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Mutation testing for rule-based verification
of railway signalling data

Linas Laibinis, Alexei Iliasov, and Alexander Romanovsky

Abstract—Industry applications of formal verification to sig-
nalling control tables require formulation of a large number
of mathematical conjectures expressing verification rules. It is
paramount to establish the validity and completeness of these
conjectures. The paper discusses a mutation based validation
technique that guides domain experts in the construction of such
verification rules. Furthermore, we use genetic programming
to quickly generate millions of well-formed data mutations
of control tables and to synthesise mutation programs. The
technique is illustrated by a synthetic running example and a
discussion of our experience in using it in the industrial setting.

Index Terms—Mutation testing, formal verification, verifica-
tion conditions, railway, signalling

I. INTRODUCTION

This paper discusses the process of checking the correctness
of safety critical data sets, specifically, railway control tables,
and a way the procedure of constructing verification rules for
such data sets can be made more efficient and interactive.
The presented work is an extension of the SafeCap platform
– a toolkit for verifying railway network safety [16]. By a
verification rule we understand a formal predicate capturing
a safety argument. The process of checking such a rule in
SafeCap is completely automatic and relies on a number of
automated back-end tools. The following is an example of a
simple safety argument:

dom(point tracks) = Point

Here point tracks is a constant relation between types Point
and Track. It might have a concrete value capturing, in this
instance, how points are placed in some geographic location;
but it might also remain undefined, be partially defined or
defined indirectly via constraints imposed by others predicates,
such as axioms and lemmata. Likewise, types Point and Track
may remain abstract or be populated, completely or partially,
with the names of tracks and points found in some area.

The condition above states that the relation is total in its
domain - it maps every point to at least one track. Informal
interpretation is that every points has a valid track location.
This is a set-theoretic way of writing a safety argument. One
may choose to state the same in a differing manner, e.g.,
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∀p ∈ dom(point tracks)⇒∅ ⊂ point tracks(p)

The choice of style is often dictated by the practicalities of
the automated verification and the need for providing human-
friendly reports when a rule fails.

Enumerated types, constant relations and functions define a
data set under verification. Simplistically. verification rules de-
fine an acceptance test for data set instances. Such a test could
have been implemented, in principle, as a program printing yes
or no after some computation. We choose formal rules as they
can be directly justified by a respective formal semantics of
a data set model, are orders of magnitude more compact and
deliver a more efficient implementation harnessing symbolic
theorem proving and constraint solving.

The overall number of verification rules may reach several
hundreds for an industrial project. The primary responsibility
for defining verification rules lies with domain experts. That
provide an informal description and a formalisation step is
carried out by a formal methods expert. Constructing a com-
plete set of formal rules is a demanding process that may take
several years while verification itself is automatic and takes at
most few minutes in our tool [19].

Over the course of several industrial projects it became
apparent that in order to be systematic, rule construction
requires a tool-assisted method. Such a method, assisting
a domain expert by demonstrating likely omissions in the
formulated rule set, is discussed in this paper. At the highest
abstraction level, the method attempts to estimate the semantic
coverage achieved by one or all of verification rules. The
coverage assessment, calculated via a form of mutation testing
[22], is then interpreted to reveal the data set parts that are not
sufficiently constrained by the verification rules.

In this paper, to measure the semantic coverage, we attempt
to generate structurally and syntactically sound changes in a
data set that do not trigger any of the rules. The proportion
of such changes in data that go undetected by any validation
rule indicate the degree of freedom permitted by the rules. The
higher such degree is, the lower is the semantic coverage of
achieved by rules with respect to a given data set.

One widely recommended strategy [23] to the construction
of verification rules is a top-down elicitation process starting
with one or few global goals. During such a process one refines
top-level goals into the corresponding low-level verification
rules while presenting arguments that all the necessary rules
are defined and every defined rule addresses some meaningful
goal. A well known example of that can be found in [37].
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The elicitation process may also be completely formal
and carried out as a development of an hierarchy of formal
specifications linked by a formal refinement or simulation
relation [32]. This is a rigorous approach that requires a high
level of expertise and a substantial time investment. Another,
often overlooked aspect for real-life applications of formal
models is the need to overcome relatively poor legibility of
formal notations to be able to communicate and convince
stakeholders in the adequacy of an elicitation exercise [38].

We have attempted the elicitation of railway signalling
verification rules but failed both in the application of formal
refinement and informal safety case construction [19]. Our
experience suggests that formal models are too resistant to
changes necessary to accommodate missing requirements.
On the top of poor legibility, early technical decisions on
data structures and a formalisation style, influenced by the
provability and tool usability concerns, make it difficult to
enact substantial changes. In other words, a formal model-
based notation is a poor medium for persisting details of a
live, ongoing elicitation process.

The main intuition behind the Goal Structuring Notation
(GSN) [13] and many similar methods is that a statement
can be decomposed into several more detailed sub-statements,
which, combined together, would establish the validity of their
parent. The reality proves much messier. First, it is common
to be faced with several possible decomposition dimensions
with unclear consequences of pursuing either. Second, it is
normally impossible to formally check the logical entailment
between decomposing sub-statements and their parent state-
ment. Finally, it is difficult to maintain a neat tree structure
with many connections going across different branches and
layers.

In the search for an alternative, we turned to a bottom-up
approach based on genetic programming and it has proven
itself to be more suitable to go hand-in-hand with rule elic-
itation without requiring an extensive separate development
stage. The technique successfully addresses the following main
important concerns: identification of missing verification rules,
detection of incorrect rules, and planning of effort and estimate
of overall number of rules required.

