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DSVerifier-Aided Verification Applied to Attitude
Control Software in Unmanned Aerial Vehicles
Lennon Chaves, Iury Bessa, Hussama Ismail, Adriano Frutuoso, Lucas Cordeiro, Eddie de Lima Filho

Abstract—During the last decades, model checking techniques
have been applied to improve overall system reliability, in
unmanned aerial vehicle (UAV) approaches. Nonetheless, there
is little effort focused on applying those methods to the control-
system domain, especially when it comes to the investigation
of low-level implementation errors, which are related to digital
controllers and hardware compatibility. The present study ad-
dresses the mentioned problems and proposes the application of
a bounded model checking tool, named as Digital System Verifier
(DSVerifier), to the verification of digital-system implementation
issues, in order to investigate problems that emerge in digital
controllers designed for UAV attitude systems. A verification
methodology to search for implementation errors related to finite
word-length effects (e.g., arithmetic overflows and limit cycles), in
UAV attitude controllers, is presented, along with its evaluation,
which aims to ensure correct-by-design systems. Experimental re-
sults show that low-level failures in UAV attitude control software
used in aerial surveillance are identified by DSVerifier, which can
also be used for developing sound and correct implementations,
through its integration into development processes. Finally, given
that the proposed approach handles C code and takes into
account hardware specifications, it is suitable for verifying final
controller implementations, which is a more practical scenario.

Index Terms—Unmanned Aerial Vehicle, Symbolic Model
Checking, Fixed-Point Digital Controllers, Formal Verification,
Embedded Systems.

I. INTRODUCTION

DURING the last decades, the unmanned aerial vehicle
(UAV) approach has been used in various military and

civil applications, such as armed attacks, training targets, aerial
surveillance, journalism, and entertainment. More recently,
autonomous UAVs have gone through a notable development,
due to the current evolution of embedded systems [1].

Autonomous UAVs typically demand improved intelligence
and reliability, in order to ensure mission accomplishment
and reduce costs related to crashes and malfunctioning [2].
Thus, the development of robust UAV systems is leading to
an increasingly interest in both academy and industry [3]:
techniques related to fault detection and diagnosis (FDD), fault
tolerant control (FTC) [4], and formal verification via model
checking are currently being applied to UAVs [5].

In particular, the FDD and FTC communities concentrate
their efforts on fast detection and hardware-failure isolation,
which aim to maintain system functionality during faulty
conditions and eliminate crashes, while the model checking
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community aims to ensure correct implementation. As a result,
model checking techniques are able to ultimately improve
safety and reliability of UAV applications. For instance, Tafa-
zoli [6] studied failure causes of on-orbit spacecrafts and
showed that 6% of them are related to software, which
sometimes leads to the loss of entire systems (e.g., the fatal
failure in Mars Climate Orbiter mission [7]).

Since the 90’s decade, formal methods have been applied
to improve automation systems. In that sense, Alur et al. [8]
presented the earliest application of model-checking tools for
timed automata, using timed computation tree logic (TCTL).
Since then, this kind of work has inspired the development
of some formal methods and model checking tools for real-
time and automation systems, such as UPPAAL [9] and
HyTech [10], which support cyber-physical and hybrid systems
and are also able to improve their reliability [11].

Formal verification has been applied to avionics embedded
software, since the 2000s, due to safety and reliability require-
ments [12]. Different tools (e.g., SPIN [13], SMV [14], and
NuSMV [15]) were used for developing and validating flight
control software, such as the NASA’s missions Mars Science
Laboratory [16] and Deep Space 1 [17], the flight control
system FCS 5000 [18], and the military aircraft A-7 [19].

Most previous studies concentrate on safety regarding real-
time requirements [11], [20], [21]; however, there are a few
that discuss low-level properties and even less related to
implementation aspects and hardware features, such as the
finite word-length (FWL) problem. That occurs because such
properties typically take into account complex system dyna-
mics and require verification tools with some knowledge about
the underlying hardware and specialized in implementation
aspects [22], [23]. As a result, the main challenges for those
verification tools rely on checking how FWL effects influence
digital-controller performance and make them susceptible to
errors related to overflows (limited by the maximum and
minimum representations) and limit-cycles (due to overflows
and also round-offs), which are problems related to fixed-point
implementations. In summary, comprehensive verification pro-
cedures should not focus only on high-level specifications, but
also include low-level aspects.

As a consequence, system models, based on non-linear
arithmetic, are necessary, when trying to identify conditions
that lead to overflow and limit-cycle events, and it is interesting
to use non-deterministic inputs, in order to explore large
state spaces, which thus make verification conditions really
hard to be checked. Those considerations make the mentioned
challenges even more difficult, due to the need for system
knowledge and behavior investigation. Indeed, if an overflow
is not avoided, an UAV controller might then perform wrong
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operations, which could impair performance and navigation/-
positioning of UAV systems. In addition, limit cycles might
surpass the limiting safe flight boundaries of aircrafts and
potentially lead to structural damage and catastrophes [24].

Recently, Bessa et al. [25] investigated FWL effects in
digital controllers. Properties related to overflow, limit cycle,
time constraint, stability, and minimum phase were verified,
in different software realizations (delta- and direct-forms) and
implementations (e.g., number of bits), using the Digital Sys-
tem Verifier (DSVerifier) [26]. DSVerifier is a bounded model
checking (BMC) framework for digital systems that uses
other state-of-the-art tools, such as the Efficient SMT-based
Context-Bounded Model Checker (ESBMC) [27] and the C
Bounded Model Checker (CBMC) [28]. It was developed to
verify digital-system implementations and is suitable for inves-
tigating FWL performance and hardware compatibility, thus
considering implementation aspects. In addition, DSVerifier is
able to verify digital filters, digital controllers, and closed-
loop control systems. Following that same line of research,
this article is the first to investigate FWL effects in UAVs.
In particular, it includes overflow and limit-cycle oscillation
(LCO) on outputs of UAVs attitude controllers and their effects
on physical plants UAVs dynamics, considering fragility of
feedback controllers, where prior work [25] only tackled such
effects at outputs of digital controllers. Furthermore, the LCO
and overflow verification engines were substantially improved,
in order to generalize detection for any constant input and
different overflow modes (i.e., saturate and wrap-around). By
contrast, DSVerifier v1.0 [26] was only able to detect zero-
input LCO and in wrap-around overflow mode. Finally, UAV
applications present complex elements (multiple control loops
and different control configurations), which are tightly coupled
to each other (attitude dynamics, angle variations, and position
information) and impose an ever increasing level of difficulty
to existing verification methodologies.

Contributions. The main contribution of the present study
is the introduction of a verification methodology based on
DSVerifier and also its theoretical foundations, which aims
to investigate FWL effects in digital controllers developed
for UAV systems. In particular, this research proposes a
DSVerifier-aided verification methodology for UAV attitude
control software, considering implementation aspects. As one
may notice, DSVerifier is an approach that addresses computa-
tions and operations occurring inside a digital controller based
on fixed-point arithmetic and, harnessing on that, our metho-
dology is able to detect issues related to arithmetic overflow in
wrap-around and saturation modes and also check round-offs
errors, which could generate LCOs, i.e., undesirables errors
that UAV digital controllers are susceptible to. Experimental
results show that implementation-level failures, whose effects
would probably degrade overall system performance, can be
detected. The proposed methodology substantially extends that
presented by Ismail et al. [26]: specifically, its application to
UAV attitude control is an important step towards safe and
reliable avionics systems, which is crucial for navigation and
positioning systems. Lastly, our proposed methodology was
evaluated using two different verification techniques, which are
incremental BMC and k-induction, and we have also compared
it to a state-of-the-art fuzzing technique – American Fuzzy Lop

(AFL)1. Finally, we have observed that AFL was unable to find
any property violation in our UAV benchmarks given the time
limits, while incremental BMC was able to find a substantial
amount of property violations under the same constraints.

Availability of Data and Tools. The presented experimental
results are based on a real quadcopter attitude control system
for aerial surveillance [29]. All benchmarks, tools, and results
of this evaluation are available on a supplementary web page.2

Outline. Section II presents related studies. Section III, in
turn, describes fundamental concepts about digital controllers,
along with implementation aspects. In section IV, the proposed
verification methodology for UAVs is presented. Section VI
tackles the performed verification experiments and discusses
the obtained results; it also shows how those same outcomes
were reproduced an validated. Finally, section VII concludes
this work and proposes future research topics.

II. RELATED WORK

The focus of the present work is to introduce a methodology
for checking problems related to FWL effects in UAV soft-
ware. As a consequence, the available literature regarding that
is presented and discussed, in order to clarify the importance
of our main contributions.

A. Formal Verification of Avionics Software
The use of autonomous UAVs has led researchers to develop

model checking applications for UAV software with different
purposes, e.g., obstacle detection and avoidance [30], ensure
the reachability of mission plan for single- [31], [32] and
multi-UAVs [5], [33], and evaluate the reliability of fault
protection software [17].

All aforementioned studies have a common concern about
high-level specifications, generally related to flight planning
and navigation. Furthermore, those related studies disregard
the dynamics of motion controllers in UAV systems, i.e., they
consider that a given UAV behavior is totally described by
finite state machines, which only represent transitions and
relationships between static tasks, without any computation of
input/output models for controllers and physical plants. As a
consequence, such structures are able to capture some intuition
about the underlying system, but do not cover the complexity
and myriad of entanglements regarding all involved elements,
mainly when those change with respective outputs.

In a recent work [34], Groce et al. tackled various veri-
fication methods and tools employed in that project, includ-
ing model checking tools based on abstraction and BMC
techniques. This particular work considers low level issues
associated to those devices, e.g., wear leveling and effects of
long erase times of NAND flash blocks.

The present work also focuses on low-level aspects, by
handling hardware-level implementations of attitude control
systems. One may also notice that software engineering tech-
niques typically disregard platforms on which (embedded)
system software operates the proposed approach becomes
an important contribution towards verification of low-level
implementation aspects, in order to check errors caused by
FWL effects.

1http://lcamtuf.coredump.cx/afl/
2http://dsverifier.org/

http://lcamtuf.coredump.cx/afl/
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B. Verification and Validation tools

Ngoc and Ogawa proposed a tool named C ANAlyzer
(CANA) for statically analyzing fixed-point errors, such as
overflow (due to the finite integer part of a representation)
and roundoff (due to the finite fraction part of that), in C
programs, via model checking [35]. That strategy includes two
main steps: a new range representation is proposed to estimate
overflow and roundoff errors and their analysis problems are
encoded as weighted model checking problems. Nonetheless,
CANA presents limitations regarding detection of overflow
and roundoff errors in digital controllers, since it does not
take into account their implementation and typical realization
aspects (e.g., direct and delta forms).

UPPAAL [9] and HyTech [10] are two state-of-the-art
verifiers capable of checking reachability properties related to
cyber-physical and hybrid systems. In particular, UPPAAL is
an automated tool to model, validate, and verify cyber-physical
and hybrid systems, which are actually modeled as networks
of timed automata extended with specific data types (e.g.,
bounded integers and arrays), in order to specify additional
system’s constraints (e.g., timing). HyTech is also another
automated tool to analyze, validate, and verify cyber-physical
and hybrid systems, which allows system specifications as
collections of automata with discrete and continuous compo-
nents and uses a symbolic model verifier to check temporal
requirements of the system. Nonetheless, given the current
knowledge in system verification, UPPAAL and HyTech do
not tackle FWL effects when verifying cyber-physical and
hybrid systems and, in particular, they have not been applied
to the verification of low-level control software in UAVs yet.

