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Abstract: The probabilistic design of complex structure usually involves the features of numerous components, multiple disciplines, 

nonlinearity and transients, and thus requires a lots of simulations as well. To enhance the modelling efficiency and simulation 

performance for the dynamic probabilistic analysis of multi-component structure, we propose an improved decomposed-coordinated 

surrogate model method (IDCSMM), by integrating decomposed-coordinated (DC) strategy, extremum response surface method 

(ERSM), genetic algorithm (GA) and Kriging surrogate model. The GA is to resolve the maximum likelihood equation (MLE) and 

achieve the optimal values of the Kriging hyperparameter θ. The ERSM is utilized to resolve the response process of outputs in 

surrogate modeling by extract the extremum values. The DC strategy is used to coordinate the output responses of analytical objectives. 

The probabilistic analysis of an aeroengine high-pressure turbine blisk with blade and disk is conducted to validate the effectiveness 

and feasibility of this developed method, by considering fluid-thermal-structural interaction. In respect of this investigation, we see 

that the reliability of turbine blisk is 0.9949 as the allowable value of radial deformation is 2.310×10-3 m. In term of the sensitivity 

analysis, the highest impact on turbine blisk radial deformation is gas temperature, followed by angular speed, inlet velocity, material 

density, outlet pressure and inlet pressure. By the comparison of methods (IDCSMM, the DCSMM with quadratic polynomial 

(QP-DCSMM) and the DCSMM with Kriging (K-DCSMM), and the direct simulation (FE/FV) with the MC method) from the 

model-fitting features and simulation performance perspectives, we discover that the developed IDCSMM is superior to the other three 

methods in the precision and efficiency of modeling and simulation. The efforts of this study provide a high-efficient and high-accurate 

technique for the dynamic probabilistic analysis of complex structure and enrich mechanical reliability theory. 

Keywords: dynamic probabilistic analysis; improved decomposed-coordinated surrogate model method; multi-component structure; 

turbine blisk 

1  Introduction 

Complex structure is always assembled by many components with respect to specific rule, and is also called 

multi-component structure. The assembly relationships among components not only affect the performance of the 

structure under system working [1]. A component fault emerged in operation is to lead to the failure of the whole 

system [2]. To keep structure security by designing the assembly relationships, it is urgent to study the dynamic 

probabilistic analysis of multi-component structures in respect of run status and random parameters. 

Lots of investigations have focused on the analysis and design of multi-component structure. Whitney et al.,[3] 

discussed the design of assemblages based on the new synthesis theory with prior knowledge. Cai et al.,[4] studied 

the mechanical behavior of cable-strut structures with symmetrical and asymmetrical load cases. Qian et al.,[5] 

proposed an intelligent approach based on finite element (FE) analysis and artificial neural networks (ANN), to 

analyze the performance of complex structure. Salehyar et al.,[6] studied a coupled aero-hydro-elastic numerical 
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model to investigate the dynamic response for floating wind turbine with non-periodic disturbances. Demoly et 

al.,[7] developed a novel method for an integrated assembly modeling and planning to design the relevant 

parameters of products. Liu et al.,[8] analyzed the assembly precision with component deformations based on 

Jacobian-torsor model by considering temperature, gravity and working loads. Khorrami et al.,[9] adopted the 

modified harmonic balance method to investigate the vibration response characteristics for rotor disc-bearing. 

Huang et al.,[10] studied the nonlinear torsional vibration properties of an internal combustion engine crankshaft. 

Chakravarthy et al.,[11] discussed the frequency characteristics of an aero-elastic wing multi-component structure 

in the time domain for designing structural parameters. Ma et al.,[12] utilized an improved dynamic model to 

implement the vibration analysis of a rotor-blade system with blade-tip rubbing based on FE method. The above 

works keep a watchful eye on the multi-component structural characteristics based on static and dynamic 

deterministic analysis without the consideration of the effects of random factors. Actually, most of influencing 

factors have strong randomness on the property of multi-component structure in engineering practice. Hence, the 

randomness of parameters needs to be considered to study the reliability of multi-component structure from a 

probabilistic perspective. Only in this way, can the reliability and performance be more precisely evaluated and the 

related parameters be designed for multi-component structure. 

Up to now, a number of literatures have emerged on the probabilistic analysis of multi-component structure by 

considering the randomness of related variables, and developed various analytical techniques. Birnbaum et al., [13] 

analyzed the performance of multi-component system and evaluating their reliability by FE method. Gheisi et al., 

[14] presented a reliability surrogate to discuss the reliability of the water distribution system with multiple 

components. Gao et al., [15] extended and established the relationship of joint reliability importance and joint 

failure importance for multi-component system. Schottl et al., [16] developed an analytical model for the reliability 

evaluation of multi-component structure. Song et al., [17] proposed a novel model to accomplish the 

multi-component system reliability analysis, by considering an assembled system of degrading components. Heydt 

et al., [18] applied Monte Carlo simulation to analyze the reliability of distribution system with multiple structures. 

Fei et al., [1] proposed a methodology, namely distributed collaborative response surface method, for the 

mechanical dynamical assemble reliability design, and then employed this method in the static and dynamic 

probabilistic analyses of the radial running clearance of an aeroengine turbine blade in respect of support vector 

machine [19, 20]. Gao et al., [21] investigated the reliability assessment of turbine blade low-cycle fatigue damage 

combined with distributed collaborative response surface model. Although the above efforts developed many 

technologies for the probabilistic analysis of multi-component structure, most works studied the reliability 

evaluation and sensitivity analysis of multi-component structure without the variation of relevant parameters with 

time. To deal with the transient problem in dynamic structural probabilistic analysis, extremum response surface 

method (ERSM) [24, 25] and extremum response surface model-based support vector machine regression [22] have 

sprung up in recent years. However, the transient issue in the dynamic probabilistic analysis of multi-component 

structure cannot still effectively to be addressed. In this case, Fei et al., [1, 26] developed the distributed 

collaborative ERSM based on quadratic polynomials, for the dynamic structural probabilistic analysis with multiple 

components. This method still suffers from low computational accuracy and efficiency owing to the limitation of 

quadratic polynomials. 

In this work, an efficient and precise analytical technique is proposed to evaluate the dynamic reliability and 

sensitivity of multi-component structure, based on decomposed-coordinated (DC) strategy, ERSM and improved 

Kriging (IK) algorithm which introduces genetic algorithm (GA) into Kriging surrogate model. We call this method 

as improved decomposed-coordinated surrogate model method (IDCSMM). This method is used to finish the 

dynamic probabilistic analysis of an aeroengine turbine blisk radial deformation, by considering fluid-thermal- 

structure interaction. The feasibility and applicability of the method are verified by means of the comparison of 



different analytical methods. 