We rely on genetic programming to solve the problem
of finding the data changes that are more likely to remain
undetected by verification rules. Among such changes we
expect to find cases indicating issues with the rules themselves.
Random data exploration is not an option here as the a
number of potential changes is practically infinite while the
”interesting” subset that needs targeting is likely to be is
extremely small.

The main contributions of the paper are as follows. First, we
put forward a method for systematic and automatic assurance
of the attained coverage of formal verification rules constrain-
ing a data set, illustrated with a railway signalling configu-
ration data. Second, as the means to this end, we propose a
novel statistical testing technique based on a combination of
genetic programming and mutation testing.

The paper has seven sections. Section II gives a brief
overview of various background domains and methods relevant
to this work, and the process of rule-based verification of

signalling data sets in our SafeCap platform [16]. It also
introduces the running example that we use in the following
sections and briefly discusses relevant related work. The
technique of automatic data set mutation (adopted from genetic
programming) is described in Section III. The next section
presents our core contribution: the methodology for mutation-
based rule validation. Section V illustrates the validation
process on a case study from the railway domain. Finally,
Section VI discusses open questions arising when applying our
approach, while Section VII presents some concluding remarks
and possible directions of future work.

II. BACKGROUND

A. Validation of railway configuration data

The SafeCap Platform is a toolkit for modelling railway
capacity and verifying railway network safety [16]. It helps
signalling engineers to design stations and junctions relying
on a domain specific language (the SafeCap DSL), as well
as to check their safety properties and to evaluate potential
improvements of capacity by using a combination of theorem
proving, SMT solving and model checking [17]. The platform
has been substantially extended by adding the support for rep-
resenting a wide range of the existing signalling frameworks
[19], [20].

The SafeCap verification and proof back-ends enable au-
tomated reasoning about static and dynamic properties of
railways and their signalling. The two principal verification
routes are the built-in prover backed by a SAT solver, a range
of external provers provided via the Why3 framework [8], and
the ProB model checker [27] (used just as a constraint solver).

We have been collaborating extensively with the railway
industry on developing automated verification solutions for
signalling designs. The main motivation is to establish safety
standard compliance and to replace expensive and time con-
suming manual checking of control tables and signalling data.

Signalling is central to the safe and efficient operation of
a railway. It enables higher network capacity through higher
train speeds and shorter separation distances, and prevents
unsafe train movements and equipment operations. Signalling
controls the movable infrastructure to set and protect a train
path during train movement. At the heart of any signalling sys-
tem there are one or more interlockings. These safety-critical
devices constrain the authorisation of train and infrastructure
movements to prevent unsafe situations.

The increasing complexity of modern digital interlocking,
both in terms of geographical coverage and functionality, poses
a major challenge to ensuring railway safety. Even though
formal methods have been successfully used in the railway
domain (e.g. [6], [5]), their industrial application is scarce.
SafeCap offers an industry-strength verification approach that
does not require engineers to learn mathematical notations
and can be applied to real-life stations providing user-friendly
reports within seconds.

Two safety principles are in the core of all signalling
operations. The first is the protection of movable equipment
(points, diamond crossings) with the aim to avoid derailment
and equipment damage. The second is avoidance of train
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collision. In practical applications, an engineer follows the
existing standards prescribing how a certain signalling tech-
nology must be realised in order to uphold these principles. It
is common in railways to introduce extra assurances to contain
isolated violations of driving rules or malfunction of signalling
equipment. The two examples are train flank protection (com-
manding of a point to divert any unauthorised moves away
from a set route) and provision of overlaps so that a train
can overrun past a stopping point without causing a collision.
The already numerous rules establishing safety principles often
come in a conflict with the rules introduced for achieving
best performance. Hence, under certain circumstances one may
remove flank protection of a route path or reduce the overlap
length in order to free up a busy point. Formalising such rules
is not an easy task. Our experience shows that one needs
hundreds of distinct verification statements in order to achieve
acceptable coverage. A smaller set rules would be sufficient to
establish the principal safety concerns but it would also result
in an unacceptably large number of false positives.

It is common to represent railway interlocking and sig-
nalling logic as static data, such as tables. This is a standard
practice in the UK and most European countries (i.e., the UK
Railway Group Standard GK/RT 0202 [34]). For deployment,
the data is translated, preferably in a well-established correct-
by-construction manner, into low-level commands used by the
specific signalling equipment.

Signalling data is interpreted in a context of some track
topology that captures concepts such as track connectivity,
directionality, track gradient and length. These concepts are
overlaid with abstract topology comprising routes, overlaps,
sub routes and sub overlaps (paths in a graph) and sections
(sub graphs of topology graph) as well as configuration
information about the track-side equipment.

SafeCap can automatically verify signalling control tables
by expressing a control table data as a collection of typed sets
and relations. A similar approach is taken for the conceptual
representation of the layout graph. Once expressed using a
common mathematical basis, a layout and a control table can
be checked against each other using the formulated verification
rules. In SafeCap, a verification rule is written in a combina-
tion of the first order logic and set theory and is a formal
embodiment of an informal safety argument.

To define formal semantics of control tables, we rely on
a simple and versatile mathematical representation based on
the Zermelo-Fraenkel set theory. Every entity of the theory
is either an empty set ∅ or a set of the form {s1, . . . , sn},
where si are some valid sets. An ordered pair of two elements
a and b is called a maplet and denoted as a 7→ b or (a, b).
A binary relation is defined as a set of such maplets (pairs).
The standard relation operations, calculating its domain and
range, are defined as dom(r) = {a | ∃b · a 7→ b ∈ r} and
ran(r) = {b | ∃a · a 7→ b ∈ r}. An image of a relation r over
a set s is written as r[s] and is defined as r[s] = {b | a 7→
b ∈ r ∧ a ∈ s}. Finally, the inverse operator r−1 constructs
a relation with all maplets flipped around, while the operator
f †h is functional override of a relation f by a set of maplets
h, defined as f †h = {a 7→ b | a 7→ b ∈ f ∧a /∈ dom(h)}∪h.

