
HAL Id: lirmm-02088786
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02088786

Submitted on 4 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discovering Program Topoi via Hierarchical
Agglomerative Clustering

Carlo Ieva, Arnaud Gotlieb, Souhila Kaci, Nadjib Lazaar

To cite this version:
Carlo Ieva, Arnaud Gotlieb, Souhila Kaci, Nadjib Lazaar. Discovering Program Topoi via Hier-
archical Agglomerative Clustering. IEEE Transactions on Reliability, 2018, 67 (3), pp.758-770.
�10.1109/TR.2018.2828135�. �lirmm-02088786�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02088786
https://hal.archives-ouvertes.fr

1

Discovering Program Topoi
via Hierarchical Agglomerative Clustering

Carlo Ieva, Member, IEEE, Arnaud Gotlieb Member, IEEE, Souhila Kaci and Nadjib Lazaar

Abstract—In long lifespan software-systems, specification docu-
ments can be outdated or even missing. Developing new software
releases or checking whether some user requirements are still
valid becomes challenging in this context. This challenge can
be addressed by extracting high-level observable capabilities of
a system by mining its source code and the available source-
level documentation. This paper presents FEAT, an approach that
automatically extracts topoi, which are summaries of the main
capabilities of a program, given under the form of collections of
code functions along with an index. FEAT acts in two steps:
(1) Clustering. By mining the available source code, possibly
augmented with code-level comments, hierarchical agglomerative
clustering groups similar code functions. In addition, this process
gathers an index for each function; (2) Entry-Point Selection.
Functions within a cluster are then ranked and presented to
validation engineers as topoi candidates.

We implemented FEAT on top of a general-purpose test
management and optimization platform and performed an exper-
imental study over 15 open-source software projects amounting
to more than 1 MLOC proving that automatically discovering
topoi is feasible and meaningful on realistic projects.

Index Terms—Program Analysis, Software Maintenance,
Source Code Mining, Clustering, Program Topos .

NOTATION

A Accuracy
fn False negative
fp False positive
P Precision
R Recall
tn True negative
tp True positive

ABBREVIATIONS & ACRONYMS

HAC Hierarchical Agglomerative Clustering
NLP Natural Language Processing
PCA Principal Component Analysis
VSM Vector Space Model

I. INTRODUCTION

A. Context and Challenge

C. Ieva and A. Gotlieb are with the Department of Software Engineer-
ing, Simula Research Laboratory, Oslo, Norway e-mail: carlo@simula.no;
arnaud@simula.no.

Souhila Kaci and Nadjib Lazaar are with LIRMM, University of Montpel-
lier, Montpellier, France email: kaci@lirmm.fr; lazaar@lirmm.fr.

Manuscript received April 19, 2005; revised August 26, 2015.

SOFTWARE systems are developed to satisfy an identified
set of user requirements. When the initial version of a sys-

tem is developed, contractual documents are produced to agree
on its capabilities. However, when the system evolves over a
long period of time, the initial user requirements can become
obsolete or even disappear. This mainly happens because of
evolution of systems, maintenance either corrective or adaptive
and personnel turn-over. When new business cases are consid-
ered, software engineers face the challenge of recovering the
main capabilities of a system from existing source code and
low-level code documentation. Unfortunately, recovering user-
observable capabilities is extremely hard since they are hidden
behind the complexity of countless implementation details.

Our work focuses on finding a cost-effective solution to
this challenging problem by automatically extracting topoi,
which can be seen as summaries of the main capabilities
of a program. These topoi are given under the form of
collections of ordered code functions along with a set of words
(index) characterizing their purpose. Unlike requirements from
external repositories or documents, which may be outdated,
vague or incomplete, topoi extracted from source code are
an actual and accurate representation of the capabilities of a
system. Our notion of topos makes the concept of feature,
defined by [1] as “. . . a feature is a set of logically related
functional requirements that provides a capability to the user
and enables the satisfaction of a business objective”, more
concrete and suitable for an automated computation.

This paper presents FEAT, an approach that automatically
extracts topoi, which are summaries of the main capabilities
of a program, given under the form of collections of code
functions along with an index. FEAT acts in two steps: (1)
Clustering. By mining the available source code, possibly
augmented with code-level comments, hierarchical agglom-
erative clustering groups similar code functions. In addition,
this process gathers an index for each function; (2) Entry-
Point Selection. Functions within a cluster are then ranked
and presented to validation engineers as topoi candidates;

Our work differs from automatic feature extraction (see
a detailed overview in Sec.II) for two reasons. First, FEAT
extracts topos which are structured summaries of the main
capabilities of the program, while features are usually just in-
formal description of software characteristics. Second, FEAT
extracts topos by using an unsupervised machine learning
technique not requiring any additional data to the bare source
code.

B. Contribution of the paper
The contribution of this paper is three-fold:

2

1) We present FEAT, a fully automated approach for topos
extraction based on hierarchical agglomerative clustering
functions. Our approach introduces an original, hybrid
distance combining lexical and structural proximity be-
tween functions. This distance, through the definition of
graph medoids (an extension of the classical notion of
medoids [2]), can be applied also to set of functions. In
addition, our approach makes use of graph modularity
[3] to select the appropriate number of clusters;

2) Our method extracts topoi by sorting code functions
through Principal Component Analysis (PCA), which is
a classical technique to deal with high-dimensional data
[4]. PCA, in the context of a cluster, classifies functions
as topos candidates;

3) We implemented FEAT on top of a general-purpose
software testing platform and performed a large-scale
experimental analysis over 15 open-source projects
amounting to more than 1M lines of code. Our results
show that automatic topos extraction is feasible on
realistic projects and it can effectively assist human-
based analysis of long time spanning software systems.

C. Organisation of the paper
The rest of the paper is organized as follows. Sec.II presents

the most relevant works in the area of feature extraction.
Sec.III gives the necessary background on clustering, distance
notions and call graph. Sec.IV details the two main steps of our
FEAT approach. Sec.V gives the experimental results obtained
with FEAT on 15 open-source software projects. Finally,
Sec.VI concludes the paper and draws some perspectives to
this work.

II. RELATED WORK

Feature extraction [5], [6], [7] aims at automatically dis-
covering the main characteristics of a software system by
analysing its source code. It must be distinguished from
feature location, whose objective is to locate where and how
these characteristics are implemented [5]. Feature location
requires the user to provide an input query where the searched
characteristic is already known, while feature extraction tries
to automatically discover these characteristics. Since several
years, software repository mining is considered mainstream
in feature extraction. However, we can distinguish between
software-repository mining approaches dealing with software
documentation only and, those dealing with source code only.

