(I, O,Ports) and k ≥ 0. We

define the set L1
k(M) ⊆ Act∗ as

L1
k(M) = {σ|∃σ′ ∈ L(M) : σ′ ∼ σ ∧ d1(σ, σ′) ≤ k}
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We have that L1
k(M) denotes the set of traces that are at

distance at most k from traces of M . Note that if k = 0 then

we obtain the original set of traces, that is, L1
0(M) = L(M).

The following is immediate if we take into account that a

sequence σ is allowed by M given d1 and k if and only if

there is some trace σ′ ∈ L(M) with d1(σ′, σ) ≤ k.

Proposition 2 Let M,N ∈ IOTS(I, O,Ports) and k ≥ 0.

We have N dioco
k
sw

M if and only if Lδ(N) ⊆ L1
k(M).

A. An IOTS that recognises L1
k(M)

It has been shown that if M is a finite model then the

union of the equivalence classes of traces in L(M), given

equivalence relation ∼, need not be a regular language. To

see this it is sufficient to let M be an IOTS with outputs

!o1 and !o2 at ports 1 and 2 such that L(M) is the set of

prefixes of sequences in (!o1!o2)
∗; the union of equivalence

classes of traces in L(M) contains all sequences in {!o1, !o2}∗

where the number of occurrences of !o1 is the same as, or

one more than, the number of occurrences of !o2 and this

clearly does not define a regular language. This helps explain

the negative decidability and complexity results regarding

distributed testing: in effect, we are not reasoning about regular

languages. Fortunately, our distances, for each k, induce sets

that are regular.

We will now prove that the sets L1
k(M) are regular. We

will achieve this by, for M and k, defining a finite automaton

Ma(M,k) that recognises L1
k(M).

Definition 13 Let M ∈ IOTS(I, O,Ports) and k ≥ 0. We

inductively define the IOTS Ma(M,k) as follows. If k =
0 then Ma(M,k) = M . Otherwise, if k > 0 then let us

suppose that Ma(M,k − 1) = (Q,QF , I, O, T, qin). Then

Ma(M,k) = (Q′, Q′

F , I, O, T ′, q′in) in which q′in = q1in and

Q′, Q′

F and T ′ are given in Figure 4.

Essentially, the inductive step duplicates all the states of

the previous IOTS so that we have two copies of a state q:

q1 corresponds to the situation in which the state is q and

no events have been swapped, while q2 corresponds to the

situation in which the state is q and two events (at dif-

ferent ports) have been swapped. Algorithm 1 implements

the construction of Ma(M,k). The generation of Ma(M,k)
proceeds through k steps. The algorithm begins with the

construction of Ma(M, 1) and this process is successively

applied k times over the returned machine. Starting from the

duplication of the states and transitions of M the algorithm

adds new transitions to form Ma(M, 1). For every pair

t = (q1, a, q2) and t′ = (q2, b, q3) of consecutive transitions of

M , with events a and b at different ports, a new state qtt′ and

two transitions are included in Ma(M, 1) in order to capture

the swap of these events. Naturally, the auxiliary states qtt′ are

not final. This process is successively applied to the machine

returned k times.

Example 3 Consider the IOTSM depicted in Figure 5 (a) in

which indexes denote the port where the actions are produced.

Figure 5 (b) showsMa(M, 1), where we have considered two

pairs of consecutive transitions:

• t = (q0, a1, q1) and t′ = (q1, b2, q2).
• t′ = (q1, b2, q2) and t′′ = (q2, c3, q3).

The following result, whose proof is given in the appendix,

states that the language accepted by the automaton constructed

by using Algorithm 1 coincides with the one given by Defi-

nition 12.

Theorem 1 Let M ∈ IOTS(I, O,Ports) and k ≥ 0. We have

that L1
k(M) = L(Ma(M,k)).

Note that the above result shows that if M is finite then we

can construct a finite automaton that recognises L1
k(M) and

so a number of important problems will be decidable.

B. Decision problems and their complexity

We now explore two complexity problems associated with

a conformance relation. As previously noted, when we reason

about complexity we restrict attention to the case where

the models are finite since almost all decision problems are

trivially undecidable when we allow models to be infinite.

First, we formally define the notions of membership and

correctness in our framework.

Definition 14 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions, d be a metric, and k ≥ 0.

The corresponding membership problem is to decide whether

there is some σ′ ∈ L(M) such that σ′ ∼ σ and d(σ, σ′) ≤ k.

If there is such a σ′ then we say that σ is allowed by M given

d and k.

Let M,N ∈ IOTS(I, O,Ports) be two finite IOTSs, d be

a metric, and k ≥ 0. The corresponding correctness problem

is to decide whether all σ ∈ L(N) are allowed by M given d

and k.

We now explore the correctness and membership problems

and their complexity. Since this only makes sense in the

context of finite models, throughout the rest of this section we

assume that M has finite sets of states, inputs, and outputs.

We first give a result, whose proof is given in the appendix,

regarding the size ofMa(M,k) and how it relates to the size

of M .

Proposition 3 Let M ∈ IOTS(I, O,Ports) be a finite IOTS

and k ≥ 0. We have thatMa(M,k) has O(|T |2
k

) transitions,

where T is the finite set of transitions of M .

Since we have a bound on the number of transitions of

the systems generated from M and k, we can now explore

complexity results, starting with the correctness problem. The

proofs of the following four results are given in the appendix.