In what follows, Section 2 elaborates the basic principles of IDCSMM for the dynamic probabilistic analysis. In 

Section 3 the reliability evaluation and sensitivity analysis of the turbine blisk radial deformation of aeroengine 

high pressure, which is assembled by blade and disk, are performed using the IDCSMM, under considering the 

influence of random inputs, such as inlet velocity, inlet pressure, outlet pressure, gas temperature, angular speed, 

material density, and so on. Section 4 validates the superiorities of the developed method in modeling accuracy and 

simulation efficiency. Some conclusions of this effort are summarized in Section 5. 

2  Basic theory 

This section gives an overview of the Kriging surrogate model is firstly presented. Then the basic principles of 

IK algorithm and IDCSMM are discussed. Next, the dynamic probabilistic analysis of multi-component structure is 

described based on the proposed method. Lastly, the detailed procedure of dynamic reliability evaluation and 

sensitivity analysis for multi-component structure is elaborated. 

2.1  Kriging surrogate model 

Kriging surrogate model was firstly emerged in the field of geostatistics by Krige [27], and Matheron developed 

the concept of geostatistics and employed the Kriging surrogate model to deal with the problems of mineral deposit 

reservation and error estimation subsequently [28]. In recent years, the Kriging surrogate model has been widely 

used in various areas, such as structural design optimization [29, 30], modeling approximation [31-33], structural 

probabilistic analysis [34, 35], and so forth. It is demonstrated that the Kriging surrogate model can accurately and 

effectively handle the problems of high-nonlinearity and high-dimension with large scale parameters. 

The form of the Kriging model contains two parts, namely a liner regression of the data and a realization of the 

stochastic process [28, 36, 37], which is shown as follows 
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here i=1, 2, …, k; f(x)=[f1(x), f2(x), …, fk(x)] is the vector of k basis functions; β=[β1, β2, …, βk] is the vector of k 

undetermined coefficients; Z(x) is the stochastic component. Hereinto, Z(x) is regarded as the realization of a 

standard Gaussian random function with expected value E[Z(x)]=0, and covariance can be denoted as: 

      2, , ,p q p qCov Z Z R  
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in which R(·) indicates the correlation function with R(0)=1; σ2 represents the variance; the Kriging hyperparameter 

θ shows the vector of correlation parameters, which is formed by θ={θ(j)}, j=1, 2, …, n, n is the number of inputs; 

xp and xq denote the vectors of the p-th and q-th samples of input variables, here p, q=1, 2, …, m, m is the number 

of samples. 

The correlation function R(·) in Eq.(2) typically satisfies the product correlation rule in the Kriging surrogate 

model, the form of one-dimensional correlations can be written as a product of stationary [36], i.e., 
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j pqR d is the correlation function of the j-th component; d is the vector of distance between two 
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     j j j
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 j
px  and 

 j
qx

are the j-th component of the p-th and q-th input samples; the correlation parameters (Kriging hyperparameters) θ(j) 

are called length scale or distance weight, which is typically obtained via the maximum likelihood estimation (MLE) 

algorithm.  

The correlation function is generally formed by a linear, cubic, exponential, spline, Gaussian correlation 

function and so forth [38], the forms of which play an important role on the accuracy of a Kriging surrogate model. 

The Gaussian correlation function is selected as the kernel function in this study for its excellent computing 

performance [38, 39]. The formula of the Gaussian correlation function is  
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With regard to the MLE algorithm, the parameters β, θ and σ2 in Eqs.(1)~(4) are derived, i.e., 
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in which
2̂ is the estimated variance; R is the correlation matrix. The forms of 

2̂ and R are  
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here Y presents the vector of output responses corresponding to the input sample set x=[x1, x2, …, xm]; 

F=f(x)=[f1(x), f2(x), …, fk(x)] denotes the vector of k basis functions. By the generalized least squares solution with 

respect to R, the undetermined coefficients β is 
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The stochastic component at an untried point x* is calculated by: 
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where r(x*) is the vector of correlations between input samples and untried point x* and denoted as: 
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2.2  Improved Kriging (IK) algorithm 



Improved Kriging (IK) algorithm is developed from Kriging surrogate model and GA method. The GA 

processes more flexible and adaptive design space exploration, and is hardly affected by the plateau-like function 

profile of the MLE method, and thus is robust and easily parallelizable for the purpose of computing efficiency [40]. 

In this study, the GA is applied in the MLE optimization to search the optimal values of the hyperparameter θ in a 

Kriging surrogate model, which cannot be optimized by the MLE algorithm with gradient-based counterparts as the 

shape of its function profile.  

The GA approach depends on the natural selection and genetic characteristics, to acquire a new solution of 

objective function from its initial population by successive multiply iterations with the steps of selection, crossover 

and mutation [41, 42]. In general, an optimization problem is to search the optimal values to minimize the objective 

function. When a maximization of an objective function is required, we rewrite this objective function as the 

negative value of the corresponding function and resolve it in regular way. To compute the hyperparameter θ in a 

Kriging surrogate model, the GA method is used to solve the negative value of Eq. (5). This optimization problem 

is written as 
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The detailed process of obtaining the IK surrogate model is given below. Firstly, the input parameters and 

objective function are defined and the initial population is generated. The population including the initial 

population contains many individuals, and each individual is a solution of the objective function. A fitness value 

obtained by fitness function is utilized to test the quality of the solution and distinguish individuals good or bad in a 

population. Next, the good individuals are chosen from the previous generation as parents and are applied to 

generate the next population via the steps of crossover and mutation. Finally, the above two procedures are repeated 

by successive multiply iterations until the termination criterion is satisfied and the optimal value are obtained. By 

this way, the optimal values of hyperparameter θ in a Kriging surrogate model are acquired to establish the IK 

surrogate model proposed in this paper. 

2.3  Improved decomposed-coordinated surrogate model method (IDCSMM) 

In this sub-section, we elaborate the basic thought of the IDCSMM including ERSM, essential process and the 

mathematical model of the proposed method. 

