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Abstract—Traditional maintenance planning problems usually
presume that preventive maintenance (PM) policies will be
executed exactly as planned. In reality, however, maintainers
often deviate from the intended PM policy, resulting in unpunc-
tual PM executions that may reduce maintenance effectiveness.
This article studies two imperfect PM policies with unpunctual
executions for infinite and finite planning horizons, respectively.
Under the former policy, imperfect PM actions are periodically
performed and the system is preventively replaced at the last
PM instant. The objective is to determine the optimal number
of PM actions and associated PM interval so as to minimize
the long-run average cost rate. While the latter policy specifies
that a system is subject to periodic PM activities within a finite
planning horizon and there is no PM activity at the end of the
horizon. The aim is then to identify the optimal number of PM
activities to minimize the expected total maintenance cost. We
discuss the modeling and optimization of the two unpunctual PM
policies, and then explore the impact of unpunctual executions
on the optimal PM decisions and corresponding maintenance
expenses in an analytical or numerical way. The resulting insights
are helpful for practitioners to adjust their PM plans when
unpunctual executions are anticipated.

Index Terms—Imperfect preventive maintenance, unpunctual
execution, hazard rate adjustment, infinite horizon, finite horizon.

I. INTRODUCTION

REVENTIVE maintenance (PM) is a set of activities to

be performed before system failures, aiming at keeping
the system in a good working state and reducing its operational
expenditure [1], [2]. However, it is not wise to maintain sys-
tems too frequently as this would incur excessive maintenance
expenses. For this reason, determining an optimal PM policy
(in terms of number of PM actions, PM intervals, etc.) to
balance the benefits and costs of PM is an essential decision-
making problem. The study of PM starts from the seminal
work of Barlow and Hunter [3] and is still a vibrant research
topic; see [4]-[9] for recent progresses.
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In practice, PM actions can be periodically or sequentially
scheduled [10]. Under a periodic PM policy, a system is
preventively maintained at integer multiples of a certain fixed
interval; while a sequential policy specifies that a system is
maintained at a sequence of unequal-length intervals. Gen-
erally, periodic PM is convenient to implement, whereas
sequential PM is more effective for aging systems that require
more frequent maintenance. On the other hand, the effect of
a maintenance action on system reliability could be perfect,
minimal or imperfect [11]. Perfect and minimal maintenance
actions are two extremes: A perfect maintenance action is as-
sumed to restore a failed system to an “as-good-as-new” state,
whereas a minimal repair makes a failed system operational,
with its state being that just before failure, i.e., the system is
“as-bad-as-old” after a minimal repair [3]. A more realistic
consideration is that the system state after maintenance is
between “as-good-as-new” and ‘“‘as-bad-as-old”. This leads
to the concept of imperfect maintenance [2], [11], [12]. Up
to now, numerous models have been developed to formulate
imperfect maintenance effects. In principle, existing models
can be categorized by the measures that maintenance models
manipulate: methods modifying the lifetime distribution (e.g.,
geometric process models [13], [14]), methods relating to the
failure rate/intensity function (e.g., failure intensity reduction
models [12], hazard rate adjustment models [15], [16]), meth-
ods reducing the system age [12], [17], and hybrid models
[2], [18]. In this work, we focus on periodic, imperfect PM
policies and adopt the hazard rate adjustment model.

In the literature, many studies deal with the optimization of
imperfect PM policies for an infinite planning horizon. The ob-
jective is to determine optimal number of PM actions and PM
interval (or a sequence of PM intervals) to minimize the long-
run average cost rate. Lin et al. [18] developed sequential im-
perfect PM models with two failure modes—maintainable and
non-maintainable. Wu and Clements-Croome [19] investigated
two periodic imperfect PM policies with random PM quality.
Zequeira and Bérenguer [20] studied an optimal periodic
imperfect PM policy for a system with maintainable and non-
maintainable failure modes. Sheu and Chang [21] developed
an extended periodic imperfect PM model with age-dependent
failure types—Type I (minor) and Type II (catastrophic).
Cha and Finkelstein [22] studied optimal imperfect periodic
and age-based maintenance with long-run asymptotic virtual
age. Sun et al. [23] developed a novel periodic PM model
that involves the saturation effect of imperfect maintenance.
Zhao et al. [24] investigated a condition-based inspection-
replacement policy for degrading systems. Moreover, there
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are also a few publications addressing both periodic and
sequential imperfect PM policies. Nakagawa [10] studied both
periodic and sequential PM policies based on the hazard rate
adjustment PM model. Wang and Yam [13] and Wang et al.
[14] investigated periodic and sequential PM policies based
on generalized geometric processes.

In reality, the working spans of most systems are finite
[16]. The maintenance planning horizon in this scenario is
thus finite, and the decision-making problem is to identify
optimal number of PM actions (and PM degree) to minimize
the total expected maintenance cost over the finite horizon
of interest. In the literature, there are quite a few studies
on imperfect PM policies for a finite planning horizon, e.g.,
warranty period, lease period, and maintenance outsourcing
period [25]. Nakagawa [16] provided an excellent summary
of maintenance policies (including replacement, imperfect PM
and inspection policies) for a finite horizon in a general
context. Chien [26] developed an imperfect PM model for
warranted systems with “worse-than-minimal” repair upon a
failure. Shang et al. [27] studied optimal condition-based war-
ranty design and post-warranty imperfect PM optimization for
products subject to stochastic degradation. Su and Wang [28]
and Wang et al. [29] investigated quasi-sequential imperfect
PM strategies over warranty/lease periods: PM actions are
periodically performed within a single phase and the PM
intervals in different phases differ. Qiu et al. [30] developed a
novel maintenance model for energy generation systems under
a power purchase agreement so as to maximize the expected
net revenue. Recently, Petchrompo et al. [31] proposed a value-
based approach to optimizing maintenance plans for a multi-
asset k-out-of-N system over a long planning horizon.

The aforementioned studies, either in an infinite or finite
planning-horizon setting, implicitly assume that scheduled PM
activities are punctually implemented exactly as planned. In
practice, however, there exists quite a few cases in which PM
executions are not punctual. For instance, scheduled PM activ-
ities may be advanced by breaks in operations or by forecasted
bad weather (e.g., for offshore wind turbines); conversely,
maintenance actions may be postponed by busy operational
schedules or by unavailability of maintenance resources. de
Jonge et al. [32] showed that strategically postponing a PM
action helps collect more information to reduce the lifetime
distribution uncertainty, leading to potential cost benefits in
the long run. Yang et al. [33] developed a two-phase PM
model, where preventive replacement in the second phase is
delayed to sufficiently utilize the system’s remaining lifetime
and facilitate replacement preparations. Scarf et al. [34] found
that for a critical system, opportunistic inspections may offer
an economic advantage against periodic inspections in certain
cases. On the other hand, the working cycle of a system that
executes successive jobs, might be variable. In this case, it is
better to perform PM (that is originally scheduled during a
working cycle) after the job is completed. This motivates so-
called random replacement policies in, e.g., Zhao et al. [35]
and Zhao et al. [36]. In a similar setting, Zhu et al. [37] studied
a PM rescheduling problem in which the equipment may not
be available for planned PM due to busy operational schedules.