Mining Software Documentation. In [8], both text-mining
techniques and flat clustering are used to extract feature
descriptors from user requirements kept in software reposi-
tories. By combining association-rules mining and k-Nearest-
Neighbour, the proposed approach makes recommendations
on other feature descriptors to strengthen an initial profile.
More recently, McBurney et al. in [9] presented four automatic
generators of list of features for software projects, which select
English sentences that summarize features from the project
documentation.

Our approach, FEAT, has two distinguishing elements w.r.t.
these techniques. Firstly, it deals with both software documen-
tation and source code by applying at the same time code

and text analysis techniques. Secondly, it uses hierarchical
agglomerative clustering assuming that software functions are
organized according to a certain (hidden) structure to be
automatically discovered.

Mining Source Code. In [10], Linstead et al. propose dedi-
cated probabilistic models based on code analysis using Latent
Dirichlet Allocation to discover features under the form of so-
called topics (main functions in code). McMillan et al. in [11]
present a source-code recommendation system for software
reuse. Based on a feature model (a notion used in product-line
engineering and software variability modelling), the proposed
system tries to match the description with relevant features in
order to recommends the reuse of existing source code from
open-source repositories. [12] proposes to use natural language
parsing to automatically extract an ontology from source code.
Starting from a lightweight ontology (a.k.a, concept map), the
authors develop a more formal ontology based on axioms.
Using natural language dependencies in sentences which are
constructed from identifier names, the method allows one
to identify concepts and relations among the sentences. [13]
addresses the problem of determining the number of latent
concepts (features) in a software system with an empirical
method. By constructing clusterings with different topics for
a large number of software-systems, the method uses a pair of
measures based on source code locality and similarity between
topics to assess how well the topic structure identifies related
source code units.

Unlike these approaches, FEAT is fully automated and does
not require any form of training or any additional modelling
activity (e.g., feature modelling). It uses an unsupervised
machine learning technique which makes its usage and ap-
plication much simpler.

The closest approaches to FEAT are those of [14], [15] and
[16]. [14] uses clustering and LSI (Latent Semantic Indexing)
to assess the similarity between source artefacts and to create
clusters according to their similarity. The most relevant terms
extracted from the LSI analysis are reused for labelling the
clusters. Unlike this approach, FEAT exploits both text mining
and code structure analysis to drive the creation of clusters. In
Sec.V, we show through experiments that using only lexical
proximity is insufficient to create useful clusters for topoi
discovery. [15] exploits a sequential combination of informa-
tion retrieval (IR) technologies to reveal the basic connections
between features and elements of the source code and then to
refine afterwards these connections through the call graph of
the program. Unlike this approach, FEAT exploits a clustering
technique to group functions using at the same time both
lexical and call graph elements. This gives a powerful combi-
nation to create clusters on very distinct projects, containing
either meaningful call graph structure and lexical elements.
By applying successfully FEAT on 15 unrelated open-source
projects, we show that our approach is more versatile. Finally,
Moreno et al. in [16] automatically extracts concepts from
Java source code under the form of stereotypes which are low-
level patterns about the design intent of a source code artefact.
In [17], the same authors propose to generate summaries in
natural language of complex code artifacts (i.e., classes and
change sets). Unlike this approach, FEAT uses clustering to

3

a b c d e

di
st

an
ce

Fig. 1: Dendrogram showing the merging steps of HAC. The
height of the branches is proportional to the distance of the
two merged elements. In the example the first merge involves
c and d because they are the closest data points.

mine software projects and applies a hybrid distance to group
code functions. It also maximize software modularity to select
the number of clusters and performs an automated analysis
called entry-point selection to automatically extract topoi.

In summary, our analysis and results show that there is a
variety of differences between FEAT and existing software
repositories mining techniques.

III. BACKGROUND

This section presents some background on clustering and
graph notions used in FEAT.

A. Clustering

Clustering aims at automatically classify objects into clus-
ters, and as such, it is considered as the most important
unsupervised machine learning technique. Objects within the
same cluster are expected to be as similar as possible w.r.t. a
measure of practical similarity [18]. When clustering is applied
to software artefacts (i.e., source code elements, binary code,
requirements,. . .), it is called software clustering and it aims
at learning regularities or meaningful properties of a software
system. Over the last decade, a considerable amount of work
has been carried out to solve various software-related problems
with clustering including, information retrieval [19], [20],
software evolution and maintenance [21], reflexion analysis
[22], [23] and feature extraction [9].

Hierarchical Agglomerative Clustering (HAC) builds itera-
tively a tree-like structure by adopting a bottom-up approach to
assemble the clusters. HAC results can be visualized through
a diagram called dendrogram. For example, Fig.1 shows a
dendrogram representing the clustering of a data set of 5 ele-
ments (from a to e). From the 5 initial singleton-clusters to the
final root-cluster, which includes all points, HAC proceeds by
merging points and clusters according to a distance measure.

As shown on the dendrogram of Fig.1, without any stopping
criterion, HAC ends up with a single cluster. A challenge in
clustering is thus to find an appropriate stopping criterion for
the process, so that meaningful information can be extracted.
Sec.IV-F explains how we handled this problem. A key notion
in HAC is the distance between single data points and clus-
ters. Let’s provide some formal elements about distances. A

function over two vectors a and b is called a distance if and
only if it satisfies the following properties:

1) (symmetry) d(a,b) = d(b,a)
2) (positive) d(a,b) ≥ 0, d(a,b) = 0⇔ a = b
3) (triangular inequality) ∀c, d(a,b) ≤ d(a, c) + d(c,b)

If we want to measure the distance between two sets of
data points then we can use centroids. The centroid of a set
of points [24], denoted by µ, lies at the average position
of all points. In an n-dimensions space, the centroid of
C = {~v1, . . . , ~vk} where each vector ~vi has coordinates
(x1, . . . , xn) can be computed using the formula:

µ(C) =
1

k

(
k∑
1

x1, . . . ,

k∑
1

xn

)
It is worth noticing that the centroid of a cluster is neither
necessarily an element of the cluster nor an element of the
data set. The concept of medoid [2] has thus been proposed
when a “central” point must come from the data set. Note that
in some cases, there may be more than one medoid.