2.3.1  Extremum response surface method (ERSM) 

The dynamic probabilistic analysis of complex structure requires the assessment of dynamic output of 

analytical objective with regard to the influential factors (i.e., random input variables) in a time domain [0, T]. The 

structural dynamic probabilistic analysis with the conventional RSM requires establishing a large number of 

mathematical models of analytical objective in the time domain, so that excess time consumption is needed and 

even it is difficult to implement the probabilistic evaluation. To efficiently accomplish the structural dynamic 

probabilistic analysis, ERSM is developed from the response surface method (RSM) and extremum selection 

method [23, 43], by taking the extreme values from the varying output response of analytical objective. The ERSM 

is promising to improve the computing efficiency in the dynamic probabilistic analysis of complex structure 

[22-24]. Generally, the ERSM model with a quadratic polynomial (QP) [44] is expressed as 

   T
ERSMy a  x bx x cx  (12) 



in which a, b and c are the undetermined coefficient of constant term, line term and quadratic term. The forms of b, 

c and x can be expressed as 
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The Eq. (12) can be reshaped as  
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where l=1, 2, …, n; xj and xl are the values of the j-th and l-th input variable. 

These undetermined coefficients in Eq. (14) are computed with the sample data corresponding to the extreme 

values of output response： 

     ,max , 1,2, ,ERSM p py y p m x x  (15) 

here yp,max(xp) represents the extreme value of the p-th output response yp at the moment t∈[0, T]. 

2.3.2  Essential process of IDCSMM 

The ERSM is proposed for the probabilistic analysis of single structure and is effective to handle the transient 

problem. As for the complex structure with many components, however, the ERSM still faces with unacceptable 

computational precision because the least squares method is only used to establish the ERSM model and cannot 

precisely handle the high-nonlinearity and large-scale input variables. Besides, the ERSM do not have the ability in 

handling the probabilistic analysis of multi-component structure since the samples are obtained with multiple 

repeated sampling from many components. Despite the IK algorithm can provide a significant improvement in 

nonlinear modeling relative to the QP model, the transients of the structural dynamic reliability and sensitivity 

assessment cannot be processed effectively. In this case, the IDCSMM is proposed to overcome the above issues in 

the probabilistic analysis of multi-component structure, by integrating the DC strategy [20, 45], ERSM and IK 

algorithm. The DC strategy can reduce time consumption and improve computing efficiency in the probabilistic 

analysis of structures [1, 46]. Along with the heuristic thought, the IDCSMM is employed to the dynamic 

probabilistic analysis of multi-component structure. The basic procedure is drawn in Fig. 1. 

As shown in Fig. 1, it is obvious that the procedure of multi-component structural dynamic probabilistic 

analysis with IDCSMM mainly incudes dynamic deterministic analysis, parameters optimization, mathematical 

modeling and dynamic probabilistic analysis. The detailed process of dynamic probabilistic analysis for complex 

structure with multiple components is summarized as follow. 
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Fig. 1  The procedure of the dynamic probabilistic analysis of multi-component structures with the IDCSMM 

(1) By the FE modeling of this structure and setting boundary constrains and loads, the structural dynamic 

deterministic analysis is implemented within the time domain [0, T]. 

(2) Based on the deterministic analyses, the extreme values of output responses of each component are 

extracted and the study time point is ascertained within the time domain [0, T].  

(3) The random inputs and their statistical traits are identified in accordance with engineering practice, and the 

samples of the random inputs are extracted by using the linkage sampling method. The linkage sampling method 

developed from the Latin Hypercube Sampling [47], extremum selection method and linkage analysis strategy [48], 

to obtain the extreme values of multiple analytical objects synchronously via one group sample of random input 

variables. Considering a random input variable set x and two output responses y1 and y2, the sampling method can 

be explained by Fig. 2. 

(4) The extreme values of analytical objects are calculated with the dynamic deterministic analyses by the FE 

models, and the samples of all parameters (including random input variables and output responses) are acquired. 

(5) Based on the acquired samples of all parameters, the values of optimal parameters (i.e., the hyperparameter 

θ in Kriging surrogate model) are searched in the light of GA algorithm, in which termination criterion is set up 



depending on generation number. 

(6) The decomposed surrogate models of each analytical object are established with the ERSM and IK 

algorithm, and the coordinated surrogate model (i.e., the IDCSMM model) is built in accordance with the 

relationship among the analytical object of multi-component structures. 

(7) The dynamic reliability and sensitivity analysis is finished with the IDCSMM model. 

xlow xup x

y1,low

y1,up

y1

y2,low

y2,up

y2

Note: 

· The circular (blue marked) and 

rhombus (red marked) points are the 

output responses y1 and y2, 

respectively; 

· xlow and xup represent the lower and 

upper values of random input 

variable set x;

·  y1, low, y2, low and y1, up, y2, up indicate 

the lower and upper values of output 

responses y1 and y2.

 

Fig. 2  The principle of linkage sampling method 

2.3.3  Mathematical modeling of IDCSMM 

The mathematical model of the proposed IDCSMM is discussed for the dynamic probabilistic analysis of 

multi-component structure in this sub-section. This paper takes four layers (i.e., complex structure layer, first 

sub-structure layer, second sub-structure layer and variable layer) as an example to study the basic principle of the 

IDCSMM and establish its model. The decomposed and coordinated schematic diagram of multi-component 

structure with four layers is drawn in Fig. 3. 
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Fig. 3  The decomposed and coordinated sketch map of four-layer multi-component structure 

As demonstrated in Fig. 3, the four-layer complex structure includes z1 (z1∈Z) first sub-structures and z2 (z2∈Z) 

second sub-structures. When YIDCSMM(x) and x indicate the output response of analytical object and the input 

variable vector of four-layer complex structure, respectively, the complex structure layer is expressed by 

               11 2
, , ,

z
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here f(·) represents the complex structure layer function, namely the coordinated surrogate model. Due to z1 first 

sub-structures, Eq. (16) can be expressed as  
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in which
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IDCSMMY i z is the i -th first decomposed surrogate model. The model of i -th first 

sub-structure layer can be written by 
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here
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IDCSMMY j z is the -thj second decomposed surrogate model in the i -th first sub-structure layer. 

This second sub-structure layer contains z1z2 second decomposed surrogate models. The function relationship 
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IDCSMMY and the variable layer is  
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 i j

x is 
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According to the DC strategy, the complex structure is divided into multiple sub-structures in different layers. 

The sub-structure layer functions of different layers (i.e., the first and second decomposed surrogate models) are 

established with respect to the ERSM and IK algorithm. The complex structure layer function (coordinated 

surrogate model) is built by the relationship of analytical objects of complex structure and sub-structures. 