SMV [14] and NuSMV [15] are two symbolic verifiers
based on binary decision diagrams (BDDs); actually, the latter
is a reimplementation and extension of SMV, which also
supports SAT solvers. The system properties can be expressed
in a wide range of temporal properties such as Computation
Tree Logic (CTL), Real-Time CTL, Linear Temporal Logic
(LTL), and Property Specification Language (PSL). SMV and
NuSMV also construct counterexamples whether a property
violation is found as other typical model checkers [27], [28].

Particularly, software testing has been the standard tech-
nique for identifying software bugs during many years.

Currently, there are studies that compare software testing
and model checking techniques [36], [37] and show that model
checking is an effective technique, since it is able to find
more bugs in software than testing. The work of Lipka et
al. [36] examined a simple software consisting of several
components, in order to compare two different tools: the first
one is SimCo, which is a framework for the simulation-based
testing of software components, and the second one is Java
Pathfinder (JPF), which is a software model checking tool for
verifying correctness of components’ behaviors. As a result,
they showed that JPF was able to detect more bugs than
SimCo, since JPF covers all possible scenarios and SimCo
was not originally designed for some of them (e.g., it does
not search the entire state space).

Dirk and Lemberger [37] also discussed a comparison about
testing and model checking tools, in order to prove that
model checking presents reliable results, when searching for
bugs in programs. During the respective experiments, which

were performed with tools for random fuzz testing and model
checking, the authors showed that software model checkers are
competitive for finding bugs; they are also mature enough to be
used in practice, given that they even outperform bug-finding
capabilities of state-of-the-art testing tools. Lastly, the authors
conclude that BMC techniques are able to find more bugs
in programs and are also faster than state-of-the-art software
testing tools.

C. Fragility verification of control software

Problems related to low-level implementation aspects (e.g.,
control software and its compatibility with physical plat-
forms, or simply numerical issues) are called control software
fragility and may cause fatal and expensive faults too. A
promising approach to capture continuous dynamic behavior
and also discrete state transitions is the hybrid automata
representation, as proposed by Lerda et al. [38] which merge
dynamic responses obtained through MATLAB/Simulink and
the Java Pathfinder model checker, in order to detect errors in
controller designs without considering FWL effect, as studied
in this work.

Only a few studies investigated those problems and most
tackled them by proposing i) improved and resilient im-
plementations [39]–[43], ii) analysis and formal verification
of FWL effects [22], [25], [26], [44]–[48], and iii) non-
fragile design [49]–[51] and formal synthesis [52]–[54] of
digital control systems. In particular, Anta et al. [22] and
Hilaire et al. [45] investigated round-off effects in fixed-point
implementations of digital controllers, Park et al. [46], [47]
employed SMT solvers and convex optimization to check
the input-output equivalence between control system design
and extracted models of control system implementations, in
order to ensure design control specifications, and Feron et
al. [44] and Bessa et al. [48] employed formal methods
to ensure stability of control systems, considering software
implementations of digital controllers.

Nonetheless, other FWL effects, such as overflow and LCO,
are mostly neglected by current studies. Recently, Ismail
et al. [26] and Bessa et al. [25] employed DSVerifier to
check zero-input LCO and overflow occurrences in fixed-
point implementations of digital controllers and filters, which
is also performed in the present work; however, the current
algorithms are more comprehensive, allowing detection of
granular LCO for any constant input and overflow with and
without two’s complement arithmetics. Furthermore, it focuses
on UAV attitude control systems, which are more complex
than those used in previous studies, where FWL violations
were propagated for different sub-systems of a control loop.

The work introduced by Abate et al. [52] presents a
method for synthesizing stable controllers, which are suitable
to continuous plants given as transfer functions, by exploiting
bit-accurate verification of software implemented in micro-
controllers [26]. The mentioned authors developed a tool
called DSSynth, which marks the first use of counterexample-
guided inductive synthesis (CEGIS) [55] to synthesize digital
controllers, considering physical plants with uncertain models
and FWL effects; however, low-level implementation errors
(e.g., limit cycles) were not investigated.



TRANSACTIONS ON RELIABILITY 4

The methodology presented here was integrated into the
DSVerifier tool [26]. Nonetheless, there are other verification
tools that provide similar features, such as Astrée [56],
PolySpace [57], and Simulink Design Verifier (SDV) [58].
Although Astrée works on preprocessed C code, it tackles
only digital filters and is focused on verifying overflow and
register dimensioning, which means that it is not prepared to
handle digital controllers and physical plants. SVD is focused
on block level (Simulink) and needs substantial work regarding
requirement expression and its respective encoding. Finally,
PolySpace is more software oriented and generically handles
potential run-time errors, while also leaves code fragments for
further review.

III. PRELIMINARIES

A. Fixed-Point Arithmetics
Let 〈I, F 〉 denote a fixed-point format and F〈I,F 〉(x) denote

a real number x represented in fixed-point domain, with I
bits representing the integer part and F bits representing
the decimal one. The smallest absolute number cm that can
be represented in such a domain is cm = 2−F and any
mathematical operations performed at F〈I,F 〉(x) will introduce
errors, for which an upper bound can be given [59].

Arithmetic operations with fixed-point variables are differ-
ent from the ones with real numbers, since there are some
non-linear phenomenons, e.g., overflows and round-offs, and
the radix must be aligned [59]. Here, we treat fixed-point
operators for sums, multiplications, subtractions, and divisions
as fxp_add, fxp_mult, fxp_sub, and fxp_div, respec-
tively.

B. Fixed-Point Implementation in UAVs
Typically, UAVs are driven by digital controllers, which

are implementations of difference equations that generally
run on microcontrollers and whose main goal is to make a
plant (e.g., an UAV system) follow a desired behavior, based
on error regarding reference and output signals. Nonetheless,
signals provided by UAV sensors (e.g., accelerometers and gy-
roscopes) are actually analog and then must be converted into
digital form, by analog-to-digital (A/D) converting devices.
Besides, microcontrollers run control routines and produce
discrete control signals, which have to be converted into analog
form through digital-to-analog (D/A) converters and zero-
order hold (ZOH) devices [60] and then delivered to UAV
actuators.

A digital controller is a linear time-invariant (LTI) discrete-
time system, which deals with discrete numerical signals
and whose implementation is a program executed by a mi-
croprocessor. There are many mathematical representations
employed for controllers (e.g., transfer functions, state equa-
tions, and difference equations) [60], but one of the most
common approaches is through transfer functions, which can
be described as

H(z) =
b0 + b1z

−1 + ...+ bMz
−M

1 + a1z−1 + ...+ aNz−N
, (1)

where z and z−1 are known as the forward-shift and backward-
shift operators, respectively. There are many ways to imple-
ment digital controllers and their realization structures heavily

influence their performance. Different realizations are studied
in the available literature [60], but the present work considers
only direct forms, due to their simplicity and usability [60].

Direct realizations employ exact coefficients of transfer
function (1), i.e. a1, . . . , aN and b0, . . . , bM and their main
advantage is that they only deal with delayed input and
output versions; however, they also make controllers extremely
sensitive to numerical errors, which becomes evident in fixed-
point implementations and may severely harm system stability
and performance. Different direct forms may present distinct
numerical performances, given that those realizations imple-
ment the same controller, but with different organizations
regarding arithmetic operations [25].

Fig. 1 shows an algorithm for Direct Form I controllers,
which can be implemented through C programming language
(as shown in Fig. 2) and verified by the supported BMC tools
present in DSVerifier. In a C Program, fixed-point variables
are implemented as integer variables, with implicit power-of-
2 scaling factors. As illustrated in Fig. 2, functions fxp_add,
fxp_mult, fxp_div, and fxp_sub take two input ar-
guments and return the respective addition, multiplication,
division, and subtraction results, in fxp32_t format, which
is internally defined in DSVerifier as int32_t. Addition
and multiplication blocks also include quantization effects and
consider the fixed-point representation used by a given system.
Besides, function fxp_quantize provides quantization ef-
fects in each output, for a Direct Form I controller.

Fig. 1. An algorithm for Direct Form I controllers.

Figure 3 shows three different direct representations: Direct
Form I (DFI), Direct Form II (DFII), and Transposed Direct
Form II (TDFII), in parts 3a, 3b, and 3c, respectively. The
gains ai and bi represent controller coefficients, while z−1

describes shift operations, as shown in (1). Further details
about digital-system representations can be found in control
and digital signal processing literature [60], [61].

C. Problems Related to Fixed-Point Implementations
Real implementations of digital controllers are subject to

FWL effects, which are of paramount importance in fixed-
point processors. Such events, which are due to quantization,
are related to round-offs in operation results, which may cause
accuracy loss and parametric truncation that ultimately result
in functional problems, such as instability.
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1 f x p t f x p d i r e c t f o r m 1 ( f x p t y [ ] , f x p t x [ ] ,
2 f x p t a [ ] , f x p t b [ ] , i n t Na , i n t Nb ) {
3 f x p t ∗ a p t r , ∗y p t r , ∗b p t r , ∗ x p t r ;
4 f x p t sum = 0 ;
5 a p t r = &a [ 1 ] ;
6 y p t r = &y [ Na − 1 ] ;
7 b p t r = &b [ 0 ] ;
8 x p t r = &x [ Nb − 1 ] ;
9 i n t i , j ;

10 f o r ( i = 0 ; i < Nb ; i ++) {
11 sum = fxp add ( sum , f x p m u l t (∗ b p t r ++ , ∗x p t r −−));
12 }
13 f o r ( j = 1 ; j < Na ; j ++) {
14 sum = fxp sub ( sum , f x p m u l t (∗ a p t r ++ , ∗y p t r −−));
15 }
16 sum = f x p d i v ( sum , a [ 0 ] ) ;
17 re turn f x p q u a n t i z e ( sum ) ;
18 }

Fig. 2. C code fragment of a Direct Form I controller.

Quantization occurs during A/D conversion, which approx-
imates analog values to discrete ones and generates rounding
errors, whose maximum value is 2−b−1, where b is the number
of bits in the fractional part of the chosen representation. A
fixed-point representation 〈I, F 〉 can only represent values in
the range from −2I−1 to 2I−1 − 2−F [61].

Overflow violations occur when addition or multiplication
operations return results outside a given range of representable
values, regarding a specific fixed-point format. This way,
a microprocessor generally handles overflow through wrap-
around (i.e., it allows numerical representation wrapping) or
saturation (i.e., it holds the maximum representation). Besides,
such errors and round-offs may lead to periodic persistent
oscillations in an output, or LCOs, and are not related to
instability, but instead to FWL aspects. In addition, verification
modules normally handle overflow in the following ways:
detection as failure, wrap around, or saturation to a maxi-
mum/minimum value.

LCO events, in digital controllers, are defined by the pre-
sence of oscillations in their outputs, even with constant input
sequences, and are classified as overflow or granular [61].
The former appear when an operation results in overflow and
wrap-around. The latter, in turn, are autonomous oscillations,
which originate from quantization in the least significant
bits [61]. On the one hand, the absence of overflow LCO
may be assured by preventing overflow or handling it through
saturation, in which the maximum (or minimum) value is held.
On the other hand, granular LCO could be eliminated from a
system’s output through different filter structures or magnitude
truncation (zero-input LCO) [61].