In the PM studies above, the maintenance planner and

executor are, in essence, the same and the planner can adjust
(mostly postpone) maintenance activities according to opera-
tional schedules, weather conditions, or resource availability,
etc. In practice, however, maintenance planning and execution
might be separate in certain scenarios [38]. For example, in ve-
hicle warranty and maintenance contexts, optimal PM schedule
within the warranty period is recommended by the manufac-
turer, whereas the PM implementation relies on vehicle owners
to return their vehicles to authorized maintenance centers [39].
The vehicle owners, however, may be unpunctual so that the
PM activities are performed earlier or later than recommended.
A similar scenario is that a maintenance planner specifies an
optimal PM policy but relies on a group of crews to execute the
maintenance operations [38]. In such scenarios, the potential
unpunctuality—stemming from the separation of policy speci-
fication and implementation—is independent of the PM policy
specified by the maintenance planner. As a consequence, it is
better for maintenance planners to prescribe their PM policies
in anticipation of unpunctual executions. He et al. [38] is,
to the authors’ knowledge, the first attempt in this context.
Considering traditional age and periodic replacement policies,
He et al. [38] determined optimal planned replacement instants
by minimizing long-run average cost rates, in anticipation of
replacement unpunctuality. Recently, Wang et al. [39] studied
an unpunctual PM policy for repairable products sold with a
two-dimensional warranty.

In this article, we aim to extend the investigation of unpunc-
tual replacement policies in He et al. [38] to a more general
imperfect PM scenario. The potential unpunctuality of main-
tainers is what causes actual PM instants to randomly deviate
from the planned instants. The hazard rate adjustment model in
[15], [16], [19] is adopted to formulate imperfect maintenance
effects. We first discuss the modeling and optimization of
imperfect PM policies in infinite and finite planning-horizon
settings, and then explore the impact of unpunctual executions
on the optimal PM decisions and corresponding maintenance
expenses in an analytical or numerical way. Some managerial
insights are obtained accordingly.

Overall, the main contributions of this work are four-fold:

(i) From the practical perspective, imperfect PM policies
are studied in both infinite and finite planning-horizon
settings, unlike Wang et al. [39] that only considers a
finite warranty period.

(i) From the mathematical modeling perspective, the un-

punctual PM models generalize their punctual counter-

parts by assuming that the maintenance unpunctuality is
governed by a specific probability distribution.

From the analysis perspective, the impacts of unpunc-

tual executions on the optimal number and interval of

imperfect PM actions are discussed in an analytical or
numerical manner.

From the managerial perspective, this work provides

some interesting insights that are helpful for practi-

tioners to adjust their PM schedules when unpunctual
executions are anticipated.

(iii)

(iv)

The remainder of the article is structured as follows. Sec-
tions II and III discuss the modeling and optimization of
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the unpunctual imperfect PM policies for infinite and finite
planning horizons, respectively. Numerical studies are also
conducted in these sections to demonstrate the models and
results. Section IV concludes this article and suggests potential
topics for future research. All technical proofs are presented
in the Appendix.

II. MODEL A: INFINITE PLANNING-HORIZON SETTING

The first model of interest is an unpunctual PM policy for
an infinite planning horizon (hereafter termed “Model A”).
We generalize the periodic imperfect PM model in Nakagawa
[10] and Wu and Clements-Croome [19] by assuming that
actual PM instants deviate from the scheduled instants in a
probabilistic manner—namely, the PM deviations are governed
by a specific probability distribution. In what follows, we first
formulate the average long-run cost rates for the punctual
and unpunctual execution scenarios, respectively, and then
examine the optimization and policy comparison of the two
scenarios. Numerical studies are also conducted to demonstrate
the punctual and unpunctual PM policies.

A. The Optimization Models

The following assumptions are made to facilitate the mod-
eling and analysis.

(i) When there is no maintenance action, the hazard rate
of the system, A(t), is strictly increasing to oo, with
A(0) = 0.

(ii) The jth PM interval is 7'+ Y; for j = 1,2,..., N,

and the system is preventively replaced at the Nth PM

instant. Essentially, 7" is the constant interval between

two successive PM actions, and Y}, 7 = 1,2,..., N,

is the probabilistic deviation between the constant and

actual intervals of the jth PM (Yy = 0). We assume
that Y;’s are independent and identically distributed

(i.i.d.) random variables, with a cumulative distribution

function G(y), y € [l, u], where | and u (I < u) are the

smallest and largest values Y} can take.

The effect of imperfect PM actions on system reliability

is described by the hazard rate adjustment model [15].

The hazard rate becomes \;(t) = a;A\;—i(t), t > 0,

after the jth PM action if it was \;_;(¢) before the PM,

where a; is the associated hazard rate adjustment factor.

As aresult, the system has a hazard rate A;(¢) = A;\(t)

for t € (0,7 + Yjy1), where 1 = ap < a1 < az <

- < an_1, Aj = Hi:oak’ and 1 = AO < A <
- < An_1. In essence, this model assumes that each

PM action can reduce the hazard rate to zero and then

the hazard rate function grows more quickly than it did

before.

A replacement action brings the system to be as good

as new. The system undergoes minimal repair upon a

failure between two adjacent PM actions. The hazard

rate remains unchanged after a minimal repair.

(v) The durations for imperfect PM, minimal repair, and
replacement are very small in comparison with the mean
time to failure, and thus negligible.

(iii)

@iv)

(vi) The costs of an imperfect PM, a minimal repair, and a
replacement are ¢, ¢,,, and c,., respectively, with ¢, >
¢m and ¢, > cp.

Based on the assumptions above, if PM actions are always
performed on time—that is, Y; = 0 for j = 1,2,..., N, then
the long-run average cost rate is

cm Y501 A1 A(T) +

(N —1)cp+cr
NT ’

Ca(T,N) = (1)

where A(t fo x)dx is the cumulative hazard rate
function. The 0pt1rn12at10~n problem is to determine the optimal
number of PM actions N* and optimal PM interval T* such
that C (7', N) is minimized.

Remark 1: If we take N = 1, then model (1) reduces to the
well-known periodic replacement with minimal repair model
in Barlow and Proschan [40], and the long-run average cost
rate becomes C4(T,N = 1) = (¢, A(T) + ¢)/T. On the
other hand, if a; = --- = ay_1 = 1 and ¢, = ¢, ie., all
PM actions are perfect replacements, then model (1) is also
equivalent to the periodic replacement with minimal repair
model. In this study, we consider a; > 1,5 =1,2,..., N -1,
for imperfect PM consideration.