Theorem 2 Let M,N ∈ IOTS(I, O,Ports) be finite IOTSs

and k ≥ 0. The corresponding correctness problem, given d1

and k, is in 2-EXPSPACE and is PSPACE-hard.
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Q′ = {q1|q ∈ Q} ∪ {q2|q ∈ Q} ∪
{
qt1t2

∣∣ ∃t1 = (q1, a, q2) ∈ T, t2 = (q2, b, q3) ∈ T : port(a) 6= port(b)
}

Q′

F = {q1|q ∈ QF} ∪ {q2|q ∈ QF}

T ′ = {(q11 , a, q
1
2)|(q1, a, q2) ∈ T } ∪ {(q21 , a, q

2
2)|(q1, a, q2) ∈ T }∪{

(q11 , b, qt1t2), (qt1t2 , a, q
2
3) |∃q2 ∈ Q, t1 = (q1, a, q2) ∈ T, t2 = (q2, b, q3) ∈ T : port(a) 6= port(b)

}

Fig. 4: Description of Q′, Q′

F and T ′ in Definition 13

Algorithm Produce Ma(M,k)
/*M = (Q,QF , I, O, T, qin), M

′ = (Q′, Q′

F , I, O, T ′, q′in)*/

if k = 1 then

Q′ := ∅;Q′

F := ∅;T ′ := ∅;
foreach state q ∈ Q do

Q′ := Q′ ∪ {q1, q2};
/*q1, q2 are fresh states*/

if q ∈ QF then Q′

F := Q′

F ∪ {q
1, q2};

end

q′in := q1in;

foreach transition (q1, a, q2) ∈ T do

T ′ := T ′ ∪ {(q11 , a, q
1
2), (q

2
1 , a, q

2
2)}

end

foreach pair of transitions t = (q1, a, q2), t
′ = (q2, b, q3) ∈ T with port(a) 6= port(b) do

Q′ := Q′ ∪ {qtt′};
/*qtt′ is a fresh state*/

T ′ := T ′ ∪ {(q11 , b, qtt′), (qtt′ , a, q
2
3)};

end

return(M ′);
else

return(Produce Ma(Produce Ma(M,k − 1), 1));
end

Algorithm 1: Producing Ma(M,k) for k > 0.

Note that, in contrast, the corresponding problem for dioco

is undecidable [18]. Also note that there is a gap between the

bounds in the above case; reducing this gap is a problem for

future work. The gap between the upper and lower bounds in

the above result comes from the fact that our representation of

L1
k(M) has double exponential size; the (2-EXPSPACE) upper

bound uses this but the lower bound does not assume that

this is the most compact representation of L1
k(M). It should

be possible to remove this gap between the upper and lower

bounds if we can prove that we cannot represent L1
k(M) more

compactly.

In practice, we might have a relatively small value of k. This

would be the case, for example, if the local testers are close

to being synchronised; we might know that there can only

be a very small number of differences. As a result, we are

interested in how solutions to the membership problem scale

as M and σ grow but k is bounded above (or, equivalently, if

k is fixed). We now therefore explore the complexity of the

correctness problem for bounded k. The main observation is

that for bounded k we have that Ma(M,k) has size that is

polynomial in the size of M since we can fix k to be the upper

bound.

Theorem 3 Let M,N ∈ IOTS(I, O,Ports) be finite IOTSs

and k ≥ 0. The corresponding bounded correctness problem,

given d1 and k, is PSPACE-complete.

Note that this is the same complexity as regular language

inclusion. Next, we explore the complexity of the membership

problem. Note that the membership problem is known to be

NP-hard for dioco [19], a result we use in the proof of the

following result.

Theorem 4 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. The problem of

deciding whether M has a trace σ′ ∼ σ such that d1(σ, σ′) ≤
k is NP-complete.

Again, the problem becomes simpler if we bound k.

Theorem 5 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. If we have an

upper bound on k then the problem of deciding whether M

has a trace σ′ ∼ σ such that d1(σ, σ′) ≤ k can be solved in

polynomial time.

8



q0

q1

q2

q3

a1

b2

c3

(a) M

q00 q10

q11 qtt′ q21

q12 qt′t′′ q22

q23 q23

a1

b2

c3

a1

b2

c3

b2

a1c3

b2

(b) Ma(M, 1)

Fig. 5: Generation of Ma(M, 1) by Algorithm 1

V. PLACING A BOUND ON THE DISTANCE BETWEEN

EVENTS

In this section we introduce our second notion of distance

and the associated conformance relation. In the new setting,

the distance between two traces is equal to the maximum

difference between the positions of each action in both traces.

Definition 15 Let σ1, σ2 ∈ Act
∗ be sequences of actions such

that σ1 ∼ σ2. We define the distance d2 between these two

sequences as follows:

d2(σ1, σ2) = maxe∈E(σ1){|posσ1(e)− posσ2(e)|}

Given 1 ≤ j ≤ d2(σ1, σ2), if posσ1(e)− posσ2(e) = j then

we say that e ∈ E(σ1) is j-early in σ2 with respect to σ1 and

we also say that e ∈ E(σ1) is j-late in σ1 with respect to σ2.

Abusing the notation, we have that d2 is defined over each

equivalence class [σ], that is, it induces a function d2σ : [σ] ×
[σ] −→ IN in the obvious way and we will usually remove the

σ index.

Example 4 Consider the traces σ1 =?i1!o1?i2!o1!o2 and

σ2 =?i2!o2?i1!o1!o1, where the index denotes the port at

which the action is performed. We know that both traces have

the same associated set of events (see Example 1). However,

the positions of the events in each trace are different. For

example, posσ1((?i1, 1)) = 1 while posσ2((?i1, 1)) = 3.