IV. DSVERIFIER-AIDED VERIFICATION APPLIED TO
ATTITUDE CONTROL SOFTWARE IN UAVS

A. Digital-System Verifier (DSVerifier)
In this study, DSVerifier [26] is used, which is a BMC tool

for digital systems that employs CBMC [28] and ESBMC [27]
as back-ends. Indeed, DSVerifier implements a front-end for
those BMC tools, in order to provide support for digital system
design and verification, and performs three main procedures:
initialization, validation, and instrumentation. When it receives
a digital-system specification, the first step is to initialize its
internal parameters for quantization, that is, it computes the
maximum and minimum representable numbers for the chosen

FWL format. Then, during validation, it checks whether all
required parameters, for the verification procedure, were cor-
rectly provided. In the last step, explicit calls to its verification
engine (for the evaluated properties) are added, using specific
functions available in CBMC and ESBMC (e.g., assume and
assert), with the goal of checking property violations.

Once those three procedures are performed, an ANSI-C file
provided by a user, as shown in Fig. 4, can then be verified.
Such a file contains a digital-system description (struct ds),
i.e., the numerator (ds.b = {1.561, −1.485 }) and also
the denominator (ds.a = {1.0, −0.9}) of its transfer func-
tion, along with implementation-specific data (struct impl),
such as number of bits in the integer (impl.int_bits
= 3) and precision (impl.frac_bits = 5) parts, input
range (impl.min = -3 and impl.max = 3), and scaling
factor (impl.scale = 10).

Indeed, the input file described in Fig. 4 represents the
standard format used by DSVerifier [26] for characterizing
digital systems. In particular, the second-order system (i.e.,
a system that contains two poles and whose transfer-function
denominator order is two) described in Fig. 4 represents a
controller for an AC motor plant.

This file is directly sent to a C parser module and then
follows the normal verification flow of CBMC [28] or ES-
BMC [27]. Fig. 5 shows an example of a C code fragment
automatically produced by DSVerifier, which computes a
DFI structure, includes assert and assume statements, and
is later verified by the chosen back-end, in order to check
overflow violations. In particular, __DSVERIFIER assume
limits non-deterministic values to the dynamic range de-
fined in impl (as shown in Fig. 4), shiftL gets values
from the vector with inputs x(n) (determined with non-
deterministic values) and permutes them to the left, in or-
der to employ all necessary values for computing y(n),
fxp_direct_form_1() is the DFI controller implemen-
tation, and, finally, __DSVERIFIER assert represents a
given property to be checked (in the present case, overflow),
using the maximum and minimum representations defined by
fwl_max and fwl_min, respectively.

In the present work, CBMC and ESBMC are employed
for reasoning about bit-vector programs, using SAT and SMT
solvers, respectively [62]. If they find a property violation,
then a counterexample is generated; otherwise, the evaluated
implementation is safe, w.r.t. a set of given properties, up to
the bound k, which can be later embedded into a microcon-
troller. Further details on DSVerifier are provided by Ismail et
al. [26].3

In order to prove that our controllers are safe for any depth
k, we have applied a state-of-the-art k-induction algorithm to
both falsify and prove properties in digital controllers [63].
One may notice that the first version of the k-induction
algorithm was originally proposed by Sheeran et al. [64],
which consists of two cases:
• Base Case (B(k)): it is a standard BMC procedure that

is satisfiable if and only if it has a counterexample of
length k or less.

3One may also notice that users can even access documentation, bench-
marks, and publications about DSVerifier, which are available on its website
http://www.dsverifier.org

http://www.dsverifier.org
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(c) Direct Transposed Form II.

Fig. 3. Direct realizations for digital controllers.

1 # i n c l u d e <d s v e r i f i e r . h>
2 d i g i t a l s y s t e m ds = {
3 . a = { 1 . 0 , −0.9 } , /∗ denomina tor ∗ /
4 . a s i z e = 2 , /∗ denomina tor l e n g t h ∗ /
5 . b = { 1 . 5 6 1 , −1.485 } , /∗ numera tor ∗ /
6 . b s i z e = 2 /∗ numera tor l e n g t h ∗ /
7 } ;
8 i m p l e m e n t a t i o n impl = {
9 . i n t b i t s = 3 , /∗ i n t e g e r b i t s ∗ /

10 . f r a c b i t s = 5 , /∗ p r e c i s i o n b i t s ∗ /
11 . min = −3.0 , /∗ minimum i n p u t ∗ /
12 . max = 3 . 0 , /∗ maximum i n p u t ∗ /
13 . s c a l e = 10
14 } ;

Fig. 4. A digital-system input file for DSVerifier.

1 f x p t xaux [ ds . b s i z e ] ; f x p t yaux [ ds . a s i z e ] ;
2 f o r ( i n t i = 0 ; i < k ; ++ i ) {
3 x [ i ] = n o n d e t i n t ( ) ;
4 DSVERIFIER assume ( x [ i ] >= impl . min &&
5 x [ i ] <= impl . max ) ;
6 s h i f t L ( x [ i ] , xaux , ds . b s i z e ) ;
7 y [ i ] = f x p d i r e c t f o r m 1 ( yaux , xaux ,
8 ds . a , ds . b , ds . a s i z e , ds . b s i z e ) ;
9 s h i f t L ( x [ i ] , xaux , ds . b s i z e ) ;

10 DSVERIFIER assert ( y [ i ] >= fwl min &&
11 y [ i ] <= fwl max ) ;
12 }

Fig. 5. C code fragment of a DFI controller, which was produced by
DSVerifier.

• Inductive Step (I(k)): it checks that if a safety property
holds in the first k steps, it also holds for k + 1 steps.

Nonetheless, ESBMC implements an efficient version of
this k-induction algorithm, by adding one additional step:4

• Forward Condition (F (k)): it checks whether all program
states were reachable for the current k.

Hence, through the combination of B(k), F (k), and I(k),
the k-induction algorithm in ESBMC, when verifying a pro-
gram P at a given k, is:

kind(P, k) =


P contains a bug, if B(k)

P is correct, if ¬B(k) ∧ [F (k) ∨ I(k)]
kind(P, k + 1), otherwise.

(2)
The ESBMC k-induction algorithm is applied through an

iterative deepening scheme, which allows BMC to be used for

4In particular, ESBMC represents the most prominent k-induction algorithm
as reported in SV-COMP 2018: https://sv-comp.sosy-lab.org/2018/results/
results-verified/.

proving (partial5) correctness, without fully unwinding loops.
Furthermore, the incremental nature of the algorithm implies
that it always finds the smallest k, aiming to either prove
correctness or find a property violation.

B. The DSVerifier-aided Verification Method
This section describes the main steps of our verification

method supported by DSVerifier, in order to automatically
check the presence of LCO and overflow in attitude controllers
employed in UAVs, as shown in Fig. 6. In step 1, UAV attitude
controllers are designed through four tasks, for each angle
dynamics (pitch, roll, and yaw): angle-dynamics modeling,
selection and design of associated structures, coefficient tun-
ing, and controller discretization. In particular, in this work,
PID controllers were designed with Ziegler-Nichols tuning,
which represents a classical control design approach, and
second order structures were designed with the CEGIS-based
approach via DSSynth (see subsection III-B). Then, they were
converted into digital format, with different methods and
sample times (some use the Euler’s methods and others the
bilinear transformation) [60]. Indeed, DSVerifier requires a
digital system described as a transfer-function and encoded in
an ANSI-C file, with all its multiplier coefficients. A numerical
fixed-point format is then chosen in step 2, which, in this
work, is performed as suggested by Carletta et al. [40]. Fixed-
point formats consider I-bits in their integer parts and F -
bits in their fractional ones, which must also be described
in an ANSI-C file, as can be seen in Fig. 4. In step 3, all
implementations can be tested for DFI, DFII, and TDFII, in
order to provide comparison data among different realization
forms and hardware model. Then, verification parameters, e.g.,
properties, overflow mode, timeout, and memory usage, are
defined in step 4. One may notice that the respective overflow
mode is selected in this step, which can be saturation or wrap-
around and is an important definition for overflow verification,
since it directly influences a system’s output, according to
the chosen realization form (DFI, DFII and TDFII). Finally,
overflow and LCO events are verified, with non-deterministic
inputs, in order to detect violations in digital controllers.

In summary, when using DSVerifier, a digital-system en-
gineer must define the target UAV’s system parameters (step
1) as represented by a transfer-function, implementation char-
acteristics (steps 2 and 3), and verification settings (step 4).
In particular, the overflow mode (step 4) can be defined as

5There is no proof of termination.

https://sv-comp.sosy-lab.org/2018/results/results-verified/
https://sv-comp.sosy-lab.org/2018/results/results-verified/
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Fig. 6. The proposed methodology for UAV digital-system verification.

saturate or wrap-around, which then affects all computations
and quantization operations. By default, in LCO verification,
the overflow mode is set to wrap-around, in order to avoid sat-
uration, which would then impair such a check. The intended
UAV attitude-controller verification finally occurs in step 5,
where an underlying model-checker is employed. Furthermore,
DSVerifier provides verification results in step 6, which can be
classified as “successful”, if there is no property violation, up
to a bound k, or “failed”, if it indicates some violation along
with a counterexample, which contains inputs and states that
lead to the associated failure.

It is worth noticing that the actual digital-system verification
only occurs in step 5, with the selected BMC tool and using
two possible different solvers: an SMT one for ESBMC, called
Boolector [65], or a Boolean Satisfiability (SAT) one for
CBMC, called MiniSAT [66].

In step 6, DSVerifier checks violations in digital-controller
implementations, considering the desired property. In parti-
cular, if the current verification fails, DSVerifier shows a
counterexample with inputs, which can lead to the violated
property. Finally, other implementation options (i.e., reali-
zations and representations) can then be evaluated, in order
to avoid the related errors and thus find a suitable digital
controller implementation.

C. Fixing Digital-Controller Implementations

DSVerifier does not automatically fix a digital controller im-
plementation, if a property violation is found; however, it does
provide a counterexample showing that a given property does
not hold in a model. This counterexample then allows users
(i) to analyze a failure, (ii) to understand an error, and (iii) to
correct either the respective specification or the model, i.e., the
property and the controller that have been analyzed [67]. One
may notice that this step requires manual intervention, unless
automated synthesis procedures can be employed to repair a
failure [52]. In addition, re-implementation procedures can be
faster, when performed by experienced engineers, and, for this
specific work and considering a specific hardware choice (i.e.,
UAV attitude controller), tuning only three parameters (i.e.,
number of bits, realization, and scaling) is enough to fix the
majority of implementation-related problems usually found in
those scenarios [25]. Additionally, some trade-offs have to be
taken into account, when performing modifications related to
a representation format:

• Increasing the number of bits of integer parts should fix
overflow; however, if the maximum value for a given
hardware platform is achieved, then it may be necessary
to decrease the number of bits of the fractional ones;

• Decreasing the number of bits of fractional parts leads
to an increase in quantization noise and, consequently,
signal-to-noise ratio (SNR) problems [61];

• LCOs are very difficult to prevent. In particular, if a
specific controller implementation presents LCO, another
implementation of the same controller (changing the
number of fractional bits) may not suffer from the same
problem. Reciprocally, an implementation free from gran-
ular LCO may then present that same problem, if its
number of fractional bits is changed [25], [61];

• Operations can be executed faster if less bits are em-
ployed (mainly in field-programmable gate arrays).