B. Call Graph

A Call Graph (CG) is a convenient way of representing the
function/method caller-callee relation in a software program.
Given a program P composed of a collection of functions
{fi}i∈1...n, the CG of P is a graph where each node is
associated with a function fi and there is an arc from fi to fj
if and only if fj is called by fi at some location of the source
code. Note that even though fi may call fj several times, there
is only a single arc from fi to fj in the CG.

IV. THE FEAT APPROACH

This section details our approach by first presenting a
general overview of FEAT and then describing each of its
main components.

A. A General Overview of the Approach

Fig.2 offers a general overview of the whole process. Some
elements extracted from the source code of a software project,
like comments, literals, names, etc., (noted 1 in Fig.2) are
transformed into a general index of words and a call graph
(2). Then, the clustering step (3), through a hybrid distance
(4), which takes into account both lexical and structural aspects
of the code (introduced in Sec.IV-B), will create clusters of
closely related code units1. This process is interrupted when a
cutting criterion based on graph modularity (5 and discussed
in Sec.IV-F) is verified. The result of this phase is a set of
disjoint clusters (6).

In the second phase (7,8), a set of entry point candidates
is selected from every cluster by means of a set of structural
properties of the call graph (discussed in Sec.IV-G) through
principal component analysis (PCA) and presented (9) as a
sorted list of code unit names with related indexes (a topos).

1By unit we mean a function or method in any programming language

4

Source Code

Call Graph

Text

Hybrid
Distance

ModularityClustering

C1 C2 C3 C4

PCA

Entry Point Selection

U1

Clusters

FEAT

U2

U3 U4

U5

U6 U7Un

32

64

5

7 8

1
Topos

1

2

3 Uc

Ub

Ua

9

St
ep

 1
St

ep
 2

Fig. 2: FEAT process’s overview

B. Assessing the lexical distance of code units

When only the source code of a software project is available,
a challenge is to evaluate the distance between two or more
units. Adopting the original vision of [25], where similarity
between documents is characterized by the following assump-
tion: “words with similar meanings will occur with similar
neighbours if enough text material is available”, we adopted
a classical way to convert textual documents into vectors and
tuned it to match source code peculiarities.

Every unit will be represented through a vector of real num-
bers whose values are based on the frequency of occurrences
of words. Units are said to be represented as bags of words
[18] to highlight that in this representation the original order
of words is not preserved (refer to (2) in Fig.2).

In order to treat units of source code like text documents,
they need to undergo some transformations. More details are
given below, but before, let us call a function-document the
source code text of a unit including its comments, variable
names, called function names and string literals. Then, the
whole set of function-documents can be defined as D =
{d1, . . . , dm}. All chosen words obtained by scanning a
function-document d go into an index V, which is just a set
of words. So, given an index V of size n, ~v(d) ∈ IRn denotes
the vector derived from a function-document d. Elements of
vectors represent weights obtained by transforming words’
frequency of occurrences using a weighting scheme described
below.

The distance between two function-documents can be com-
puted with the angular distance[26]. In our context where all
vectors’ elements are non-negative, distance is in [0, 1] and
we name it lexical distance to reflect its role within FEAT’s
approach. Formally,

LexicalD(a, b) =
2

π
arccos(simc(a, b)) (1)

where simc(a, b) is the cosine similarity:

simc(a, b) =
~v(a) · ~v(b)
‖~v(a)‖‖~v(b)‖

The transformation of source code into a vector follows the
steps shown below. During this process, an index V of words
{w1, . . . , wn} (alphabetically sorted) is created.

1) (Parsing step) For every unit, FEAT parses the source
code extracting comments preceding the unit (and op-
tionally comments within the unit), literals, variable
names and names of called function;

2) (Tokenization, stemming and stop words removal step)
By analyzing the elements extracted in the previous step,
some compound symbols are disassembled (e.g., “MA-
COS print” is decomposed into “MACOS” and “print”,
“SaveFile” into “Save” and “File”), useless tokens and
language-specific keywords are removed (e.g., “and”,
“if”, “else”, “while”, etc) as they do not bring any
value for the identification of topoi, inflected words are
brought back to their root (e.g., cars, car’s, cars’⇒ car);

5

3) (Weighting step) In order to counteract some unwanted
effects word frequencies need to be transformed [18].
To this end, a composite weighting scheme is used,
namely Term Frequency-Inverse Document Frequency
(tf-idf)[18]. For each extracted word w into a given
document d, tf(w, d) counts the number of occurrences
of w in d, while idf(w,D) = log |D|

|{d∈D|w∈d}| is the
logarithm of the inverse fraction of the number of
documents in which the word w occurs. Then, using
tf-idf(w, d,D) = tf(w, d)idf(w,D), the vector for a
function-document is:

~v(d) = [tf-idf(w1, d,D), . . . , tf-idf(wn, d,D)] (2)

C. Assessing the structural distance of code units

The lexical distance between function-documents given in
equation (1) can be complemented by the addition of struc-
tural proximity information available in the call graph of the
software under examination. Given a (undirected) call graph
CG = (N,E), where N is the set of functions and E is
the set of edges representing the caller-callee relationship,
the distance between two nodes a and b can be computed
by using the length of a shortest path between them. Let
π(a, b) = 〈e1, . . . ek〉 be a shortest path between a and b,
and |π(a, b)|= k be the length of that path (if π does not exist
then |π(a, b)|=∞) then the distance between a and b is:

PathD(a, b) =


0 if a = b

1−λ
1−λD

k−1∑
i=0

λi if a 6= b and |π(a, b)|= k

1 if |π(a, b)|=∞
(3)

where D is the graph diameter (the length of the longest
shortest path) and λ > 1 is a parameter used to ensure an
exponential growing of the distance.

D. Putting the two distances together

Both LexicalD and PathD are proper distance measures
satisfying the three required axioms reported in Sec.III.

On the basis of the lexical distance LexicalD and, the
distance over nodes in the call graph PathD, we devised
a novel hybrid distance. Its objective is to mitigate some
unwanted effects that might occur if we used only one of
them. For instance, two units sharing similar words, but not
connected in the call graph, would be evaluated with high
similarity if only LexicalD was used, while, without any kind
of structural relationship, they cannot belong to the same
feature. Similarly, two close units in the call graph, but without
any word in common, should not be clustered together because
we assume that elements of a feature should share a common
vocabulary.

