
Fitting Software Execution-Time Exceedance
into a Residual Random Fault in ISO-26262

Irune Agirre, Francisco J. Cazorla, Jaume Abella, Carles Hernandez, Enrico Mezzetti, Mikel Azkarate-askasua,
and Tullio Vardanega

Abstract—Car manufacturers relentlessly replace or augment
the functionality of mechanical subsystems with electronic com-
ponents. Most such subsystems (e.g., steer-by-wire) are safety
related, hence subject to regulation. ISO-26262, the dominant
standard for road vehicles, regards software faults as systematic,
while differentiating hardware faults between systematic and
random. The analysis of systematic faults entails rigorous pro-
cesses and qualitative considerations. The increasing complexity
of modern on-board computers, however, questions the very
notion of treating the violation of execution-time envelopes for
software programs as a systematic fault. Modern hardware in
fact reduces the user’s ability to delve deep enough into the
fabric of hardware-software interaction to gage its extent of
contribution to worst-case execution time (WCET). Changing
the nature of the WCET-analysis problem may help address that
challenge effectively. To this end, we propose a solution that
should allow ISO-26262 to quantify the likelihood of execution-
time exceedance events, relating it to target failure metrics
employed in support of certification arguments, similarly to
random faults in hardware. To this end, we inject randomization
in the timing behavior of the computer hardware to relieve the
user from the need to control hard-to-reach low-level parts, and
use Measurement-Based Probabilistic Timing Analysis (MBPTA)
to quantify, constructively, the failure rates resulting from the
likelihood of execution-time exceedance events.

Index Terms—Execution-time exceedance, safety certification,
measurement-based probabilistic timing analysis (MBPTA), au-
tomotive real-time systems

I. INTRODUCTION AND MOTIVATION

An increasing variety of functions in modern cars are
controlled by electrical and/or electronic (E/E) subsystems;
for instance, active/passive safety and driver assistance. For
quantity, complexity, and use, those functions make the safety
of E/E systems an increasingly important and complex matter.

ISO-26262 [27] is the functional safety standard of refer-
ence for the automotive domain. ISO-26262 is an adaptation of
the broader IEC-61508 safety standard, which has been simi-
larly adapted to nuclear plants, industrial machinery, railway,
and other application domains (see Figure 1).

ISO-26262 seeks to preserve systems’ safety by sustaining
safety goals (SG) that prevent hazardous situations due to
E/E malfunction. To this end, ISO-26262 (much like the

I. Agirre and M. Azkarate-askasua are with the department of Depend-
able Embedded Systems, IK4-IKERLAN, Mondragón 20500, Spain (e-mail:
iagirre@ikerlan.es; mazkarateaskasua@ikerlan.es).

F. Cazorla, J. Abella, C. Hernandez and E. Mezzetti are with the CAOS
group, Barcelona Supercomputing Center, Barcelona 08034, Spain (e-mail:
francisco.cazorla@bsc.es; jaume.abella@bsc.es; carles.hernandez@bsc.es; en-
rico.mezzetti@bsc.es). F. Cazorla is also with IIIA-CSIC, Barcelona, Spain

T. Vardanega is with the department of Mathematics, Universita degli Studi
di Padova, Padova 35122, Italy (e-mail: tullio.vardanega@math.unipd.it).

Fig. 1: Safety standards in different application domains and
those inheriting from IEC-61508 (including ISO-26262)

parent IEC-61508) defines procedures for the management
of deterministic design faults (i.e., systematic faults) and
unpredictable hardware faults (i.e., random faults). The ISO-
26262 tenet is that systematic faults can be either avoided
by adopting prevention measures throughout the development
process, or controlled at run time by safety mechanisms such
as diverse redundancy. ISO-26262 uses cognizant assessment,
based on judgment from practical experience, to guarantee that
the contribution of systematic faults to SG violation is kept
acceptably low by assuring coverage of all requirements of the
standard. Conversely, random faults can only be controlled at
run time: ISO-26262 requires their likelihood of occurrence to
be quantified and assessed against reference values, asserting
with sufficiently high confidence that the residual risk of SG
violation falls below tolerable rates.

Motivation. While for hardware parts1, the standard con-
templates both systematic and random hardware faults, soft-
ware faults are all deemed systematic. Yet, software has
functional and non-functional traits, which may give rise to
different fault trees, ill-fit for the homogeneous treatment
prescribed by ISO-26262. This problem becomes apparent for
execution-time exceedance events (i.e., the violation of worst-
case execution-time, WCET, boundaries), which is a non-
functional trait, evidently involving software and hardware
concerns. An incorrect (optimistic) WCET estimation may be
the root cause of a possible deadline violation and thus of a
timing failure. For instance, the system design may assign a
task an insufficient execution-time allowance, and this under-
provision may go unnoticed because the established boundary
value is only exceeded when rare circumstances of hardware/-

1In this paper we focus on the functional safety of the computer subsystems
in cars, using the term hardware to refer to embedded computers within the
automotive E/E; likewise we use software to refer to applications.

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works



2

software interaction happen, either undocumented or unknown,
or exceedingly hard for the user to reproduce during WCET
analysis. Determining the WCET of a software program is
a very difficult task indeed, as the programs’ execution time
varies much beyond user control (and, sometimes, also com-
prehension). This strenuous task is being made significantly
harder by the massive increase in complexity of the hard-
ware and software of modern automotive systems. Postulating
that such execution-time violations can all be prevented by
standard procedures defined for systematic faults is becoming
increasingly prohibitive, yielding unsatisfactory ratios of effort
vs. quality of outcome. The following observations manifest
the magnitude of the problem:
À While the software embedded in cars already totals hun-
dreds of millions lines of code [17], the computational needs
of novel functionalities such as Advanced Driver Assistance
are projected to increase by 100x in the next decade [10]. This
trend reflects the centrality of software to a rising proportion
of the competitive value of the vehicle.
Á Those performance needs can only be met with high-
performance processors that include multi- and many-core
components, with deep cache hierarchies and high-end GPUs
(like in the NVIDIA DrivePX [2], RENESAS R-Car H3 [4],
QUALCOMM Snapdragon 820 Processor [3], and the Intel
Go [1]), with massively increasing hardware complexity.

A string of increasingly powerful WCET analysis tech-
niques for safety-critical systems has been put forward by
the research community over the last two decades [45], [7],
and commercial tooling exists that implements (some of)
them [42], [44]. Yet, the most part of those techniques only
really applies to a small subset of relatively simple and
highly critical (ASIL-D) sub-systems running on simple and
well-understood processor architectures, thus only covering
a fraction of the needs. For most subsystems, therefore, the
common industrial practice to upper-bound the execution time
of real-time software programs uses high-water mark (HWM)
measurements and adds a safety margin to them to account
for unobserved behavior. With this practice, the confidence
in the resulting estimates rests on the user ability to: (i)
understand the hardware internals well enough to capture the
major sources of execution-time variability, and (ii) construct
test cases that serve for WCET determination effectively.
This knowledge, together with the addition of a conservative
margin, sustains the argument that the risk of missing out rel-
evant situations in the analysis is sufficiently low. Whilst this
approach may seem inadequate in comparison to state-of-the-
art static analysis solutions for other than low-criticality parts,
evidence of (cautious) use of measurement-based methods
exists for DO-178C-certified avionics software at the highest
criticality [34].

Emerging systems imperil the current timing analysis prac-
tices, by challenging the user ability to understand deep
enough the sources of jitter in the hardware internals, and to
control them. The former weakness hinders the determination
of how hardware-software interactions affect timing; the latter
impairs the creation of effective analysis scenarios. In those
circumstances, the risk of execution-time exceedance events
can be made “sufficiently” low by using either inordinately

large margins (hence renouncing resource efficiency) or lower
margins with less support evidence (hence increasing risk).
Either prospect faces the user with a dire conundrum.