By Eqs. (1), (12) and (13), the -thj second decomposed surrogate model in the -thi first sub-structure layer is 
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in which 
 i j

a , 
 i j

b  and 
 i j

c  denote the undetermined coefficient of the constant term, undetermined 

coefficient vector of the line term and undetermined coefficient matrix of the quadratic term for the -thj second 

decomposed surrogate model in the -thi first sub-structure layer, respectively; n  indicates the number of inputs of 

the -thj  second decomposed surrogate model in the -thi  first sub-structure layer. 

In light of Eq. (14), the formula of Eq. (21) may be rewritten as  
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where , 1,2, ,j l n ;
 i j

j
b is the undetermined coefficient of the line term of the -thj second decomposed 

surrogate model in the -thi first sub-structure layer; 
 i j

jl
c  and 

 ij

jj
c  are the undetermined coefficients of the 

quadratic term of the -thj  second decomposed surrogate model in the -thi  first sub-structure layer. 

The output response
    i j i j

IDCSMMY x of the -thj second decomposed surrogate model in the -thi first 

sub-structure layer are selected as the input variable 
 i

x  in the first sub-structure layer. The relationship function 

between 
 i

x  and 
    i j i j

IDCSMMY x  is 
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Referring to establishing the second decomposed surrogate model, the -thi first decomposed surrogate model in 

the first sub-structure layer with quadratic polynomials is expressed as  
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here n̂  represents the number of input variables in the -thi first sub-structure layer; ˆˆ ˆ, 1,2, ,j l n ; 
 i

a , 
 i

b ,

 i
c , 

 
ˆ

i j

j
b , 

 
ˆˆ

i j

jl
c and 

 
ˆ̂

ij

jj
c  are the undetermined coefficients. 

Similarly, taking the output response
    i i

IDCSMMY x  as the input parameter x of the coordinated surrogate 

model in the complex structure layer, i.e., 

 
     i i

IDCSMM= Yx x  (26) 

The complex structure function (coordinated surrogate models) can be expressed by Eqs. (27) and (28). 
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Though the above analyses, the DC strategy is to disintegrate complex structure into multiple sub-structures, 

and the IDCSMM model is built on basis of the ERSM and IK algorithm, which includes the coordinated surrogate 

model (Eq. (28)) in complex structure layer, the first surrogate model (Eq. (25)) in first sub-structure layer and the 

second surrogate model (Eq. (22)) in second sub-structure layer. Since the established IDCSMM model is used to 

replace the true structural model to implement the multi-component structural dynamic probabilistic analysis, it is 

promising to reduce computing burden and improve computational efficiency. Besides, relative to complex 

structure, the reduction of the inputs number in the decomposed surrogate models in the sub-structure layer 

simplifies the complexity of mathematical model, which can effectively reduce nonlinearity and enhance the model 

approximate accuracy in the probabilistic analysis of multi-component structure. 

2.4  Dynamic probabilistic analysis 

This sub-section discusses the dynamic reliability evaluation and sensitivity analysis for a complex structure 

with multiple components based on the first and second moment (FOSM) method and Monte Carlo (MC) method 

[22, 32]. By the coordinated surrogate model in Eq. (28) and the allowable value of the output response for the 

analytical onjective allowY , the limit state function of multi-component structure is  

        allow IDCSMM allow ERSMH Y Y Y y Z    x x x x  (29) 

in which H(x)≥0 indicates that the structure is safety, while H(x)<0 illustrates that the structure is failure. 

2.4.1  Reliability evaluation method 



Based on the FOSM apporach and Taylor’s series, the limit state function in Eq. (29) is expanded as  
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where  
1 2
, , ,

nx x x  x refers to the mean vector of the n random input variables; 
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j
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x

x
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denotes the 

limit state function (Eq. (29)) calculated at the mean value point μx. In addition, we assume that the inputs obey a 

normal distribution and are mutually independent. 

In view of the Taylor’s series expansion with the limit state function (Eq. (30)), the mean value μH and variance

2
H  of the limit state function in respect to the independent random inputs can be estimated by 

 

   

 
 

 
 

 

1 2

2
2 2

2
2 2

1 1 1

= , , ,

= =

n

j j j

H x x x

n n n

H j x j x x

j j jj j j

H H

H H H
x x

x x x

   

   
  



                
              

  
x x x

x

x x x

  



 (31) 

here
2

jx is the variance of the j-th input variable. 

Via the above analyses, the reliability index χ, failure index Pf and reliability Pr of complex structure are  
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In this function, the symbol Φ(·) indicates the cumulative density function (CDF) of the standard normal 

distribution (where the mean value μ=0 and the variance σ2=1) and is expressed as  
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in which
x

s





 is used to transform a normal distribution into a standard normal distribution.  

To obtain the numerical features of relevant parameters, according to the Chebyshev theorem and Bemoulli 

theorem [47] and MC simulation, the failure probability and reliability of complex structure are acquired as 
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where N and Nf are the total number of samples and the total number of failures in Eq. (30) with the given allowable 

value Yallow, respectively. 

The MC approach is utilized to approximate the reliability degree of complex structure generally by a large 

quantity of simulations under considering random inputs, which is a favored methodology for large-scale 

parameters and high-order problem, because its convergence mainly relies on the number of realizations rather than 

the scale and order of problem [49, 50]. Besides, the MC method is non-intrusive, hence it is still applicable when 

the absence of the limit state function of complex structure or this function is too complicated. 

2.4.2  Sensitivity analysis method 

Sensitivity analysis is usually applied to evaluate the relationship between inputs on outputs. The sensitivity of 

a structure can reflect the influence of the variation of random inputs on the failure probability or reliability degree 

of the structure. The relevant variables importantly influencing the failure or reliability are found to provide the 

guidance on structural design [51, 23]. The related measure parameters of sensitivity analysis usually comprise both 

sensitivity degree Sd and impact probability Ip. Sensitivity degree reflects the impact level of a random input 

parameter on the output response of analytical object. Impact probability reveals how much a random input 

parameter affects the output response of analytical object with respect to other random input variables. Besides, the 

sensitivity degrees for random input variables have positive and negative values, which depend on whether the 

variation of an input has a positive or negative effect on the output response [19, 20].  