Our hybrid distance (noted (4) in Fig.2), called FEAT
distance, noted FeatD is defined as a linear combination of
LexicalD and PathD using a real number α ranging in [0, 1]:

FeatD(a, b) = αLexicalD(a, b) + (1− α)PathD(a, b) (4)

For any pair of units a and b, we have FeatD(a, b) ∈ [0, 1].
The external parameter α is used to tune the impact of one
distance value over the other. The choice of a value for α
depends on some characteristics of the code under analysis
like the quality of comments, naming conventions etc. Some
concrete examples about this will be provided in Sec.V.

E. Distance Computation over Clusters

The previous definition (FeatD) applies to single function
documents but in HAC we need also to compute distances
between clusters. In Sec.III-A, we introduced cluster centroid
where centroids lie at the average of all points. A simple idea
is thus to compute centroids of clusters and to use distance
between centroids during HAC. Unfortunately, centroids are
defined over points lying in an Euclidean space and not over
graphs like our PathD does. So, this section defines graph
medoid2, and explains how to compute the distance between
two clusters.

Graph Medoids. Let W be a subset of nodes in a call graph
G = (V,E) of n nodes, then the graph medoids of W are the
nodes that minimize the length of their paths to the nodes
of W while being in the most “central” position. Formally
speaking, let π(a, b) be a shortest path between a and b and
W = {w1, . . . , wm} ⊆ V be a subset of nodes, then the graph
medoids can be computed using:
• The matrix (|π(a, b)|)n×n which gathers the pairwise

lengths between all the nodes of the graph;

• The function σ(v) =
m∑
j=1

|π(wj , v)|;

• The subset M = arg min
v∈V

{σ(v)} of V ;

• The value s = 1
m min v ∈ V{σ(v)};

The set of graph medoids of W, noted µG, is defined as:

µG(W) = argmin
v∈M

 m∑
j=1

(|π(wj , v)|−s)2
 (5)

The computation of graph medoids is easier to understand with
a simple example.

Example. Let us consider the following graph and its all-
shortest-paths matrix.

v1

v2

v3

v4v5

v6 v7

S7,7 =



0 1 1 3 2 2 3

1 0 1 3 2 2 3

1 1 0 2 1 1 2

3 3 2 0 1 3 4

2 2 1 1 0 2 3

2 2 1 3 2 0 1

3 3 2 4 3 1 0


Assume that we want to compute the graph medoids of

W = {v4, v7} then the needed steps are the following:

2Recall that, unlike centroids, medoids necessarily belong to the set of data
points

6

1) σ(vi)∀i∈1..7 = {3+3, 3+3, 2+2, 0+4, 1+3, 3+1, 4+0}
σ(vi)∀i∈1..7 = {6, 6, 4, 4, 4, 4, 4}

2) M = {v3, v4, v5, v6, v7}
3) s = 1

2 · 4 = 2

4)
m∑
j=1

(|π(wj , vi)|−s)2∀i∈{3,4,5,6,7} = {0, 8, 2, 2, 8}

5) µG(W) = {v3}
Then the set of graph medoids of {v4, v7} is reduced to a
singleton µ = {v3} which, in this simple example, could have
been guessed directly on the graph.

Now, the FeatDC distance between two clusters Ci and Cj
is defined as follows:

FeatDC(Ci,Cj) = αLexicalD (µ(Ci), µ(Cj))

+ (1− α)PathD(µG(Ci), µG(Cj)) (6)

Interestingly, the definition, making use of the centroid of
a set of vectors and the graph medoid, can be seen as a
generalization of Eq.4 since it provides the same result when
it is applied to singletons.

F. Maximizing modularity as HAC Cutting Criterion

One of the most effective approaches for detecting commu-
nities in networks is based on the optimization of a measure
known as modularity [27]. Given a partition of vertices of a
graph, modularity Q reflects the concentration of edges within
communities compared with random distribution of links be-
tween all nodes regardless of communities. In social network
research, graph modularity is described as a measure of the
division of a network into modules. By definition, modules are
graph partitions showing two interesting properties, namely
inter-cluster sparsity and intra-cluster density. In our context,
we use modularity as a way to obtain clusters containing pieces
of the call graph which are highly cohesive. Modularity is
defined as:

Q =
1

2m

∑
i,j

(
Ai,j −

kikj
2m

)
δ(ci, cj) (7)

where A is the adjacency matrix3, ki (resp. kj) is the degree
of node i (resp. j), ci (resp. cj) is the cluster of i (resp. j), and
m is the total number of edges. Function δ is the Kronecker
delta: δ(ci, cj) = 1 iff ci = cj (nodes i,j are in the same
cluster), 0 otherwise. In short, the idea of modularity-based
cluster detection, studied in the context of social networks
[3], is to find partitions which maximize Q. Indeed, high
values of modularity (knowing that Q ∈ [− 1

2 , 1]) correspond
to interesting partitions of a network into communities [27].

In our context we apply modularity in order to obtain
densely connected sub-graphs of the call graph whose vertices
are units closely related according to our hybrid distance (refer
to (5) in Fig.2).

Applying modularity in HAC requires to compute, for every
merging step i of the clustering process, Qi. The cutting crite-

3Aij = 1 if there exists an edge between vertices i and i and Aij = 0
otherwise

●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●

●●
●●●

●●●
●●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●
●●
●●●●●●●●●
●
●
●
●●●●
●●●●
●
●●●●
●

●●

●

●

●

●●
●

●

●

●

●●●●●●●●●●●●

0 500 1000 1500

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Iteration

M
od

ul
ar

ity

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●●●
●●●●
●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●●
●
●
●●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●●

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●
●●●●●●●●
●●●●●
●●●●
●
●●
●●
●●
●●●●●
●●●●
●●●●●●●●
●●
●●●●●●
●●●
●
●

●●●
●●●●

●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

a

b

c

Projects

Ultradefrag
gEdit
Mosaic

Fig. 3: Modularity values over HAC iterations.

rion for HAC will thus be the partition Ci = {c1, c2, . . . , cn}
where Qi is maximized:

argmax
Ci

(Qi) (8)

After some experiments with modularity (see Fig.3) we ob-
served the following behaviour of Qi: at each iteration, mod-
ularity gradually grows until it reaches a maximum (points a,
b and c in Fig.3). Any further merge leads to a significant de-
crease of the modularity. Stopping HAC at the maximum value
for modularity, while driving the merging process through our
FeatD distance, provides us with a set of clusters whose units
show high structural regularities and high lexical proximity
among them. HAC’s output is a set of disjoint clusters where
every cluster is made of a set of units, with their names,
function-documents, and the related, induced sub-graph of the
call graph (see Fig.2 noted (6)) but how can we identify topos?