Regarding the effect of changing realizations, for the direct
forms addressed in this work, it is important to notice that:
• DFI and TDFII present the same performance issues,

regarding overflows in two-complement architecture with
wrap-around, because only the final operation affects a
system using those realizations [68], [69];

• DFII, in turn, needs verification after each equivalent
adder (input and output) [68], [69];

• If saturation arithmetic is employed, when overflow
occurs, not only the final result but also intermediate
operations have the potential to affect a system’s output,
even if DFI and TDFII are employed [68], [69]. It means
that all system-node operations have to be evaluated,
during an overflow verification, and violations may occur
for a controller implementation, in a specific realization
form, and disappear when employing another one.

Finally, for the scaling effect:
• An appropriate scaling factor can prevent overflows, in

stable systems, but such a result usually requires large
attenuation, which can affect resulting SNR figures [61];

• Scaling can also prevent overflow LCOs.
When performing verification with DSVerifier [26], with the

goal of checking LCO or overflow violations, a digital-system
engineer is also able to analyze the impact of implementation
aspects (number of bits in integer and fractional parts), real-
ization forms (i.e., direct forms), and scaling factors, in order
to design robust digital systems, because the mentioned tool
is able to verify them, with respect to those trade-offs.
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Note that the overflow verification scheme employed here
extends our previous studies, by considering both wrap-around
and saturation modes [25]. Additionally, the current LCO
verification presents some enhancements, which are explained
in the next subsection. LCO verification is indeed a novelty
and especially important for UAV attitude-control.

D. Overflow Verification for UAV digital controllers

When dealing with UAV digital controllers, we need to
take care about overflow. In the present study, assertions are
encoded into the quantizer block and the verification engine
is configured to use nondeterministic inputs in a specified
range, in order to detect overflow, for a given fixed-point
word-length. For any arithmetic computation, if there exists a
value that exceeds the representable range, an assert statement
detects that as arithmetic overflow. As a consequence, a literal
lsigned overflow is generated, with the goal of representing the
validity of each addition, subtraction, division, and multipli-
cation operation, according to the constraint

lsigned overflow ⇔ (FP ≥MIN) ∧ (FP ≤MAX), (3)

where FP is the fixed-point approximation, for the result of
arithmetic computations, and MIN and MAX are the minimum
and maximum values, which are representable for a given
fixed-point bit format, respectively. Therefore, in overflow
verification, an expression of a fixed-point type can not be
out of the range provided by a fixed-point bit format. If this
condition is violated, then overflow has occurred. In addition,
arithmetic overflow events can be solved by saturation or wrap-
around.

Algorithm 1 describes how DSVerifier [26] performs over-
flow verification. Firstly, it formulates an FWL-effects function
and obtains the numerator and also the denominator of a digital
controller, with those effects. Then, DSVerifier computes a
transfer-function with FWL effects, retrieves its outputs, ac-
cording to the employed realization form (e.g. ,DFI, DFII, or
TDFII), and stores the respective results in a vector y(n). After
that, the maximum and minimum word-representations are
verified, based on I-integer bits and F -fractional ones. Finally,
it checks if values stored in y(n) are inside the allowed range,
according to the maximum and minimum representations. If a
sample is outside that range, then DSVerifier returns “failed”
together with a counterexample; otherwise, if no violation is
found, it returns “successful” up to the given depth k.

1) Illustrative Example: In order to explain the pro-
posed DSVerifier-aided verification methodology, the follow-
ing second-order controller is used.

H(z) =
60z − 50

z
(4)

In particular, for DFI and TDFII realization forms with
wrap-around mode and according to the Jackson’s rule [69], a
system’s output will not be affected by overflows in intermedi-
ate operations; however, in DFII realization form, if overflow
occurs in the input adder (as can be seen in Fig. 3b) and that
is not avoided, then the mentioned system’s output can be
incorrectly computed. Besides, in saturate mode, any overflow
in intermediate operations will also affect its output. Indeed,
DSVerifier can identify violations in intermediate nodes and

Algorithm 1: Overflow verification
Data: NC(z) as the controller numerator, DC(z) as the controller

denominator and its output up to depth k.
Result: SUCCESS for the absence of overflows up to the depth k;

otherwise, FAILED along with a counterexample.
1 begin
2 Formulate a FWL effect function FWL[·];
3 Obtain FWL[NC(z)] and FWL[DC(z)];
4 Compute H(z) =

FWL[NC(z)]
FWL[DC(z)]

;
5 Obtain the outputs (y(n)) from H(z);
6 Obtain the MIN and MAX representation given I-integer bits

and F -fractional bits;
7 MIN ← −2I ;
8 MAX ← 2I − 2−F ;
9 for i← 0 to n by 1 do

10 if y(i) < MIN and y(i) > MAX then
11 return FAILED and a counterexample (i.e., presence

of overflow);
12 end
13 end
14 return SUCCESS (i.e., free from overflows up to the depth k);
15 end

if any problem is detected, then it automatically concludes
the current verification and generates a counterexample with
related inputs and outputs. For instance, operation for con-
troller 4, with fixed-point format 〈6, 10〉 and a DFI realization
led to a violation in an intermediate node, when computing
y(10) = −46.9922. In particular, an overflow violation in
saturate mode occurs due to the minimum representable value,
which is −32.00, during a multiplication by b0 (see Fig. 3a).
Finally, Table I shows values computed for each output from
Eq. 4.
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Fig. 7. Overflow in a second-order digital controller.

E. Limit Cycle Verification for UAV digital controllers
LCOs may be very harmful to digital control systems, given

that they degrade control actions, cause damage to physical
plants, harm surround products, and increase material losses.
In particular, the presence of LCO violations, in UAVs, is
related to flutter behavior in UAV wings [70].

The LCO verification scheme employed here extends previ-
ous DSVerifier versions [25], [26], where only zero-input LCO
events were detected, by comparing past and current states.
Indeed, now DSVerifier searches for the repetition of any out-
put sequence caused by any non-deterministic constant input,
with non-deterministic initial states, which allows verification
for many other attitude-angle references (not only the zero
one). In summary, this is a more realistic approach, once the
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TABLE I
REPRODUCING AN OVERFLOW VIOLATION IN SATURATE MODE.

n 1 2 3 4 5 6 7 8 9 10
y(n) 0.46875 −0.390625 −4.980 −0.126 5.67 15.00 −1.83 −25.34 12.69 −46.9922

reference of an attitude system is variable and coupled to the
device position dynamics: for each different target position,
different attitude-angle references are generated.

The proposed LCO detection algorithm is implemented in
DSVerifier, where a system’s output computation is iteratively
checked, according to the maximum bounded number of
entries k. The latter is defined by users, while the constant
input signal x(n) and initial states are determined using non-
deterministic values, according to the provided dynamic range.
In order to verify the presence of LCO, in a particular digital
controller realization, the quantizer block routine is configured
by setting a flag variable on it, with the goal of enabling wrap
around on overflow, which then avoids overflow detection. Ac-
cording to a specific realization, the LCO algorithm execution
is then unrolled, for a bounded number of entries k, and an
assert statement is added to detect a failure, if a set of previous
outputs states (that repeat during a constant-input response) is
found.

LCO occurrences are represented by a literal lLCO, with
the goal of determining whether a set of previous outputs is
found, according to the constraint

lLCO ⇐⇒ ∃n, k ∈ N,∃cR|xm = c =⇒ ∃yk+i = yk+n+i,

∀i ∈ {0, 1, 2, ..., n},m ∈ {k, k + 1, k + 2, ..., k + 2n}, (5)

where xk and yk are the k-th input and output samples,
respectively. LCO absence is then verified by checking ¬lLCO,
that is, if there exists no execution where a set of previous
outputs is found.

Algorithm 2 describes the steps employed for detecting
LCO, as described in Eq. 5. Firstly, DSVerifier formulates an
FWL-effects function that obtains a controller’s numerator and
denominator with those effects. Then, a new transfer function
with FWL effects is obtained and its outputs are computed,
based on the employed realization forms (e.g., DFI, DFII
and TDFII). After that, the algorithm selects the last outputs
as reference and searches the same values in the previous
elements, in order to compute the time window length for
LCO. Finally, if a window has been found, then the algorithm
verifies if the elements inside that are repeating. Whenever
it occurs, LCO presence is identified; otherwise, DSVerifier
returns “successful” for LCO verification, up to depth k.

F. Illustrative Example

In order to explain the proposed DSVerifier-aided veri-
fication methodology, the second-order controller

H(z) =
1.5610− 1.485z−1

1− 0.9z−1
(6)

is used.
Indeed, a transfer function definition corresponds to the first

step of the proposed methodology, which is shown in Fig. 6.
The second step is the choice of the FWL representation,
whose fixed-point parameters are computed according to the

Algorithm 2: Limit cycle verification
Data: NC(z) as the controller numerator, DC(z) as the controller

denominator and its outputs up to k-depth.
Result: SUCCESS for the absence of LCOs up to the depth k;

otherwise FAILED along with a counterexample.
1 begin
2 Formulate an FWL effect function FWL[·];
3 Obtain FWL[NC(z)] and FWL[DC(z)];
4 Compute H(z) =

FWL[NC(z)]
FWL[DC(z)]

;
5 Obtain the last output from H(z), as reference;
6 Check the presence of a time window;
7 if size of time window is bigger than one then
8 Check whether elements inside that time window are

repeated;;
9 if all elements are repeated then

10 return FAILED and a counterexample (i.e., presence
of LCO);

11 end
12 end
13 else
14 return SUCCESS (i.e., LCO-free up to the depth k);
15 end
16 end

method described by Carletta et al. [40] and considering an
8-bits hardware architecture. It allows the calculation of a
(sufficient) number of bits to avoid overflow, using

j = dlog2(‖h‖1 · ‖x‖∞)e+ 1, (7)

where ‖h‖1 is the l1-norm of a system’s impulse response
H(z) and ‖x‖∞ is the l∞-norm of input k, that is, the
maximum value that can be assumed by x(k). Indeed, Carletta
et al. claim that (7) is enough to prevent overflow in a system’s
output, which is true when two-complement is employed in
wrap-around mode (the chosen mode), with DFI and TDFII,
and is known as the Jackson’s rule [69].

Using (7) for the system in (6), where ‖x‖∞ = 3, due to its
dynamic range, and ‖h‖1 ≈ 1.9, one may find that 4 bits are
sufficient for its integer part. As a result, the representation
〈4, 4〉 is suggested, with a resulting range between −8 and
7.9375. In addition, it is worth noticing that the maximum
value of a system’s output is perfectly known, through ‖h‖1.