We have that the biggest difference between the positions

of events is equal to 3 (given by event (!o2, 1)). Therefore,

d2(σ1, σ2) = 3. In addition, we have that (?i1, 1) is 2-late in

σ2 with respect to σ1 and (!o2, 1) is 3-early in σ2 with respect

to σ1.

Next we state that the previously defined notion induces a

metric space on each equivalence class with respect to ∼ (the

proof is in the appendix).

Proposition 4 Let σ ∈ Act∗ be a sequence of actions. The

pair ([σ], d2) is a metric space.

Given an IOTS M we can define the set of sequences that

are within a certain distance of M .

Definition 16 Let M ∈ IOTS(I, O,Ports) and k ≥ 0. We

define the set L2
k(M) ⊆ Act∗ as

L2
k(M) = {σ ∈ Act∗|∃σ′ ∈ L(M) : σ′ ∼ σ ∧ d2(σ, σ′) ≤ k}

We have that L2
k(M) denotes the set of traces that are at

distance at most k from a trace of M . Note that L2
0(M) =

L(M).
Similar to before, we can now define the notion of a trace

being allowed by the specification (for a given bound) and so

a new conformance relation.

Definition 17 Let M ∈ IOTS(I, O,Ports), k ≥ 0, and σ ∈
Act∗. We say that σ is allowed by M , given d2 and k, if there

is some trace σ′ ∈ L(M) such that σ′ ∼ σ and d2(σ, σ′) ≤ k.

Definition 18 Let M,N ∈ IOTS(I, O,Ports) and k ≥ 0.

We write N dioco
k
dis M if every trace σ ∈ Lδ(N) is allowed

by M given d2 and k.

The following is immediate from the fact that a sequence

σ is allowed by M given k if and only if there is some trace

σ′ ∈ L(M) with d2(σ′, σ) ≤ k.

Proposition 5 Let M,N ∈ IOTS(I, O,Ports) and k ≥ 0.

We have that N dioco
k
dis M if and only if Lδ(N) ⊆ L2

k(M).

A. An IOTS that recognises L2
k(M)

Given M , it is straightforward to construct an IOTS that

accepts all traces within distance 1 of L(M); for a pair

((q1, a, q2), (q2, b, q3)) of consecutive transitions whose events

are at different ports, we create a new state q4 and transitions

(q1, b, q4), (q4, a, q3) to represent the possibility of the two
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q0

q1

q2

q3

q4

a1

b2

a1

c3

(a) M

q0

q5 q1

s2 q6

q7 q3

q4

a1

b2

a1

c3

b2

a1 a1

c3

b2

a1

(b) Mb(M, 1)

Fig. 6: An IOTS and one that includes all traces of distance

at most 1

events being swapped. Naturally, state q4 is not a final state

since otherwise we would include b as a possible trace.

Figure 6 gives an example of the application of such a

procedure and Algorithm 2 shows how one can implement

this procedure.

Having shown how one can take an IOTS and construct an

IOTS that accepts all traces within distance 1, it might seem

that we can simply apply this procedure k times. However, the

following shows that this need not be sufficient.

Example 5 Consider M whose language is the trace σ1 =
a1a2a3, and all prefixes of this, and consider also the trace

σ2 = a3a2a1. It is clear that the distance between σ1 and σ2

is 2. If we apply Algorithm 2 to M , to form Mb(M, 1), then

we add the traces a1a3a2 and a2a1a3. However, if we apply

Algorithm 2 toMb(M, 1) then we add the traces a3a1a2 and

a2a3a1, and so some traces at distance 2 from σ1, but we do

not obtain σ2.

It is not too hard to see that, in the example, three appli-

cations of Algorithm 2 would have allowed us to obtain the

trace σ2. If we call the application of Algorithm 2 a step then

the following result, whose proof is given in the appendix,

gives an upper bound on the number of steps required.

Proposition 6 Let σ1, σ2 be such that σ1 ∼ σ2 and

d2(σ1, σ2) = k for some k ≥ 0. Then it is possible to rewrite

σ1 to σ2 through at most k · (k + 1) steps.

It might seem that we can just apply Algorithm 2 a total

of k · (k + 1) times. However, this might allow some events

to be moved too far. In order to avoid this, in effect we will

repeatedly apply Algorithm 2 but whenever we swap an event

q0

q1

q2

q3

q4

a1, 0

b2, 0

a1, 0

c3, 0

(a) M

q0

q5 q1

s2 q6

q7 q3

q4

a1, 0

b2, 0

a1, 0

c3, 0

b2,−1

a1, 1 a1,−1

c3,−1

b2, 1

a1, 1

(b) Mb(M, 1)

Fig. 7: Generation of Mb(M, 1) by Algorithm 3

we update a label that tells us how far it has been swapped

and we do not allow swaps that exceed the upper bound k.

This idea is implemented in Algorithm 3.

Definition 19 Let M ∈ IOTS(I, O,Ports) and k ≥
1. We say that Mb(M,k) is the IOTS returned by

Produce Mb(M,k).

In order to prove that L2
k(M) is regular, it is enough

to show that this set of traces coincides with the set of

sequences recognised by the finite automaton produced from

the original system after applying Algorithm 3. This is given

by the following result, whose proof is a direct consequence

of Proposition 6 and Algorithm 2.

Theorem 6 Let M ∈ IOTS(I, O,Ports). We have that

L2
k(M) = L(Mb(M,k)).

In Figures 7 and 8 we show applications of the algorithm,

where redundant transitions, that is, transitions labelled by the

same action and outgoing/reaching the same states, have been

removed for clarity.

B. Decision problems and their complexity

As before, we explore two complexity problems.

1) Deciding whether a sequence of actions σ is allowed by

M given k (a membership problem); deciding whether

σ is a member of the regular language L2
k(M).