Formulating different constraints on relations allows us to

introduce different kinds or types of relations such as total
or partial relations, functional relations (functions), injective,
surjective, or bijective functions and so on. For instance, a
function is a relation satisfying the functionality constraint,
i.e., each element from its domain is mapped to just one
element from its range. An injective function is a function,
the inverse of which is also a function, etc.

Sparse and dense sequences may be interpreted as functions
from the index type into the associated value type. Trees and
graphs are encoded as connectivity or parent-child relations.

A control table, a form of data set under verification, is
represented as collection of named relations. The information
about the kind or type of each constructed relation is defined
and maintained in the system. That is, each relation is statically
typed: at all times we know the sets containing relation
domain and range, the totality of its domain and range, and
functionality and injectivity of the defined mappings, etc.

B. Running example
To illustrate various railway concepts and to help in the

discussion of the presented method, we use a synthetic running
example. The example is a very small junction with two
points and six signals. It is a simplified representation of the
typical ”fly-out” junction found as a part in most real-life
junctions. Compared to a real-life system, it lacks non-main
signals, overlaps, TPWS/AWS markers, distant signals and etc.
However, it is sufficient system to demonstrate the essence of
route-based interlocking and its validation.

The example layout is given in Fig. 6. In the presented
layout, the traffic may flow from left (boundary node A) to
right, splitting on point P101 to continue towards boundary
nodes B and C. It may also flow from right to left but only
from the top right corner of node C and towards node A. The
layout is delimited into routes by signals. For our purposes,
it suffices to treat a signal as a marker identifying route start
and end points. A route name typically starts with the prefix
R and followed by signal index (e.g., 10 for S10), path letter
A-Z, route class ((M) for main, (S) for shunt, (C) for call-
on and so on) and, optionally, route sub-class (permissive or
non-permissive). Hence, a main route from S10 towards S12
would be called R10A(M).

From signal S12 there are two possible routes - one ending
at S24 is called R12A(M) and the other ending at S14 is
R12B(M). Besides routes and signals, important elements of
a layout are track sections – named sub-graphs equipped with
the facility to report the presence (but not the number) of
any trains, and points - tri-state (normal, reverse and middle)
elements defining the currently available layout topology.
Whenever a route goes over a point, the point state must be
such that the route path is a sub-graph of the current layout
graph. For instance, for point P101, the normal state enables
connection to track section TAE, while also disabling one
to TBE. Hence, the point must be commanded normal when
setting route R12B(M). The middle state means that the point
is not locked in either direction (or is still moving) and a train
over such point is likely to derail.

With route-based signalling, a train may proceed into a
protected area only after a route is set and the signal proceed
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Fig. 1. Signalling diagram for a synthetic running example.

conditions are established. Route setting is typically requested
by a system outside of the signalling scope. The signalling
logic ensures that any such request is fulfilled only when it is
safe to do so.

There is a dedicated table in signalling control tables
defining the conditions for route setting. The following is a
greatly simplified example of such a table.

Route Points normal Points reverse Tracks clear
R10A(M) - P101, P102 TAB, TAC,

TAD, TBE, TBF
R10B(M) P101, P102 - TAB, TAC,

TAD, TAE, TAF
...

To set, as an example, route R10B(M) starting from signal
S10 and proceeding to signal S14, one needs to check that
points P101 and P102 are commanded and detected normal;
one must also check that the track sections TAB, TAC, TAD,
TAE and TAB are clear. A full control table defines detailed
controls for every route, signal and point as well as every
sub-route and sub-overlap.

A control table must be compliant with the safety principles
set out in relevant standards. One such principle, derived from
the absence of derailment due to unlocked or moving points,
states that the points over the route path must be commanded
to align with this path. It is also necessary to command any
flank protection points away from the route path and, possibly,
command overlap points.

The example is not specific to any layout or control table
– it is a generic principle applicable to all the cases that use
a compatible technology.

To aid in formalisation of verification rules, we have de-
veloped a controlled natural language for the formulation of
a condition to be verified. Such a statement emphasises the
static nature of verification and enforces certain structure.

The semi-formal statement for the point setting rule takes
the following form:

[for]
every route

[it holds that]
all route points are commanded
to enable the route path

Note that we have not yet included the details about flank
protection and overlaps. Although such oversight is obvious

in the example, it may be less obvious in a real-life setting.
To state a formal counterpart of the above, we need to

formalise a number of concepts. In this case, they are constants
relations derived from layout and control tables:

1) Route and Point are enumerated sets of all routes and
points;

2) l normal, l reverse ∈ Route → P(Point) are constant
functions returning sets of points that must be set normal
(l normal) and reverse (l reverse) to enable a route path;

3) ct normal, ct reverse ∈ Route→ P(Point) are constant
functions containing the points defined in the columns
”Points normal” and ”Points reverse”.

Here, l normal and l reverse are constant relations auto-
matically derived from the layout graph in Fig. II-B. Hence,
we contrast a layout topology with the information present in
control tables.

Now it is straightforward to write a formal predicate cap-
turing the semi-formal statement – all we need to do is check
that sets l normal and l reverse are contained in ct normal
and ct reverse, respectively:

∀r ∈ Route ⇒ l normal(r) ⊆ ct normal(r) ∧
l reverse(r) ⊆ ct reverse(r)

The rule is syntactically valid and well-typed. Hence, it
can be given to the SafeCap verification engine for automatic
verification. In this case, verification completes with a definite
result of no violations. It would appear that the task of formally
verifying this safety condition is successfully achieved. Yet, as
we shall later, the rule has critical flaws and does not, in fact,
provide any sensible safety check.