On the other hand, if PM actions are unpunctually imple-
mented, then the long-run average cost rate can be formulated
as

Ca(T,N)
szj 1fz

*

j—1MT + y;)dG(y;) + (N —
SX LT + yy)dGy;)

cmZ] lfl“ i1 AMT +y;)dG(y;) + (N — 1)cp + ¢
N(T + py)

Dep + ¢

2
where 1, = flu y;dG(y;) is the expected deviation of each
PM. Likewise, the objective is to seek the optimal values of
N* and T* to minimize C4(T, N), when the maintenance
unpunctuality is anticipated. It should be noted that as Y; can
take negative values, this model requires the feasible domain of
Ttobe {T | T > max{—l,0}}, so as to guarantee T+Y; > 0
for j=1,2,...,N.

Remark 2: If we take N = 1, then model (2) is simplified
to the so-called “unpunctual age replacement with minimal
repair” model in He et al. [38], and the long-run average cost
rate becomes

Cm fl

(T + y;)dG(y;) + c7
T+ iy

Cu(T,N=1)=

B. Optimal PM Decisions

In this subsection, we examine the optimal infinite-horizon
PM decisions in the punctual and unpunctual scenarios, re-
spectively, which form the foundation of further analyses in
Section II-C.

We first investigate the optimal N* and T of the imperfect
PM policy with unpunctual executions. For any feasible PM
interval T' > max{—[, 0}, the optimal N* can be obtained by
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solving two inequalities, namely, C4(T, N —1) > C4(T, N)

and C4(T,N + 1) > C4(T, N), which yields
% and Ju(T,N) > T2, 3)

Cm Cm

jA(TvN - 1) <

where

TA(T,N) = N / ANA(T + yn1)dC(yn 1)
l

N U
5 / A A(T + 9;)dG ),
j=1

for N =1,2,..., and Ju(T,0) = 0.

Proposition 1: For any feasible T' > max{—I,0}, there
exists a finite and unique solution N* to (3), which minimizes
the average cost rate C4(T, N).

Now, suppose that the number of PM actions N > 1 is
fixed, we attempt to identify the optimal 7™ that minimizes
C4(T,N). To this end, we differentiate C4(T, N) with re-
spect to 7" and set 0C4(T, N)/IT = 0. Then, we have

N
Z»C.A,i(T) = w’ 4)
j=1

C’"L

where

Last) = (T +10) | " 45T + ;)G ()

_ /lu Aj AT + y;)dG(y;)-

The following proposition can be obtained regarding the
optimal T'* for any fixed N > 1.
Proposition 2: For any finite N > 1, if

N
lim ZLM(T)<W, (5)

T —1 C
—max{—1,0} = m

then there exists a unique solution 7™ to (4), and the resultant
cost rate is

N n
% Cm, *
CA(T ,N):FZ/Z AT +y;)dG(y): )
j=1
otherwise,
infC4(T,N) = lim  Cu(T,N). 7)

T—max{—1,0}

Note that condition (5) guarantees the uniqueness of the
solution T to (4). To satisfy this condition, [(V — 1)c, +
¢r)/¢m should be relatively large, which indicates that the
imperfect PM cost and the replacement cost should be large
in comparison with the minimal repair cost. In this work, we
suppose that condition (5) will hold, at least for the optimal
N*, throughout the remainder of Section II.

According to the analysis above, we have to solve (3) and
(4) simultaneously, when determining the optimal N* and T
for Model A with unpunctual executions. To facilitate this
process, we develop an enumeration algorithm to search N*
and T™* that minimize C'4 (T, N); see Algorithm 1. For a fixed
N (starting from N = 1), if condition (5) is satisfied, then a
unique optimal PM interval T" can be obtained by solving (4).

Algorithm 1 Searching 7" and N* for Model A
Input: A\(¢), ¢, ¢ ¢y {0}, G(y), I, w
Output: N*, T*

1: for N =1 to oo do

2:  if condition (5) is satisfied then

3 obtain 7' by solving (4)

4 if condition (3) is met then

5: T"«<T, N* <= N

6 compute C4(T*, N*) by (6)
7 break

8 end if

9: end if

10: end for

11: return N*, T, C4(T*, N*)

We then turn to check condition (3) for current N and 7T'. If the
inequalities well hold, then the current N and 1" are optimal;
otherwise, set N <— N + 1, and repeat the procedure. The
analytical results in Propositions 1 and 2 guarantee that the
algorithm will stop at a finite /N*, with the associated optimal
T™ obtained. _ ~

Next, we look at the optimal decisions N* and 7™ of the
periodic PM policy with punctual executions. As the optimiza-
tion procedure is quite similar to the unpunctual scenario, we
directly present the following result without detailed proof.

Proposition 3: For the infinite-horizon imperfect PM policy
(Model A) with punctual executions, the optimal N* and
T* exist when conditions (8) and (9) below are satisfied,
simultaneously:

TAT,N =1) < “—2 and JA(T,N) = 2, (3)
and N
~ N -1 -
ZﬁA,i(T) = w’ 9)
=1 cm
and the resulting average cost rate is
Call",N") = = D AT, (10)
j=1

where L4:(T) = A; 1(TNT) — A(T)), Ja(T,N) =
(NAy=300 A;)A(T), N = 1,2, and J4(T,0) = 0.

The optimal decision variables N* and T* in the punctual
execution scenario can also be searched via Algorithm 1, with
a slight modification.

C. Impact of Unpunctual Executions on The Optimal PM
Decisions

In this subsection, we investigate the impact of unpunctual
policy executions on the optimal PM decisions. For this
purpose, we compare (1™, N*) with (I, N*) under different
conditions on the PM deviations. More precisely, two different
scenarios of maintenance unpunctuality—that is, PM actions
are never performed earlier (or later) than intended—are
examined; see Theorems 1 and 2, respectively. Note that
only convex hazard rate A(t) is considered below, as it is
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commonly used to characterize time-to-failure distributions for
aging systems. Since it is difficult to derive analytical results
for the case in which A(¢) is concave increasing, we resort to
numerical experiments instead.

Theorem 1: If A(t) is convex and 0 <! < u, then we have
the following results:

(i) if the two policies adopt the same N > 1, and

lim £a44(T) >0, (11)
then T™ < f*;
(ii) if the two policies adopt the same 1" > 0, then N* <
N*.

Theorem 1 implies that if a fixed number N (N > 1) of
PM actions are scheduled and all of them are never performed
earlier than intended, then the maintenance planner should
schedule PM earlier than that in the punctual scenario; on
the other hand, if a fixed PM interval T" (I" > 0) is set and
all PM actions are never performed earlier than intended, then
a fewer number of PM actions should be planned than that
in the punctual scenario. Note that the inequality N* < N*
is not strict because IV is an integer in nature, thus there is
a possibility that N* = N*, especially when the values of
JA(T,N) and J4(T,N) are close.