According to the DSVerifier’s configuration, users must
provide specifications in a ANSI-C file, as shown in Fig. 4,
and define the desired DFII realization, in the third step. Then,
a timeout of 1 hour and a bound of 10 cycles are set, given
that limit cycle occurrences need to be verified.6

After a few seconds, the verification process is concluded
and a failure (Step 6) is indicated. A persistent oscillation in
this system’s output is reported, for a constant input x(k) =
0.125 and an initial state y(−1) = −2.875. The resulting
oscillation can be seen in Fig. 8a, with amplitude between 0.25
and 0.125. As a consequence, a designer should go back to
Step 2 to avoid the limit cycle reported by DSVerifier, through

6The DSVerifier is invoked through command line as follows:
dsverifier filename.c --realization DFII --property
LIMIT_CYCLE --x-size 10 --timeout 3600 --bmc CBMC
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a simple realization change. For instance, DFI could fix the
controller’s implementation, which would lead to a successful
verification (Step 6), as can be seen in Fig. 8b.
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(a) LCO occurrence for DFII.
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(b) Solving LCO Violation using DFI.

Fig. 8. Output of controller (6) implemented with format 〈4, 4〉 for a constant
input equal to 0.125.

V. UAV CONTROL SYSTEMS AND BENCHMARKS

A. Modeling UAV Attitude Dynamics

In terms of modeling, the body fixed-frame B and the earth
fixed-frame E are illustrated in Fig. 9. B represents the angular
movements (inertial reference system) pitch (θ), roll (φ), and
yaw (ψ), while E describes quadrotor translational movements
in a three-dimensional space.
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Fig. 9. Reference system for a quadcopter model [71].

As a result, the physical plant described by (8) was ob-
tained, based on a computational tool for systems identification
available in MATLAB [72]. The respective model consists in
an autoregressive with Exogenous Inputs (ARX) structure and
presenting two poles and one zero.

G1(z) =
−0.06875z2

z2 − 1.696z + 0.7089
. (8)

B. Control Strategies in UAVs

Fig. 10 shows a typical digital control-system for UAVs,
which can be divided into attitude, altitude, and position
controls. Typically, a high-level controller provides coordinates
that contain reference values regarding position and altitude;
however, they are coupled to the attitude dynamics and depend
on angle variations. This way, position and altitude controllers
generate references to the attitude control system, which then
drives UAV motors. The attitude of a quadrotor consists in
its orientation w.r.t. an inertial reference system, which is
described by the Euler angles: pitch, roll, and yaw [73]. The
present work tackles only attitude controllers.

One of the best-known control strategies available in litera-
ture is the proportional-integral-derivative (PID) control, which
is shown in Fig. 10. In that approach, the controller output u(t)
represents a response to the obtained error e(t), with respect to

Fig. 10. A typical digital control system for UAVs.

a reference r(t) and measured sensor signals, which is propor-
tional to the error itself (P ), its derivative (D), and also its inte-
gral (I). Additionally, a controller might contain only some of
those: proportional-derivative (PD), proportional-integral (PI),
and proportional (P) controllers, where integrative, derivative,
and both actions are null, respectively. In general, a continuous
PID controller has its response represented by

u(t) = KP e(t) +KD
de(t)

dt
+KI

∫ t

0

e(t)dt, (9)

where KP , KD, and KI , are the proportional, derivative, and
integrative gains, respectively.

The effort necessary to design a PID controller may be re-
duced to merely tuning its gains, i.e., KP , KD, and KI . Here,
PID controllers for attitude UAV control were designed using
empirical Ziegler-Nichols tuning [60] and CounterExample
Guided Inductive Synthesis (CEGIS) [52]. A PID controller
structured as (9) can then be represented by a continuous
transfer function

C(s) =
KDs

2 +KP s+KI

s
. (10)

1) Synthesizing UAV attitude controllers with CEGIS: In
order to synthesize controllers for a UAV system, given a
continuous plant, a tool named as DSSynth [52] can be used,
which is a program synthesizer that implements CEGIS for
synthesizing digital controllers [55]. Given a plant model
for roll (φ), pitch (θ), and yaw (ψ) angle dynamics, which
is expressed in ANSI-C syntax, DSSynth constructs a non-
deterministic model to represent that plant family, i.e., it
addresses plant variations as interval sets and formulates
a function using implementation details, with the goal of
computing a group of controller parameters to be synthesized.
Then, DSSynth synthesizes the respective controller coeffi-
cients for a given implementation specification, i.e., numerical
representation and realization form, and, finally, it builds
intermediate C code representing a digital system for an UAV,
which is used as input for the CEGIS engine.

For instance, by employing the controller-synthesis metho-
dology described by Abate et al. [52], using DSSynth, the
stabilizing controller in (11) was synthesized for the attitude
dynamics module [29] described in (8), with a sampling time
of 0.002s.

H(z) =
−0.39154052734375z2 − 0.7646636962890625z

0.8602752685546875z2 + 0.52484130859375z
(11)
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C. Description of Benchmarks

UAV modeling is a hard task, given that such a kind of
system presents many nonlinearities and complex structures.
Generally, its control system is reasonably sectioned, with high
interdependence among attitude, altitude, and position.

The present experiments were performed on a quadcopter
system, whose model was described by Bouabdallah et
al. [71]. Such an investigation focuses on the attitude control
system, i.e., the control of angular movement, through adjust-
ment of the pitch (θ), roll (φ), and yaw (ψ) angles. Indeed, an
attitude control system is the basis for quadcopter stabilization
and its reliability is needed for a correct operation of attitude
and position control systems. As mentioned before, Fig. 9
shows a quadcopter’s attitude angles (θ, φ, and ψ) and the
associated cartesian-position (x, y, and z) references.

Any attitude control system aims to provide stabilization,
along with reference tracking. Five strategies are employed
here: combined PD/PD, combined PID/PD, combined PD/P,
combined PD/PI, and PID control. The first strategy consists of
two control loops for each angle, i.e., one for angular velocity
and another for the orientation angle itself: on each loop, a
PD controller is employed. The second one is very similar
to the first, but the angle-control loop does employ a PID
controller. The third one, in turn, employs a PD controller for
angle control and a P rate controller, while the fourth one
occurs when the angle control loop employs both PI and PD
controllers. Finally, the last strategy uses only one loop with
a PID controller. Fig. 11 shows the controlling structure of
the PD/PD, PD/PI, PD/P and PID/PD strategies, while Fig. 12
shows the specific approach adopted for the PID one.

Fig. 11. Attitude control system with combined structure.

In the control strategy shown in Fig. 11, two controllers
are employed for each angle, where the inner one is used
for stabilizing angular rate, i.e., roll rate (φ̇), pitch rate (θ̇),
and yaw rate (ψ̇) controllers, by computing the control torque
around the x (ux), y (uy), and z (uz) axes, respectively. The
outer controllers (roll, yaw, and pitch) are used for stabilization
and reference tracking of attitude angles (φ,θ, and ψ), by
computing angular rate references (φ̇ref , θ̇ref , and ψ̇ref ),
which are provided to the inner control system.

By contrast, Fig. 12 shows a control strategy that employs
a single controller for each attitude angle, which thus directly
computes the control torques ux, uy , and uz , by means of
the roll, pitch, and yaw PID controllers, respectively. In some

Fig. 12. Attitude control system with only one PID controller, for each angle.

specific cases, the same controller can be employed for differ-
ent angles, especially roll and pitch, whose normal behavior
is usually identical. In summary, ten different controllers were
designed for the proposed control strategies, which were tuned
in continuous time and then converted into digital format, with
different sample times and methods.

In addition, this work evaluates transfer functions of real
digital controllers, which were employed for UAV attitude
control by Frutuoso et al. [29]. The dynamic models related to
the attitude angles were obtained via an identification process
based on the least-squares algorithm. All controllers studied in
this paper present order less or equal to 2, which is common in
the digital-control area. Although higher order controllers are
not used in this paper, our benchmarks are representative of
UAV attitude control systems, since they are indeed extracted
from real UAV systems.

Table II shows the association of each controller, regarding
its function (Figs. 11 and 12), while Table III describes all
designed controllers, with their tuning gains in continuous
time, transformation methods, and sample times. The chosen
number of bits, associated to each implementation, is based
on the methodology presented by Carletta et al. [40], who
suggested a computation based on the impulse response sum.
In particular, C5 does not employ the mentioned methodology,
because the current UAV architecture supports only 16 bits and
it would require at least 17 bits. As a consequence, C5 can be
seen as an example of design failure, in such a way that the
impact of FWL effects, on the implementation of fixed-point
digital controllers, are promptly detected and analyzed.

TABLE II
CONTROLLER DISTRIBUTION FOR THE ADOPTED CONTROL STRATEGIES.

Control
Strategy

PD/PD
Control

PID/PD
Control

PID
Control

PD/PI
Control

PD/P
Control

DSSynth
Controller

Roll C2 C4 C5 C7 C9 C10

Roll
Rate C1 C1 - C6 C8 -

Pitch C2 C4 C5 C7 C9 C10

Pitch
Rate C1 C1 - C6 C8 -

Yaw C3 C4 C5 C7 C9 -
Yaw
Rate C1 C1 - C6 C8 -
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TABLE III
DIGITAL CONTROLLERS FOR THE EVALUATED QUADROTOR ATTITUDE

SYSTEM.

Controller
ID

Tuning Gains Discretization
Method

Sample
Time (ms)

Discrete Transfer
FunctionKP KD KI

C1 1 0.01 - Forward
Euler (FE) 20 1.5z−0.5

z

C2 10 1 - Forward
Euler (FE) 20 60z−50

z

C3 10 2 - Forward
Euler (FE) 20 110z−100

z

C4 10 2.5 0.5 Forward
Euler (FE) 20 135z2−260z+125

z2−z

C5 2 1 0.1 Tustin
(Bilinear) 1 2002z2−4000z+1998

z2−z

C6 5.5 0.0465 - Tustin
(Bilinear) 20 0.93z−0.87

z+1

C7 0.4 - 50 Tustin
(Bilinear) 20 0.1z−0.09998

z−1

C8 0.3 0.009 - Backward
Euler (BE) 2 0.0096z−0.009

0.002z

C9 0.1 - - Backward
Euler (BE) 2 0.1z−0.1

z−1

C10 - - - Contoller
Synthesized 2 Cf. (11)

VI. EXPERIMENTAL EVALUATION

A. Experimental Objectives

In order to verify the impact of saturation effects in in-
termediate operations, regarding different realization forms
(i.e., DFI, DFII, and TDFII), overflow-checking experiments
were executed, considering both saturate and wrap-around
modes. In saturate mode, an overflow violation can be detected
in intermediate nodes, during intermediate operations (i.e.,
sums and multiplications) of a realization form; otherwise, in
wrap-around mode, overflow detections take into account only
system outputs, since previous studies [68], [69] showed that if
a digital system, implemented with 2’s complement arithmetic
and using DFI or TDFII, does not present overflow on its
final result, it will not be affected by overflow in intermediate
operations. Such a behavior is a direct consequence of the
Jackson’s rule [68], [69] and is extensively used in digital
systems, in order to simplify designs and minimize FWL
effects, given that all quantizers are configured to wrap-
around. In particular, for DFII, overflow detection must also
be checked during a specific intermediate operation, as will
be explained in the next paragraph.

According to parts (a) and (c) of Fig. 3 (DFI and TDFII
realizations, respectively), multiplier outputs are directly con-
nected to equivalent adders (disregarding delays), which means
that the Jackson’s rule is valid for those realizations forms.
By contrast, part (b) (i.e., Direct Form II realization) shows
two equivalent adders (input and output) connected through
a multiplier (b0), which also means that the Jackson’s rule is
still valid for each equivalent element; however, the output of
the input adder must not overflow. If that is not avoided, then
the result of the output adder may be incorrect, as previously
mentioned.