To discover why this rule is broken, we shall have to look
at how the formulated predicate reacts to mutations in data
sets representing control tables.

C. Related work

Formal railway data verification is a popular research area
given the safety critical nature of the domain. Some of the
most relevant examples are the Ovado tool that relies on a B-
like notation and the ProB model checker as the verification
back-end [3]. The work [26] illustrates its applications to the
validation of data sets of railway assets rather than signalling.
In contrast, our work emphasises automated verification of
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the safety critical part of signalling with an aim to offer
certification without manual review. Simulation is a popular
way to validate formal models and also widely used in the
railway domain to validate control tables. We see our technique
as complementary to possible simulation solutions.

In our work on a verification model we take much inspi-
ration from D. Bjørner’s ”Domain Engineering” [7]. Much of
the SafeCap internal DSL is built in this style, although we
clearly could not apply all the suggested validation steps: it
would quite literally take many years for a formal method
practitioner to learn and properly represent this domain.

In [25], the authors demonstrate how the ProB model
checker can be use to validate large data sets against the given
properties in the railway domain. In contrast to the presented
method, our approach focuses on validation of the verification
conditions themselves.

There is a wide variety of techniques aimed at model
validation based on error or fault injection techniques, see,
e.g., the survey [14]. Hardware and software fault injection
has been successfully used to evaluate the dependability of
computer systems [14]. Faults representing typical abnormal
situations that a system could face in run-time are injected
either at the hardware or software level to check the behaviour
of the evaluated target system.

A number of fault injection tools have been developed and
successfully applied in industry to evaluate dependability of
systems [10], [40]. The main difference between the developed
techniques and our approach is that we mostly rely on formal
verification, using statistical validation via mutation testing as
additional assurance that our formal basis (domain model) is
sound and complete.

The way we mutate data sets to statistically validate our
domain models is very similar to the techniques employed
by genetic algorithms, see, e.g., [4], [30], [42]. In the work
[30], authors use evolving genetic algorithms to simulate fault
injection attacks. However, genetic algorithms often rely on the
predefined and fixed verdict functions to estimate the algorithm
progress, while in our approach the domain model itself serves
both as a formal basis used as a verdict verifier and a model
to be checked and possibly changed.

Mutation testing of software pursues a similar goal [11],
[12], [21], [22], [29] of identifying program parts not ade-
quately covered by tests. A software mutation introduces some
random change in a program text often designed to mimic a
programming blunder. The decisive difference with our work is
that a data set carries few a priori defined semantic constraints
and hence, rather than to use heuristics for targeted error
injection, we have to rely on the accumulated statistics over a
large number of mutations.

The problem of validation of system configuration data is
also very important in managing system components or pack-
ages constrained by their given dependencies. Over the years,
many different automated techniques have been developed
relying on SAT or SMT solving, theorem proving, and model
checking [1], [2], [15], [28], [33]. In contrast to our approach,
the focus of such methods is primarily on conflict finding and
resolution, because the configuration data are typically already
over-constrained.

A variation of mutation testing, called mutation proving,
was developed for analyzing verification projects in the Coq
proof assistant [9]. It applies a set of mutation operators to Coq
definitions of functions and datatypes and then checks proofs
of lemmas affected by operator application. As a result, failed
proofs helped to uncover many incomplete specifications as
well as a bug in Coq itself. Despite similarities, our approach
additionally employs genetic programming (to generate muta-
tion programs) and statistical evaluation to find ”weak spots”
in the analysed data.

In [35], a new mutation testing based process to assess
formal verification tools (in the automotive and aerospace
industry domains) is proposed. In particular, the applied
method helped to detect defects (induced mutations) in
Simulink/Stateflow based software specifications as well as
assess whether the analysed tools help testers identify defects
effectively. In our approach, we are mostly interested in
validation of the constructed domain model in the form of
a collection of formulated verification conditions.

Our developed framework relies on a combination of formal
verification by theorem proving and less formal quantitative
validation by mutation testing. Such a combination is also
quite closely connected to recent numerous attempts to com-
bine theorem proving and model checking, see, e.g., [36].
Most of general purpose theorem provers are nowadays using
model checking techniques to test potential goals (theorem
candidates) before attempting costly theorem proving. Such
theorem “testing” is based on trying different concrete variable
values attempting to falsify a theorem in question. In our case,
we rely on a kind of statistical mutation testing, focusing on
validation of the underlying formal model basis itself.

III. DATA SET MUTATION

In the next two sections we present our method for formal
validation of verification rules for railway signalling data,
based on a combination of mutation testing and genetic pro-
gramming. Section III focuses on data set mutation and genetic
program synthesis, while Section IV demonstrates how these
techniques can be used to facilitate analysis and validation of
the given verification rules.

In a presented scenario of verifying a data set using formal
predicates, or verification rules, one of the essential problems
is testing of the coverage achieved by a given set of such rules.
The rule coverage may be inadequate due a combination of
missing and incorrect rules. To assess this coverage, one needs
to generate many data changes, verifying the whole rule set
after each change. The number of all possible changes for a
non-trivial data set is extremely large and there is no practical
possibility of exploring any significant subset of it. Instead
we try explore an ”interesting” subset containing changes that
we believe, due to the method of their construction, are more
likely pass through the net of verification rules.