2) Deciding whether N is a correct implementation of M

given k; deciding whether Lδ(N) is a subset of the

regular language L2
k(M).

A single step adds two transitions for every pair of consec-

utive transitions at different ports. Since we require at most
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Algorithm Produce Mb(M, 1) /*M = (Q,QF , I, O, T, qin),Mb(M, 1) = (Q1, Q1
F , I, O, T 1, qin) */

Mb(M, 1)←M ;

foreach (q, a, q′), (q′, b, q′′) ∈ T with port(a) 6= port(b) do

Q1 ← Q1 ∪ {qw};
/*qw is a fresh state */

T 1 ← T 1 ∪ {(q, b, qw), (qw, a, q′′)};
end

return(Mb(M, 1));

Algorithm 2: Producing Mb(M, 1).

Algorithm Produce Mb(M,k) /*M = (Q,QF , I, O, T, qin),Mb(M,k) = (Qk, Qk
F , I, O, T k, qin) */

Qk ← Q;

Qk
F ← QF ;

T k ← {(q, (a, 0), q′)|(q, a, q′) ∈ T };
/*each transition has a different value of i */

for n = 1 to k · (k + 1) do

foreach (q, (a, da), q
′), (q′, (b, db), q

′′) ∈ T k with port(a) 6= port(b) do

if |db − 1| ≤ k ∧ |da + 1| ≤ k then

Qk ← Qk ∪ {qw};
/*qw is a fresh state */

T k ← T k ∪ {(q, (b, db − 1), qw), (qw, (a, da + 1), q′′)};
end

end

end

T k ← {(q, a, q′)|(q, (a, da), q′) ∈ T k};
/*by construction, da ≤ k */

return(Mb(M,k));

Algorithm 3: Producing Mb(M,k)

k · (k+1) steps, we obtain the following result that is similar

to Proposition 3. The only difference between the proofs is

that there are now k · (k + 1) steps rather than k steps.

Proposition 7 Let M ∈ IOTS(I, O,Ports) be a finite IOTS

and k ≥ 0. We have that Mb(M,k) has O(|T |2
k·(k+1)

)
transitions, where T is the finite set of transitions of M .

We start by examining the correctness problem. The proof

is similar to that of Theorem 2 and we omit it.

Theorem 7 Let M,N ∈ IOTS(I, O,Ports) be finite IOTSs

and k ≥ 0. The corresponding correctness problem, given d2

and k, is in 2-EXPSPACE and is PSPACE-hard.

In practice, we might have a relatively small value of k and

are interested in how solutions to the decision problems scale

as M and σ grow. We now therefore explore the complexity of

the correctness problem for bounded k. The main observation

is that for bounded k we have thatMb(M,k) has polynomial

size. The proof is similar to that of Theorem 3 and we omit

it.

Theorem 8 Let M,N ∈ IOTS(I, O,Ports) be finite IOTSs

and k ≥ 0. The corresponding bounded correctness problem,

given d2 and k, is PSPACE-complete.

We now explore the complexity of the membership problem:

that of checking whether an observation made is allowed

(whether it is a trace of Mb(M,k)). The proof is similar to

that of Theorem 4 and we omit it.

Theorem 9 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. The problem of

deciding whether M has a trace σ′ ∼ σ such that d2(σ, σ′) ≤
k is NP-complete.

We now explore the complexity of the membership problem

for bounded k and show that this can be solved in polynomial

time. Given a sequence of actions σ we can place a partial

order ≺k on the events in E(σ), see Definition 6, such that

ei ≺k ej if for all σ′ ∼ σ we have that if d2(σ, σ′) ≤ k then ai

must appear before aj in σ′, where as usual ax is the action

associated with the event ex. This partial order induces the

notions of ideal and antichain that we will use in the proof of

our result. Note that we use events, instead of actions, to deal

with different occurrences of the same action in a sequence.

Definition 20 Let σ = a1 . . . an ∈ Act∗ be a sequence of

actions and k ≥ 0. We define the relation ≺k over E(σ) so

that ei ≺k ej if and only if one of the following holds.

1) ai and aj are at the same port and i < j;

11



q0

q5 q1 q11

q8 q2 q6

q7 q3 q10

q4

a1, 0

b2, 0

a1, 0

c3, 0

b2,−1

a1, 1 a1,−1

c3,−1

b2, 1

a1, 1

c3,−2

a1, 2 c3,−1

b2, 2

c3,−2

a1, 0

Fig. 8: Generation of part of Mb(M, 2) by Algorithm 3

2) ai and aj are at different ports and j − i ≥ 2 · k.

Let E ⊆ E(σ) be a subset of events. We say that E is

downwardly closed if whenever we have that e ∈ E and e′ ≺k

e we also have that e′ ∈ E. In this case we say that E is an

ideal.

Let E ⊆ E(σ) be a subset of events. We say that E is an

anti-chain if there do not exist e, e′ ∈ E such that e ≺k e′.

Let E ⊆ E(σ) be a subset of events. We say that an event

e ∈ E is maximal in E if there is no e′ ∈ E such that e ≺k e′.

The first condition in the definition of ≺k corresponds

to the requirement that we only consider traces with the

same projections; if two actions are at the same port then

their relative order must be preserved. The second condition

corresponds to the constraint introduced by k: at most ai can

be delayed by k and aj brought forward by k and so if the

differences in position is 2 · k or above then they cannot be

swapped in forming σ′ with d2(σ, σ′) ≤ k. Note that σ is

an implicit parameter of ≺k but we omit it in order to avoid

overloading the notation.