For the implementations tested in this work, signal inputs lie
between −1 and 1, that is, a sensor’s (gyroscope) output bound
in normal conditions, which means that inputs employed

during verification of LCO and overflow violations also fall
within such a range.

In summary, our experimental evaluation aims to answer
two research questions:
• RQ1: How digital controllers designed for UAV attitude

systems are susceptible to violations, according to fixed-
point representations and realizations?

• RQ2: Are verification results using BMC sound and can
their overflow and limit cycle violations be reproduced
and also validated by external tools (e.g., MATLAB)?

B. Experimental Setup
In the present work, DSVerifier v2.0.3 was used to check

controllers described in Sec. V-C. The ones in Table III
were verified with 3 different numerical formats (with at
least the number of integer bits suggested by Carletta et
al. [40]) and 3 different realizations (DFI, DFII, and TDFII),
for each one. C10, in turn, was synthesized with DSSynth and
verified with only one format, but using the same 3 different
realizations. As a result, there are 84 different verification tasks
for each evaluated property (overflow and LCO), which aim to
investigate the importance of realization forms and numerical
formats, regarding FWL performance.

The present experiments were executed on an otherwise idle
computer with the following configuration: Intel Core i7−2600
3.40 GHz processor, 24 GB of RAM, and Ubuntu 64-bits OS.
CBMC v5.5 was employed and the maximum timeout was
set to 3600s. All presented execution times are CPU times,
i.e., only time periods spent in allocated CPUs, which were
measured with the times system call (POSIX system).

C. Experimental Results
Table IV shows the obtained verification results, where VT

denotes the verification time, in seconds, VR represents the
verification result, S means success, that is, DSVerifier did not
find a failure up to k = 10, F means failed, that is, DSVerifier
found a property violation and then returned a counterexample,
and, finally, T means timeout, that is, DSVerifier exceeded
the maximum verification time. All digital controllers were
verified with implementations on an ATMEGA328, which is
based on a 16-bits processor driven by a 16 MHz clock.

The larger times regarding LCO verification procedures,
as shown in Table IV, are explained by the high-complexity
algorithm employed for that, with non-deterministic initial
states, (constant) inputs, and variable oscillation periods.

Fig. 13 summarizes the obtained verification results, for
each realization form, which show that 28,6% of our con-
troller implementations presented overflow, when checked by
DSVerifier in wrap-around overflow mode, i.e., an overflow vi-
olation was detected only in system outputs. In saturate mode,
verification procedures failed for 38,1% of our controller
implementations, which means that an overflow violation was
detected in intermediate nodes, during verification procedures.
In LCO verification, 34,5% of our controller implementations
failed, while 56% of them presented successful verification and
9,5% led to timeout. Despite that, LCO verification procedures
were concluded for 90,5% of the chosen benchmarks, while
overflow ones were concluded for 99% and 100% of them, in
wrap-around and saturate mode, respectively.
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TABLE IV
VERIFICATION RESULTS FOR THE DIGITAL CONTROLLERS USED IN THE MENTIONED QUADROTOR ATTITUDE SYSTEM. VR: VERIFICATION RESULT (S -
SUCCESSFUL, F - FAILED, OR T - TIMEOUT), VT : VERIFICATION TIME (IN SECONDS), FORMAT 〈k, l〉, WHERE k IS THE INTEGER BITS, AND l IS THE

FRACTIONAL BITS.

ID Format
〈k, l〉

Overflow - Saturate Mode Overflow - Wrap-Around Mode Limit Cycle
DFI DFII TDFII DFI DFII TDFII DFI DFII TDFII

VR VT VR VT VR VT VR VT VR VT VR VT VR VT VR VT VR VT

C1

〈2, 14〉 F 5 F 10 F 6 F 12 F 10 F 8 S 35 S 52 S 367
〈4, 12〉 S 5 S 4 S 4 S 3 S 4 S 3 S 21 S 30 S 576
〈6, 10〉 S 4 S 5 S 4 S 4 S 3 S 5 S 19 S 23 S 197

C2

〈6, 10〉 F 8 F 7 F 8 F 10 F 9 F 8 S 33 S 32 S 510
〈8, 8〉 S 5 S 4 S 5 S 4 S 4 S 4 S 14 S 22 S 150
〈10, 6〉 S 4 S 5 S 4 S 3 S 4 S 4 S 9 S 11 S 57

C3

〈7, 9〉 F 8 F 6 F 8 F 11 F 9 F 8 S 22 S 33 S 338
〈9, 7〉 S 4 S 5 S 3 S 4 S 3 S 4 S 11 S 17 S 113
〈11, 5〉 S 5 S 5 S 5 S 3 S 3 S 4 S 9 S 10 S 30

C4

〈8, 8〉 F 9 F 7 F 8 F 14 F 12 F 12 S 35 T 3600 T 3600
〈10, 6〉 F 15 F 10 S 670 T 3600 S 14 S 436 S 42 T 3600 T 3600
〈11, 5〉 S 236 F 13 S 97 S 86 S 11 S 36 S 54 T 3600 S 1823

C5

〈10, 6〉 F 8 F 7 F 7 F 6 F 5 F 5 F 21 F 17 F 91
〈12, 4〉 F 8 F 10 F 6 F 5 F 6 F 4 F 16 F 33 F 22
〈13, 3〉 F 11 F 8 F 12 F 6 F 5 F 5 F 13 F 18 F 50

C6

〈4, 12〉 F 18 F 12 F 14 F 5 F 5 F 8 F 15 F 14 F 13
〈8, 8〉 S 15 S 15 S 19 S 5 S 5 S 6 F 16 F 12 F 15
〈10, 6〉 S 16 S 14 S 16 S 4 S 4 S 4 F 10 F 12 F 12

C7

〈4, 12〉 S 17 F 15 S 24 S 7 S 5 S 10 S 86 F 29 T 3600
〈8, 8〉 S 14 S 12 S 18 S 5 S 5 S 9 S 33 F 57 S 661
〈10, 6〉 S 13 S 12 S 17 S 5 S 5 S 4 S 30 F 98 S 248

C8

〈3, 13〉 S 7 F 10 S 7 S 2 S 2 S 2 S 44 S 76 T 3600
〈4, 12〉 S 7 F 8 S 5 S 1 S 2 S 2 S 47 S 55 S 2092
〈5, 11〉 S 6 F 8 S 5 S 1 S 2 S 1 S 29 S 27 S 662

C9

〈4, 12〉 S 18 F 14 S 15 S 7 S 6 S 10 S 73 F 37 T 3600
〈8, 8〉 S 15 S 12 S 19 S 5 S 5 S 8 S 32 F 69 S 787
〈10, 6〉 S 14 S 10 S 18 S 5 S 5 S 4 S 26 F 66 S 234

C10 〈8, 8〉 S 31 S 16 S 43 S 33 S 23 S 30 F 47 F 279 F 95

1) Overflow Occurrence Discussion: Particularly, the di-
gital controller C5 presented overflow in every (possible)
implementation, realization, and overflow mode (saturate and
wrap-around). That happened because (7) suggested at least 17
bits [40], but the UAV architecture used for the experiments
supports only 16 bits.

There was only one unfinished overflow verification due to
timeout, when checking in wrap-around mode: a task started
for controller C4 with DFI realization and fixed-point format
〈10, 6〉. Indeed, the latter can be explained by the high order
of C4, which requires more operations for computing system
outputs. By contrast, in saturate mode, its verification failed
in 15 seconds, with the same system specification.

Overflows may be avoided by changing bit format im-
plementations or, specifically regarding saturate mode, by
changing realization forms. As an example, overflow occurs
for the digital controller C1, in all realization forms, when it is
implemented in fixed-point format 〈2, 14〉. For that particular
numerical format, that happens when the output y (t) is less
than−2 or greater than 1.999, according to Carletta’s rule [40].
Fig. 14 shows an overflow failure, for this C1 implementation,
in which the graph on the left illustrates the input sequence
provided by DSVerifier and the graph on the right corresponds
to the controllers’s output, i.e., the controlling torque (ux,
uy , or uz) produced by the rate controller. In addition, red

dashed lines denote representation limits, indicating when con-
trolling UAV torques suffer from saturation, for this specific
implementation. One may notice that, in the first sample, the
output is slightly greater than the numerical representation
limit; however, in Fig. 15, the output torque does not contain
overflow violation, using the same controller specified for C1

and fixed-point format 〈10, 6〉.
It is worth noticing that there were overflow occurrences

in DFI and TDFII realizations with the first format (the one
that follows exactly what was computed) of many controllers,
in wrap-around mode, which contradicts what is presented by
the jackson’s rule. As a consequence, a deeper investigation
was conducted and an interesting behavior was noticed: the
method presented by Carletta et al. [40] does not guarantee
complete absence of overflow events, in certain cases, which
occurs because it does not considers the asymmetry of two’s
complement representations, as shown by Volkova et al. [43].
For instance, when the impulse response summation (‖h‖1) is
2 and the maximum input is bounded by −1 and 1 (bounds
included), which means that the output range lies between −2
and 2, the mentioned method returns a format with 2 bits.
Nonetheless, the resulting two-complement range provided by
such a representation will allow values between −2 and 1,
which is not enough. Indeed, such a behavior was noticed
when the maximum output value is a power of 2, due to the
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(a) Overflow by Saturation.
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(b) Overflow by Wrap-around.
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(c) Limit-cycle Oscillation

Fig. 13. Summary of the obtained verification results, per realization form,
for the evaluated controllers.
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Fig. 14. Arithmetic overflow occurrence in controller C1, with DFI realization
and a format containing 2 bits in the integer part and 14 bits in the fractional
one.

way it is computed by the logarithm in (7).
Although the mentioned finding revealed a flawed dimen-

sioning procedure, it further proved that the proposed me-
thodology is sound and reliable. As future work, a correct
dimensioning procedure can be employed (or even developed),
which would allow the choice of a correct number of bits for
the integer and fractional part.
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Fig. 15. Absence of arithmetic overflow in controller C1, with DFI realization
and a format containing 10 bits in the integer part and 6 bits in the fractional
one.

Additionally, some controllers presented overflow, even with
formats with many integer bits (the second and third ones), in
saturate mode. Examples of such a behavior are controllers C4

and C8, which presented overflow even when using numerical
formats with more integer bits, i.e., 〈11, 5〉 and 〈5, 11〉, respec-
tively. That was expected, given that intermediate operations
are checked in saturate mode and the adopted dimensioning
procedure only takes into account system outputs.

Finally, one may notice that C4 presented the highest veri-
fication time, which occurred due to the high order associated
to its implementation. Verification times typically increase
with controller complexity, given that direct-form implemen-
tations need two-nested loops to generate a controller order.
It is worth noticing that C5 is also a second-order system, but
it presents low verification times. Indeed, that is an expected
result, once verification procedures for such a controller found
errors in all implementations, since property refutation is
typically faster than property correctness.