Such a subset is constructed by executing tiny programs,
called mutators. The point of having such programs is to find
a balance between the mutation depth (the number of atomic
operations used to compute a single change) and the mutation
width (variability in arguments of individual changes). It
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Fig. 2. The principal steps of mutation testing of the verification rules and
its relation to generator synthesis via genetic programming.

would be a rather tedious exercise to manually construct
mutator programs so, to facilitate this process, we use a
automated synthesis procedure based on genetic programming.
Formally, mutators operate over a relational data set model
and hence define mutations (or translation programs) over the
defined relations. The fitness function driving the evolution
process depends here on a concrete set of verification rules
and this makes synthesis output problem- or domain specific.

The proposed technique presumes that a considered data
set is strongly constrained and the vast majority of random
changes result in an error. This property must be established
by domain experts before the technique can be applied.

The objective of mutation testing is to identify a discrepancy
between ”the vast majority” and the proportion of changes
flagged as errors by the verification rules. In the absence of a
better metric, ”the vast majority” is taken to be 100% and the
detection rate is estimated via mutation testing. The number of
possible changes for a non-trivial data set is extremely large,
hence we apply stochastic exploration of the overall set of
data sets with the aim to obtain a representative sample of
population.

The diagram in Fig. 2 shows the interaction between the
mutator synthesis and mutation testing and the principal assets
(depicted as boxes) and steps (displayed as arrows) of our
method. The inputs are ”Dataset” and ”Dataset Constraints”,
while the output is ”Statistics”.

It is important to stress that the proposed technique is
not designed and generally cannot be used to demonstrate
complete absence of ”bugs”, especially ”corner case bugs” in
verification rules.

A. Data transformers

A mutation must ensure that a resultant data set is still a
collection of relations belonging to the predefined specific
relation types and kinds (e.g., functional, total, injective,
surjective and etc). Note that we do not check the validity
of the involved data set types, assuming them to be correct.
Finding errors in the data set structure and typing is outside
of the scope of this work.

We have previously explored a Monte Carlo based technique
generating mutation candidates [18]. Its weakness is a high

candidate rejection rate due to violations of such relation
types by the generated changes. Such filtering also skews the
distribution properties and makes the estimation of deviation
and convergence rather tricky. It is also a very slow technique
that can struggle to keep up with the speed of solvers verifying
rules for the given railway data.

To address the shortcomings of Monte Carlo, we use the
genetic programming to synthesise pieces of code for gen-
erating mutations. A fitness function is designed to favour
mutations satisfying the relation type and kind constraints. If
the resulting mutations do not satisfy the constraints, they are
discarded because the fitness function gives the value 0. We
also use available data sets to evaluate the synthesised code
performance, thus allowing the evolution process to adapt to
the data structure and constraints present in real-life control
tables.

At the foundation of the data mutation method we employ
there are five primitive mutation commands applicable to con-
stant relations. Four of these commands add, remove, change
and swap values in the relation range. Additionally, there is
also one operation on the relation domain, which removes
a value from the domain. We do not consider changing and
adding values to a relation domain as such operations would
require a fairly expensive solving procedure to satisfy relation
typing requirements. This means that a certain class of errors
cannot be detected by our technique. These are the errors of
omission and duplication of an entity description. An entity
here is a value that only occurs in the relation domains and
this would correspond to a top-level object on a model.

Let now consider some relation c ∈ Q ? R, where Q and
R are respectively the domain and range sets of relation c,
while ? denotes the relation kind: plain relation, function, total,
surjective, bijective, injective, or some combination of these.
Also, let q be some element in the domain of c, i.e., q ∈
dom(c). For ordered maps, the range R takes the form of
Z× T – the integer component is used to realise total order.

We then define the atomic transformers over relations as
follows:
• Replace: replacement transformer tm changes a value in

the relation range and is defined as tm(c, q, r, r′) = c \
{q 7→ r} ∪ {q 7→ r′}, where r ∈ c[{q}], r′ ∈ R, r 6= r′

(however, it possible that r′ ∈ c[{q}]);
• Add: mutation transformer ta adds a new value to the

relation range and is defined as ta(c, q, r
′) = c ∪ {q 7→

r′}, where r′ ∈ R \ c[{q}];
• Remove: mutation transformer tr removes a value from

the relation range and is defined as tr(c, q, r) = c\{q 7→
r}, where r ∈ c[{q}];

• Swap: mutation transformer ts swaps the element order
when type R is a sequence and c is a function and is
defined as ts(c, q, r, r

′) = c † {q 7→ s′},1 where s′ =
c(q) † {s−1(r) 7→ r′, s−1(r′) 7→ r}, s = c(q);

• eXclude: mutation transformer tx removes a value from
the relation domain and is defined as tx(c, q) = {a 7→ b |
a 7→ b ∈ c ∧ a 6= q}.

1Notation f †h defines relational override of f with h, that is, f †h behaves
as f if an input value is not in the domain of h and as h otherwise. Formally,
f † h = {q 7→ r | q 7→ r ∈ f ∧ q /∈ dom(h)} ∪ h.
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pick dom
if (total)

add l-hop l-hop img
else exclude

pick img
swap 0 2

pick dom
if (card img > 2)

remove 1
remove 0

else skip

Fig. 3. Pretty-printed examples of trivial synthesised generators.

B. Genetic program synthesis

Genetic program synthesis works on the basis of mutation
and cross-cutting of the available abstract syntax tree (AST)
fragments. AST defined below represents an imperative pro-
gram with limited syntax. The syntax includes the if block, a
command sequence, and the syntax for basic expressions and
predicates. To contain the degree of freedom available (that
is, the number and the value ranges of parameters that can
be evolved during synthesis) to the evolution algorithm, the
choice of literals is constrained by using generators that yield
a random number or random element from a set.

One uncommon and domain-specific part is the inclusion
of commands computing a set of elements related to a given
set using the topological proximity of a layout (l-hop) or the
conceptual proximity of control tables (c-hop). This allows
synthesis of programs that go beyond mere random change
but without exposing all the complexity of underlying compu-
tations.