The sensitivity degree Sd is determined by the partial derivation of failure probability or reliability degree 

function with regard to the distribution characteristics of random inputs including mean value and standard 

deviation [52, 53]. The mean value sensitivity ,d jS 
and standard deviation sensitivity ,d jS

of the j-th input xj on the 

failure probability or reliability degree are expressed as 
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Refer to Eq. (32) and the CDF in Eq. (33), the failure probability and reliability functions are  
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We obtain 
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Inputting the reliability index χ in Eq. (32) into Eq. (37), there is 
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The partial derivations of the reliability index χ to the mean value
jx and the standard deviation 

jx of the 

j-th random input variable are 
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Finally, we might rewrite the mean value sensitivity ,d jS 
and standard deviation sensitivity ,d jS

 below. 
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Similarly, the impact probability Ip is defined as the ratio of the absolute sensitivity degree of one input to the 

sum of the absolute sensitivity degrees of all inputs [32]. Based on ,p jI 
, ,p jI

and the mean value and standard 

deviation, the impact probability of the j-th random input parameter is expressed by 

 

,

,

,
1

,

,

,

1

d j

p j n

d j
j

d j

p j n

d j

j

S
I

S

S
I

S

























 (41) 

Besides, the impact probability satisfies 
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In this paper, we select ,d jS 
and ,p jI 

to complete the sensitivity analysis of complex structure with multiple 

components, because they are considered as the indexes of the mean value sensitivity degree and impact probability 

of inputs on output of analytical object [22, 23, 49, 52].  

From the above analysis, the reliability degree of multi-component structure and the sensitivity of random input 

parameters on the failure probability are used to assess the design of complex structure with multiply components. 



3  Case study: dynamic probabilistic analyses of aeroengine turbine blisk 

In this section, the dynamic probabilistic analysis of an aeroengine high-pressure turbine blisk with blade and 

disk is achieved to validate the proposed method (IDCSMM), regarding fluid-thermal-structural interaction. 

3.1  Finite element modeling 

As an important structure of an aeroengine, turbine blisk suffers high pressure, high temperature from 

combustion chamber, and centrifugal force due to angular speed. The three-dimensional (3-D) model of the blisk 

with one disk and 48 blades is shown in Fig. 4. Since the turbine blisk is a typical cyclic and symmetric structure, 

1/48 turbine blisk model is selected in Fig. 5 as the object of study to reduce computational burden and simulation 

time. On basis of the geometric model of the turbine blisk, the flow field is generated as displayed in Fig. 6, in 

which the FTSI surface is the fluid-thermal-structural interaction surface that transfers the fluid and thermal loads 

to the surface of structure. 
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(a)  Front view of an aeroengine (b)  Side view of turbine blisk  
Fig. 4  The 3-D model of the high-pressure turbine blisk for an aeroengine 
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Fig. 5  The geometric model of turbine blisk 
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Fig. 6  The geometric model of the flow field 



In light of the geometric models of the turbine blisk and flow field in Figs. 5-6, the FE model of turbine blisk 

(with 132 310 nodes and 82 436 tetrahedron elements) and the finite volume(FV) model of flow field (with 472 930 

vertices and 338 917 elements) are built as drawn in Fig. 7 and Fig. 8, respectively. 

Turbine blade Turbine disk         

Fig. 7  The FE model of turbine blisk             Fig. 8  The FV model of the flow field 

3.2  Input variable selection 

As for the blisk, the material is the Nickel-based superalloy GH4133 with the density 8.56×103 kg/m3, Poisson 

ratio 0.3224 and elastic modulus 1.61×1011 Pa [21]. The randomness of the input variables is considered including 

inlet velocity, inlet pressure, outlet pressure, gas temperature, material density and angular speed. The means and 

standard deviations (Std. Dev.) of random inputs within time domain [0, T] are determined via the extremum 

selection method [43]. We assume that these parameters obey normal distribution and are mutually independent. 

Their distribution features are listed in Table 1. 

Table 1  The distribution characteristics of random inputs 

Variables Mean Std. Dev. 

Inlet velocity v, m/s 160 3.2 

Inlet pressure pin, Pa 2×106 6×104 

Outlet pressure pout, Pa 5.88×105 1.76×104 

Gas temperature t, K 1 200 24 

Material density ρ, kg/m3 8 560 171.2 

Angular speed w, rad/s 1 168 23.36 

The time domain [0 s, 215 s] is selected for analyzing the blisk radial deformation with the stages of start, idle, 

take off, climb and cruise [54] as shown in Fig. 9. 12 time points are particularly defined within the time domain 

and the variations of inlet velocity, gas temperature and angular speed of the blisk with time are drawn in Fig. 9. 
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Fig. 9  The variations of inlet velocity, gas temperature and angular speed of turbine blisk in [0 s, 215 s] 



3.3  Dynamic deterministic analysis 

For the evaluation of the blisk radial deformation regarding fluid-thermal-structural interaction, we divide 

fluid-thermal-structural interaction into fluid subsystem, thermal subsystem, structural subsystem and their 

interdisciplinary coupling. The fluid, thermal and structural analyses are firstly implemented by using the 

close-coupling analysis method [55]. The relevant analytical parameters contain the material parameters (material 

density, Poisson ratio, and elastic modulus), boundary conditions (inlet velocity, inlet pressure, outlet pressure, and 

gas temperature) and angular speed. In view of these inputs in Table 1, the deterministic analysis is completed 

including fluid analysis setting, thermal analysis setting, structural analysis setting, and iterative solution. 

(1) Fluid analysis setting  The standard k-ε turbulence model with the FV method is applied to investigate the 

fluid features of turbine blisk by considering mass and momentum conservation [55, 56]. 

(2) Thermal analysis setting  The laws of energy conservation and heat convection, and solid heat transfer 

function are employed to perform the thermal analysis of the blisk. The law of energy conservation is to study the 

thermodynamic property of flow field [21], and the heat convection is to analyze heat transfer on the FTSI surface 

of fluid and structure, and the solid heat transfer function is to assess the temperature distribution of the blisk [57]. 

(3) Structural analysis setting  The shape equation and displacement function of tetrahedron element and the 

FE method are employed to implement the structural analysis [58, 59]. The turbine blisk radial deformationis 

obtained by using the shape equation and displacement function. 

(4) Iterative solution  Based on the aforementioned steps (1)~(3), the system coupling is considered for the 

dynamic deterministic analysis for the blisk radial deformation with respect to fluid-thermal-structural interaction 

by multiple iterations and updating coupling information. 