G. Entry Point Selection

We now introduce the concept of entry points. In our view,
an entry point is a unit that gives access to the implementation
of an observable system functionality, such as, for example, the
handler of a menu click in GUI, public methods of an API,
etc. Some general considerations are meaningful to identify
entry points:

(a) Entry points are called only by a small number of units;
(b) Entry points call many units, either directly or indirectly;
(c) Entry points have long calling chains;
(d) Entry points ends only short call chains;

Based on the subgraph associated to each cluster (see Fig.2
box noted (6)), these considerations can be translated into the
six following vertex attributes:

1) Input Degree deg−(v): number of incoming arcs;
2) Input Reachability RI(v): number of paths ending in v;
3) Output degree deg+(v): number of outgoing arcs of v;
4) Output Reachability RO(v): number of paths starting

from v;
5) Output Path Length SO(v): Sum of the lengths of all

paths having v as source;
6) Input Path Length SI(v): Sum of the lengths of all paths

having v as destination;

7

Hence a vertex v is now represented as vector v whose
components are the graph attributes listed above:

v =



deg+(v)

deg−(v)

RO(v)

RI(v)

SO(v)

SI(v)


(9)

The FEAT method exploits Principal Component Analysis
(PCA) to deal with the selection of attributes in order to extract
a list of meaningfull entry points. PCA is a classical technique
applied in data science to deal with high dimensionality [4].
It highlights the most relevant factors in a given vector space:
those where the greater variations occur. By keeping only the
first m dimensions, which is called low-rank approximation,
PCA reduces the data dimensionality while retaining most of
the data information, i.e. the variation in the data. Low rank
approximation has several advantages: removal of “noisy”,
uninteresting dimensions, faster computation, ability of mak-
ing data lying in high dimensional space displayable in 2-
D or 3-D etc. On a cluster by cluster basis, PCA will help
us to select the most promising graph attributes cited above
without having to choose one (or a subset) of them a priori.
So, thanks to PCA we now have code units, represented as
vectors, projected into a space where their differences, respect
to the set of properties which characterize an entry point, are
highlighted to the maximum possible extent.

Our solution to identify which units can serve as entry-
points is to create an artificial vector, representing the ideal
entry point in a given cluster. Then, it is sufficient to compute
its similarity against each other unit in the cluster. Every
component of the vector relates to the six attributes mentioned
above. According to our assumption, entry points should
have high out-values and low in-values. Then given a cluster
C = {v1, · · · , vn}, the query vector representing an ideal
entry-point can be defined as:

qC =



max
v∈C
{deg+(v)}

min
v∈C
{deg−(v)}

max
v∈C
{RO(v)}

min
v∈C
{RI(v)}

max
v∈C
{SO(v)}

min
v∈C
{SI(v)}


(10)

Finally, the Euclidean distance of every unit’s vector v
respect to qC in the PCA space is the key used to rank all the
units in a cluster.

Example. Let us consider a graph G1 represented in Fig.4
associated to a cluster extracted by HAC. By running PCA and
selecting the first m = 2 components (covering in this case
≈ 85% of the entire variance), we get the ordered list shown
in Tab.I. Node v2 is ranked first and indeed it was expected
to be an entry point in G1 while v7, which is a dead-end of
G1, has been appropriately ranked last.

v2 v1

v3

v4

v5 v6

v7

Fig. 4: Graph G1 associated to the cluster of the example

Rank Vertex Distance

1 v2 0.215

2 v1 0.482

3 v5 0.499

4 v6 0.733

5 v4 0.804

6 v3 1.101

7 v7 1.143

TABLE I: Sorted list of the vertices of G1 (Fig.4)

Topoi are supposed to be presented to validation engineers
but they can also be automatically extracted on the basis of the
ranking. The criterion we adopted is the following: in a cluster
C = {v1, · · · ,vn}, all code units whose distance respect to
the query vector is not larger than a given threshold β of the
cases are classified as entry points. Formally, it has to satisfy
the following: P (X ≤ x) = β where X is the set of distances.

To recap, the entry point selection phase creates a set of
topos, one for each cluster. Every topos, made of a sorted list
of code units with their related index of words, represents a
summary of the main capabilities of the system under analysis.
Tab.II shows an example of the content of a topos extracted
from a text editor called GEDIT(more details in Sec.V). Beside
some common words, the two indexes show some bold-faced
words which are useful to relate topos’ content with GEDIT’s
functionality.

Unit Index

_gedit_cmd_file_open()

chooser, cmd, connect, data,
debug, default, dialog, document,
fail, file, folder, gedit, gtk,
location, modal, open, title, window

_gedit_cmd_edit_copy()
check, clipboard, cmd, copy, debug,
edit, fail, focus, gedit, grab, gtk,
return,type, view, widget, window

TABLE II: Part of a topos obtained from the analysis of GEDIT

V. EXPERIMENTAL EVALUATION

This section gives an overview of our implementation and
presents our experimental results.

A. Implementation

We implemented FEAT on top of a software testing platform
called CRYSTAL, which is based on OSGi (Open Services
Gateway initiative4) and BPMN (Business Process Modeling
Notation5). Data persistence is based both on MySQL database

4OSGi Alliance www.osgi.org
5Object Management Group (www.bpmn.org)

8

and neo4j graph database. CRYSTAL is designed for enhanc-
ing reuse of software components and to create distributed
architectures. All experiments were run on an Intel dual core
i7-4510U CPU with 8GB RAM.

B. Experimental Subjects

We selected 15 Open Source C software projects from
SourceForge having different sizes and application domains.
Tab.III reports for each project number of lines of codes
(LOC), number of code-units (#Unit), number of files (#File),
dictionary size (Dict) and call graph density (ρ in ‰). Overall,
we have more than 1MLOC, more than 20K units with a
dictionary of 11K words.

A finer-grained analysis of FEAT is presented through two
projects:
• Hexadecimal Viewer (HEXDUMP), project 2 in Tab.III. It

is a hexadecimal viewer, i.e. an application that displays
binary data contained in files as a readable sequence of
codes. The project contains more than 15 KLOC, 254
units, 13 C files with a dictionary size of 723 words. The
corresponding call graph has 254 vertices (units) and 293
edges, with a density of ρ = 9.12‰.