The topological proximity defines how far away graph
elements of same type are located on a layout graph and is
computed as the length of a shortest path from one element
to another (see graph in Figure 4). The conceptual proximity
between some two elements is zero if these are mentioned in
the same column of a control table, and the shortest path on
the graph (where control tables are nodes and column values
are edges) otherwise.

The definitions table in Table I describe the abstract syntax
tree (not concrete syntax) of a mutation program. Since such
programs are synthesised by a computer, there is no real need
for a concrete textual grammar also we do show pretty-printer
examples later one.

The language has only two control flow constructs – se-
quential composition and conditional execution. There is also a
simple expression language to be used as command arguments
and condition predicates. The transformers (commands) are the
atomic mutation transformers defined above.

The purpose of a data mutation is to define such a com-
bination of atomic transformers that has a high chance of
going undetected by the formulated verification conditions.
As parameters, the atomic transformers typically take sets of
values from which they choose one value randomly. Sets are
computed by starting with the relation domain, range or image
over a given set and then transforming such an initial set by
”hopping” to topologically or conceptually adjacent values.
For numeric values, the options are a small constant value, a
random number generator (its range is a hyper-parameter for
genetic programming) or the size of some given set.

In principle, the size of programs and individual expressions
can grow indefinitely but there are mechanisms penalising ”the
bloat” where an extra size does not present any competitive
advantage over other generated specimen [41].

generator , pick set-literal block
block , if | sequence | transformer | skip
if , condition block block

sequence , block block
transformer , mutate set-literal set-literal |

add set-literal |
remove set-literal |
swap num-expression num-expression |
exclude

condition , total | func | surj | relational |
condition and condition |
condition or condition

relational , num-expression op1 num-expression |
set-literal op2 set-expression

set-literal , some set-expression
num-expression , 0 | 1 | 2 | rnd | card set-expression
set-expression , dom | ran | img | c-hop set-expression |

l-hop set-expression
op1 , < | =

op2 , ∈ | /∈

TABLE I
MUTATION PROGRAM ABSTRACT SYNTAX TREE,

Initial transformer population is seeded with pick dom and
pick img programs. Command pick assigns an implicit value
holding the domain element (q in the mutator definitions) used
by the atomic transformers. Most of the syntax is dedicated
to construction of expressions defining transformer arguments
and predicates for if -blocks.

The language is not complete (i.e., does not allow one to
express every possible generator) and has evolved considerably
over a year of experiments. The two ”hop” operators introduce
an explicit bias towards graph-like structures so one should
regard the presented syntax as an illustration of a possibility
rather than a concrete recipe.

We do not attempt to remove or avoid equivalent mutators
for the following two reasons. First, detecting the mutator
equivalence is computationally expensive hence it cannot be
integrated into the fitness function. Second, the heuristics
aimed at removing equivalent mutators outside of the genetic
programming framework are likely to interfere with the ran-
domised nature of the algorithm while it would be still very
difficult to ascertain their effectiveness.

To assess the quality of a synthesised generator, we generate
n (n ∈ 10 . . . 200) data changes and then apply the following
fitness function to evaluate the performance:

f(g) = w1

{
0, when a constraints is violated;
w2rl + w3rg − b, otherwise.

where rl is the ratio of locally unique changes (non repeating
for the same mutator), rg is the ratio of globally unique
changes (not repeating for the whole mutator population),
w1 > 0, w2 > 0 are weight coefficients, and b is the
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Fig. 4. Conceptual proximity graph. From R12A(M) one can reach, among
other, routes R23A(M), R12B(M) and R31A(M) via paths of length 3, 1 and
1. Thus expression c-hop dom executed on a table defining R12A(M) might
return R12B(M) or R31A(M).

bloat penalty discussed below. The fitness is zero whenever
a relation constraint is violated for any generated change. To
penalise overly complex candidates, we set execution timeout
of n ∗ 10−2 milliseconds.

A generator program is a tree satisfying the generating
grammar given above. To evolve interesting population of such
trees, we use grammatically constrained graph-based mutation
and crossover operations as described in [24]. While this yields
syntactically correct programs that normally can be executed,
it is exceedingly rare for population to contain a generator
with a non-zero fitness score.

To increase the likelihood of evolving a useful generator, we
employ the standard technique of probabilistic selection of mu-
tation and crossover candidates based on a distribution defined
by a mixture of manually defined heuristics and performing
record derived from historic runs (the PIPE algorithm [39]).
This narrows the search space to an extent where it becomes
possible to observe several non-zero fitness generation in a
randomly generated population of a few thousands generators.

To combat ”the bloat” (i.e., population-wide increase in
program size in the course of evolution rounds), we apply a
variation of covariant parsimony pressure technique [31] that
penalises candidates deviating too far from the mean program
size. Moreover, an extra penalty is applied for using more than
two transformer operations.

Out of many rounds of generator synthesis we pick the best
performing ones for each of the columns of a control table.
Since there is one pick command per generator, a generator
always focuses on a single column. We strive to obtain at least
two generators per each column and atomic transform type
Generators are synthesised once per each revision of generator
syntax. It takes between 9 to 30 hours to obtain a collection
achieving sufficient coverage when statistical metrics stabilise.

The diagram in Fig. 2 shows the mutation testing process
flow. It starts with the synthesis of generators, as described
above, and the main loop is iterative change/check statistics ac-
cumulation. The process runs until there is a certain predefined
number (circa 1000-5000) distinct changes per column. The
simplest form of available statistics is a measure sensitivity
of a given rule to various transform kinds, e.g., sensitivity to
remove transform is high if most or all remove changes are
flagged as errors by the rule.