We now show how we can construct an IOTS Mb(σ, k)
that recognises all sequences within distance k of σ (according

to d2). The key point is that if d2(σ, σ′) ≤ k then the partial

order ≺k must be a subset of the order in σ′ and so all prefixes

of σ′ must also be consistent with ≺k. Thus, if σ′′ is a prefix

of σ′ and d2(σ, σ′) ≤ k then the elements of E(σ′′) must be

downwardly closed under ≺k.

Definition 21 Let σ ∈ Act∗ be a sequence of actions and

k ≥ 0. We denote by Mb(σ, k) the IOTS (Q, q0, E(σ), T, F )
such that the state set Q is the set of downwardly closed (under

≺k) subsets of E(σ), q0 = {} is the initial state, the only

final state is E(σ), and (q, a, q′) is a transition if and only if

e ∈ E(σ) \ q, q′ = q ∪ {e} and e = (a, j) for some j ∈ IN.

Note that given two sequences such that σ ∼ σ′, we

have d2(σ, σ′) ≤ k if and only if σ′ ∈ L(Mb(σ, k)). The

following example shows the construction of finite automata,

for different values of k, for a given trace.

Example 6 Consider the trace σ =?i1!o1?i2!o1!o2 and its set

of events E(σ) = {(?i1, 1), (!o1, 1), (?i2, 1), (!o1, 2), (!o2, 1)}
given in Example 1. The ideals of E(σ) for ≺0 are:

I0 = ∅
I1 = {(?i1, 1)}
I2 = {(?i1, 1), (!o1, 1)}
I3 = {(?i1, 1), (!o1, 1), (?i2, 1)}
I4 = {(?i1, 1), (!o1, 1), (?i2, 1), (!o1, 2)}
I5 = {(?i1, 1), (!o1, 1), (?i2, 1), (!o1, 2), (!o2, 1)}

and Mb(σ, 0) can be found in Figure 9 (left). The ideals of

E(σ) for ≺1 are the previous ones plus the next ones:

I6 = {(?i1, 1), (?i2, 1)}
I7 = {(?i1, 1), (!o1, 1), (!o1, 2)}
I8 = {(?i1, 1), (!o1, 1), (?i2, 1), (!o2, 1)}

and Mb(σ, 1) can be found in Figure 9 (center). Finally, the

ideals of E(σ) for ≺2 are the previous ones plus the next

ones:

I9 = {(?i2, 1)} I10 = {(?i1, 1), (?i2, 1), (!o2, 1)}

and Mb(σ, 2) can be found in Figure 9 (right).

We now consider the complexity of the membership prob-

lem if we bound k. The proof of the following two results are

given in the appendix.

Theorem 10 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. If we have an
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Fig. 9: Mb(σ, 0), Mb(σ, 1), and Mb(σ, 2) for σ =?i1!o1?i2!o1!o2

upper bound on k then the problem of deciding whether M

has a trace σ′ ∼ σ such that d2(σ, σ′) ≤ k can be solved in

polynomial time.

Interestingly, the problem can also be solved in polynomial

time if we have an upper bound on the number of ports.

Theorem 11 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. If we have

an upper bound on the number of ports then the problem of

deciding whether M has a trace σ′ ∼ σ such that d2(σ, σ′) ≤
k can be solved in polynomial time.

VI. CONCLUSIONS AND FUTURE WORK

The study of conformance relations in the distributed testing

architecture carries additional complications that must be

solved. A liberal interpretation is that as long as an observed

trace is a permutation of a trace of the specification, that

has the same projections at the ports, then we cannot claim

that we found an error. The underlying assumption is that

since the local testers do not synchronise during testing, it is

impossible to determine the relative order of events observed

at different ports. However, there are situations in which this

assumption does not hold: there can be events e1 and e2 at

different ports where, after testing, one can determine that e1

occurred before e2. In such situations, classical conformance

relations for distributed testing are too weak: they can claim

that an IOTS N is correct with respect to specification IOTS

M in situations in which N is not a correct implementation

of M . To see this, let us suppose that the SUT produces

trace !o3!o2!o1, the specified trace is !o1!o2!o3, and the !oi
are at different ports. This is acceptable under the standard

conformance relation for distributed testing; these two traces

are observationally equivalent since we cannot determine the

relative order in which the !oi were observed. However, in

this case we observe a failure if, for example, the trace of the

implementation is only allowed to differ from a trace of the

specification through at most one swap of adjacent events.

In this paper, we addressed this problem by introducing

conformance relations that use notions of distance. The es-

sential idea is that even if trace σ1 of the SUT and a

trace σ2 of the specification are observationally equivalent

(σ1 ∼ σ2), they can be distinguished during testing if the

distance between σ1 and σ2 is greater than some given value

k. The motivation is that if the two traces are too different then

it will be possible to distinguish them in distributed testing.

For example, we should be able to distinguish between one

process that outputs !o1 repeatedly for two days before output

!o2 at a different port and another process that first outputs

!o2 before outputting !o1 for two days. This is despite these

traces being observationally equivalent under ∼ due to them

having the same local projections.

We considered two possible metrics and for each we

defined new conformance relations and studied the compu-

tational complexity of the main decision problems: deter-

mining whether a trace is allowed by the specification (a

membership/oracle problem) and deciding whether an IOTS

N is a correct implementation of a specification IOTS M

(a correctness problem). In classical distributed testing the

membership problem is NP-complete and the correctness

13



problem is undecidable. The two conformance relations given

in this paper had similar complexity results and, similar to the

classical case, we found that the membership problem is NP-

complete. However, unlike the classical case the correctness

problem is decidable: it is PSPACE-hard and in 2-EXPSPACE.