In line with the above analyses, the dynamic deterministic analysis for the turbine blisk with blade and disk is 

performed based on the close-coupling analysis method. Fig. 10 shows the analytical results of the radial 

deformation in this time domain [0 s, 215 s].  
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Fig. 10  The changing curve of the radial deformations of turbine disk and blade with time 

As illustrated in Fig. 10, the radial deformations of blade and disk become larger with the increase of inlet 

velocity, gas temperature, and angular speed. We also find that the maximum value of the blade and disk radial 

deformation emerges in the climb phase of the time domain [165 s, 200 s]. The time point T=190 s is chosen as the 

calculation point to investigate the dynamic probabilistic analysis of aeroengine turbine blisk. The pressure 

distribution of the FTSI surface, the temperature distribution contour plot on turbine blisk and the distribution 

nephogram of the radial deformation are drawn in Figs. 10~12, respectively, in which P is the pressure of the FTSI 

surface, and tb and td denote the temperatures of blade and disk, and ub and ud indicate the radial deformations of 

blade and disk. Fig. 13 shows that the maximum radial deformation locates at the top of blade and disk. 
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Fig. 11  The pressure distribution on the FTSI surface 
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Fig. 13  The radial deformation distributions of turbine disk and blade 

3.4  IDCSMM modeling and verification 

To establish the IDCSMM model, the 60 samples of the random input variables are extracted based on the 

dynamic deterministic analyses of turbine blisk with the fluid-thermal-structural interaction. We select 40 samples 

from the pool of 60 samples as the training samples to establish the IDCSMM model. The remaining 20 samples 

are regarded as the testing samples to test the accuracy of the modeled IDCSMM model. The detailed process of 

mathematical modeling is presented in Section 2.3. 



To search the hyperparameter θ, the GA follows 120 the size of population, 150 the number of generations, 20 

the length of individual, 0.95 the gap of generation, 0.7 crossover probability, and 0.01 mutation probability, by 

engineering and experience. The evolution processes of blade and disk to find the hyperparameter θ with two 

decomposed surrogate models is drawn in Fig. 14.  
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Fig. 14  The evolution of objective functions to search the Kriging hyperparameter θ with the GA 

Fig. 14 illustrates that the objective function φ(θ) values decrease with the increase of the number of 

generations in the GA. Moreover, the minimum values for the objective functions of blade and disk reach 0.0637 

and 0.0675 at the 62-nd generation. After gaining the optimum hyperparameter θ in the GA, we can compute the 

other parameters and undetermined coefficients as shown in Eq.(43) and Eq.(44). 
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here the superscript symbols b and d denotes turbine blade and disk, respectively.  

By the above parameters, we build the IK models 
    b b

IDCSMMu x and
     
d d

IDCSMMu x  of blade and disk radial 

deformations in Eq.(45) and Eq.(46). 
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x are the input variables 

of turbine blade and disk, respectively. 

The total radial deformation of turbine blisk is the sum of turbine blade and disk radial deformations. With Eqs. 

(43)~(46), the coordinated surrogate model 
    bd bd

IDCSMMu x  of the blisk radial deformation is established below. 
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where 
             

, , , , ,
T
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x is the inputs of blisk radial deformation. 

To validate the proposed method, we use the 60 samples (including 40 training samples and 20 testing samples) 

to assess the built IDCSMM model. The learning ability and generalization ability of the built IDCSMM model are 

evaluated by the 40 training samples and 20 testing samples, respectively. As the verification of IDCSMM with 20 

testing samples, we compare with the decomposed-coordinated surrogate model (DCSMM)-based quadratic 

polynomial (QP-DCSMM) and the DCSMM-based Kriging (K-DCSMM based on the standard Kriging model 

without the GA algorithm). The indexes of evaluations include absolute error eabs, relative error erel and average 

relative error ear, which are shown in Eq. (48). The testing results from 40 training samples reveal that all errors for 



the built IDCSMM model are zero, which explain the good learning ability of the IDCSMM model. The validation 

results of testing samples are listed in Tables 2.  
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here 
  

 p
bd

IDCSMMu is the testing response value of the IDCSMM corresponding to the p-th sample; 
  

 p
bd

u  is the 

true response value of the FE model corresponding to the p-th sample. 

As illustrated in Table 2, the errors of the IDCSMM are not equal to zeros in respect of the testing samples. The 

average relative error of the IDCSMM is 0.675%, which is far less than the average relative errors (2.430% and 

1.258%) of the QP-DCSMM and K-DCSMM. The results demonstrates that this proposed method is superior to the 

conventional method in terms of prediction precision and is a promising tool for the dynamic probabilistic analysis 

of aeroengine turbine blisk. 

3.5  Dynamic probabilistic analysis 

This sub-section is to implement the dynamic probabilistic analysis (including reliability evaluation and 

sensitivity analysis) for turbine blisk radial deformation. 

3.5.1  Dynamic reliability evaluation 

For the dynamic reliability evaluation of the turbine blisk radial deformation, combining with the allowable 

value according to Eq. (29), the limit state function is shown in Eq. (49). Hereinto, the allowable value is
 

 
bd

allowu

=2.310×10-3 m by engineering experience. 
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T
bd bd bd bd bd bd bd bd bd bd bd

allow IDCSMMh u u a Z  x x b x x c x x  (49) 

Table 2  The testing results of the IDCSMM with the testing samples 

Sample 

no. 

Output response  Error 

 bd
u , 

10-3 m 

 bd

QPu , 

10-3 m 

 bd

Ku , 

10-3 m 

 bd

IDCSMMu  

10-3 m 
 

eabs,QP, 

10-5 m 

erel, QP, 

% 

ear, QP, 

% 

eabs, K, 

10-5 m 

erel, K, 

% 

ear, K, 

% 

eabs, 

10-5 m 

erel, 

% 

ear, 

% 

1 2.325 2.114 2.076 2.323  21.16 9.103 

2.430 

24.96 10.73 

1.258 

2.141 0.921 

0.675 

2 2.206 2.208 2.235 2.212  2.292 1.039 2.851 1.292 0.595 0.269 

3 2.177 2.175 2.178 2.169  1.325 0.608 0.150 0.069 0.687 0.316 

4 2.161 2.148 2.138 2.135  1.257 0.582 2.269 1.050 2.636 1.219 

5 2.165 2.146 2.117 2.134  1.871 0.865 4.679 2.161 3.049 1.408 

6 2.219 2.228 2.229 2.244  0.912 0.411 1.005 0.452 2.482 1.118 



7 2.105 2.111 2.115 2.118  5.501 2.613 0.986 0.468 1.221 0.580 

8 2.284 2.274 2.276 2.282  1.003 0.439 0.716 0.313 0.230 0.101 

9 2.116 2.141 2.134 2.131  2.506 1.184 1.823 0.861 1.571 0.742 

10 2.096 2.160 2.136 2.139  6.417 3.062 4.024 1.919 4.293 2.048 

11 2.236 2.244 2.244 2.241  8.038 3.594 0.795 0.355 0.478 0.214 

12 2.291 2.281 2.299 2.285  1.061 0.463 0.808 0.352 0.595 0.259 

13 2.167 2.181 2.174 2.177  1.395 0.644 0.727 0.335 1.054 0.486 

14 2.203 2.215 2.219 2.214  1.203 0.546 1.567 0.711 1.051 0.477 

15 2.162 2.132 2.136 2.139  2.999 1.387 2.532 1.172 2.297 1.062 

16 2.198 2.203 2.190 2.189  4.819 2.192 0.808 0.368 0.924 0.420 

17 2.201 2.189 2.183 2.191  1.141 0.518 1.797 0.816 0.981 0.446 

18 2.249 2.226 2.224 2.225  2.341 1.041 2.478 1.102 2.463 1.095 

19 2.241 2.231 2.239 2.234  0.974 0.435 0.265 0.118 0.688 0.307 

20 2.183 2.190 2.194 2.183  7.552 3.459 1.118 0.512 0.038 0.017 

We employ the MC method to run 10 000 simulations on the limit state function of turbine blisk radial 