C. Running example, continued

We now apply mutation testing to the running example. The
testing injects data changes solely in the control table part of
the data. The relevant functions are ct normal and ct reverse.
First, we obtain the measures of rule sensitivity with respect
to these columns for each available pair of a layout and a
control table. The results are then averaged over to obtain
overall sensitivity. The table below summarises the findings.

Mutation kind Sensitivity
Mutate very low

Add none
Remove very low

Swap none
Exclude very low

The exact meaning of values ”very low”, ”low”, and ”none”
shall be explained in the next section. Intuitively, we expect
the absence or low sensitivity to indicate issues with a rule.

Looking at the original formulation of the rule, one cannot
fail to find the conclusions surprising. The insensitivity to
changing value order (Swap) is expected as the order points
does not matter for a predicate that compares two sets. At the
same time, no sensitivity to adding values may be worrying
as it suggests the rule cannot detect any extraneous values.
However, this is easily explainable by the form of the actual
verification predicate – adding values on the right-hand side
of a subset operator does not change the term validity.

The low sensitivity to Change and Exclude does not afford
any simple explanation and suggests the rule is not achieving
what it is designed to. And finally, the low sensitivity to
removing values does not seemingly make sense as removing
points being set ought to trigger errors. We have to conclude
that, despite its simple formulation, the rule does not enforce
the expected constraints on control tables. We shall analyse
these results more closely in the next section.

IV. MUTATION BASED RULE VALIDATION

In this section we discuss how to apply the information col-
lected during mutation testing to improve a set of verification
rules. One aggregated result of our mutation testing procedure
is the ratio of data changes flagged as errors to the overall
number of changes. The two extremes of ratio values are quite
intuitive. The first one, the value 0 or close to 0, signifies
no reaction to any changes enacted. In this case we say that
a tested rule lacks sensitivity to a given class of mutations.
Often it is an indicator that a tested rule is not doing what it
is supposed to do. The opposite case of the value 1 or close to
1 signifies strong sensitivity and it is what is normally desired
of a verification rule.

In practice, it is rare for a single rule to address all the
mutation cases and we often assess a collection of rules related
by their intent. For instance, for control tables, we only insist
that a conjunct of all rules referencing a given column delivers
a strong sensitivity measure.

Typically, the observed sensitivity is neither 0 or 1. And
since the technique is a statistical one, there is no inherent
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interpretation of such a ratio value. To assist result interpre-
tation, in this work we define a simple mapping from ratio
values into categorical values (so called rule ratings) and the
mapping is based on our experience in the railway domain.
Mutations are run till we detect the convergence of measured
sensitivity. Specifically, we compare the calculated mean and
variance values of a random sub-sample comprising 50% of
all tests with the overall sample and test for the equality of
two normal distributions.

A. Rule rating

The rating of a rule is an interpretation of the ratio of
changes flagged as errors. Its purpose is to present a simple
picture of how a given verification rule guards against certain
kinds of random changes in a verified control table. We use
letter codes ranging from dash mark (-), signifying none
or very low sensitivity, to double capital letter (e.g., MM),
denoting high or complete sensitivity. The following table
gives one such mapping between the respective ratio values
and ratings. This table reflects our intuition on the expected
quality and coverage of control tables. For a different problem
the value ranges could differ.

Ratio value Rating
< 0.01 -

≥ 0.01 and < 0.1 m, a, r, s, x
≥ 0.1 and < 0.7 mm, aa, rr, ss, xx
≥ 0.7 and < 0.97 M, A, R, S, X

otherwise MM, AA, RR, SS, XX

A rule rating is given with respect to a certain concept or a
column. When a rule syntactically references several columns,
a rating is given for each column.

From the methodological perspective, it is most advanta-
geous to have the verification rules that achieve the highest
possible rating for at least one transformer kind of some
column. This gives a simple justification for the rule presence:
it fully constrains one degree of freedom of a data set column.
It is, however, common to have verification rules with at best
a mid-level rating; then one has to expect that the remaining
freedom is accounted for by some other rule.

The diagrams in Fig. 5 show a part of mutation testing
feedback offered to a developer. The bar char shows the overall
number mutations (1000) and the number of valid (when a
rule evaluates to truth) and invalid (when it evaluates to false)
cases. The radial diagram shows the number of transforms of a
certain kind (gray colour) and the proportion of them detected
as invalid (red). In this case, the rule is insensitive to addition
and swap but is sensitive to mutation, removal and exclusion,
when its rating here is mm - r - x or simply mm r x as
it is clear what ratings are omitted.

B. Semi-formal contract

The ability to automatically estimate the semantic coverage
of a verification rule can be used to strengthen the contract
between the informal and formal parts of rule definitions.

In our experience while applying the proposed technique in
a large transport solution company, we found that the domain

experts could easily offer strong intuition on the expected rule
rating, especially if it falls into the range of extreme values.
The technique was applied in several real railway signalling
projects with a number of experienced signalling engineers
providing their feedback and offering their intuition on the
rule rating. It is interesting to note here that this a form of the
domain expertise that is very rarely captured during formal
system modelling and verification.

To encode such intuition, we specify the expected rating in
a semi-formal statement, as shown below.

[for]
...

[it holds that]
...

[sensitivity]
{column 1}: rating
{column 2}: rating
...

Checking of the expected rating against the actual one is a
verifiable constraint linking the semi-formal and formal parts
of a rule. One rating step down (e.g., mm instead M) results in
a warning, two or more is an error. A higher than expected
result is treated the same as a perfect match. This allows
one to specify incomplete rating constraints in semi-formal
statements and focus on some type transformer kinds (add,
change, ...), usually the strongly constrained ones.