Theorem 2: If A(t) is convex and | < u < 0, then we have
the following results:

(1) if the two policies adopt the same N > 1, then T > f*;

(ii) if the two policies adopt the same 7" > —I[, then N* >

N*.

In contrast, Theorem 2 indicates that if a fixed number N
(N > 1) of PM actions are planned and they are always
performed earlier than intended, then the maintenance planner
should schedule PM later than that in the punctual scenario;
while if a fixed PM interval T' (T" > 0) is specified and all
PM actions are always performed earlier than intended, then
a larger number of PM actions should be planned than that in
the punctual scenario. Comparing Theorem 2 with Theorem
1, we find that the scenario of unpunctual execution indeed
has an impact on the optimal PM decisions (in terms of PM
interval and number of PM actions).

Remark 3: For scenario (i) in Theorem 2 (i.e., the two
policies adopt the same N > 1), there are two possible cases
about the relationship of 7% and —I, i.e.,

. N = (N—1)cp+e, * =

@ if 35,0 La (=) = — 2, then T* > —1 >T™;

M) if SV Lai(—1) < F=D9Fr hen 7% > T% > 1.

The arguments in Remark 3 can be referred to the proof
of Theorem 2 in the Appendix. This result originates from
the different feasible domains of PM interval 7' in punctual
and unpunctual scenarios. Specifically, when | < u < 0, the
feasible domain of PM interval 7" in the unpunctual scenario
is {T'| T > —Il}, whereas that in the punctual scenario is still
{T|T>0}.

It is worth emphasizing that the results in Theorems 1 and
2 are either for fixed N or for fixed 7. The ideal comparison
we attempt to perform is comparing (17, N*) with (T*, N*)
in their optimal values. However, such comparison is difficult,
if not impossible, to conduct and thus we resort to numerical
experiments again.

TABLE I
OPTIMAL PM DECISIONS UNDER PUNCTUAL EXECUTIONS IN THE
INFINITE HORIZON SETTING.

B=15 B=35
¢ Nt T Ca N T Ca
01 4 7453 0305 15 838 0350
05 4 7648 0309 13 993 0390
1 4 7889 0314 12 11.02 0.434
2 4 8360 0323 10 1321 0.509
5 3 117.12 0341 8 1663 0.684

D. Numerical Studies

In this subsection, numerical studies are presented to
demonstrate the unpunctual PM policy for an infinite planning
horizon, and to examine the impact of unpunctual executions
on the optimal PM decisions.

Suppose that the system lifetime is Weibull distributed, i.e.,
A(t) = (B/a)(t/a)P~! and A(t) = (t/a)?, with o = 15. For
the shape parameter, only 5 > 1 is considered, as it is well
known that carrying out PM activities is uneconomic for § < 1
(the hazard rate function is decreasing or constant). In this
study, we examine two typical shapes of hazard rate—concave
(1 < B < 2) and convex (8 > 2). Specifically, 8 = 1.5 and
B = 3.5 are considered for concave and convex hazard rates,
respectively. The hazard rate adjustment factor is assumed to
be a; = (55 +1)/(4j + 1), i.e., a; is strictly increasing in j,
from ag = 1 to a, = 1.25. Further assume that the minimal
repair cost is ¢, = 1, and the replacement cost is ¢, = 30.

We first look at the imperfect PM policy in the punctual exe-
cution scenario. Table I summarizes the optimal PM decisions
and corresponding average cost rates for different values of c,,.
It can be seen that as gle PM cost ¢, increases, the optimal
number of PM actions N* decreases, whereas both the optimal
PM interval T* and the cost rate Co(N*,T*) increase. This
observation applies to both concave and convex hazard rates.

We then study the imperfect PM policy in the unpunctual
execution scenario. For illustrative purposes, we assume that
the PM deviation Y; has a uniform distribution U (I, u), though
our model accommodates to any feasible distribution of Y;. To
examine the impact of maintenance unpunctuality, we consider
three scenarios of unpunctual executions—advanced (I < u <
0), delayed (0 < I < wu), and hybrid (I < 0 < u), coupled
with three unpunctuality magnitudes (measured by u — ).
Specifically, the three unpunctuality magnitudes correspond to
u—Il=1,u—1=2,and u—1 = 5, respectively. Tables II and
III report the optimal PM decisions and corresponding average
cost rates under unpunctual executions for 3 = 1.5 and 8 =
3.5, respectively. In this tables, we define ¥ = ﬁT*: T)/T*
and Q = (CA(N*,T*) — Co(N*,T*))/CA(N*,T*) as the
relative changes of PM interval and cost rate, respectively,
when comparing unpunctual PM policy with its punctual
counterpart. It is clear that a positive (resp. negative) ¥
corresponds to the case that T > T™ (resp. T* < T™); and a
larger (resp. smaller) absolute value of ¥ implies a larger (resp.
smaller) difference between 7 and T*. The same argument
applies to (2 as well. Figs. 1 and 2 further illustrate the values
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TABLE II
OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE INFINITE HORIZON SETTING (8 = 1.5).

l=0,u=1 l=0,u=2 l=0,u=5
cp N* T (%) Ca Q%) N* T (%) Ca Q%) N* T (%) Ca Q%)
0.1 4 74.03 —0.67 0.305 0.00 4 73.53 —1.34  0.305 0.00 4 72.05 —3.33  0.305 0.00
0.5 4 75.98 —0.65 0.309 0.00 4 75.49 —1.29  0.309 0.00 4 74.00 —3.24  0.309 0.00
1 4 78.39 —0.63 0.314 0.00 4 77.90 —1.25 0314 0.00 4 76.41 —3.14 0314 0.00
2 4 83.10 —0.60 0.323 0.00 4 82.61 —1.18 0.323 0.00 4 81.12 —2.97 0.323 0.00
5 3 116.62 —0.43 0.342 0.00 3 116.12 —0.85 0.342 0.00 3 114.63 —2.13 0.342 0.00
l=-05u=0.5 l=—-1Lu=1 l=-25u=25
cp N* T (%) Ca Q%) N* T (%) C»y Q%) N* T* (%) Ca Q%)
0.1 4 74.53 0.00 0.305 0.00 4 74.53 0.00 0.305 0.00 4 74.55 0.03 0.305 0.00
0.5 4 76.48 0.00 0.309 0.00 4 76.49 0.01 0.309 0.00 4 76.50 0.03 0.309 0.00
1 4 78.89 0.00 0.314 0.00 4 78.90 0.01 0.314 0.00 4 78.91 0.03 0.314 0.00
2 4 83.60 0.00 0.323 0.00 4 83.61 0.01 0.323 0.00 4 83.62 0.02 0.323 0.00
5 3 117.12 0.00 0.342 0.00 3 117.12 0.00 0.342 0.00 3 117.13 0.01 0.342 0.00
l=—1,u=0 l=—-2,u=0 l=-5u=0
cp N* T (%) Ca Q%) N* T* (%) Ca Q%) N* T (%) Ca Q%)
0.1 4 75.03 0.67 0.305 0.00 4 75.53 1.34 0.305 0.00 4 77.05 3.38 0.305 0.00
0.5 4 76.98 0.65 0.309 0.00 4 77.49 1.32 0.309 0.00 4 79.00 3.29 0.309 0.00
1 4 79.39 0.63 0.314 0.00 4 79.90 1.28 0.314 0.00 4 81.41 3.19 0.314 0.00
2 4 84.10 0.60 0.323 0.00 4 84.61 1.21 0.323 0.00 4 86.12 3.01 0.323 0.00
5 3 117.62 0.43 0.342 0.00 3 118.12 0.85 0.342 0.00 3 119.63 2.14 0.342 0.00
08 (a)u—1l=1 15 b)yu—1=2 .0 (c)u—1=5
06 >\9\6\6\ w > b\e\e\\
1.0
0.4 20
+—l=0,u=1 —=l=0,u=2 *—1=0,u=5
02 —ol=—05u=05 05 el=—1,u=1 10 ol=-25u=25
o ——l=-1Lu=0 . ——l=-2,u=0 7 —~—l=-5u=0
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Fig. 1. Relative PM-Interval Change ¥ in The Infinite Horizon Setting (8 = 1.5).