Measurement-Based Probabilistic Timing Analysis, nicked
MBPTA [8], proposes a set of techniques that require applying
small and sustainable changes in the hardware design (or
alternatively in dedicated runtime libraries) to cause the system
to exhibit a probabilistic – hence probabilistically analyz-
able – timing behavior. In this way, MBPTA provides by-
construction evidence to quantify the probability of execution-
time exceedance events. Earlier work describes how to design
MBPTA-friendly hardware and software platforms [30], [31]
such that execution-time exceedance occurs with an (arbitrar-
ily low) probability. Both hardware [30] and software [31]
implementations of MBPTA support have proven viable even
with complex hardware designs (i.e., multicore processors with
multi-level cache hierarchies), in space [26] and automotive
platforms [28], with successful evaluation in industrial case
studies [19], [24], [28]. So far however, there is lack of
understanding of how the probabilistic treatment of execution-
time exceedance events can be understood by safety certifi-
cation standards in general, and ISO-26262 in particular. In
this regard, this paper seeks to answer the following research
question:

How does the approach of quantifying the prob-
ability of occurrence of execution-time exceedance
events fit the scope and intent of ISO-26262?

Contribution. To address this research question, this work
analyzes ISO-26262 and its treatment of faults, describing how
probabilistic execution-time analysis solutions can satisfy the
ISO-26262 prescriptions and how quantitative evidence can be
obtained to support certification arguments. Our contention is
that to tackle this challenge satisfactorily we should change the
nature of the WCET-analysis problem: safety standards should
be enabled to allow sound quantification of the execution-time
exceedance rate (or its likelihood of occurrence), in relation
with target failure metrics associated with SG. This approach
would be akin to established practice for hardware random
faults in ISO-26262, and would no longer require leaning on
qualitative cognizant experience, scarcely available with new
hardware, as in current practice for the treatment of systematic
faults.

Accordingly, in the remainder of this paper: we survey
the management of systematic and random faults in ISO-
26262 (Section II); we show how an asymmetric treatment
of software faults that addresses execution-time exceedance
probabilistically, fits in the safety life cycle defined in ISO-
26262 and how it can be extended to IEC-61508 (Section III);
we present the concept of MBPTA as a solution to quantify
execution-time exceedance rates, and examine the feasibility
of applying it to ISO-26262 compliant automotive applications
for conformance to the standard intent and prescriptions and
for cost of hardware and software modifications (Section IV);
we provide evidence of the viability of the proposed approach
with an automotive case study targeting the AURIX [43], a
multicore processor candidate for use in automotive systems



3

Fig. 2: Schematic view of ISO-26262 concept and develop-
ment phases.

(Section V). Finally, in Section VI, we draw the main conclu-
sions from this work.

II. HARDWARE AND SOFTWARE FAULTS IN ISO-26262
ISO-26262 requires the user to provide evidence of the

absence of unreasonable risk due to hazards caused by the
malfunction of E/E systems. For the management of functional
safety, ISO-26262 includes a concept definition phase, system,
hardware and software development processes, and production
and operation measures. Figure 2 depicts the ISO-26262
workflow for the concept and development phases, which are
the focus of this work.
Concept Phase. For each item to be developed and certified,
the Hazard Analysis and Risk Assessment (HARA) step defines
the set of hazardous events caused by item’s malfunction
under specific operational situations. Safety experts classify
the hazardous events at different integrity levels – called
Automotive Safety Integrity Levels (ASIL) – based on their
severity, probability of exposure and controllability. The ASIL
levels range from A to D, with D being the most restrictive.
Overall, this step formulates the safety goals and associated
ASILs for each hazardous event.

For each safety goal, the functional safety concept (func-
tional SC) defines the safety measures to be implemented in
the item. Rather than the technical implementation details,
the functional SC describes the functional safety requirements
to achieve the safety goal. Safety measures include activities
for the avoidance of systematic faults and technical safety
mechanisms to detect and control errors caused by systematic
and random hardware faults. Whenever a safety mechanism
detects an error, an action shall be taken as defined in the
functional SC. In the application domain of ISO-26262, this
action typically seeks to achieve or maintain a safe state, in
which no unreasonable level of risk is known to exist. If the
system has a safe state, then it is categorized as fail safe.
Development Phase. Here, the technical SC elicits technical
requirements from the functional SC requirements, which
determine how the hardware and software parts should imple-
ment the functional SC to achieve the stated SG. The ASIL of
each SG determines the set of safety requirements assigned
to each part. In this way, the stringency of the design is

determined by the properties of the possible hazardous events
that the parts may influence. At that point, the hardware and
the software parts of the system are developed in accord with
the technical SC.

A. Hardware faults in ISO-26262

ISO-26262 provides quantitative techniques for assessing
the safety mechanisms, and the residual risk of violating SG.

The hardware development process (see Figure 2) involves:
À determining and planning functional safety activities in
the product initiation phase, Á deriving the hardware safety
requirements from the technical SC; Â designing hardware
components and Ã their interconnect at architectural level,
and each component in detail, factoring safety requirements in
them (i.e., with provisions for fault tolerance); Ä evaluating
the hardware mechanisms designated to handle faults; Å
integrating and verifying the hardware architecture against
system specification.

Steps Ã and Ä include a quantitative analysis of safety
mechanisms and residual risk: the hardware architectural
metrics defined in step Ã evaluate the effectiveness of the
hardware architecture and the implemented safety mechanisms
against the fault handling requirements; step Ä requires eval-
uating whether the residual risk of safety goal violations is
acceptable (i.e., sufficiently low).

ISO-26262 acknowledges that safety techniques cannot
achieve full coverage for all types of faults and allows diag-
nostic coverages even below 90% for the highest-criticality
applications. The system may therefore be exposed to un-
covered faults, which results in residual risk that needs to
be assessed. Faults can be classified into: safely-ignorable
faults (i.e., multiple-point perceived or detected faults) that
are regarded as irrelevant since their effects become “visible”
before they can do harm, or they are simply harmless; and
non safely-ignorable faults (i.e., single-point faults that are not
covered by safety mechanisms, residual faults that may escape
safety mechanisms and multiple-point latent faults) that are
critical, as they may lead to SG violation.

ISO-26262 addresses non safely-ignorable faults by defining
the single-point fault metric (SPFM) that determines the item’s
robustness to single-point and residual faults by either design
or safety mechanisms, and the latent fault metric (LFM) that
determines the item’s robustness to latent faults by either
design or safety mechanisms or driver logic diagnosing the
fault before SG violation. The pass/fail reference figures
(Table I(a)) defined for these metrics range between 90% and
99% for single-point faults and between 60% and 90% for
latent ones, depending on the target ASIL level.

To assess whether the residual risk is acceptable, strict
values are imposed on the allowed failure rates. In one of the
methods described in ISO-26262, failure rate classes (FRC)
1 to 5 are defined with different target rates. Table I(b)
describes the maximum FRC for hardware parts depending on
the diagnostic coverage achieved for the hardware faults and
the target ASIL. For instance, an ASIL-D SG requires proving
residual failure rate ≤ 10−7 (FRC 4) when the diagnostic
coverage is above 99.9%. Lower failure rates are required



4

TABLE I: Target values for hardware quantification metrics
[27].

if the diagnostic coverage is lower, with higher failure rates
allowed if the ASIL level is lower (e.g., C or B).

Overall, the quantitative assessment of random hardware
faults provides evidence of whether the resulting design meets
its assigned safety requirements.

B. Software faults in ISO-26262

ISO-26262 holds a deterministic view of software faults
and classifies them all as systematic. Moreover, ISO-26262
assumes that all systematic faults have to be prevented, toler-
ated or removed at some stage of the development process. It
is for this reason that their contribution to the residual risk is
not contemplated. The software development process is similar
to the hardware one (Figure 2), except that it does not include
quantitative analysis.

In practice, however, process-oriented solutions cannot pro-
vide positive evidence of the lack of residual faults, especially
in the face of the increasing complexity of modern software
functions, and the intricate interactions that they may have
with advanced hardware. Interestingly, some authors [41]
argue that the software complexity combined with that of the
associated development process cause faults to be randomly
scattered across the program code.

Qualitative analysis is meant to prevent faults in the devel-
opment phase, not to predict their occurrence during operation.
For qualitative assessment, software variants exist [38], [35] of
state-of-the-art techniques that apply to hardware components,
such as Fault Tree Analysis and Failure Mode and Effects
Analysis. The main focus at this level would be on process-
level issues, to make sure that all discrepancies between
program behavior and functional specification are intercepted.
Proactive techniques, such as software fault injection or
workload generators can be leveraged to further increase the
test coverage and reduce the risk of residual faults. All the
above techniques, however, suffer from the limitations that
the quality of their outcomes depends on the user’s ability to
achieve sufficient test coverage2.