• GNU Editor v3.20 (GEDIT), project 7 in Tab.III. It is the
default text editor of GNOME desktop environment. This
project accounts for 42 KLOC, 1, 370 units, 59 C files
with a dictionary of 931 words. We have a call graph of
1, 370 units, 2, 058 edges and a density of ρ = 2.19‰.

For HEXDUMP and GEDIT, we manually created an oracle with
its list of entry points according to the following procedure:
(i) we looked at the user’s manual and identified the topoi, (ii)
we inspected the source code searching for the entry points
of those topoi (e.g., in desktop applications, we have usually
event handler functions of either menus or other kind of GUI
elements). To ease the automatic extraction of topoi we set the
threshold β to 25% (see Sec.IV-G).

C. Research Questions

Generally speaking, the goal of our experiments was to
assess the effectiveness of FEAT in extracting topoi. We
compared FEAT with the two following baselines:
• Random A random classifier which selects at random a

subset of entry points from a set of units. Results are
reported on an average of 1,000 runs ;

• No-HAC A version of FEAT with the HAC step (clus-
tering) deactivated. This version was mainly created to
evaluate the benefits of clustering in the topoi extraction
process.

Our experiments investigated the four following questions:
• RQ1 How does FEAT compare with the two baselines

when they are used to automatically extract topoi?
• RQ2 How is the performance of FEAT impacted when α

varies (α is the parameter used in the linear combination
of our hybrid distance)?

• RQ3 How is the performance of FEAT impacted when
extracting various textual elements (i.e, source code,
comments)?

Project LOC #Unit #File Dict ρ (‰)
1 Linux FS EXT2 8,445 180 14 197 20.11
2 Hexadec. Viewer 12,053 254 13 723 9.12

3 GNU bc
Calculator 1.06

12,851 215 20 597 20.47

4 Intel Ethernet
Drivers and Util.

30,499 581 16 726 6.29

5 Ultradefrag v7.0 34,637 1,112 74 543 5.46

6 Zint Barcode
Generator v2.3.0

38,095 345 43 196 13.43

7 GNU Editor v3.2 42,718 1,370 59 931 2.19
8 bash v1.0 70,955 1,477 128 885 2.75
9 Linux IPv4 84,606 2,216 127 1204 1.11

10 x3270 Terminal
Emulator v3.5

91,449 1,881 136 964 2.51

11 Mem. Mgt Mod.
Linux v4.9.8

93,888 2,883 102 1759 1.03

12 NCSA Mosaic
Web Browser v2.7

98,715 1,637 134 980 2.60

13 Linux FS
EXT2 Utilities

126,488 2,544 309 849 1.79

14 Vim Txt Editv7.0 134,082 2,116 56 1057 3.14
15 CLIPS core v6.3 171,913 2,794 164 886 2.22

Total: 1,051,394 21,605 1,395 11,546 —

TABLE III: The 15 Open Source C software projects

• RQ4 How are software project characteristics (#units,
LOC, Dict, call graph density ρ) correlated with FEAT’s
running time?

D. Results and Analysis

In this section, we analyze the results of FEAT on HEX-
DUMP and GEDIT using their respective oracles. We first
introduce the metrics that are widely used in machine learn-
ing classifiers’ evaluation, namely accuracy, precision and
recall [18]. Using the topoi automatically mined by FEAT
and the topoi that we manually extracted from the available
documentation (and referred to as “oracle”), we define true
positives (tp) as the units which are correctly classified as entry
points, false positives (fp) as the units which are incorrectly
classified as entry points, true negatives (tn) as the units which
are correctly not classified as entry points and finally false
negatives (fn) as the units which are incorrectly not classified
as entry points:

1) Accuracy is the percentage of entry-points which are
correctly classified:

A =
tp+ tn

tp+ fp+ fn+ tn

2) Precision is the percentage of retrieved entry-points that
are relevant:

P =
tp

tp+ fp

3) Recall is the percentage of relevant entry-points that are
retrieved:

R =
tp

tp+ fn

For all these metrics, the higher, the better.
To answer RQ1 and RQ2, we ran an experiment where

α ∈ [0, 1] varies from 0 (case where only PathD is applied)

9

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 0.2 0.4 0.6 0.8 1

Ac
cu

ra
cy

 (%
)

α
 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n
(%

)

α
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 0.2 0.4 0.6 0.8 1

R
ec

al
l (

%
)

α

hexdump
gedit

gedit:random

gedit:No HAC
hexdump:random
hexdump:No HAC

Fig. 5: FEAT effectiveness.

to 1 (case where only LexicalD is applied) by sampling on
every tenth 0.1. Fig.5 shows accuracy, precision and recall of
FEAT on HEXDUMP and GEDIT. We also report the results of
the two baselines (Random and No-HAC).

1) Results and Analysis for RQ1: First, from figure 5,
we observe that FEAT drastically outperforms the random
baseline. This means that FEAT is able to extract regularities
from source code with its hybrid distance measure. Second,
using α = 0.5 and looking at the second baseline (where
FEAT is launched without clustering), we observe that FEAT
reaches an accuracy of 85% (resp. 80%) for GEDIT (resp.
HEXDUMP), whereas the baselines respectively do not exceed
50% and 75% for the two projects. Using the “precision”
metric, we draw the same conclusion that FEAT outperforms
both baselines. Using the “recall” metric, we observe that No-
HAC reaches a high recall value. This is explained by the
rough over-approximation we get when no clustering is used,
at the expense of precision loss (i.e., large number of false
positives).

2) Results and Analysis for RQ2: Let us take a close look
at α = 0 and α = 1 in figure 5. When α = 0, FEAT
is driven by the call graph and only the structural distance
PathD. Here, the results are fairly robust with an accept-
able level of accuracy, precision and recall. However, when
α = 1, FEAT loses its effectiveness as it is driven only by
lexical distance measure (see GEDIT project). That being said,
combining PathD and LexicalD distances can significantly
improve the performance of FEAT. Our experiments on GEDIT
and HEXDUMP highlight clearly α ≈ 0.5 as a good balance
between PathD and LexicalD distances.