deformation to calculate the reliability degree. The simulation history and histogram distributions of turbine blisk 

radial deformation are drawn in Figs. 15 and 16.  
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Fig. 15  Simulation history of the radial deformation 
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Fig. 16  Histogram distribution of the radial deformation 

As shown in Figs. 15 and 16, the radial deformation of turbine blisk obeys the normal distribution with the 

mean
 bd

 =2.200×10-3 m and the standard variance
 bd

 =3.934×10-5 m. By Eq. (34), the reliability degree of 

turbine blisk is 0.9949 as the allowable value
 

 
bd

allowu =2.310×10-3 m, which satisfies the requirement of engineering. 



3.5.2  Sensitivity analysis 

Sensitivity analysis is to analyze and quantify the influence of the uncertain degree of input variables on the 

output response of analytical object, to guide the optimized design of complex structure. In this paper, we utilize 

the mean value sensitivity in Eq. (40) and impact probability in Eq. (41) to compete the sensitivity indexes 

considering all random input variables. The results of sensitivity analysis are displayed in Fig. 17 and Table 3. 
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Fig. 17  The sensitivity results of turbine blisk radial deformation with respect to all input variables 

Table 3  The sensitivity results of all input variables on the turbine blisk radial deformation 

Variable Inlet velocity v Inlet pressure pin Outlet pressure pout Material density ρ Gas temperature t Angular speed w 

ds  , 10-4 0.5554 -0.0232 -0.1028 0.1423 6.6598 1.8007 

pI 
, % 5.98 0.24 1.11 1.53 71.73 19.41 

As shown in Fig. 17 and Table 3, the primary affecting the turbine blisk radial deformation is gas temperature, 

followed by angular speed, inlet velocity, material speed, outlet pressure, and inlet pressure, referring to the pie 

chart of impact probability. We can also find that the radial deformation of turbine blisk increases with the increase 

of inlet velocity, material density, gas temperature and angular speed, while with the decrease of inlet pressure and 

outlet pressure, by the bar graph of input variables and sensitivity degrees. The reason is that the sensitivity degrees 

of inlet velocity, material density, gas temperature and angular speed are positive values, while the sensitivity 

degrees of inlet pressure and outlet pressure are negative values. These results are promising to guide the parameter 

optimization design of turbine blisk. 

4  The validation of improved decomposed-coordinated surrogate model method 

In this section, the effectiveness and applicability of the developed IDCSMM are assessed from model-fitting 

feature and simulation performance. The model-fitting features are firstly done to verify the IDCSMM performance 

by comparing with QP-DCSMM and K-DCSMM. By the dynamic reliability analyses of turbine blisk radial 

deformation, these methods are evaluated referring to the direct simulation (full FE/FV model) with MC method. 

4.1  Model-fitting features 

In this subsection, the effectiveness and feasibility of the IDCSMM is verified which include modelling 

efficiency and computational accuracy. Therefore, we establish three surrogate models of turbine blisk radial 

deformation, including the QP-DCSMM model, K-DCSMM model, and IDCSMM model. All calculations are 

implemented by the same computer in the same computing environment. The 40 groups of inputs are used to build 

these three surrogate models, which are deemed sufficient for a 6-dimensional fitting problem, and the 20 samples 

of random input variables are utilized to assess the prediction effects. The model-fitting features of these three 

surrogate models are summarized in Table 4. Note that the modelling efficiency is determined by the fitting time, 



which does not contain the consumption of acquiring samples from the direct simulation, and the computational 

accuracy is accomplished via the prediction error the average relative error, as listed in Table 3, which can be 

calculated by using Eq. (48). As for computing the improved precision, we chose the QP-DCSMM as a reference. 

The reason is that this model is the least precise among these three surrogate models in this paper. 

Table 4  The model-fitting features for these three surrogate models 

Model Modelling efficiency, s Computational accuracy, % Improved precision, % 

QP-DCSMM 2.195 2.430 — 

K-DCSMM 0.928 1.258 1.172 

IDCSMM 0.434 0.675 1.755 

The fitting time of the IDCSMM shown in Table 4 is less than those of the QP-DCSMM and K-DCSMM. It is 

illustrated that the modelling efficiency of the proposed model is superior to those of the QP-DCSMM and 

K-DCSMM. From the computational accuracy displayed in Table 4, we can see that the prediction error of the 

IDCSMM is 0.675% and is the lowest among these three surrogate models. Besides, through the information listed 

in the last column, the QP-DCSMM process the lowest accuracy, while the K-DCSMM and IDCSMM can 

obviously enhance the prediction precision by 1.172 % and 1.755 % respectively. The developed model has the 

apparent advantages in terms of modelling efficiency and computational accuracy. 

On account of the above observations, it is shown that the developed model is efficient and applicable from the 

model-fitting features, including the modelling efficiency and computational accuracy. And thus the superiority of 

the IDCSMM is notable by comparing to the other two surrogate models, which strengthen our confidence to 

utilize this model to study structural probabilistic analyses and optimization design.  

4.2  Simulation performance of dynamic reliability analyses  

We use the MC simulation to analyze the dynamic reliability degree of aeroengine turbine blisk radial 

deformation with four different models, which include the direct simulation (i.e., the full FE model with the 

fluid-thermal-structural interaction) and three surrogate models (i.e., the QP-DCSMM, K-DCSMM, and IDCSMM 

models) as aforementioned in Sections 3.5 and 4.1. The numerical characteristics of the random input variables are 

determined by using the values listed in Table 1, and all the calculations and simulation are completed in the same 

computational environment, by using the MC simulation with these four models. The analytical result of the MC 

methodology with direct simulation is taken as the reference when we assess the simulation performance, which 

includes the simulation times and calculative precision for the dynamic reliability analyses of turbine blisk. In this 

work, we perform different samples, namely 102, 103, and 104 samples, with the MC simulation. However, the MC 

simulation with 104 samples cannot implement by using the direct simulation. The reason is that the computational 

burden of this method is too high. The analytical results including the simulation time and calculative precision of 

the dynamic reliability evaluations of the turbine blisk radial deformation with the four models are listed in Table 6 

and table 7, respectively. 