The objective of quantitative analysis, instead, is to predict
the occurrence of residual faults. ISO-26262 introduces quan-
titative assessment for random hardware faults, to quantify the
risk of residual faults and to determine whether it is below the
assigned threshold. Our contention here is that the same should
be done for software: means should be provided to reason on
the probability of residual software faults (whose presence is
bound to stem from the increasing complexity of the system),
and to relate that probability to given thresholds.

2Note that the analysis of non-functional failures has its own metrics and
analysis techniques (including timing and schedulability analysis).

The metric to use to quantify the risk of residual software
faults depends on the specific property, either functional or
non-functional, for which the risk needs to be quantified. From
the functional/implementation standpoint, a lot of effort has
been devoted to study and predict the occurrence of software
faults as a ground for reasoning on software reliability. Both
deterministic or probabilistic models have been proposed.
Deterministic models build on characteristics of the program’s
code (e.g., Halstead’s delivered bugs metric [25] or McCabe’s
cyclomatic complexity [36]) complementary to those sug-
gested by best practice and guidelines for software implemen-
tation. Probabilistic models instead relate the occurrence of
faults in a function to its frequency of execution or, inversely,
to the number of tests executed on it [39]. Probabilistic
models generally extrapolate the information collected during
the test campaign to predict the occurrence of faults during
operation. These models derive reliability predictions from
trends observed in failure data. Relevant techniques include
Failure Rate, Fault Count models, or the Software Reliability
Growth Models [22].

For non-functional properties, such as, e.g., the program’s
timing behavior, the metrics of interest tend to relate to the
test quality and the (test) coverage achieved during develop-
ment. While a quantitative approach may be needed to assess
the residual risk of various types of software faults, in the
sequel we focus on execution-time exceedance events, where
a software unit exceeds its assigned budget during operation.

III. THE CASE FOR EXECUTION-TIME EXCEEDANCE
RATES

ISO-26262 requires establishing upper-bounds on the exe-
cution time of real-time tasks. The resulting WCET estimates
allow deciding how to schedule tasks at run time, thereby
assuring the overall feasibility of system’s execution. The
provided WCET values should be tight, to avoid waste of pro-
cessor resources. The WCET values should also be consistent
with the SG requirements. It is commonly held that any WCET
estimate overrun necessarily causes a system-level failure. Yet,
this is a misconception since existing safety mechanisms may
factor in the execution-time exceedance’s impact on the SG,
and prevent its escalation into a timing failure.

Whereas an execution-time exceedance may not compro-
mise system safety, the timing behavior of software functions
should still be characterized to assure proper functioning of the
system. It is therefore crucial to assess the quality of the pro-
vided WCET estimates to assure that they tightly upper-bound
the application’s timing behavior under any possible execution
scenario. Unfortunately, as noted, the increasing complexity
of modern computing platforms threatens the soundness of
qualitative assessment of timing correctness, and may allow
execution-time exceedance situations to escape prevention.

Execution-time exceedance may result, for instance, from
the combination of specific task interleaving, initial cache
states, interrupt arrival patterns, DRAM refresh operations,
whose sources are often too remote from the user reach and too
difficult to control and prevent. Accordingly, we contend that
execution-time exceedance events should be treated by ISO-
26262 similarly to random hardware faults, and the concept



5

of residual risk should apply to the former too, in conjunction
with quantification means as proposed in this paper.

A. Timing analysis challenges on complex systems
With increasingly complex hardware and software, the

WCET bounds obtained with traditional means are subject
to unquantifiable risk arising from the limitations of the
analysis process and the exceeding hardness of the ver-
ification procedures. Two main WCET-analysis paradigms
have been used so far in industry [45]: static timing anal-
ysis (STA) and measurement-based timing analysis (MBTA).
Those paradigms and their hybrid variants have been reviewed
critically in [7], concluding that, in spite of occasional suc-
cesses in industrial applications, none of them can be claimed
to be effective in the general case and even less so against the
relentless increase in complexity of new-generation systems.

While STA is generally held as scientifically sound, con-
fidence in the results of it critically depends on the avail-
ability of a detailed and trustworthy timing model of the
computing platform underneath the application. Sadly, the
latter is increasingly rare, as IP restrictions frequently ban
that information off public documentation. Hence, for future
complex hardware and software systems, STA may become
untenable, as obtaining the information needed for it may
become too hard or altogether impossible. Evidence of this
trend emerges from recent avionics and automotive reports,
where the industrial teams and their STA tool providers have
been compelled to resort to measurement-based analysis to
derive timing bounds for multicore processor architectures like
the NXP P4080 [37], Texas Instrument TMS320C6678 [33],
and ARM-based SABRE Lite [13]. Industrial pragmatism,
therefore, continues to regard MBTA as the most practicable
timing analysis approach even for safety-related real-time
systems, which explains STA’s weaker penetration [45].

MBTA requires identifying the main sources of execution-
time jitter, to activate them during analysis. While being far
from trivial, this identification is a much easier job than
building or acquiring the detailed timing model required by
STA, and can be performed by first reviewing processor spec-
ifications to identify those resources and then using specialized
programs called micro-kernels [37][40] that place a predeter-
mined load on the desired processor resource(s) to quantify
their impact on timing. For MBTA, uncertainty stems from
the inherent difficulty in mimicking, during analysis, all of
the execution conditions – especially those of jittery processor
resources – that can arise during operation. Deriving reliable
WCET estimates on complex hardware requires that low-
level architectural features, which can contribute to significant
execution-time variations (e.g., cache placement), are factored
in the measurement runs taken during analysis so that the
observed execution times can be considered representative of
those that can arise during operation. As complex hardware
architectures may have a huge number of potential states with
bearing on execution-time jitter, it is not realistically possible
to fully explore them during analysis. Hence, by construction,
MBTA cannot exclude that residual execution-time exceedance
events may occur during operation, reflecting circumstances
not covered during analysis.

Common industrial practice to address uncertainties in
WCET analysis requires adding conservative safety margins
(often starting at 20%) to the computed WCET value. Any
such number however evidently lacks scientific grounding
and simply rests on engineering judgment. Consequently, this
practice may yield either ineffective use of the available
resources (due to WCET over-estimation) or higher risk of
execution-time exceedance events (owing to WCET under-
estimation), as a result of insufficient quality in the computed
bound. Moreover, this practice does not scale to more complex
hardware and software. Already on a relatively simple 4-core
processor, in fact, small variations in execution conditions
have been shown to cause either tiny (e.g., below 10%) or
huge slowdowns (e.g., up to 20x) [23]. Appropriate means are
therefore needed to produce tight WCET estimates that can be
related to a quantified (and arbitrarily low) risk of execution-
time exceedance.

B. Probabilistic WCET distribution

To address this challenge, we build on timing analysis
solutions that yield probabilistic distributions of the execution-
time behavior of application tasks (nicked probabilistic WCET,
pWCET), instead of a single-valued WCET. The pWCET
distribution, illustrated in the right side of Figure 3, represents
the probability that a task may exceed the assigned budget
envelope at run time. Cutting the tail of it at the desired
probability of exceedance (10−10 on the Y axis, per run or
hour of operation) projects onto an execution-time value (7
on the X axis) that may serve as the WCET budget at that
level of assurance. Hence, the pWCET provides means to sta-
tistically quantify the likelihood of execution-time exceedance
accurately.

C. Fitting pWCET into the Safety Life Cycle

Interestingly, the notion of pWCET distribution follows
ISO-26262’s philosophy for the handling of random hardware
faults and applies it to the timing domain. Returning to
the ISO-26262 life cycle depicted in Figure 2, with focus
on timing-related requirements, we now describe how an
approach delivering a pWCET curve can fit in the software
development process defined in the standard, which we illus-
trate in Figure 3.

In the concept phase (not shown in Figure 3), the functional
SC should be extended to also consider the possibility of
execution-time exceedance events that can propagate into tim-
ing failures and, accordingly, define adequate safety protection
measures against them (e.g., watchdog timer).