of ¥ for # = 1.5 and 3 = 3.5, respectively.

From these tables and figures, the following observations
can be drawn:

(1

2

In the unpunctual PM policy, as the PM cost ¢, in-
creases, the optimal number of PM actions N* de-
creases, whereas both the optimal PM interval 7" and
the average cost rate C 4 (N*, T*) increase. This finding,
similar to that for the punctual policy, applies to all
numerical cases in Tables II and III, regardless of the
unpunctuality scenarios and magnitudes.

The unpunctual PM policy requires the same number
of PM actions as the punctual policy for 5 = 1.5 (see
Table II); however, it needs slightly fewer number of PM
actions for 5 = 3.5, especially when the magnitude of
maintenance unpunctuality, u—1, is large (see Table III).
Moreover, Table III shows that the difference between
N* and N*, in the case of § = 3.5, depends more on the
unpunctuality magnitude, rather than the unpunctuality

3)

-40
01

0.5 1 2 5
[

scenario (advanced, delayed, or hybrid). This appears to
be inconsistent with Theorems 1 and 2. Indeed, it is not
the case, because the optimal PM intervals 7" and 7T
are not identical.

It is interesting to observe that the optimal PM interval
of the unpunctual PM policy can be shorter or longer
than that of the punctual policy, depending on the
unpunctuality scenario and magnitude (see Figs. 1 and
2). More specifically, (i) when PM actions are never
performed earlier than intended (0 <[ < w), T* < T*;
(ii) when PM actions are never performed later than
intended (I < v < 0), T* > T™*; while (iii) when the
unpunctuality scenario is hybrid (I < 0 < u), the values
of T* and T* are close, especially when u — [ is not
large. Observations (i) and (ii) well support the results
in Theorems 1 and 2, although we cannot analytically
prove the result for concave hazzgd rate. Furthermore,
the difference between T* and T* (measured by the
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TABLE III
OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE INFINITE HORIZON SETTING (8 = 3.5).

l=0,u=1 1=0,u=2 l=0,u=5
o NTTT W% Ca Q%) N T W%)  Ca Q%) N T* W% Ca Q%)
0.1 15 7.88 —5.97 0.350 0.14 15 7.37 —12.05 0.352 0.60 14 6.38 —23.87 0.362 343
0.5 13 9.43 —5.04 0.391 0.10 13 8.92 —10.17  0.392 0.44 13 7.38 —25.68  0.401 2.66
1 12 10.51 —4.63 0435 0.09 12 10.01 —9.17 0.435 0.35 11 9.16 —16.88  0.443 2.10
2 10 1271 =379  0.509 0.06 10 12.20 —17.65 0.510 0.24 10 10.67 —19.23 0.516 1.49
5 8 16.12 =3.07 0.684 0.03 8 16.53 —0.60 0.685 0.13 7 15.01 —9.74 0.690 0.85
l=-0.5,u=0.5 l=—1lu=1 l=-25u=25
o NTOTT W% Ca Q%) N TT W% Ca Q%) N T W%  Ca Q%)
0.1 15 8.38 0.00 0.350 0.14 15 8.37 —0.12 0.352 0.60 14 8.88 597 0.362 343
0.5 13 9.93 0.00 0.391 0.10 13 9.92 —0.10 0.392 0.44 13 9.88 —0.50 0.401 2.66
1 12 11.01  —-0.09 0435 0.09 12 11.01 —0.09 0.436 0.35 11 11.66 5.81 0.443 2.10
2 10 13.21 0.00 0.509 0.06 10 13.20 —0.08 0.510 0.24 10 13.17 —0.30 0.516 1.49
5 8 16.62 —0.06 0.684 0.03 8 17.53 541 0.685 0.13 7 17.51 5.29 0.690 0.85
l=—1,u=0 Il=-2,u=0 l=-5u=0
e N T* W% Ca Q%) N* T W% Ca Q% N* T W% Ca %)
0.1 15 8.88 597 0.350 0.14 15 9.37 11.81 0.352 0.60 14 11.38 35.80 0.362 3.43
0.5 13 10.43 5.04 0.391 0.10 13 10.92 9.97 0.392 0.44 13 12.38 24.67 0.401 2.66
1 12 11.51 4.45 0.435 0.09 12 12.01 8.98 0.436 0.35 11 14.16 28.49 0.443 2.10
2 10 13.71 3.79 0.509 0.06 10 14.20 7.49 0.510 0.24 10 15.67 18.62 0.516 1.49
5 8 17.12 2.95 0.684 0.03 7 18.53 11.43 0.685 0.13 7 20.01 20.32 0.690 0.85
. (a)u—1=1 5 (b)yu—-1=2 © (c)u—1=5
4 10\9\9\0/ 30
——l=0,u=1 —l=0,u=2 20 *1=0,u=5
2 ——1=-05,u=05 St —o-l=-1lu=1 1 —o-l=-25u=25
——l=-1,u=0 ——l=-2,u=0 10 —ol=-5u=0
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absolute value of W) tends to become larger when u — [
increases and/or c, decreases.

In terms of average cost rates, we find that C4(N*, T™)
and C4(N*,T*) are identical for B = 1.5; while
C4(N*,T*) is slightly larger than C4(N*,T*) in the
case of § = 3.5. One thing noteworthy is that when
B = 3.5, the average cost rate C4(N*,T*) remains
constant for the same value of u — [, irrespective of the
unpunctuality scenarios (see Table III).