3) Results and Analysis for RQ3: Here the goal was to
evaluate the impact of using only source code and/or com-
ments in FEAT. The meaning of symbols in Fig.6 is:
• Code: Function and variable names as well as literals are

extracted from source code;
• Comments: Only comments are extracted;
• All: Both code and comments are extracted;

Despite some irregularities shown in the graphs of Fig.6, we
notice that HEXDUMP does not benefit from the addition of
more textual elements (i.e., comments). Indeed “All” reaches
its best accuracy with values of α ≈ 0.1 which means that
almost only the graphical part of the distance is relevant.
“Comments” and “Code” show similar performance. Providing
higher values of α, such that α > 0.6, leads to a greater
importance of the lexical distance LexicalD. In this case, the

accuracy decreases. This is due to some poor adopted naming
convention and also the low-informative quality of comments.
We observe that 1) some comments are even wrong (their
content does not correspond to the actual implementation) and
2) some comments are misspelled with a mixture of English
and German.

GEDIT shows good performance in terms of accuracy with
“Comments” and “All” when 0.6 < α < 0.8. In fact,
GEDIT adopts consistent naming convention and good-quality
comments. We thus observe that α needs to be adjusted
according to the coding style adopted in the project. Both
projects reach very good accuracy: above 85% for HEXDUMP
and above 90% for GEDIT.

4) Results and Analysis for RQ4: Our last experiment
involves all the 15 projects listed in Tab.III. The objective
is to measure the running time of FEAT w.r.t. different
characteristics. Fig.7 (y-axis is logarithmic) reports the impact
of several metrics describing the software projects (i.e., LOC,
#unit, dictionary size and call graph density ρ). Total time
is composed of two elements: preprocessing and clustering
time (see the legend in Fig.7). Preprocessing time includes
the call graph construction and the textual extraction. The
remaining part is the execution time needed by clustering. Let
us start with Fig.7.(a), where we report time in seconds w.r.t.
the number of units. Notice that the time needed to extract
topoi is heavily impacted by the number of units. This strong
positive correlation is explained by the fact that the clustering
process is the most costly step in FEAT whose complexity
is O(n2 log(n)). Our main observation is that FEAT scales
well on projects with up to 1K units with a running time
less than 1 min. FEAT is still efficient on projects up to
2.2K units with a time not exceeding 12 min. Starting from
2.5K units, the clustering step becomes demanding for FEAT.
For instance, it needs respectively more than 58 min., 23
min. and 75 min. to deal with projects 11, 13 and 15 of
Tab.III. In Fig.7.(b), we report running time over LOC. We
observe that for medium scale projects (i.e., up to 100K
LOC) the preprocessing step can be quite expensive which
can be explained by the fact that the time needed to parse
source code is negatively impacted by the number of LOCs.
Similarly, Fig.7.(c) shows an identical behaviour with the
impact of dictionary size on the preprocessing step. Fig.7.(d)
reports the relationship between running time and call graph
density. Here, we have three outliers (ρ = 1‰, ρ = 1.8‰
and ρ = 2.3‰), corresponding to projects 11, 13 and 15 in

10

0.0 0.2 0.4 0.6 0.8 1.0

70
75

80
85

90

α

A
cc

ur
ac

y(
%

)

●

●

●

●
●

●

●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

Hexdump

α

P
re

ci
si

on
(%

)

●

●

●

●
●

●

●

●

●●

●

●

All
Comments
Code

0.0 0.2 0.4 0.6 0.8 1.0

10
20

30
40

50
60

70
80

α

R
ec

al
l(%

)

●

●

●

●●

●

●

●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

80
85

90
95

α

A
cc

ur
ac

y(
%

)

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

5
10

15
20

gEdit

α

P
re

ci
si

on
(%

)

●

●

●●●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

30
40

50
60

70
80

α

R
ec

al
l(%

)

●

●●

●

●

●●

●

●

●●

Fig. 6: Impact of textual elements on FEAT’s performance while α varies between 0 and 1 (Q3)

(a) (b)

 1

 10

 100

 1000

 10000

180 210 250 350 580 1.1K 1.3K 1.4K 1.6K 1.8K 2.1K 2.2K 2.5K 2.7K 2.8K

Ti
m

e
(s

)

#units
 1

 10

 100

 1000

 10000

8K 13K 12K 30K 34K 38K 42K 70K 84K 91K 94K 98K 126K 134K 171K
LOC

(c) (d)

 1

 10

 100

 1000

 10000

600 700 900 1.7K 2.1K 2.2K 2.7K 3.5K

Ti
m

e
(s

)

|dict|
 1

 10

 100

 1000

 10000

1 1.1 1.8 2.2 2.3 2.5 2.6 2.7 3.1 5.5 6.3 9.1 13.5 20 20.5
density ρ

Total Preprocessing

Fig. 7: FEAT running time (Q4)

Tab.III. Besides the three outliers, we can observe a negative
correlation between the density of call graphs and the time
needed to extract topoi.

E. Threats to validity

This section briefly discusses some threats to validity of our
experimental evaluation.
• The value selected for α has a great impact on the

accuracy, precision and recall. Choosing an appropriate
value for α is a key point of our approach and, unfortu-
nately, there is no theoretical result helping us deciding
beforehand the best value for this input parameter. An
approach would have been thus to run FEAT on more

than two projects for which we had an oracle. Then,
it could have been possible to decide on an appropriate
value of α based on the experimental results. This was
considered as a too demanding effort which would have
required to understand the code of other projects ;

• The creation of oracles needed for the automatic assess-
ment of FEAT can be biased by the author’s knowledge
of the experimental evaluation. In order to tame this
risk, we have selected two software projects on which
we ignored everything beforehand and have manually
extracted an oracle for both of them. Of course, one could
object that knowing that HEXDUMP is a hexadecimal
converter and that GEDIT was a text editor helped us
deciding of the extracted features, but it is important
to stress that none of the authors knew the code of the
project or results of FEAT beforehand ;

• The evaluation of FEAT is based on the comparison of
runtime w.r.t. different project characteristics. It would
also have strengthened the evaluation to perform a con-
trolled experiment in order to evaluate the usefulness of
topoi in program comprehension. We could have set-up
a controlled experiment where half of the participants try
to understand a software project with FEAT and another
half without FEAT. Some measurements on the time
needed to find software features could then have been
reported and analyzed ;

VI. CONCLUSION

Topoi are concrete and useful representations of software
features. When a software system has evolved over a long
period of time, topoi extraction provides validation engineers
an updated view on the system features which is a valuable
asset to get more reliable systems. To address the challenge

11

of topoi extraction, we presented FEAT a two-steps method
based on hierarchical agglomerative clustering (HAC) and
entry-points selection. In FEAT, HAC exploits a novel hybrid
distance combining lexical and structural elements, and graph
medoids which extend the concept of centroid to set of graph
nodes. We addressed the so-called cutting criterion challenging
aspect of HAC by maximizing modularity in order to achieve
the best partition of clusters in terms of elements’ cohesion.
Finally, we defined a criterion based on principal component
analysis to select entry-points as topoi representatives.