In the software development phase, ISO-26262 includes
timing-related requirements in three different phases of the
software V-model (sketched in Figure 3). First, during software
safety specification phase À, it requires system designers
to specify the time budgets of critical software. Then, the
software architectural design Á shall consider the time upper-
bounds to dimension the system. If an approach delivering a
pWCET distribution instead of a single-valued WCET is used,
the designer needs to identify the appropriate probability of
exceedance Ã to determine the corresponding WCET from



6

Fig. 3: Sketch of how pWCET fits in ISO-26262 software
development process

the pWCET curve Ä. To this end, the cut-off exceedance
probability (or allowed execution-time exceedance rate) shall
be evaluated together with the diagnostic coverage for timing
errors and the ASIL of the SG. In other words, the standard
should provide target metrics for the combination of these
three factors as done for random hardware faults in Table I.

For integration testing Â, ISO-26262 requires providing
evidence that the software is allocated enough time to complete
its functionality. The pWCET distribution allows associating
the assigned budget envelope to the corresponding probability
of exceedance.

This approach advocates abandoning the current practice of
adding a safety margin to the WCET estimate and assuming –
on expert judgment only – that it will never be exceeded, and
therefore exposing to an unquantified risk of execution-time
exceedance. In contrast with that, the pWCET improves the
soundness of the verification process by providing a quanti-
tative upper-bound to the risk of execution-time exceedance
estimated with a sound approach. To this end, however, it
is of vital importance that the timing analysis technique
meets the property of guaranteeing that the delivered pWCET
distribution is representative of the worst-case timing behavior
that may occur during operation.

D. Software failure rate classes and diagnosis coverage

We now describe failure rate classes (FRC) and diagnostic
coverage for execution-time exceedance events, so that they
can be used as for hardware random faults.

Failure Rate Classes. The pWCET distribution allows
selecting the acceptable rate of execution-time exceedance,
normally associated with a single run of the task. By mul-
tiplying this value by the task’s execution frequency per hour,
we determine the execution-time exceedance rate per hour for
the task. For instance, in order to assure an execution-time
exceedance rate per hour of, e.g., 10−9, for a program executed
103 times per hour, the user should cut the pWCET tail at
the 10−12 exceedance threshold, which would yield a 7.7 ms
WCET value in Figure 3. In this way, it is probabilistically

guaranteed that the accumulated execution-time exceedance
rate of all instances of the program executed per hour is
below 10−9. This reasoning matches random hardware metrics
as defined in Table I. Similarly to the hardware case, the
particular probability to choose comes from the ASIL level
assigned to the software element.

Diagnostic Coverage. The standard suggests the usage of
watchdog timers to detect the consequences that a fault in
a hardware component may have in the program schedule
(e.g., missed, delayed, or too close activations of the pro-
gram). In this scenario, the standards of interest categorize
the diagnostic coverage achievable by watchdogs for errors
in the control logic of processing units as either low (60%)
or medium (90%). Accordingly, watchdogs can also detect
(possibly with a high, >99%, diagnostic coverage) execution-
time exceedance events in the operational system. On the
occurrence of such an event, the safety mechanisms in place
detect the error and instigate action to remove the residual
risk of SG violation. While advising the usage of an external
monitoring facility (e.g., watchdog) for error detection at the
software architectural level (which correlates to software faults
categorized as systematic), ISO-26262 does not explicitly
allude to the achievable diagnostic coverage of mechanisms
against execution-time exceedance.

For fail-safe systems, the system should be moved to a safe
state every time a diagnostic mechanism detects an execution-
time exceedance. In that manner, the SG would be preserved
at the expense of making some functionality (or the entire
system) unavailable. As a result, the degree of diagnostic
coverage that the safety mechanisms provide for timing faults
should be taken into account when quantifying the residual
failure rate (as it is the case for hardware, see Table I(b)).
Whereas safety is not affected in fail-safe systems in the
event of an execution-time exceedance (assuming that high
diagnostic coverage mechanisms are in place), system avail-
ability is instrumental for the end user since an unavailable
system does not deliver the expected functionality. Arguably,
therefore, solutions that yield reliable pWCET distributions
can improve the design process by allowing the user to assess
the availability of fail-safe systems from a timing perspective.

For fail-operational systems, which need to stay operational
to preserve safety, the event of an execution-time exceedance
should activate the use of appropriate forms of redundancy
or diversity, so that the occasional failure of one unit does
not stop the (safe) operation of the entire system. Whenever
this solution is not possible, having high diagnostic coverage
against timing faults is not sufficient to preserve safety and
a sufficiently low cut-off probability needs to be chosen to
ensure that the contribution of execution-time exceedance to
the residual risk is kept correspondingly low.

E. From ISO-26262 to IEC-61508

The IEC-61508 meta- (or parent-) standard differs from
ISO-26262 only slightly. The latter refines some definitions
for the life-cycle phases and provides additional requirements
for the safety requirement specification of the hardware. IEC-
61508 does not organize the life cycle around concept and



7

development phases explicitly, but rather fragments it into
smaller units that match the activities defined within the ISO-
26262 workflow. Those activities include, for instance, the
Hazard and Risk Analysis (which ISO-26262 names Hazard
Analysis and Risk Assessment) and the Overall safety re-
quirements and Allocation (which ISO-26262 places in the
Functional Safety Concept), where the SIL level, ranging 1 to
4, is computed. As a rule of thumb, the highest ASIL level
in ISO-26262 (ASIL-D) matches on certification ambition a
SIL-3 in IEC-61508. The safety requirement specification con-
cerning random hardware faults is lighter in IEC-61508 than
in ISO-26262. The hardware concept and development involve
the same steps in the meta-standard, but the derivation of
hardware faults neither includes latent faults nor multiple-point
faults, which simplifies the calculations. Regarding software
faults, the approach is identical in both standards: software
faults are considered systematic and qualitative measures are
recommended for fault avoidance, such us WCET analysis to
assure temporal independence among software elements.

Like ISO-26262, IEC-61508 determines the requirements
for avoiding or controlling systematic faults based on expert
judgment from practical experience. IEC-61508 states that
“the probability of occurrence of systematic faults cannot
in general be quantified”. To exemplify this difficulty, IEC-
61508 reasoning observes that the effects of systematic faults
manifesting at run time, depend on the moment of the life
cycle in which they were introduced, and the effectiveness
of the prevention measures (e.g., structured programming) in
place, which are both difficult to quantify sensibly. However,
IEC-61508 allows considering that the target failure reduction
for a safety function is achieved by demonstrating compliance
to all requirements of the standard. In this regard, the standard
introduces the concept of Systematic Capability, which is
equivalent to the SIL, but only considers systematic faults.
In addition to systematic fault reduction or prevention in the
design, the standard does also define mechanisms to control
the run-time errors arising from systematic faults (e.g., diverse
software redundancy).

Overall, IEC-61508 retains the notion of random hardware
faults and proposes a qualitative approach for software faults
that may not scale well against increasingly complex systems.
Arguably, therefore, all the application domains covered by the
IEC-61508 umbrella might equally benefit from incorporating
an execution-time exceedance quantification approach, much
like the automotive domain would do via ISO-26262 following
the solution presented in this paper.

IV. MBPTA: CONCEPT AND APPLICATION

As a particular probabilistic timing analysis solution, we
build on the MBTA variant proposed in [8], [30], [29], called
Measurement-Based Probabilistic Timing Analysis (MBPTA).
MBPTA yields a reliable pWCET distribution while guar-
anteeing, by construction, that the delivered pWCET is an
upper-bound of the execution conditions that may occur at
system operation: it therefore fits the ISO-26262 exceedance
rate quantification approach presented in Section III.

MBPTA acknowledges that the control that the user can
exercise on the application’s timing behavior during analysis

necessarily leverages high-level metrics such as software code
coverage, but has increasingly less means to address low-level
hardware aspects (e.g., bus occupancies, placement of pro-
gram’s code/data in cache) comprehensively. Hence, MBPTA
relieves the user from the latter burden by introducing some
platform modifications.

The application of MBPTA rests on the premise that the
computing platforms that enable its use [30], [31] modify
the timing behavior of selected jittery resources so that the
execution-time measurements collected during analysis either
match or upper-bound probabilistically the timing behavior
that may occur during operation. In that manner, the obtained
pWCET distribution is warranted to capture any extreme
behavior that may occur at operation, and it is produced
without burdening the user with the need to comprehend all
system states relevant to execution-time analysis.