“4)

III. MODEL B: FINITE PLANNING-HORIZON SETTING

In this section, we investigate an unpunctual imperfect PM
policy for a finite planning horizon (termed “Model B”). We
generalize the periodic imperfect PM model in Nakagawa
and Mizutani [16] by assuming that the PM deviations are
governed by a specific probability distribution. Below we
first formulate the total expected maintenance costs for the
punctual and unpunctual execution scenarios, respectively, and

1 2 5 0.1 05 1 2 5

¢ (A

Relative PM-Interval Change ¥ in The Infinite Horizon Setting (8 = 3.5).

then discuss the optimization of the two scenarios. Numerical
experiments are also performed to illustrate the proposed PM
models.

A. The Optimization Models

For the imperfect PM policy in a finite horizon, the as-
sumptions (i), (iii)—(vi) in Section II-A still hold; while the
assumption (ii) is revised as follows: The planning horizon is
[0, S], and the jth PM action is carried out at instant jT + Y,
j=1,2,...,N, with S = (N + 1)T; see Fig. 3. It should
be noted that there is no imperfect PM or replacement at
the end of the planning horizon. This setting is appropriate
for a relatively short planning horizon (e.g., warranty period,
lease period) in the sense that the maintainer is responsible
for maintenance execution only in [0, .S] and the system will
continue to operate after S.

Remark 4: Due to the infinite/finite nature of the planning
horizons, the instants of performing the jth PM action are
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Fig. 3. Illustration of The PM Schedule Within a Finite Planning Horizon (I < 0 < u).

indeed different in the two settings. Specifically, the jth PM
instant in the infinite horizon setting is jT+Z§:1 Y, whereas
that in the finite horizon setting is j7' 4 Y;. In the infinite
horizon setting, the PM deviation Y is applied to the jth PM
interval, thus it will accumulate for subsequent PM instants.
However, Y; is applied to the jth PM instant directly in
the finite horizon setting, so it has no impact on subsequent
PM instants. This is because in the finite horizon setting, the
planning horizon ends at S so that the Nth PM instant shall
be smaller than S; whereas the infinite horizon setting does
not need this constraint.

Based on the aforementioned assumptions, if all PM actions
are always executed on time, then the total expected mainte-
nance cost in [0, 5] is

N+1

N)=cm Z A; 1 A(T)

The objective is to determine the optimal number of PM
actions N* such that Cz(V) is minimized. Once the optimal
number of PM actions N* ig identiﬁe~d, the optimal PM
interval can be determined as T* = S/(N* + 1).

On the other hand, in the unpunctual execution scenario
(see Fig. 3), the jth PM instant is jT' + Y}, and the jth PM
interval is thus jT+Y; — ((j—1)T+Y,;_1) =T+Y, - Y;_4,
7 =2,3,...,N. Notice that the first and the last PM intervals
are T+ Y7 and T — Yy, respectively. Then, the total expected
maintenance cost in [0, S] can be derived as

U N U u
N) =Cm/ A(T+y1)dG(y1)+cmZ/ / Aja
! =D

X AT +y; — yj—1)dG(y;-1)dG(y;)
+Cm / ANAT — yn)dG(yn) + Nep.
!

+ N, (12)

(13)
Likewise, the optimization problem is to seek the optimal N*
to minimize Ci(N), when the maintenance unpunctuality is
anticipated.

One thing noteworthy is that in order to avoid impractical
PM plans, each PM interval should be larger than zero, i.e.,
the jth PM instant should be larger than the (j — 1)th instant
(see Fig. 3). Mathematically, the condition is equivalent to
T+Y;—-Y;_1>0,j=2,3,...,N. Considering the range of
Y; and Y;_4, ie., [[,u], we have T > u — [. This means that
the PM interval 7" should be larger than the unpunctual range
u — [. As a result, the optimal number of PM action N* has
an upper bound: N* < Nyor = [S/(u—1) — 1], where |z]
represents the largest integer that is small than .

Remark 5: When N = 0, i.e., no imperfect PM action is
carried out within [0, S], the total expected maintenance costs

in (12) and (13) reduce to Cp(N
emA(S).

0)

Cp(N

B. Optimal PM Decisions

In this subsection, we examine the optimal finite-horizon
PM decisions for the punctual and unpunctual scenarios,
respectively.

We first look at the optimal number of PM actions N*
for the unpunctual execution scenario. By forming inequalities

Cg(N —1) > Cg(N) and Cp(N) < Cp(N + 1), we have
Ts(N +1) < and Jp(N) > -, (14)
where
7o) = [ "8 (5 +m) dG(yl”;/l | A

XA(S oy - )dG@; DAG(yy)

“ S
+/ An_iA (N - yN) dG(yn)
!

_/luA(NH )del Z//

S
Aj_lA (]V—f—l +vy; — yj—l) dG(y]—l)dG(y])

v S
- [ (5 - e ) a6

Likewise, for the finite-horizon PM policy with punctual
executions, the optimal N* can be determined by

S and jB(N

m

Ts(N +1) < )>Ci”,

15)

where

5 N S N+1 S
N)y=> A; 1A <N) > A A <N+1>
j=1

j=1

Note that it is difficult, if not impossible, to show the
uniqueness of optimal N* and N* for the unpunctual and
punctual execution scenarios. Fortunately, both N* and N*
are integers, so simple search methods are efficient enough
for obtaining them. Therefore, the impact of unpunctual policy
executions on the optimal PM decisions in the finite horizon
setting will be investigated via numerical experiments.
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Fig. 4. Relative Maintenance-Cost Change €2 in The Finite Horizon Setting (8 = 1.5).

TABLE IV
OPTIMAL PM DECISIONS UNDER PUNCTUAL EXECUTIONS IN THE
FINITE HORIZON SETTING.

B=15 B=35
¢ N s N° Ca
0.1 3 5.772 10 2.106
0.5 2 6.645 6 4.959
1 1 7.223 4 7.527
2 0 8.000 3 11.472
5 0 8.000 2 20.036

C. Numerical Studies

In this subsection, numerical experiments are conducted
to illustrate the unpunctual PM policy for a finite planning
horizon, and to examine the impact of unpunctual executions
on the optimal PM decisions. The parameter setting is the same
as that in Section II-D. That is, we adopt the same setting with
respect to hazard rate function and unpunctuality scenarios
and magnitudes. In addition, the length of the finite planning
horizon is set to S = 60.

We first examine the imperfect PM policy in the punctual
execution scenario. Table IV lists the optimal number of PM
actions and corresponding total maintenance cost for different
values of c,. It can be observed that as the PM cost ¢,
increases, the optimal number of PM actions N* decreases,
whereas the total maintenance cost Cg(N*) increases. This
finding applies to both concave and convex hazard rates.