By using FEAT on 15 open-source projects, amounting
to more than 1M LOC in total, we showed that FEAT is a
feasible approach for automatically discovering program topoi
directly from source code. This paper showed that HAC can
deal with medium-sized software projects (more than 100,000
LOC) in a reasonable amount of time.

As further work, improving the accuracy of entry-points
selection could be achieved by using other code structure
representations. So far, we focused on using the call graph
but some useful insights might come from dataflow represen-
tations. It would be interesting to investigate how a blend of
attributes from both call graph and the program dependency
graph can impact the quality of entry-points selection. We also
believe that improving the visualization of the results provided
by FEAT by providing an adequate user interface to display
and analyse topoi would ease the adoption of the tool and
maximize its impact.

REFERENCES

[1] K. E. Wiegers, Software Requirements, 2nd ed. Redmond, WA, USA:
Microsoft Press, 2003.

[2] V. Estivill-Castrol and A. T. Murray, “Discovering associations in spatial
data — an efficient medoid based approach,” in Proc. of 2nd Pacific-Asia
Conference on Research and Development in Knowledge Discovery and
Data Mining (PAKDD’98), Melbourne, Australia, X. Wu, R. Kotagiri,
and K. B. Korb, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1998, pp. 110–121.

[3] L. Donetti and M. A. Muñoz, “Detecting network communities: a new
systematic and efficient algorithm.” Journal of Statistical Mechanics:
Theory and Experiment, vol. 10, p. 8, 2004.

[4] J. Shlens, “A tutorial on principal component analysis,” Internet Article,
pp. 1–13, 2005.

[5] J. Rubin and M. Chechik, “A survey of feature location techniques,”
Domain Engineering, pp. 29–58, 2013.

[6] K. Chen and V. Rajlich, “Case study of feature location using depen-
dence graph,” in Program Comprehension, 2000. Proceedings. IWPC
2000. 8th International Workshop on, 2000, pp. 241–247.

[7] A. Marcus and S. Haiduc, Text Retrieval Approaches for Concept Loca-
tion in Source Code. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 126–158.

[8] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, “On-demand feature recommen-
dations derived from mining public product descriptions,” in 33rd Int.
Conf. on Sof. Eng. (ICSE’11), 2011, pp. 181–190.

[9] P. W. McBurney, C. Liu, and C. McMillan, “Automated feature discovery
via sentence selection and source code summarization,” Journal of
Software: Evolution and Process, vol. 28, no. 2, pp. 120–145, Feb. 2016.

[10] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Min-
ing concepts from code with probabilistic topic models,” in Proc. of
Automated Software Eng., Apr. 2007, p. 461.

[11] C. McMillan, N. Hariri, D. Poshyvanyk, and J. Cleland-Huang, “Rec-
ommending Source Code for Use in Rapid Software Prototypes,” in
Proc. of Int. Conference in Software Engineering (ICSE’12), 2012, pp.
848–858.

[12] S. L. Abebe and P. Tonella, “Extraction of domain concepts from the
source code,” Science of Computer Programming, vol. 98, pp. 680–706,
2015.

[13] S. Grant, J. R. Cordy, and D. B. Skillicorn, “Using heuristics to estimate
an appropriate number of latent topics in source code analysis,” Science
of Computer Programming, vol. 78, no. 9, pp. 1663–1678, 2013.

[14] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[15] W. Z. W. Zhao, L. Z. L. Zhang, Y. L. Y. Liu, J. S. J. Sun, and F. Y. F.
Yang, “SNIAFL: Towards a static non-interactive approach to feature
location,” in Proc. of Int. Conf. on Soft. Eng. (ICSE’04), vol. 15, no. 2,
2004, pp. 293–303.

[16] L. Moreno and A. Marcus, “Jstereocode: Automatically
identifying method and class stereotypes in java code,” in
Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, ser. ASE 2012. New
York, NY, USA: ACM, 2012, pp. 358–361. [Online]. Available:
http://doi.acm.org/10.1145/2351676.2351747

[17] L. Moreno, “Summarization of complex software artifacts,” in
Companion Proceedings of the 36th International Conference
on Software Engineering, ser. ICSE Companion 2014. New
York, NY, USA: ACM, 2014, pp. 654–657. [Online]. Available:
http://doi.acm.org/10.1145/2591062.2591096

[18] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[19] M. Shtern and V. Tzerpos, “Clustering methodologies for software
engineering,” Advances in Software Engineering, pp. 1–18, 2012.

[20] A. Marcus, A. Sergeyev, V. Rajlich, and J. Maletic, “An information
retrieval approach to concept location in source code,” in Proc. of the
11th Working Conference on Reverse Engineering, 2004, pp. 214–223.

[21] A. Kuhn, S. Ducasse, and T. Gı̂rba, “Enriching reverse engineering with
semantic clustering,” in Proc. of Working Conf. on Reverse Engineering
(WCRE’05), no. 3, 2005, pp. 133–142.

[22] G. Murphy, D. Notkin, and K. Sullivan, “Software reflexion models:
bridging the gap between source and high-level models,” in Proc. of
3rd ACM Symp. on Foundations of Soft. Eng. (FSE’95), Oct. 1995, pp.
18–27.

[23] A. Christl, R. Koschke, and M. Storey, “Automated clustering to support
the reflexion method,” Information and Software Technology, vol. 49,
no. 3, pp. 255–274, 2007.

[24] É. D. Taillard, “Heuristic methods for large centroid clustering
problems,” J. Heuristics, vol. 9, no. 1, pp. 51–73, 2003. [Online].
Available: http://dx.doi.org/10.1023/A:1021841728075

[25] H. Schütze and J. Pedersen, “Information retrieval based on word
senses,” in Proceedings of the 4th Annual Symposium on Document
Analysis and Information Retrieval, Las Vegas, USA, 1995, pp. 161–
175.

[26] M. M. Deza and E. Deza, Encyclopedia of Distances. Springer Berlin
Heidelberg, 2009.

[27] C. Aaron, M. Newman, and C. Moore, “Finding community structure
in very large networks,” Physical Reviews E., vol. 70, 2004.