If hardware support is provided to enable the use of
MBPTA, the processor vendor is the party in charge of singling
out jittery resources and of designing MBPTA-compliance
around them appropriately. Interestingly, using MBPTA, the
processor vendor would not need to build a timing model of
its processor, or granting access to all details of the hardware
design as STA requires. All it would be required of the vendor
is to design processor resources that can be explicitly and
individually configured to feature the desired forms of MBPTA
conformance, and to document them in public user manuals.

Conversely, if hardware support for MBPTA were scarce
or inexistent, the user would have to identify the sources
of execution-time variation building on the processor spec-
ifications, and apply software solutions to reach MBPTA
compliance. In general, the resources that cause the largest
jitter (e.g., cache memories, interconnection networks, mem-
ory controllers) are easy to identify. Missing out some sources
of jitter, while not desirable, is not particularly harmful as
long as the jitter that they may produce is not larger than the
cumulative effect of the execution-time variation produced by
the other known sources.

To handle jittery resources, MBPTA defines two main tech-
niques, implemented in either hardware [30] or software [31],
which we present below.

A. Time upper-bounding

This technique forces selected jittery hardware resources to
work at their highest latency during analysis. In that manner,
the operation conditions cannot lead to higher execution times
from them and hence, a single run suffices to capture their
worst-case operation-time behavior. The hardware resources
that best fit the use of this technique are those whose extended
variation in timing behavior depends on elements that the
hardware cannot discriminate efficiently [18], [26].

The Floating Point Unit (FPU) provides an illustrative
example of this kind of resources. The latency of FP operations
depends on the operands, outside of the hardware’s own
control. For instance, multiplying any value by 0.0 may incur
shorter latency than multiplying any pair of not-null param-
eters. Hence, for the analysis of even the simplest sequential
program that included FP operations, capturing the full extent



8

of latencies that it might incur would require enumerating all
of the executed FP operations and their respective operands,
which is unduly onerous and likely to involve laborious debug-
ging. On top of that, the user would also need to determine
whether the distribution of the FP operations and operands
observed during analysis is representative of what may occur
at operation, which is even harder, if at all possible. Instead,
MBPTA’s prescription to force the FP unit to work at its
highest latency (per operation type) during analysis relieves
the user from the burden of controlling the impact that each
FP operation incurs on program execution time.

Original FP units allow serving the result and releasing as
soon as the current operation finalizes. To implement the said
technique, the hardware default is modified by deactivating the
immediate-release check, so that all operations take maximum
latency regardless of the input operands. The hardware feature
that allows enforcing the highest latency can be enabled or
disabled by setting the corresponding configuration register
accordingly, so that it can be kept enabled during analysis
and disabled during operation. In that manner, operation-time
behavior may experience shorter, but never longer, latency.

Time upper-bounding also applies to other resources such
as, e.g., the number of arbitrated contenders on the shared
bus that connect cores to a shared L2 cache [18], [26]. For
a program running on a core, the contentions suffered during
operation depend on the software being run on the other cores.
This information is exceedingly difficult to determine during
analysis even for the strictest of static scheduling scenarios,
since the arrival time of bus requests from contenders may
change across different execution paths and cache hit/miss
patterns. To address this challenge, a simple modification to
the hardware arbiter is applied [26] to cause arbitration to
occur across all potential contenders regardless of whether
they have pending requests or not, keeping the bus busy for
the longest request latency after selection. Selectively disabling
this feature during operation allows the program to experience
fewer stalls than contemplated for WCET analysis.

B. Time randomization

This technique causes the response time of some jittery re-
sources to exhibit a probabilistic behavior that also holds dur-
ing operation. Accordingly, a representative distribution of the
impact that jittery resources may cause on execution time can
emerge after a statistically-significant number of observation
runs. For instance, randomizing the placement and replace-
ment of objects in cache memories, allows using execution-
time measurements to model cache behavior probabilistically.
Such randomization makes cache conflicts independent of the
memory location of program objects, which relieves the user
from the need to control memory placement. In Integrated
Modular Architecture systems as used in avionics [5] and
automotive [12], individual software applications are often
subcontracted to different providers. As a result, the integration
of the system progresses incrementally, requiring to assess at
every step of integration that the new build conforms with the
specification, for functional and non-functional requirements.
However, as applications get integrated into the system binary,

their memory placement and cache layout may vary [21],
invalidating the WCET estimates computed previously. This
phenomenon defers timing verification to the latest stages of
integration, where the (binary) image is near final, which in
turn makes timing faults much more costly to handle than
during earlier phases of development.

Randomized caches mimic the behavior of multiple software
integrations, which allows the WCET estimates computed in
earlier development stages to hold across the whole process
of integration as well as during operation.

To date, time randomization has been implemented in
processor resources whose timing behavior depends on the
structural dependencies created by the hardware design. Ran-
domization helps remove those dependencies, which have no
bearing on the program semantics. For instance, whether two
addresses compete for the same cache space depends on how
they are mapped to cache lines. And cache mapping can
be randomized to make conflicts occur probabilistically. To
ensure that the observations made during analysis represent
(probabilistically) the timing events that may occur during op-
eration, such randomization must be kept enabled at all times,
with no distinction between analysis and operation. Random
placement and random replacement have been successfully
implemented in hardware [18], [26].

This technique is evidently superior to the ”time upper-
bounding” alternative of modifying the cache hardware to
respond with the highest (miss) latency during analysis, owing
to the massive performance decay incurred by the latter.

With little difficulty, time randomization has also been ap-
plied to the bus arbiter, changing the way it chooses which core
is granted access to the shared L2 cache. Bus arbiters therefore
have two types of modifications: time upper-bounding to
determine the number of contenders and the latency with
which the bus is released; and time randomization to choose
which core is granted access to the shared L2 cache.

All hardware parts that use time randomization require
a hardware source of randomness. An exemplary Pseudo-
Random Number Generator (PRNG) has been implemented
to that end [9], with a degree of randomness that has passed
the most stringent cryptographic tests. The cited publication
shows that the hardware cost of its implementation is low,
also because a single PRNG can be shared across multiple
resources. The PRNG has also been proven compatible with
high safety integrity levels. If time randomization is to be
implemented in software, a software implementation of the
very same PRNG algorithm can also be used.

C. Probabilistic analysis

The execution time of the program ‘inflated’ by time
upper-bounding and randomization results in an analysis-
time distribution (ATD) that upper-bounds the operation-time
distribution (OTD) by construction. Figure 4 illustrates this
notion. The dotted line depicts the empirical complementary
cumulative distribution (ECCDF) of the OTD, and the dashed
line the ECCDF of the ATD. A sound use of probabilistic
analysis (such as, e.g., Extreme Value Theory, EVT) uses a
sample of ATD values – no less than a hundred, and typically



9

Fig. 4: Example results of MBPTA application

up to two thousands, which keeps the MBPTA overhead low –
to derive a high-quality pWCET distribution that upper-bounds
the ATD (and hence the OTD) [8]. For EVT to be applicable,
the observed execution times must correspond to independent
and identically distributed (i.i.d.) random variables, which
means that each measurement observation must belong to the
same execution-time distribution. Satisfying this requirement
has been proven doable with simple-enough procedures [14].

The MBPTA process collects execution-time samples from
the ATD, earning MBPTA conformance thanks to the hard-
ware modifications discussed earlier, and to a measurement
collection process that controls the initial conditions of the ex-
periment [14]. The analysis procedure may determine that the
sample fails to meet the eligibility criteria for the application of
EVT or detect that it cannot be upper-bounded by exponential
tail distributions, which is required to ensure tightness. These
situations are addressed by enlarging the sample size. It is
known, in fact, that increasingly larger samples from an i.i.d.
random variable with a guarantee finite bound will eventually
be proven statistically i.i.d., and also converge, more tightly,
to either exponential or light tails, the former always upper-
bounding the latter. In our analogy, the program’s execution-
time observations are the random outcomes of that variable,
and the program itself has bounded duration in conformance
with well-established real-time coding practice. At that point,
the larger the sample size, the tighter the pWCET. Accord-
ingly, MBPTA users should collect large – yet affordable –
samples, below 2,000 measurements on average [8].