2) Limit Cycle Occurrence Discussion: An example of
LCO occurrence was noticed (see Table IV) for the attitude
angle controller C5 in TDFII realization and with format
〈13, 3〉. DSVerifier was able to find a violation for initial
states −0.125, −0.0625 and 0.000, with a constant zero-input,
as shown in Fig. 17a. The red dashed line represents the
input sequence and the blue continuous one the controller’s
response. Besides, one may also notice that the same figure
indicates an oscillation on C5’s output (the controlling torque
ux, uy , or uz) between −0.125 and 0.0625, i.e., the violation
indicates that the controller might produce oscillating torques,
when it should maintain the UAV movement (e.g., in hovering
state).

If the same controller is implemented in DFI format, LCO
events are also detected by DSVerifier. In particular, DSVerifier
found that initial states −0.109375, 0.015625, and −0.1250
and an input sequence −0.0625 lead to the mentioned LCO.
Fig. 17b shows an LCO occurrence in C5, with DFI realiza-
tion, which indicates an output (torque) oscillation between
−0.1250 and 0.015625, i.e., the attitude angle controller C5

might produce torque oscillations during a pitch, roll, or yaw
command, which is performed for any UAV displacement.
Indeed, this same controller also presents overflow, as shown in
section VI-C1, so the LCO occurrences illustrated in Figs. 17a
and 17b are expected, given that an overflow event can gener-
ate LCO on system outputs, which is known as overflow LCO.
By contrast, C7 and C9 present LCO in DFII realizations with
no overflow, i.e., granular LCO occurrences were identified.

In LCO verification, C4 implementations took a reasonable
amount of time. C4 is a second order system, which means
that many non-deterministic initial states are considered and
there are more mathematical operations, which consequently
increase the model checking computing cost. In fact, LCO
verifications tend to take longer, due to their algorithmic com-
plexity, i.e., a search for persistent oscillations in a system’s
output, based on combinations of non-deterministic constant
input, initial states, and oscillation window size. It is worth
noticing that verification times for C5, which is also a second-
order system, are much shorter than what is obtained with
C4. That happens because failed verifications are generally
faster than successful ones. In fact, the proposed verification
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(b) Overflow by Wrap-around.
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(c) Limit-cycle Oscillation

Fig. 16. Verification-time results for the digital controllers in the mentioned
quadrotor attitude system.
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Fig. 17. LCO occurrence in the control torque produced by C5, with different
realizations and format 〈13, 3〉.

algorithm is interrupted when a failure is found.
3) Evaluation of Verification Bounds: In order to evaluate

our DSVerifier-based approach with different k-bounds, we
have considered verification of overflow and LCOs properties
with k = 5, 20, 30. We have also evaluated the k-induction
proof rule to compare both verification techniques: bounded
and unbounded model checking, with the same experimental
setup previously configured for k = 10. Verification results
for different k-bound values are illustrated in Figs. 18-20.

For k = 5, the respective results are described in Tables V-
VII on the first column. If those are compared with the ones
obtained for k = 10, which are shown in Tables V-VII on the
second column, one may notice a lower number of timeout
events, regarding LCO and overflow by wrap-around checks,
which happens because k = 5 presents a reduced state space
to DSVerifier. The number of successful results for overflow
checks is also higher, when compared with what was obtained
for k = 10, given that some property violations were not
found. Nonetheless, it is interesting to notice that the number
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Fig. 18. Experimental results for overflow verification in saturate mode, for
different k-bound values.
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Fig. 19. Experimental results for overflow verification in wrap-around mode,
for different k-bound values.

of failed LCO verification procedures, for k = 5, was higher,
because some of them were not interrupted by timeout. Indeed,
one could consider the adoption of a lower k, when checking
LCO, in order to ensure a correct system behavior.

For k = 20, 30, the obtained results were the same, as can
be seen in the Tables V-VII on the third and the last columns;
however, the number of timeout events was much higher for all
verification procedures, e.g., four times higher for overflow in
wrap-around mode. No limit-cycle check was even completed,
because 100, 0% of our set of experiments produced timeouts
for that. Indeed, such a result is not surprising, given the
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Fig. 20. Experimental results for LCO verification, with different k-bound
values.
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TABLE V
EXPERIMENTAL RESULTS FOR OVERFLOW BY SATURATE.

k-bounds k = 5 k = 10 k = 20 k = 30

Successful 67,9% 61,9% 61,9% 61,9%
Failed 32,1% 38,1% 34,5% 34,5%

Timeout 0,0% 0,0% 3,6% 3,6%
Concluded Verification 100,0% 100,0% 96,4% 96,4%

complexity of LCO verification in digital controllers.

TABLE VI
EXPERIMENTAL RESULTS FOR OVERFLOW BY WRAP-AROUND.

k-bounds k = 5 k = 10 k = 20 k = 30

Successful 71,4% 70,2% 66,7% 66,7%
Failed 28,6% 28,6% 28,6% 28,6%

Timeout 0,0% 1,2% 4,8% 4,8%
Concluded Verification 100% 99% 95% 95%

TABLE VII
EXPERIMENTAL RESULTS FOR LIMIT-CYCLE OSCILLATION.

k-bounds k = 5 k = 10 k = 20 k = 30

Successful 56,0% 56,0% 0,0% 0,0%
Failed 42,9% 34,5% 0,0% 0,0%

Timeout 1,2% 9,5% 100,0% 100,0%
Concluded Verification 98,8% 90,5% 0,0% 0,0%

In addition, some results changed from k = 10 to k =
20, 30. In particular, for k = 10, we found overflow in
implementations with formats 〈10, 6〉 and 〈11, 5〉, when DFII
was used for verifying controller C4; however, for k = 20, 30,
with the same configuration for controller C4, DSVerifier
returned that those implementations did not present overflow
due to timeout events. We suspect that the search strategy
employed by the chosen SAT solver did not find property
violations, within the given time limit, due to the larger state
space that arose from k = 20, 30, if compared with the one
from k = 10. In summary, DSVerifier was able to find more
bugs with a lower number of inputs (k = 10) and, when we
employed k = 20, 30, timeout events increased considerably
as illustrated on Fig. 20. Figs. 18-20 show that the violation
detection rates (failed results) do not increase for k-bounds
values larger than 10 in any verification category, as well as
the concluded verification rates. Indeed, we noted that for the
results illustrated in Fig.20 (LCO verification), no new failures
were detected by DSVerifier; as a consequence of a k-bound
higher than 10, DSVerifier produces more timeouts. Based on
what was presented, one may conclude that k = 10 is an
interesting choice for our set of benchmarks and it provides a
good trade-off between behaviour check and evaluation time.

When using k-induction, whose results are shown in Ta-
ble VIII, the numbers of violations regarding overflow in
saturate and wrap-around mode were the same; however, no
successful case was ever found, which is consistent with the
clear increase in the number of associated timeouts. Indeed,
due to the lack of inductive invariants, the inductive step of
the k-induction proof rule was unable to prove correctness

of any property. The identification of inductive invariants is
an active research area in the verification community [74]–
[77] and we have not exploited that branch of research yet,
regarding control software [77] verification. Additionally, no
LCO verification was completed.

TABLE VIII
EXPERIMENTAL RESULTS USING k-INDUCTION

Property Evaluated Overf. Saturate Overf. Wrap-around LCO
Successful 0,0% 0,0% 0,0%

Failed 28,6% 28,6% 0,0%
Timeout 71,4% 71,4% 100,0%

Concluded Verification 29% 29% 0,0%

We have also noticed that the k-induction algorithm detected
overflow violations only in implementations where overflow
was already expected, due to wrong estimation regarding
Carletta’s criterion [40] and independing on overflow mode,
as can also be seen in Table VIII (the mentioned results are
equal). For instance, controllers C1, C2, C3, C4, C5 and C6

had already presented overflow in the first check round, which
means we would find the same bugs in those controllers, with
k-induction.

For our set of benchmarks and associated experiments,
with different k-bounds, it is possible to conclude that as
k increases, the number of timeouts also gets higher. In
particular, for k = 10, DSVerifier was able to find more
failures with less timeouts, while for k = 20, 30, the number
of timeouts increased considerably. Indeed, k-induction is used
here as an iterative deepening style, starting with k = 1
and then incrementally increasing k to either find a property
violation or prove partial correctness (without actually fully
unwinding loops). It means that, in order to prove correctness,
the inductive step of our k-induction proof rule is independent
on controller order, but the base case still needs to fully unwind
loops to expose bugs. One may notice further that k-induction
is a computationally expensive approach, because three checks
are performed for each k, i.e., base case, forward condition,
and inductive step (cf. Section IV-A), where the latter is the
most expensive one. As a result, given that we search deeper in
a system’s state-space, we will eventually reach some property
violation (if they really exist), prove partial correctness, or
exhaust time and memory resources; however, since we are
unable to produce inductive invariants to instrument our UAV
software, our k-induction proof rule does not seem to be an
effective approach to check properties that depend on system
inputs 7, given that a substantial amount of time is spent in
the inductive step.

Nonetheless, our k-induction experiments were inconclu-
sive, since this algorithm was unable to prove correctness
for all reachable states of a controller (i.e., the procedure
did not terminate, possibly due to large state space search).
Indeed, the employed k-induction algorithm was able to find
the same violations (with the respective counterexamples) as
with the plain BMC procedure B(k); however, it consumed
more time and memory when trying to prove correctness.
There are verification tools (e.g., Impara [78]) that implement

7There are other properties in control software, such as stability and
minimum-phase, which do not depend on the system inputs [26].
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the interpolation and SAT-based model checking approach
described by McMillan [79], but we have observed that it
does not lead to better results, when compared with those
presented by the k-induction algorithm, as previously reported
in the international software verification competition (SV-
COMP) [62]. We could further investigate a “Property-directed
Reachability” (or IC3) procedure [80] for safety verification
of digital controllers, but we have not found any software tool
that is publicly available for verifying safety properties in full
C programs. Besides, implementing such an algorithm would
demand time and effort and, as a consequence, we decided to
leave it as future work.

4) Synthesizing Digital Controllers and Analysing the Im-
pact of LCO and Overflow Effects: DSVerifier was used to
find overflow (in saturate and wrap-around modes) and LCO
violations in the synthesized controller C10, using fixed-point
representation 〈8, 8〉 and direct-form realizations (i.e., DFI,
DFII and TDFII). As result, the proposed algorithm found no
overflow violations; however, in all employed direct forms,
DSVerifier found LCO on system outputs, which means that
DSVerifier can detect granular LCOs for closed-loop systems,
even though a stable synthesized-controller is used. The out-
puts produced by DSVerifier, in one of the counterexamples
obtained for C10, are graphically represented in Fig. 21, which
shows granular LCO for a DFI realization form, with constant
inputs x = 0.0 and initial states y−1 = −0.99609375 and
y0 = 0.00390625.
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Fig. 21. Granular LCO for the synthesized attitude angle controller C10, in
DFI realization and with format 〈8, 8〉.

5) LCO and Overflow Effects in Closed-loop Dynamics: In
order to investigate overflow effects in closed-loop dynamics,
attitude dynamics should be simulated, considering FWL
effects and the system output provided by DSVerifier. The
plant employed to analyze impacts regarding overflow and
LCO effects is described in (12), which represents roll (φ)
and pitch (θ) angle dynamics.