Table 5  The simulation times of the dynamic reliability analyses of the turbine blisk radial deformation with four models 

Method 
Simulation times, s 

102 samples 103 samples 104 samples 

Direct simulation 561 600 5 724 000 — 

QP-DCSMM 1.79 6.38 16.52 

K-DCSMM 0.74 1.56 3.21 

IDCSMM 0.35 0.43 0.75 



Table 6  The calculative precision of the dynamic reliability analyses of the turbine blisk radial deformation with four models 

MC samples Reliability degree Pr  Calculative precision, % 

Direct simulation QP-DCSMM K-DCSMM IDCSMM  QP-DCSMM K-DCSMM IDCSMM 

102 0.9900 0.9400 0.9700 0.9900  94.95 97.98 100 

103 0.9960 0.9890 0.9920 0.9950  99.29 99.59 99.90 

104 — 0.9983 0.9935 0.9949  — — — 

As revealed in Table 5, the consumption time using these three surrogate models (i.e., the QP-DCSMM, 

K-DCSMM, and IDCSMM models) is less than using the direct simulation. Among these three surrogate models, 

the simulation time of the proposed IDCSMM model with the MC method is the most computationally efficient by 

the comparison with those of the QP-DCSMM and K-DCSMM models. 

As shown in Table 6, the dynamic reliability analysis results of the IDCSMM with different samples are the 

most consistent with the direct simulation based on the full FE model. And the calculative precision of our 

proposed method is superior to the other two approaches, i.e., the QP-DCSMM and K-DCSMM, for the dynamic 

reliability assessment for the turbine blisk radial deformation.  

Based on the above analytical results, it is demonstrated that the advantages of the developed IDCSMM model 

as compared to the full FE model and the other two surrogate models, in terms of simulation times and calculative 

precision, by using the MC method with different samples.  

5  Conclusions and outlooks 

In this work, a novel surrogate modeling method is developed for the dynamic probabilistic analyses for 

complex structure with multiple components within a time domain [0, T]. The proposed method was called as 

improved decomposed-coordinated surrogate model method (short for, IDCSMM), which fuses the DC strategy, 

extremum response surface method (ERSM), genetic algorithm (GA) and Kriging model. The GA is integrated into 

the Kriging model to resolve the maximum likelihood equation (MLE) and obtain the hyperparameter θ. The 

ERSM is utilized to resolve the transient issue of the response process of complex structure. The DC strategy is 

used to coordinate the output responses of multi-component structure. To verify the effectiveness and applicability 

of the developed method, we take an aeroengine turbine blisk, which contains turbine blade and disk, as the case of 

study by considering the fluid-thermal-structural interaction. According to this effort, some conclusions are drawn 

as below. 

(1) The dynamic deterministic analysis of an aeroengine turbine blisk within the time domain [0 s, 215 s] is 

investigated to demonstrate the derived model. We acquired the maximums of the turbine blade and disk radial 

deformations, which are 0.909×10-3 m and 1.247×10-3 m. 

(2) To derive the surrogate models, we selected six input variables of inlet velocity v, inlet pressure pin, outlet 

pressure pout, material density ρ, gas temperature t, and angular speed w. As for outputs, we considered the 

extremum values of the turbine blade and disk radial deformation within the time domain in respect to the principle 

of ERSM. The surrogate models were established by 40 training samples and verified by 20 testing samples. The 60 

samples are obtained by the linkage sampling method. The validation procedure of the derived IDCSMM was 

finished in modelling efficiency and computational error, by comparing with the DCSMM-based quadratic 

polynomial (QP-DCSMM) and the DCSMM-based Kriging (K-DCSMM). The analytical results reveal that the 

modelling efficiency of the developed model is superior to the other two models as the testing error is less than 1%. 

(3) When the allowable value is given as 2.310×10-3 m according to engineering practice, the reliability degree 

was Pr=0.9949, which satisfies the engineering requirements. Besides, we discover that the radial deformation have 

positive correlations with inlet velocity, material density, gas temperature and angular speed, and negative change 



with inlet pressure and outlet pressure. We also find that the highest impact on turbine blisk radial deformation is 

gas temperature, followed by angular speed, inlet velocity, material density, outlet pressure and inlet pressure. The 

sensitivity analysis results provide a useful reference for the optimization design of complex structure. 

(4) To further verify the developed IDCSMM, we compared the performance of this method to other three 

methods (i.e., the direct simulation with MC method, QP-DCSMM and K-DCSMM) by the simulation time and 

calculative precision of the dynamic reliability assessment. The analysis results of the direct simulation were taken 

as the reference. The simulation times of these methods based the surrogate models are far less than that of the 

direct simulation. Meanwhile, the consumption time of IDCSMM was superior to other two methods, and the 

calculative precision of the dynamic reliability evaluation with the proposed method was basically the consistent 

with that of the direct simulation. The results indicate the high computing efficiency and precision of this method. 

In this paper, we provide a novel approach (IDCSMM), to enhance the dynamic reliability evaluation and 

sensitivity analysis of complex structure in accuracy and efficiency. But some limitations do exist so that we should 

explore and improve this proposed method in future. In light of the present study and the questions existed, the 

following suggestions are summarized as follows: 

(1) This study uses the dynamic probabilistic analysis of the turbine blisk radial deformation to validate the 

effectiveness and feasibility of the IDCSMM. However, this method should be verified by applied to more 

extensive engineering investigations. 

(2) Since the optimized results of the GA has no repeatability in solving the Kriging hyperparameter θ, 

advanced optimization algorithms such as particle swarm optimization, fish swarm algorithm and so forth, or 

exploring novel optimization algorithms, should be employed to find the relevant parameters to make the model 

better robustness. 

(3) To further improve the application of a novel method, we utilize multiply surrogate models to establish the 

limit state functions for the multi-component and multi-failure mode analyses of complex structure. The purpose of 

the investigations is to improve the effects of the dynamic probabilistic analysis of complex structure besides enrich 

mechanical reliability theory and method. 
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