We then look at the imperfect PM policy in the unpunctual
execution scenario. Tables V and VI summarize the optimal
PM decisions and corresponding total maintenance costs under
unpunctual executions for § = 1.5 and 8 = 3.5, respectively.
Figs. 4 and 5 further show the values of relative maintenance
cost changes €2 for 5 = 1.5 and 8 = 3.5, respectively. From
these tables and figures, the following findings can be drawn:

(1) Analogous to the observation in the punctual execu-
tion scenario, as the PM cost ¢, increases, the op-
timal number of PM actions IN* decreases, whereas
the total expected maintenance cost Cg(IN*) increases.
This finding applies to all numerical cases in Tables V

and VI, irrespective of the unpunctuality scenarios and
magnitudes.

Compared with the punctual execution scenario, the
unpunctual PM policy requires the same, or slightly
fewer (especially when the unpunctuality magnitude,
u — [, is large) number of PM actions for § = 1.5
and 3 = 3.5. It shows that the difference between N*
and N* depends more on the unpunctuality magnitude,
rather than the unpunctuality scenario.

Different from the infinite horizon setting, it is inter-
esting to find that the total maintenance cost of the
unpunctual PM policy can be either higher or lower than
that of the punctual policy, depending on the unpunctu-
ality scenario and magnitude (see Figs. 4 and 5). More
specifically, (i) when 0 < I < u, Cp(N*) < C(N*) in
most cases (Cs(N*) > Cs(N*) only when 3 = 3.5 and
u— 1 =>5); (ii) when I < u <0, Cg(N*) > Cg(N*);
while (iii) when I < 0 < wu, Cp(N*) is slightly
higher than Cs(NN*), especially when u — [ is not large.
Moreover, the difference between Cg(N*) and Cp(N*)
(measured by the absolute value of €2) tends to become
larger when v — [ increases and/or ¢, decreases.

2

3)

IV. CONCLUSION

In this article, we have studied two imperfect PM policies
with unpunctual executions for infinite and finite planning
horizons, respectively. The two PM models extend their punc-
tual counterparts by taking into account the unpunctual execu-
tions of scheduled PM activities. From the mathematical mod-
eling perspective, the maintenance unpunctuality is assumed
to be governed by a specific probability distribution. We have
discussed the modeling and optimization of the two unpunctual
PM policies, and then explored the impact of unpunctual
executions on the optimal PM decisions and corresponding
maintenance expenses in an analytical or numerical way.

Numerical experiments show that the impacts of unpunctual
executions on the optimal PM decisions and maintenance costs
(or cost rates), in the infinite and finite horizon settings, are
indeed different. In the infinite horizon setting, the optimal PM
interval in the unpunctual execution scenario can be longer or
shorter than that in the punctual scenario, depending on the
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TABLE V

OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE FINITE HORIZON SETTING (8 = 1.5).

l=0,u=1 1=0,u=2 l=0,u=5
cp N* Ci Q%) N* Ci Q%) N* Cp Q%)
0.1 3 5.734  —0.66 3 5701 —1.24 3 5629 —248
0.5 2 6.620 —0.38 2 6.597 —0.72 2 6.548 —147
1 1 7209 —0.18 1 7.198 —0.34 1 7174  —0.68
2 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00
5 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00

l=-05u=0.5 l=-1u=1 l=-25u=25
cp N* Ci Q%) N* Cn Q%) N* Ch Q%)
0.1 3 5.773 0.02 3 5.776 0.08 3 5.800 0.49
0.5 2 6.646 0.01 2 6.648 0.03 2 6.660 0.22
1 1 7.223 0.00 1 7.223 0.01 1 7.228 0.07
2 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00
5 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00

l=—1,u=0 Il=-2,u=0 l=-5u=0
cp N* Cn Q%) N* Cu Q%) N* Cp Q%)
0.1 3 5.814 0.74 3 5.862 1.55 2 6.017 4.24
0.5 2 6.674 0.43 2 6.705 0.90 1 6.815 2.55
1 1 7.238 0.21 1 7.254 0.44 1 7.315 1.28
2 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00
5 0 8.000 0.00 0 8.000 0.00 0 8.000 0.00

TABLE VI

OPTIMAL PM DECISIONS UNDER UNPUNCTUAL EXECUTIONS IN THE FINITE HORIZON SETTING (3 = 3.5).

[=0,u=1 [=0,u=2 [=0,u=5
Cp N* Ci Q%) N* Cp Q%) N* Cp Q%)
0.1 10 2.072 —1.60 9 2.101 —0.23 9 2.500 18.70
0.5 6 4914 —0.90 6 4919 —0.79 6 5.220 5.28
1 4 7.470 —0.76 4 7.463 —0.85 4 7.731 2.72
2 3 11405 —0.59 3 11.390 —0.71 3 11.659 1.63
5 2 19.955 —0.41 2 19.934  —0.51 2 20.233 0.98

l=-0.5,u=0.5 l=—1Lu=1 l=-25,u=25
cp N* Cg Q%) N* Ci Q%) N* Cp Q%)
0.1 10 2.130 1.13 9 2.200 4.44 9 2.659 26.26
0.5 6 4.975 0.33 6 5.024 1.32 6 5.370 8.30
1 4 7.541 0.19 4 7.583 0.75 4 7.881 471
2 3 11.485 0.12 3 11.525 0.46 3 11.802 2.88
5 2 20.048 0.06 2 20.085 0.24 2 20.340 1.52

l=—1,u=0 l=—-2,u=0 l=-5 u=
cp N* Ci Q%) N* Ci Q%) N* Cp Q%)
0.1 10 2.207 4.80 9 2.373 12.68 8 3.282 55.83
0.5 6 5.054 1.93 6 5.203 4.93 6 5.992 20.84
1 4 7.631 1.38 4 7.783 3.40 4 8.565 13.79
2 3 11.593 1.05 3 11.768 2.58 3 12.597 9.81
5 2 20.178 0.71 2 20.383 1.73 2 21.372 6.67

unpunctuality scenario and magnitude; however, the resultant
cost rate is always higher than or equal to that in the punctual
scenario. On the other hand, in the finite horizon setting,
the total maintenance cost in the unpunctual scenario can be
higher or lower than that in the punctual scenario, depending
on the unpunctuality scenario and magnitude as well. These
insights are helpful for maintenance planners to adjust their
PM schedules according to the planning horizons of interest,
when the maintenance unpunctuality is well anticipated.

It is worth emphasizing that we have confined our analysis

of the unpunctual PM policies to numerical experiments, as the
complexity of the cost (rate) models makes it quite difficult
to obtain analytical results. As a consequence, we have been
cautious about making general claims about the impacts of
unpunctual executions. We recognize this as a limitation of the
work. Deriving general analytical results on the comparison
of punctual and unpunctual scenarios is thus valuable, and
needs in-depth investigations. Furthermore, a consideration
of practical significance is that the unpunctual ranges might
become wider or narrower when time elapsed, rather than
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Fig. 5. Relative Maintenance-Cost Change €2 in The Finite Horizon Setting (8 = 3.5).

remaining unchanged. A potential way of addressing this issue
is to model the PM deviation as a stochastic process with an
increasing or decreasing mean in N and 7. In addition, future
research could also extend the current framework to other im-
perfect PM models, e.g., age reduction model, hybrid model,
and geometric process model, or more advanced maintenance
paradigms, e.g., condition-based maintenance and predictive
maintenance.