MBPTA promotes a paradigm shift with respect to tra-
ditional, deterministic (i.e., single-valued) WCET analysis.
The relation of MBPTA with its deterministic counterpart
is straightforward: MBPTA’s main constituents (time upper-
bounding and randomization) specifically address the repre-
sentativity concerns that afflict standard measurement-based
approaches, and threaten to become insurmountable with
increasingly complex systems. Relating MBPTA to STA is
much harder instead, as those two techniques build on largely
different (and mostly incompatible) assumptions [6]. The
correctness and the precision of either of them depend on
whether and to what extent their assumptions are guaranteed
to hold. See [7] for a detailed analysis of those assumptions
and how they relate to hardware and software complexity.

D. MBPTA: industrial viability

MBPTA’s viability for industrial use in safety-related sys-
tems relates to the cost of the required hardware or software
changes, and how the approach can be fitted in the overall
ISO-26262 safety life cycle as discussed in Section III-C.

The latter question leverages the need to step up the guide-
lines of current safety standards to increasing complexity of
new-generation processors. This has been done, for instance,
in the avionics domain, where CAST32 [15] and the accompa-
nying CAST-32A [16] address the use of multicore processors.
Arguably, this game-changing scenario should ease the task of
incorporating MBPTA related changes.

The MBPTA requirements on the computing platform, if
implemented at hardware level, have been shown affordable,
first by implementation in architectural simulators, then at RTL
level in FPGA, and finally in off-the-shelf products [18]. Im-
plementing randomization has been surprisingly non-intrusive.
We illustrate this for two cases. Bus protocols like AMBA [11]
(one of the most, if not the most, used), do not define
any particular arbitration policy. This situation allows adding
random arbitration policies with no impact on the protocol
specification. The same happens for cache placement and
replacement. While the latter is already supported in many
processors, adding the former requires combining the address
being accessed with a hardware- (or software-) generated
random seed [9], changed across runs, to map the address to
a random cache set. This change causes the timing behavior
of cache conflict scenarios that are probabilistically relevant
– those whose timing behavior can only be exceeded with
negligible probability – to be close to average behavior which,
in turn, is very close to the typical behavior on conventional
hardware designs.

At software level, randomization has been implemented as
a pass in the LLVM compiler [29] or as a source-to-source
translator developed in an approach called TASA [31]. Both
solutions leverage the fact that the way in which functions and
data (locals and globals) are placed in the source code and
the binary determines their address in memory. By randomly
allocating them and adding padding space among them keeps
the program functionality unchanged and attains similar ran-
domized timing to that obtained with hardware-implemented
random placement. As opposed to the hardware and LLVM-
based software solutions, which attain randomization at pro-
gram run granularity, the TASA approach applies randomiza-
tion on a per-binary basis. As a result, the probability of
exceedance determined by the use of TASA is equivalent
to the execution-time exceedance probability of all systems
with the same randomly-generated binary. For the hardware
and LLVM-based software randomization cases instead, the
obtained probability is per run of the program, and therefore
has to be multiplied by its rate. Time upper-bounding at soft-
ware level is managed off-line, by monitoring relevant events
during the analysis-time measurements (through Performance
Monitoring Counters, PMC) and by padding execution-time
observations so that their impact on the program’s execution
time is deterministically upper-bounded. For instance, reading
a PMC that returns the quantity of FP operations executed by



10

a program, allows computing a padding equivalent to each FP
operation taking the highest latency. Similarly, bus jitter can
be deterministically upper-bounded by monitoring the number
of bus access requests with PMCs and applying a contention
model that assumes worst-case overlap among them [20].

Both hardware and software randomization and upper-
bounding solutions have proven effective for performance in
various platforms and with negligible implementation costs:
≈1% additional hardware for a 4-core processor for the
space domain [26], and a pre-process compiler step for
TASA source-to-source transformations in the automotive do-
main [31]. Moreover, pWCET estimates have been shown to
be typically within 20% of the HWM on conventional (time-
deterministic) platforms used as reference for industrial appli-
cations in the space, avionics and automotive domains [19],
[24], [28]. This evidence proves that time randomization and
upper-bounding do not incur untenable pessimism.

V. EXPERIMENTAL SUPPORT EVIDENCE

To sustain our contention, we discuss an exemplary appli-
cation of MBPTA in an automotive case study targeting the
AURIX TC277 [43]. We show that, even on a processor whose
hardware design expressly seeks maximum determinism, the
execution-time behaviour of applications running on it suffers
jitter created by resources that may be hard, if at all possible,
for the user to control. We do not aim to present a full WCET
analysis method for the TC277: our intent is just to show
that the execution-time jitter of hard-to-predict resources like
the cache – a definite and massive asset of future automotive
processors [2][4][3][1] – can be handled with MBPTA.

A. Application case

The AURIX TC277 comprises three cores (plus two ad-
ditional ones that operate in lockstep mode): one energy-
efficient core and two performance-efficient ones. We focus
on the latter, which embed high-performance jittery resources
such as caches and dynamic branch predictors. All cores are
equipped with local scratchpad memories and caches, for both
instruction and data, and are connected via a crossbar to a
common ‘memory system’ comprising a shared SRAM, and
program/data Flash memories.

The application we consider is an Automotive Cruise Con-
trol System (ACCS), whose functional code was automatically
generated from a Simulink model, and a CONCERTO3 model
for its architectural specification. The application was run on
a customized version of ERIKA Enterprise4, which imple-
ments an OSEK/VDX compliant personality. The originating
Simulink model comprised in excess of 200 blocks, which
corresponded to about 3,000 lines of C code. After a trans-
formation process that flattened the Simulink block hierarchy,
optimally re-grouped the blocks by compatible rates, and re-
generated source code accordingly, the application was embed-
ded in three real-time ERIKA tasks: (i) Signal Acquisition, (ii)
Monitoring, and (iii) Speed Controller, as shown in Figure 5.

3CONCERTO, ARTEMIS JU, http://www.concerto-project.org/.
4Erika Enterprise RTOS, http://erika.tuxfamily.org/drupal/.

A fourth task, Status Update, was added to the application to
close the simulation loop in the experiment by stubbing and
interconnecting all input and output ports.

Fig. 5: Block diagram of the case-study application.

For the purposes of this paper, we discuss the impact of the
instruction cache layout on the application’s execution-time
behavior, to showcase its relevance as a source of jitter, and
demonstrate how MBPTA can capture its contribution in the
analysis process. To this end, we deployed the application on
the processor such that part of the code was stored (and cached
from) the program Flash memory segment. Private stack and
data were located in the local scratchpads while local shared
data was mapped to the shared SRAM. The instruction cache
size in the performance-efficient cores is 16KB, with 32B
cache lines. Other sources of variability and combinations
thereof are not considered here. How to jointly account for
them is discussed in [20].

B. Instruction cache jitter

To analyze the impact of cache layout on execution-time
jitter, we used TASA, a technique that applies software ran-
domization to off-the-shelf caches to make their response
time probabilistically analysable. As explained in Section IV,
TASA performs source-to-source program code transforma-
tions where the relative location of functions, stack frames,
and global variables is randomized by reordering and padding
the source file so that each resultant binary incurs a randomly
different cache placement. Thus, by studying the timing be-
havior of a statistically significant number of binaries, the
impact of caches can be accounted for probabilistically. In our
experiments, we generated 1,000 distinct binaries with TASA,
all with identical functionality, and each with different stack
and global data allocations to memory positions. Simple ad-
hoc scripts were needed to automate this process: they invoke
the TASA pre-process pass and compile the output of it to
produce one binary; this process is repeated as many times as
needed, varying the random seed so that the required number
of binaries is obtained. Each such binary needs to be run
once for the purposes of MBPTA. The computational cost
of this process is proportional to two characteristics of the
software being considered: (1) its size and complexity, and
(2) its execution time. The former determines the cost of gen-
erating the binary, largely dominated by compile time, much
more complex than the TASA pre-processing step. The latter
determines the cost to execute each binary. In our particular



11

case, generating the binary and executing it took around 5
seconds altogether (the most part for the compilation), which
serialized in less than 1.5 hours for all binaries. Of course,
binary generation and execution can be parallelized in multiple
instances: as the process is fully independent per binary, the
turn-around time would decrease roughly linearly with the de-
gree of parallelization. The remainder of the MBPTA process
(acquiring the collected execution times, and producing the
pWCET distribution) takes just a few seconds.