It transpired that if we fix, or bound above, the value k used

then the membership problem is polynomial time solvable

and the correctness problem is PSPACE-complete. For the

bounded case, these results are equivalent to the corresponding

problems for centralised testing.

There is the interesting question as to when an conformance

relation might be used and this is likely to depend on properties

of the SUT and test infrastructure. For example, we might

know that the local testers have clocks that are sufficiently

close to being synchronised that the order derived from

timestamps will only very rarely be wrong. In such cases, we

would have reason to bound the number of swaps of adjacent

events, and so we might use our first conformance relation. A

bound might be derived using a probabilistic argument and is

likely to depend on the test sequence length. Alternatively,

if events during testing occur at roughly regular intervals

and we have a bound on the differences between the local

clocks then we could derive a bound for use with our second

conformance relation. Let us suppose, for example, that the

gap between adjacent events is approximately one millisecond

and that the local clocks are known to differ by at most two

milliseconds2. We might then conclude, for example, that the

difference between the actual position of an event and the

estimated position is at most three milliseconds. As noted, the

bounds used are likely to depend on properties of the SUT

but might also depend on the test case used and how this is

applied. If the local testers can communicate then it may well

be possible to design an approach in which the exchange of

synchronisation messages is used to ensure that a relatively

low value for a bound can be used.

We contemplate three main lines of future work in addi-

tion to that described above. First, we would like to study

other metrics and compare their properties concerning which

systems are conforming to a given specification. Second,

we would like to complete our study on the computational

complexity of certain problems so that we can close the gap

in the bounds presented in this paper. Finally, we would

like to study test derivation to provide sound and complete

test suites. The starting point is our previous test derivation

algorithms in the distributed architecture for controllable test

cases [24], [26]. However, our preliminary exploration shows

that the extension to remove the controllability restriction is

not easy. We are also exploring the possibility of reducing test

generation for bounded versions of dioco to test generation

and application in the non-distributed setting. Intuitively, we

should consider suitable permutations of the sequences that

the specification can perform.

2If the local testers are connected to the internet then the Network Time
Protocol could be used to derive a bound between the differences between
local clocks.
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APPENDIX

PROOFS OF MAIN RESULTS

Proposition 1 Let σ ∈ Act∗ be a sequence of actions. The

pair ([σ], d1) is a metric space.

Proof: Given σ1, σ2, σ3 ∈ [σ] we have to prove the

following conditions.

1) d1(σ1, σ2) ≥ 0. Trivial.

2) d1(σ1, σ2) = 0 if and only if σ1 = σ2. Also trivial.

3) d1(σ1, σ2) = d1(σ2, σ1). It is clear that the minimum

number of swaps between events to transform σ2 into σ1

is equal to the minimum number required to transform

σ1 into σ2.

4) d1(σ1, σ2) ≤ d1(σ1, σ3) + d1(σ3, σ2). We will prove

this by contradiction, assuming that d1(σ1, σ2) >

d1(σ1, σ3) + d1(σ3, σ2). In this case, we can transform

σ1 into σ3 and then σ3 into σ2 and this can be done with

d1(σ1, σ3) + d1(σ3, σ2) swaps. This number is smaller

than d1(σ1, σ2) and, by definition, d1(σ1, σ2) is the

smallest number of swaps we must perform to obtain

σ2 from σ1. We thus obtain a contradiction as required.

Theorem 1 Let M ∈ IOTS(I, O,Ports) and k ≥ 0. We have

that L1
k(M) = L(Ma(M,k)).

Proof: The proof will be by induction on k. The result

holds immediately for the base case k = 0 since, by definition,

Ma(M, 0) = M and L1
0(M) = L(M).

We now consider the inductive case and assume that the

result holds for all values less than k, k > 0, and we are

required to prove that the result holds for k.

We first prove the left to right inclusion. Let σ be a

trace of L1
k(M). If σ ∈ L1

k−1(M) then the result follows

immediately from the inductive hypothesis. Now assume that

σ 6∈ L1
k−1(M). By definition, we have that there exists a trace

σ′ ∈ L1
k−1(M) such that σ′ ∼ σ and d1(σ, σ′) ≤ 1. By

the inductive hypothesis, σ′ ∈ L(Ma(M,k− 1)). Thus, there

exists a path inMa(M,k−1) from the initial state that reaches

a final state and has label σ′. By the construction ofMa(M,k)
there also exists a path labelled by σ′ in Ma(M,k). In

this path we only have two consecutive transitions labelled

by two actions that are exchanged with respect to σ. We

replace these transitions by the new transitions generated in

the construction of Ma(M,k) that represent the events being

swapped; this is allowed since the events must have been at

different ports. In this way, we obtain a path in Ma(M,k)
labelled by σ that reaches a final state. Therefore, we have

that σ ∈ L(Ma(M,k)) as required.

Now we prove the right to left inclusion. Let σ be a trace of

L(Ma(M,k)). Therefore, there exists a trace of Ma(M,k)
labelled by σ that reaches a final state. If σ is a trace of

Ma(M,k−1) then the result follows immediately from the in-

ductive hypothesis. Otherwise, by the definition ofMa(M,k)
we have that Ma(M,k − 1) has transitions t = (q1, a, q2)
and t′ = (q2, b, q3) with port(a) 6= port(b) such that
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Ma(M,k) has a path of the form ρ1(q
1
1 , b, qtt′)(qtt′ , a, q

2
3)ρ2

whose label is σ. Further, ρ1 is equivalent to a path of

Ma(M,k − 1) from the initial state (once states are rela-

belled) and ρ2 is equivalent to a path of Ma(M,k − 1)
from state q3 (once states are relabelled). Thus, we have

that label(ρ1) a b label(ρ2) ∈ L(Ma(M,k − 1)). By the

inductive hypothesis, label(ρ1) a b label(ρ2) ∈ L1
k−1(M).