APPENDIX
A. Proof of Proposition 1

It is evident that J4(7T,N) is increasing in N and ap-
proaches to co as N — oo, because

jA(T’ N) - jA(T’N - 1)
:NMN—mWﬁ% MT+WﬂG@ﬂ>Q

and
lim JA(T, N)
= Jin (A paca)) >y = dys) = oo

The last equality is due to a; > 1, j = 1,2,...,N — 1,
and thus limpy_ oo Z;V:l(AN — A;_1) = occ. Therefore, there
exists a finite and unique N* that minimizes C4(T, N) for
any feasible T' > max{—I,0}.

B. Proof of Proposition 2

As the hazard rate A(¢) is an increasing function of ¢, i.e.,
A (t) > 0, we have

Los(T) = (T + py) /l A; 1N (T + ;)AG(yy) > 0.

Following the same argument as in Barlow and Proschan
[40, p. 97] and He et al. [38], we show that L4 ,(T) — oo
as T — oo. First, it is clear that £ 4,(T) is continuous
on [0,+00). Let {T;} be an infinite sequence such that
max{—p,,0} <T1 < T < ..., with A(Tj—1) < XT;) for
1 =2,3,... and lim;_,, A\(T;) = co. Such a sequence exists

as A(t) is strictly increasing and unbounded (by Assumption
(1)). Then, it is evident that

Las) = (T ) [ " AT 4+ 3)dG ()
- " A, A(T, 4 4,)dG(;)
> (Tt [ " AT 4+ ,)dG ()

- / A1 A(T +4,)dGy;)
— 00 as 7 — 00.

In other words, £ 4;(T) is increasing in 7" and tends to oo as
T — oo.

Therefore, the solution to (4) is unique and finite
when condition (5) is met; otherwise, inf C4(T,N) =
limz_, max{—1,0 Ca(T, N). Given the optimal solution 7 to
(4), rearranging its terms yields (6).

C. Proof of Theorem 1

Part (i): Recall that both £ 4 ;(T") and C 4,i(T) are increas-
ing functions of T'. Also, 0 <[ < u implies that p, > 0 and
both problems have the same feasible domain {7" | T' > 0}.
According to (4) and (9), if La:(T) > La,;(T) is true for all
T >0, then T* < T* for a ﬁxedNN.

First, it is clear that limp_,0 L£4:(T) = 0 as A(0) = 0.
Hence, if condition (11) is satisfied, then we have

. . > . < . .
#3 £ai(T) 2 fimy £a(T)
Next, £.44(T) is increasing faster than £ 4 ;(T), since
LaalT) = (T 1) [ 450X (T 43,06
>T/4%4Xﬁmmw)
l

=TA; N (T) = L4 ,(T).

The inequality is due to 0 < 1 < u (uy > 0) and the convexity
of A(t). Hence, it is true that L4 ,(T) > L4,;(T) for all
T > 0. If the two policies adopt the same N > 1, then
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S Lai(T) > Y2 Laq(T) for all T > 0, which implies
T* < T*.
_Part (ii): Analogously, notice that both J4(7,N) and
Ja(T, N) are increasing functions of N. If we can show that
JA(T,N) > Ja(T,N) forall N > 1, then N* < N* follows
directly, according to (3) and (8). The inequality is not strict
because N should be integer, thus there is a possibility that
N* = N~*.
Based on Jensen’s inequality, we know that
jA(Ta N) - jA(Tv N — 1)
= N(AN — ANfl) / A(T + yN)dG(yN)
l

> N(AN = An—1)AMT + py)

> N(AN — AN_l)A(T)

= jA(Tv N) - jA(Tv N - 1)
Thus, J4 (T, N) indeed increases faster than T 4(T, N). Com-
bining with the fact J4(T,0) = Ja(T,0) = 0, we conclude

that J4(T, N) > Ja(T, N) for all N > 1. Therefore, if the
two policies specify the same T', we have N* < N*.

D. Proof of Theorem 2

Part (i): In this case, | < u < 0 implies that ,, < 0 and the
feasible domain of 7" in the unpunctual scenario is {T" [ T" >
—1}. Likewise, we first show limy_,_; L4 ,(T) < La,:(—1),
and then show L 4 ;(7T') is increasing slower than L A4:(T).

The expressions of limp_,_; L4 ,(T) and ENA,Z'(—Z) are
given by

lim La(T) = (—1 + ) /lu Aj M=l +y;)dG(y;)

T——1
- /l Aj—1 A=l +y;)dG(y)),
and

Loai(—1) = —1A; A=) — A;_1A(=1)

= (=l 1) Aja A (=) = Ajn [AD + py A(=D)] -

Notice that [, \(—1 + ;)dG(y;) < A(=1) for I < u < 0.
According to the Jensen’s inequality (and bear in mind that
A(t) is convex), we obtain

| A+ 0)a60,) = A+ )
-
— A=l - / M)t
—ltpy
As A(t) is convex, we also have
-1
= [ Atz A=) =MDy
*H”l»‘zy

The discussions above lead to the result: limp—,_; £ 44:(T) <
Loa,i(—1).

We claim that £ 4 ;(T) is increasing slower than £ 4 ;(T)
forl <u <0, as

£ou) = T+ [ " Ay X (T 4 ;)G ()

<T / A; N (T)AG(yy)
!
=TA; N (T) = L 4,(T).
The inequality is due to [ < u < 0 and p, < 0. Therefore, if
the two policies adopt the same N > 1, then Zjvzl La:(T) <
SN Laq(T) forall T > .
Moreover, as the feasible domain of PM interval 7" in the
unpunctual scenario is 7" > —I, there are two possible cases:

@ if YN La(—1) > T=Deter then T < —1, which
means that 7% < —[ < T,

M) if S, Lai(-1) < F=D9E then both T and

T* are greater than —[. Because Z;VZI La:(T) <
Z;V:lEA,i(T) for all T > —I, it is clear that —I <
T < T
Part (ii): In order to prove N* > N *, what we need to
show is that J4(T, N) < Ja(T,N) for all N > 1. First of
all, notice that

jA(Tv N) - jA(TvN - ]-)
= N(AN — AN—l)/ A(T —+ yN)dG(yN)
1

< N(AN — AN_l)A(T)

= jA(Ta N) - jA(Ta N - 1)
The inequality is due to the negativity of / and wu. Hence,
JA(T, N) increases slower than J4 (T, N). Coupled with the
fact 74 (T',0) = Ja(T,0) = 0, we conclude that T4 (T, N) <

Ja(T, N) forall N > 1. Therefore, if the two policies specify
the same T > —I[, we have N* > N*.
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