While the cost of this process for a single program is
rather low, it would increase linearly for applications that
include multiple programs assigned to a criticality level that
requires evidence of bounded execution-time. However, each
such program could be analyzed separately, thus allowing the
analysis process to proceed independently (and perhaps with
internal parallelism). In general, devoting around 1-2 hours of
computational cost (less if parallelized) to the timing analysis
of each program, with minimal user intervention, should be
affordable even for complex applications.

Figure 6 reports the execution-time variability observed for
the four application tasks – for the same program path –,
as determined by the different randomly-generated program
layouts. For the system under analysis, the observed vari-
ability, which may incorporate the effects of other sources
of execution-time jitter, ranged up to approximately 5%. In
all cases, the HWM was quite distant from the observed
average and mode5. The impact of time upper-bounded jittery
resources, computed off-line based on PMC measurements,
should then be added to these execution-time observations be-
fore obtaining the pWCET distribution. This kind of variability
is not explored by state-of-the-art WCET analysis procedures,
measurement-based and static alike. Even more critical is
the fact that traditional measurement-based techniques do not
support constructing arguments on whether and to what
extent the effect of jittery resources has been captured at
analysis time. Next, we show how MBPTA can consider these
effects in the determination of pWCET bounds.

C. Application of MBPTA

We applied MBPTA to the four tasks of the case-study ap-
plication. According to the TASA prescriptions, we collected
timing measurements for each such task by executing the same
set of 1,000 randomly-generated binaries of the application.
The collected observations successfully passed the statistical
i.i.d. tests (a pre-condition to apply statistical analysis), which
allowed using them as input to the subsequent probabilistic
analysis process. To the latter end, we used the MBPTA-
CV [8] method, which applies Extreme Value Theory [32] by
automatically selecting the distribution parameters that best
fit the maxima of the observed execution times. In all cases,
1,000 measurements were sufficient for MBPTA to converge:
adding additional observations for each application would not
change the resulting pWCET distributions shown in Figure 7.

The red dotted line in Figure 7 plots the observed execution
times (OET), in the form of Complementary Cumulative Dis-
tribution Function (CCDF), to show that the pWCET curves

5The mode of a data sample is the most frequent value.

560

570

580

590

600

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

M
ill

is
e

co
n

d

Application Images

Monitoring AVERAGE Mode

496

498

500

502

504

506

508

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

M
ill

is
e

co
n

d

Application Images

Status Update AVERAGE Mode

840

850

860

870

880

890

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

M
ill

is
e

co
n

d

Application Images

Signal Acquisition AVERAGE Mode

78800

79300

79800

80300

80800

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

M
ill

is
e

co
n

d
s

Application Images

Speed Controller AVERAGE Mode

Fig. 6: Uncontrolled variability induced by program layout.

(solid black lines) always tightly upper-bound the observed
data. The pWCET bounds for the analyzed functions at
relevant exceedance thresholds are reported against the HWM
in Table II. The application of MBPTA-CV to the automotive
functions led to extremely tight results as, when compared
to their respective HWM, the predicted pWCET bounds are
always below the reference 20% margin. The low distances
for higher exceedance thresholds can be partially ascribed to
the overall high predictability of the execution platform.

An intuitive but wrong conclusion here might be that the
20% margin is a reliable figure in the general case. In fact, our
experiments show that, limited to the processor considered in
this paper, and focusing only on the instruction cache, a con-
servative margin at 20% would be conservatively pessimistic
and therefore sound. Yet, for other processor architectures,
with complexity similar to technology used in the automotive
domain [2], [4], [3], [1], that margin would be optimistic
instead, hence unsound [24].

In actual fact, the slope of the pWCET distribution, hence
the margin above the highest observed value for the ac-
ceptable exceedance probability, depends on the particular



12

(a) Signal Acquisition

(b) Monitoring

(c) Speed Control

(d) Update Status

Fig. 7: The pWCET distributions computed by MBPTA for
the four application tasks.

characteristics of the program under analysis and how it
uses the underlying processor hardware. Such margin (or the
pWCET value itself) is guaranteed not to be exceeded with
a particular probability (e.g., 10−12 per run). That would be
the exceedance probability if all the sources of jitter that
have been upper-bounded, always caused their highest latency.
This does not happen in the general case; how often it may,

cannot be told beforehand as it depends on the input-dependent
behavior of the application during operation. In this situation,
the MBPTA method allows the user to strictly upper-bound
the residual risk of execution-time exceedance. Conversely,
time-deterministic approaches building on a margin set on
expert judgment for a particular platform, hardly scale to other
(arbitrarily complex) platforms and also do not provide means
to assess the residual risk.

TABLE II: pWCET bounds at relevant exceedance thresholds
(in processor cycles).

Test HWM 10−3 % 10−6 % 10−9 % 10−12 %
Signal Acq. 880 891 1.2 919 4.4 947 7.6 975 10.8
Monitoring 595 603 1.3 627 5.4 651 9.4 674 13.3
Speed Control 80554 80888 0.4 81574 1.3 82260 2.1 82946 3.0
Status Update 506 511 1.0 521 3.0 531 4.9 541 6.9

VI. CONCLUSIONS

ISO-26262 classifies hardware faults as either systematic or
random, while it considers all software faults to be systematic.
The unrelented demand for newer value-added functionalities
for computer-based systems requires the use of increasingly
complex hardware and software. This trend challenges the
viability of exhaustive analysis and prevention for all types
of systematic faults as prescribed by the standard. This threat
is especially true for the timing behavior of software applica-
tions, as the fabric of new systems denies users the ability
to capture all sources of execution-time variations and to
create the test scenarios needed to estimate the residual risk of
failure. Recent timing analysis techniques that deliver WCET
estimates with an associated probability of exceedance have
the potential to overcome this limitation. However, how the
quantification of the likelihood of execution time exceedance
events fits the scope and intent of safety standards such as
ISO-26262 is still an open research question. In this paper, we
address this question by proposing ISO-26262 adaptations to
assess the residual risk associated to exceeding the timing bud-
get assigned to a software program, in analogy to what is done
for random hardware faults. This approach relies on MBPTA,
which delivers a probabilistic WCET bound that serves the
purpose of upper-bounding residual risk. We exemplify this
approach with a particular incarnation of MBPTA, which
transparently applies time randomization to selected hardware
or software elements of the computing platform, in this manner
relieving the user from the burden of controlling the impact of
low-level hardware elements on software execution time. This
proposal is presented in the context of the ISO-26262 software
development process and the treatment of random hardware
faults in the safety life cycle, with the intent of promoting the
acceptance of execution-time exceedance rate quantification in
the standard.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish Min-
istry of Science and Innovation under grant TIN2015-65316-P
and the HiPEAC Network of Excellence. Jaume Abella has
been partially supported by the Ministry of Economy and



13

Competitiveness under Ramon y Cajal postdoctoral fellowship
number RYC-2013-14717. Carles Hernández is jointly funded
by the Spanish Ministry of Economy and Competitiveness
and FEDER funds through grant TIN2014-60404-JIN. En-
rico Mezzetti has been partially supported by the Spanish
Ministry of Economy and Competitiveness under Juan de
la Cierva-Incorporación postdoctoral fellowship number IJCI-
2016-27396. This work used proceeds of the CONCERTO
project (ARTEMIS-JU grant nr. 333053), which we gratefully
acknowledge: Intecs SpA, lead of CONCERTO, provided the
sources of the automotive application, and the University of
Padova the build automation for the AURIX target.

REFERENCES

[1] Intel GO Automated Driving Solution Product Brief.
https://www.intel.es/content/dam/www/public/us/en/documents/platform-
briefs/go-automated-accelerated-product-brief.pdf.

[2] NVIDIA DRIVE PX. Scalable supercomputer for autonomous driving.
http://www.nvidia.com/object/drive-px.html.

[3] QUALCOMM Snapdragon 820 Automotive Processor. https://www.
qualcomm.com/products/snapdragon/processors/820-automotive.