The result now follows from a and b being at different ports,

the definition of L1
k(M) and by taking into account that

L1
k(M) is equal to

L1
k−1(M)
∪

{σ1baσ2|σ1abσ2 ∈ L1
k−1(M) ∧ port(a) 6= port(b)}

Proposition 3 Let M ∈ IOTS(I, O,Ports) be a finite IOTS

and k ≥ 0. We have thatMa(M,k) has O(|T |2
k

) transitions,

where T is the finite set of transitions of M .

Proof: Let Tk be the transition set of Ma(M,k) and

Tk−1 be the transition set ofMa(M,k− 1). The reasoning is

essentially inductive: we observe that in building Ma(M,k)
we include two copies of each transition of Ma(M,k − 1)
and also every pair of consecutive transitions t and t′ has the

potential to be replicated (if the events are at different ports).

Since |Tk−1|
2 provides an upper bound on the number of pairs

of successive transitions in Ma(M,k − 1), and at most two

transitions are added for each such pair, we have that

|Tk| ≤ 2 · |Tk−1|+ 2 · |Tk−1|
2

Since the quadratic term dominates we have that

|Tk| = O(|Tk−1|
2)

and so the result follows by a simple inductive argument.

Theorem 2 Let M,N ∈ IOTS(I, O,Ports) be finite IOTSs

and k ≥ 0. The corresponding correctness problem, given d1

and k, is in 2-EXPSPACE and is PSPACE-hard.

Proof: The correctness problem reduces to deciding

whether Lδ(N) ⊆ L1
k(M) and so Lδ(N) ⊆ L(Ma(M,k)).

This is an instance of the PSPACE-complete regular lan-

guage inclusion problem in which Ma(M,k) has size that

is double-exponential. Since regular language inclusion is in

PSPACE [14], this shows that the correctness problem is in

2-EXPSPACE.

The problem being PSPACE-hard follows immediately from

the fact that if we set k = 0 then we can capture all instances

of the PSPACE-complete regular language inclusion problem.

Theorem 3 Let M,N ∈ IOTS(I, O,Ports) be finite IOTSs

and k ≥ 0. The corresponding bounded correctness problem,

given d1 and k, is PSPACE-complete.

Proof: Again, the correctness problem reduces to deciding

whether Lδ(N) ⊆ L(Ma(M,k)). This is an instance of the

PSPACE-complete regular language inclusion problem and the

size ofMa(M,k) is bounded above by a polynomial in terms

of the size of M . The problem is thus in PSPACE.

The problem being PSPACE-hard again follows immedi-

ately from the case k = 0 and the regular language inclusion

problem being PSPACE-complete.

Theorem 4 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. The problem of

deciding whether M has a trace σ′ ∼ σ such that d1(σ, σ′) ≤
k is NP-complete.

Proof: We first prove that the problem is in NP. A non-

deterministic Turing machine can guess a sequence of at most

k swaps to form a trace σ′. It then simply checks whether

σ′ = σ. This process can be performed in polynomial time

and so the problem is in NP.

We now prove that the problem is NP-hard. Given trace

σ of length ℓ, it is straightforward to see that ℓℓ provides

an upper bound on the size of [σ] and thus on d1(σ, σ′) for

σ′ ∼ σ. Thus, if we set k = ℓℓ then the membership problem

for M , k and σ is exactly that of deciding whether there is

some σ′ ∼ σ such that σ′ ∈ L(M). However, the problem of

deciding whether there is some σ′ ∼ σ such that σ′ ∈ L(M)
is NP-hard [19]. Since ℓℓ can be stored in polynomial space,

taking into account that O(log2(ℓ
ℓ)) = O(ℓ·log2(ℓ)), if we can

solve the membership problem for bounded k in polynomial

time then we have a polynomial time solution to the NP-hard

problem of deciding whether there is some σ′ ∼ σ such that

σ′ ∈ L(M). The result therefore follows.

Theorem 5 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. If we have an

upper bound on k then the problem of deciding whether M

has a trace σ′ ∼ σ such that d1(σ, σ′) ≤ k can be solved in

polynomial time.

Proof: As before, since we have an upper bound on k,

the size of Ma(M,k) is polynomial in terms of the size of

M . Thus, the membership problem reduces to that of deciding

whether σ ∈ L(Ma(M,k)) for a finite automatonMa(M,k)
of polynomial size. The result now follows from there being

polynomial time solutions to the problem of deciding whether

a word is recognised by a finite automaton [30].

Proposition 4 Let σ ∈ Act∗ be a sequence of actions. The

pair ([σ], d2) is a metric space.

Proof: Given σ1, σ2, σ3 ∈ [σ] we must prove that the

following four conditions hold in order to ensure that d2 is

indeed a distance.

1) d2(σ1, σ2) ≥ 0. Trivial because we compute the maxi-

mum of non-negative numbers.

2) d2(σ1, σ2) = 0 if and only if σ1 = σ2. We have that

d2(σ1, σ2) = 0 if and only if ∀ e ∈ E(σ1) : |posσ1(e)−
posσ2(e)| = 0. The previous statement is equivalent to

having that ∀ e ∈ E(σ1) : posσ1(e) = posσ2(e) and this

is trivially equivalent to having σ1 = σ2.

3) d2(σ1, σ2) = d2(σ2, σ1). Trivial because ∀ e ∈ E(σ1) :
|posσ1(e)− posσ2(e)| = |posσ2(e)− posσ1(e)|.