G(z) =
−0.06875z2

z2 − 1.696z + 0.7089
. (12)

A simulation using C5 in DFI realization and with format
〈10, 6〉 was performed. The roll and pitch angles behavior,
after overflow in C5, is illustrated in Fig. 22. Fig. 22(a) shows
effects in the plant defined by Eq. (12), Fig. 22(b) presents
the inputs produced by DSVerifier, which were extracted from
the counterexample related to the controller C5, and, finally,
Fig. 22(c) illustrates closed-loop overflow reproducibility in
DSValidator, considering three different scenarios: (i) ideal
operation, i.e., without overflow and FWL effects, (ii) with
overflows handled by wrapping-around, and (iii) with over-
flows handled by saturating. The black dotted signal represents
the output, disregarding FWL effects and overflows, and the
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(a) Effects in roll and pitch angles, whose dynamics is defined by Eq. (12).
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(b) Torques around the x and y (ux and uy) axes produced by the roll/pitch
controller C5 and extracted from an overflow counterexample provided by
DSVerifier.
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(c) Overflow closed-loop effects reproducibility in DSValidator.

Fig. 22. Overflow effects in closed-loop dynamics.

red dashed and blue continuous lines represent the output
after overflow events handled by saturation and wrap-around,
respectively. One may notice that such an output behavior is
affected by overflow occurrences and the related discrepancy
tends to be larger for the wrap-around mode, when compared
with the saturation one.

A second simulation was performed using the angle rate
controller C6, in DFI realization and with format 〈10, 6〉, in
order to investigate LCO effects regarding roll (φ) and pitch
(θ) angles’ behavior. In particular, C6 presented granular LCO.
Fig. 23 shows, in part (a), the digital controller’s output with
and without the FWL effects due to the fixed-point format
and, in part (b), the effect of the LCO violation is observed
in the pitch/roll dynamics. The output without FWL effects
(blue) is compared with the one presenting them (red), whose
difference (error in closed-loop output due to FWL effects) is
relevant during transient time and still remains after steady
state (black). One may notice that LCO on a controller’s
output produces oscillating torques around x and y axes
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(a) LCO in the torques around the x and y (ux and uy) axis produced by C6,
for DFI realization and format 〈10, 6〉.

0 0.5 1 1.5 2
−0.1

0

0.1

0.2

Time (seconds)

A
m

p
lit

u
d
e

 

 

without FWL effects
with FWL effects
error

(b) Effects in the roll and pitch closed-loop behavior described in Eq.(12).

Fig. 23. LCO effects in closed-loop dynamics of pitch/roll angles.

and, consequently, roll and pitch angles have the potential to
present strong oscillation when they should be constant. Such
oscillations can hinder the action of eventual position control
and even lead to instability.

6) Verification Efficiency Discussion: It is important to
elaborate on verification efficiency. The mean time (disregard-
ing timeouts) spent for verifying a controller is around 22s
(σ = 76s) for overflow verification in saturate mode, 13s
(σ = 48s) in wrap-around mode, and 146s (σ = 342s) for
LCO verification.

One may notice that high standard deviations regarding
verification times indicate that time spent in a successful
verification is much longer than what is necessary to find a
violation, i.e., time spent to achieve a failure result after a
model checking procedure. In general, the mean figure of the
latter is 288s, for overflow verification in saturate mode, and
170s, in wrap-around mode. Regarding LCO verification, the
mean time spent to find a violation is 756s.

The time spent in overflow verification is relatively low,
with a maximum value of 670s and 436s, in wrap-around and
saturate modes, respectively, which happened for successful
verification procedures for controller C4, using TDFII real-
ization. Lower verification times, if compared with previous
studies [25], are justified by enhancements in the employed
verifiers and solvers. Besides, successful verification results
typically take longer than failed ones, since BMC techniques
stop searching when a violation is found.

In general, LCO verification times take longer than overflow
ones, as can be noticed in Fig. 16, due to the fact that
the former is considerably more complex and considers all
possible initial states, constant inputs, and oscillation periods.
In addition, LCO verification presented more timeout events,

which represent 10% of our benchmarks.
Finally, at this point, it is interesting to address the first

research question raised in section VI-A, i.e., RQ1. In sum-
mary, fixed-point representations change coefficient values,
which then modify internal operations performed by digital
controllers. As a consequence, computations result in different
values, which then modify system behavior. Besides, those dif-
ferences depend on other parameters, such as realization form,
saturation mode, and numerical format. Among the possible
final manifestations of such deviations, two were tackled here:
LCO and overflow events. Particularly, in our experiments,
overflow occurrences are more frequent in saturate mode, but
they can also be avoided, depending on the chosen realization
form and numerical format, as well as LCOs. Overflow
events also occurred for wrap-around mode, which cannot
be avoided by changing realization, but only by choosing
suitable numerical formats. Closed-loop simulations showed
that overflow and LCO events, in digital attitude controllers,
produced undesired behavior in attitude dynamics, although
they are usually disregarded during usual controller-synthesis
techniques [81]. As a consequence, when the presence of those
conditions is not evaluated, fragile systems may be designed.

D. On the Validation of DSVerifier Results

All verification results provided by DSVerifier v2.0.3 were
validated with DSValidator v1.0.1 [67], in order to demon-
strate its reliability and soundness. Particularly, the latter is a
complement and an additional support to DSVerifier, which is
employed to reproduce its counterexamples.

The main purpose of DSValidator is to automatically check
whether a given counterexample, provided by DSVerifier, is re-
producible or not. Indeed, it is able to reproduce counterexam-
ples generated by DSVerifier, using MATLAB features, and,
as a consequence, it is also suitable for investigating digital
controller and filter behaviors, considering implementation and
FWL aspects.

DSValidator takes into account implementation aspects,
overflow mode (saturate or wrap-around), and rounding ap-
proach (floor and round). Currently, DSValidator performs
counterexample reproducibility for stability, minimum-phase,
limit cycle, and overflow occurrences.

According to Table IX, DSVerifier produced 27 LCO and
56 overflow counterexamples, the latter being divided into 32
in saturate and 24 in wrap-around mode. DSValidator con-
firmed the DSVerifier’s results, i.e., all counterexamples were
reproduced by DSValidator, which suggests that DSVerifier is
sound and reliable. Furthermore, DSValidator allows violation
verification in graphical mode, using MATLAB, which makes
re-implementation phases easier, in the proposed DSVerifier-
aided verification methodology (see Fig. 6).

TABLE IX
REPRODUCIBILITY RESULTS FOR THE MENTIONED QUADROTOR ATTITUDE

SYSTEM.

Property Evaluated Tests Successful Tests Failed Execution Time
Overflow: Saturate 32 0 0.050703 s

Overflow: Wrap-around 24 0 0.037437 s
LCO 27 0 0.057538 s
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In order to ensure the absence of LCOs detected by DSVeri-
fier, an algorithm proposed by Bauer [82], [83] was employed.
Such a scheme searches exhaustively for the absence of limit
cycle and is applicable to all direct form realizations, besides
being independent on quantization and digital controller or-
der. Therefore, the Bauer’s method decides about asymptotic
stability of (linearly stable) digital systems, by employing an
exhaustive search method. If it detects that a digital system is
asymptotic stable, then the latter is free from LCO; otherwise,
it is susceptible to those problems. This way, controllers that
present no LCO occurrences, according to Bauer’s algorithm,
are the same with successful verification in DSVerifier.

Regarding RQ2, given that all verification results provided
by DSVerifier v2.0.3 were reproduced and validated by an
external tool based on exhaustive search, i.e., DSValidator,
we can regard its findings as sound and reliable. Further-
more, comparisons with different bound values and verification
strategies demonstrate that k = 10, when using the BMC tech-
nique, is enough for successfully detecting most occurrences
of the violations considered here, thus providing a reasonable
trade-off between verification correctness and time.

E. Comparison to Testing/Fuzzing Techniques
We have also compared our verification method with an-

other approach. Indeed, we have employed the American
Fuzzing Loop (AFL) [37] tool, in order to find property
violations in our benchmarks. That choice was made because
AFL is one of the most efficient fuzzers currently available
in literature, as recently reported by Beyer et al. [37]. AFL is
able to find software bugs by providing invalid, unexpected,
or random data as inputs to a given program and, in particular,
it monitored our UAV benchmarks to find failing built-in code
assertions. In addition, we have also contacted the developers
of AFL, in order to get the most suitable set of parameters to
evaluate our benchmarks.

In summary, experiments using AFL took around 243
hours (i.e., approximately 10 days) and we used the same
experimental configuration8 adopted for the earlier tests with
DSVerifier, i.e., we employed benchmarks for all realization
forms, regarding overflow and limit-cycle properties, and with
3600 seconds as time limit. As a result, AFL was unable to find
any (single) property violation in our UAV benchmarks. Given
that DSVerifier found a substantial amount of violations under
the same time limit, we can conclude that BMC outperforms
AFL for finding bugs in UAV control software benchmarks. As
also reported by other researchers [37], it is a real challenge
for fuzzers to produce inputs that can exercise all program
paths in a program, when some of them depend on complex
conditions. Finally, our experimental results also confirm such
findings.

VII. CONCLUSIONS

This paper described an SMT-based BMC verification
method, which is supported with the aid of a tool named
DSVerifier, with the goal of verifying low-level properties of

8The command-line to run AFL as indicated by its developer
is: ./afl-fuzz -f filename.c -i input/ -o output/
dsverifier filename.c --realization REALIZATION --property
PROPERTY --x-size 10 --timeout 3600 --bmc CBMC

digital controllers. FWL effects are considered, in order to
investigate LCO and overflow occurrences, in UAV digital
attitude controllers. The need for reliability and autonomy,
in UAV systems, has already motivated other researchers
regarding the application of formal methods; however, the
present work is the first one to investigate FWL effects over
software implementations of UAV attitude digital controllers.
In particular, overflow and LCO were investigated in 10 dif-
ferent digital controllers, through 84 different implementations
(realizations and representations). We have also compared our
approach using incremental BMC and k-induction with another
state-of-the-art fuzzing technique.

The present experimental results show that digital con-
trollers might present failures after implementation, depending
on the chosen numerical format and realization. In parti-
cular, DSVerifier was able to identify LCO and overflow in
digital controllers designed with the Ziegler-Nichols tuning
and also with the CEGIS-based approach, via DSSynth. The
resulting simulations showed that failures due to FWL effects
caused significant changes in the behavior of UAV attitude
angles. Indeed, the present method based on DSVerifier is
repeated until a sound and non-fragile implementation is
found. Consequently, a suitable combination of realization and
numerical representation can be identified, regarding a digital
attitude controller designed for a specific hardware platform.
In addition, a flawed dimensioning procedure (available in
the literature) was identified and the resulting violations were
detected by DSVerifier, which reinforces its effectiveness and
applicability. Finally, we have also employed AFL to find
property violations in our UAV benchmarks; however, this
fuzzing tool was unable to identify any single property viola-
tion in our UAV attitude control software benchmarks, while
BMC produced effective results regarding such violations.

As future work, this study will be extended to altitude and
position UAV controllers and will also support closed-loop
verification, which considers system dynamics and how it is
affected by FWL effects. Further studies will also investigate
the consequences of controllers fragility in an UAV mission,
considering every control software module. Additionally, other
digital-controller representations can be included, e.g., state-
space based forms [60]. Regarding that, we intend to develop
a method to automatically fix controller implementations,
where an optimal instance can be found, considering hardware
constraints. Finally, the latter can also be integrated into
DSSynth, which would improve its results and consequently
provide LCO- and overflow-free implementations.
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