[4] RENESAS R-Car H3. https://www.renesas.com/en-
us/solutions/automotive/products/rcar-h3.html.

[5] Guidelines and methods for conducting the safety assessment process
on civil airborne systems and equipment. ARP4761, 2001.

[6] J. Abella, D. Hardy, I. Puaut, E. Quiñones, and F. J. Cazorla. On
the comparison of deterministic and probabilistic WCET estimation
techniques. In Euromicro Conference on Real-Time Systems (ECRTS),
2014.

[7] J. Abella, C. Hernandez, E. Quiñones, F. J. Cazorla, P. R. Conmy,
M. Azkarate-Askasua, J. Perez, E. Mezzetti, and T. Vardanega. WCET
analysis methods: Pitfalls and challenges on their trustworthiness. In
IEEE International Symposium on Industrial Embedded Systems (SIES),
2015.

[8] J. Abella, M. Padilla, J. Del Castillo, and F. J. Cazorla. Measurement-
based worst-case execution time estimation using the coefficient of
variation. ACM Trans. Des. Autom. Electron. Syst., 22(4):72:1–72:29,
June 2017.

[9] I. Agirre, M. Azkarate-askasua, C. Hernandez, J. Abella, J. Perez,
T. Vardanega, and F. J. Cazorla. IEC-61508 SIL 3 Compliant Pseudo-
Random Number Generators for Probabilistic Timing Analysis. In
Euromicro Conference on Digital System Design (DSD), 2015.

[10] ARM. ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade. https://www.arm.com/about/newsroom/
arm-expects-vehicle-compute-performance-to-increase-100x-in-next-decade.
php, 2015.

[11] ARM Ltd. AMBA open specifications. http://www.arm.com/products/
system-ip/amba/amba-open-specifications.php.

[12] AUTOSAR. Technical Overview V2.0.1, 2006.
[13] A. Blin, C. Courtaud, J. Sopena, J. Lawall, and G. Muller. Maximizing

Parallelism without Exploding Deadlines in a Mixed Criticality Embed-
ded System. In 28th ECRTS, 2016.

[14] F. J. Cazorla, T. Vardanega, E. Quiñones, and J. Abella. Upper-
bounding Program Execution Time with Extreme Value Theory. In
WCET Workshop, 2013.

[15] Certification Authorities Software Team. Multi-core Processors - Posi-
tion Paper. Technical report, CAST-32, May 2014.

[16] Certification Authorities Software Team. Multi-core Processors - Posi-
tion Paper. Technical report, CAST-32A, November 2016.

[17] R.N. Charette. This car runs on code. In IEEE Spectrum online, 2009.
[18] COBHAM. LEON3 Processor. Probabilistic platform. http://www.

gaisler.com/index.php/products/processors/leon3.
[19] F. Cros, L. Kosmidis, F. Wartel, D. Morales, J. Abella, I. Broster, and

F. J. Cazorla. Dynamic software randomisation: Lessons learned from an
aerospace case study. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, pages 103–108, March 2017.

[20] Enrique Dı́az, Mikel Fernández, Leonidas Kosmidis, Enrico Mezzetti,
Carles Hernandez, Jaume Abella, and Francisco J. Cazorla. MC2:
Multicore and Cache Analysis via Deterministic and Probabilistic Jitter
Bounding, pages 102–118. Springer International Publishing, 2017.

[21] E. Mezzetti and T. Vardanega. A rapid cache-aware procedure position-
ing optimization to favor incremental development. In RTAS, 2013.

[22] William Farr. Handbook of software reliability engineering. chapter
Software Reliability Modeling Survey, pages 71–117. McGraw-Hill,
Inc., Hightstown, NJ, USA, 1996.

[23] M. Fernández, R. Gioiosa, E. Quiñones, L. Fossati, M. Zulianello,
and F. J. Cazorla. Assessing the suitability of the NGMP multi-core
processor in the space domain. In EMSOFT, 2012.

[24] M. Fernandez, D. Morales, L. Kosmidis, A. Bardizbanyan, I. Broster,
C. Hernandez, E. Quiñones, J. Abella, F. Cazorla, P. Machado, and
L. Fossati. Probabilistic timing analysis on time-randomized platforms
for the space domain. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, pages 738–739, March 2017.

[25] M. H. Halstead. Elements of Software Science (Operating and Pro-
gramming Systems Series). Elsevier Science Inc., New York, NY, USA,
1977.

[26] C. Hernández, J. Abella, F. J. Cazorla, A. Bardizbanyan, J. Andersson,
F. Cros, and F. Wartel. Design and Implementation of a Time Predictable
Processor: Evaluation with a Space Case Study. In 29th ECRTS, 2017.

[27] International Organization for Standardization. ISO/DIS 26262. Road
Vehicles – Functional Safety, 2009.

[28] L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti, E. Qui nones,
J. Abella, T. Vardanega, and F. J. Cazorla. Measurement-Based Timing
Analysis of the AURIX Caches. In 16th International Workshop on
Worst-Case Execution Time Analysis (WCET), 2016.

[29] L. Kosmidis, C. Curtsinger, E. Qui nones, J. Abella, E. Berger, and
F. J. Cazorla. Probabilistic Timing Analysis on Conventional Cache
Designs. In 2013 Design, Automation and Test in Europe Conference
and Exhibition (DATE), pages 603–606, 2013.

[30] L. Kosmidis, E. Quiñones, J. Abella, T. Vardanega, C. Hernandez,
A. Gianarro, I. Broster, and F. J. Cazorla. Fitting processor architectures
for measurement-based probabilistic timing analysis. Microprocessors
and Microsystems, 47:287 – 302, 2016.

[31] L. Kosmidis, R. Vargas, D. Morales, E. Quiñones, J. Abella, and F. J.
Cazorla. TASA: Toolchain-agnostic Static Software Randomisation for
Critical Real-time Systems. In Proceedings of the 35th International
Conference on Computer-Aided Design, ICCAD ’16, pages 59:1–59:8,
New York, NY, USA, 2016. ACM.

[32] S. Kotz and S. Nadarajah. Extreme value distributions: theory and
applications. World Scientific, 2000.

[33] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez. Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems. In 22nd RTNS, 2014.

[34] S. Law and I. Bate. Achieving appropriate test coverage for reliable
measurement-based timing analysis. In 28th Euromicro Conference on
Real-Time Systems, ECRTS 2016, Toulouse, France, July 5-8, 2016,
pages 189–199, 2016.

[35] N. G. Leveson and P. R. Harvey. Software fault tree analysis. Journal
of Systems and Software, 3(2):173–181, 1983.

[36] T. J. McCabe. A complexity measure. IEEE Transactions on Software
Engineering, SE-2(4):308–320, Dec 1976.

[37] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive WCET analysis leverag-
ing runtime resource capacity enforcement. In ECRTS, 2014.

[38] H. Pentti and H. Atte. Failure mode and effects analysis of software-
based automation systems. In VTT Industrial Systems, STUK-YTO-TR
190, page 190, 2002.

[39] H. Pham. System Software Reliability. Springer Series in Reliability
Engineering. Springer-Verlag London, 2006.

[40] P. Radojković, S. Girbal, A. Grasset, E. Quiñones, S. Yehia, and F. J.
Cazorla. On the Evaluation of the Impact of Shared Resources in
Multithreaded COTS Processors in Time-critical Environments. ACM
Trans. Archit. Code Optim., 8(4):34:1–34:25, 2012.

[41] P. H. Seong. Reliability and Risk Issues in Large Scale Safety-critical
Digital Control Systems. Springer Publishing Company, Incorporated,
1st edition, 2008.

[42] https://www.absint.com/ait/. aiT WCET Analyzers. AbsInt Angewandte
Informatik GmbH.

[43] http://www.ehitex.de/application-kits/infineon/2531/
aurix-application-kit-tc277-tft. AURIX Application Kit TC277
TFT. hitex.

[44] http://wwww.rapitasystems.com. RVS SUite. Rapita Systems ltd.
[45] Wilhelm R. et al. The worst-case execution-time problem overview

of methods and survey of tools. ACM Transactions on Embedded
Computing Systems, 7:1–53, May 2008.