4) d2(σ1, σ2) ≤ d2(σ1, σ3) + d2(σ3, σ2). Let em ∈ E(σ1)
be an event such that d2(σ1, σ2) = |posσ1(e

m) −
posσ2(e

m)|. Without loss of generality, let us suppose

that posσ1(e
m) ≤ posσ2(e

m) (the other case is symmet-

ric). Then, one of the following holds:

• posσ3(e
m) ≤ posσ1(e

m) and posσ3(e
m) ≤
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posσ2(e
m). In this case we have:

d2(σ1, σ2) ≤ |posσ3(e
m)− posσ2(e

m)|
≤ d2(σ3, σ2)
≤ d2(σ1, σ3) + d2(σ3, σ2)

• posσ3(e
m) ≥ posσ1(e

m) and posσ3(e
m) ≥

posσ2(e
m). In this case we have:

d2(σ1, σ2) ≤ |posσ3(e
m)− posσ1(e

m)|
≤ d2(σ1, σ3)
≤ d2(σ1, σ3) + d2(σ3, σ2)

• posσ1(e
m) ≥ posσ3(e

m) ≥ posσ2(e
m). In this case

we have:

d2(σ1, σ2) = |posσ1(e
m)− posσ3(e

m)|
+

|posσ3(e
m)− posσ2(e

m)|

≤ d2(σ1, σ3) + d2(σ3, σ2)

Proposition 6 Let σ1, σ2 be such that σ1 ∼ σ2 and

d2(σ1, σ2) = k for some k ≥ 0. Then it is possible to rewrite

σ1 to σ2 through at most k · (k + 1) steps.

Proof: We will use proof by induction on k. The result

clearly holds for the base case k = 0 since we then have that

σ1 = σ2.

Inductive hypothesis: k > 0 and the result holds for all

distances less than k. Now consider σ1, σ2 such that σ1 ∼ σ2

and d2(σ1, σ2) = k. Let σ1 = a1 . . . an.

Let us suppose that one or more elements of σ1 are k-early.

We find all ai such that: ai is k-early and ai+1 is not k-

early. Clearly, if one or more elements of σ1 are k-early then

there must be some such ai. Given such an ai, ai+1 cannot be

(k− 1)-early since otherwise we would have that ai and ai+1

correspond to the same element of σ2, which is not possible.

Thus, we have that ai+1 is not k-early and also is not k − 1-

early. Thus, if we apply the swap aiai+1 → ai+1ai in σ1

then we obtain a sequence in which the number of letters that

are k-early is reduced and the number of letters that are k-late

does not change. Further, we can apply this process to all such

ai (ai is k-early and ai+1 is not k-early) at the same time in

one step. Since continuous blocks of elements in σ1 that are

k-early cannot have length greater than k, we can repeat this

process at most k times (at most k steps) to obtain a word σ3

in which no letters are k-early.

Now consider any letters of σ3 that are k-late. Similar to

before, we can find all ai such that: ai is k-late and ai−1 is not

k-late. Using similar reasoning to the above case, ai−1 cannot

be (k − 1)-late. Thus, if we apply the swap ai−1ai → aiai−1

in σ3 then we obtain a sequence in which the number of letters

that are k-late is reduced and the number of letters that are

k-early does not change. Further, we can apply this process

to all such ai (ai is k-late and ai−1 is not k-late) at the same

time in one step. Since continuous blocks of elements in σ1

that are k-late cannot have length greater than k, we can repeat

this process at most k times to obtain a word σ4 in which no

letters are k-late or k-early.

We now observe that σ4 ∼ σ2 and d2(σ4, σ2) < k. We can

now apply the inductive hypothesis, to σ4 and σ2, and this

tells us that it is possible to rewrite σ4 to σ2 through at most

(k−1)·(k−1+1) = k ·(k−1) steps. Thus, since it is possible

to rewrite σ1 to σ4 in at most 2 · k steps, the total number of

steps required to rewrite σ1 to σ2 is at most k · (k− 1)+ 2 · k
and this is equal to k · (k + 1). The result thus follows.

Theorem 10 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. If we have an

upper bound on k then the problem of deciding whether M

has a trace σ′ ∼ σ such that d2(σ, σ′) ≤ k can be solved in

polynomial time.

Proof: First observe that the number of states ofMb(σ, k)
is equal to the number of subsets of E(σ) that are downwardly

closed under ≺k. In addition, a downwardly closed set is

uniquely defined by the anti-chain formed from the maximal

elements of that set [10]. However, for two elements ei and

ej to be in an anti-chain we require that |j − i| < 2 · k. Thus,

the number of anti-chains in E(σ) is bounded above by the

number of ways of choosing at most 2 ·k elements from E(σ).
In turn, this is bounded above by |σ|2·k . For bounded k this is

a polynomial. The problem now reduces to deciding whether

there is a trace accepted by both M andMb(σ, k), a problem

that can be solved in polynomial time.

Theorem 11 Let M ∈ IOTS(I, O,Ports) be a finite IOTS,

σ ∈ Act∗ be a sequence of actions and k ≥ 0. If we have

an upper bound on the number of ports then the problem of

deciding whether M has a trace σ′ ∼ σ such that d2(σ, σ′) ≤
k can be solved in polynomial time.

Proof: We again consider the number of states. We now

observe that an anti-chain of E(σ) can contain at most one

element for each port. Thus, the number of anti-chains, and

so states, is bounded above by |σ|m, which is a polynomial

since m is bounded above. Again, we observe that the problem

reduces to deciding whether there is a trace accepted by both

M andMb(σ, k), a problem that can be solved in polynomial

time.
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