We believe such a rating contract can be a valuable method-
ological tool as it brings a way for a domain expert to express,
at a high level of abstraction, executable tests for a formal rule.

C. Coverage analysis

To understand the current status of a rule set, it is typically
not sufficient to analyse the sensitivity of each individual
rule. As an illustration, say one observes sensitivity mm for a
column c in a rule p1 and, for the same column, sensitivity M
in a rule p2. There is no way to infer from this whether the
column c is sufficiently constrained with respect to mutation
transform types. One cannot simply add mm and M to obtain
say MM: indeed, the constraint afforded by p1 might be
completely contained in p2. Thus, the only sound way to infer
the overall column rating from individual rule ratings is to
use the max operator. This gives us the lower bound rating
assessment.

A more relevant rating is obtained by testing a conjunct of
all the rules constraining a given column and then conducting
mutation testing to compute the rule rating for the column.
Computing such ratings of all the columns gives the developers
what we call semantic (as opposed to syntactic) coverage of
verification rules for a given data set.

The global coverage shows what kind of rules are defined,
suggests what rules are still missing or fail to realise a
constraint intended by a domain expert. As we show later,
it can be used to estimate the effort required to achieve a
certain desired rating (typically M A R - X) by estimating
the number of missing rules. This is an essential planning
technique in the development of verification rules and, as far
as we are aware, the only such technique available.
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Fig. 5. A report of mutation testing of a single rule. Approximately 70% of changes went undetected (rules returning ’valid’ verdict on changed data). The
plot on the right shows the prevalence of mutation and removal atomic transforms in generated mutators. This is because it is easier for such mutators to pass
fitness test in this particular data set.

D. Running example

Let us analyse the findings from the previous section.
The insensitivity to adding new values suggests a missing
requirement that should flag up unnecessary entries listed
in the two columns. The domain knowledge suggests that
very low sensitivity to Remove, Change and Exclude is quite
contrary to expectations. Hence, we need to identify and fix
an error in the rule or its formal predicate. The following table
summarises the plan of action:

Mutation kind Sensitivity Action
Swap none add new requirement
Add none add new requirement

Remove very low fix the current rule
Change very low fix the current rule
Exclude very low fix the current rule

The first new requirement is addressed by a rule stating
that the points are listed in the order they occur during route
traversal from its entrance to the exit signal. No conditions are
imposed on possible flank protection and overlap points.

[for]
every route

[it holds that]
route path points are given
in the route traversal order

[sensitivity]
{Points normal}: S
{Points reverse}: S

The S rating (high sensitivity to Swap) is used for both
columns. While the order is not important for some entries, we
expect the number of path points (for which order is important)
to form the vast majority of all entries in most cases and thus
reordering should be detected in most cases.

The second new requirement tells what cannot be present
in the columns Points normal and Points reverse.

[for]
every route

[it holds that]
no route points are commanded
except those necessary to set
the route path, common overlap
points and flank protection points

[sensitivity]

{Points normal}: AA
{Points reverse}: AA

Note how the AA rating (almost every addition flags up as
an error) aligns with the intent to address extraneous entries
for these two columns.

The semi-formal statement of the original rule is now
extended with a contract requiring high sensitivity to mutation,
removal and exclusion.

[for]
every route

[it holds that]
all route points are commanded
to enable the route path

[sensitivity]
{Points normal}: M R E
{Points reverse}: M R E

The intuition here is that every entry in either column is
essential and uniquely correct. Hence any modification or
removal would normally lead to an error. We cannot list strong
sensitivity for either of these cases for the following reasons:
mutation and removal may occur in the flank or overlap parts
and hence not detected by the rule, while exclusion may
happen for a route that does not need any path points. This
suggests that extra requirements are necessary to obtain perfect
overall MM RR XX rating for these two columns.

The original rule requirement has not changed apart from
adding the sensitivity contract and we believe that the problem
is in the formal predicate. To aid in finding the problem, we
instruct the tool to present a number of mutated control tables
that pass verification rule constraint. These are displayed in
the following form, showing the before (struck out) and after
column values:

Route Points normal Points reverse Track clear
R10A(M) P123 P126 P124 P114 TAB, TAC

After a consultation with a domain expert it become clear
that the issue is incorrect treatment of merged points.

Merged points are several (normally two) point machines
combined into one logical unit and commanded and sensed as
one point. These are common as their usage reduces potential
for inconsistent point states while also simplifying equipment
wiring and installation.
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Unlike in our running example layout in Fig. 1, there is
no valid configuration requiring P101 and P102 to be set
in differing states. When both are normal, the bottom line
is active and is also protected from any movement from the
branch (with P102 set normal any traffic is diverted towards
BUFFER). Likewise, when set reverse, continuation via the
top line is enabled albeit without any special protection from
any traffic passing signal S14.

Now consider the two scenarios we would like to rule out.
With P101 set reverse and P102 normal, no traffic can pass
through the junction. When P101 is normal and P102 reverse,
the bottom line traffic can flow but no flank protection is
afforded from illegal movement from the branch.

By merging P101 and P102 into one logical unit where
both P101 and P102 are either normal or reverse, signalling
engineers rule out such undesirable configurations.

The common source of confusion is that a layout represents
a topological view and one might not be unaware of merged
point formations used by signalling. Control tables do define a
mapping between point machines and points and we can apply
this mapping to fix the rule.

The following predicate fixes the previous version by map-
ping between topological and logical points with a constant
relation ct pmap defined specifically for this purpose. The
new version correctly accounts for merged points.

∀r ∈ Route ⇒ l normal(r) ⊆ ct pmap[ct normal(r)] ∧
l reverse(r) ⊆ ct pmap[ct reverse(r)]

As a result, the revised version of the rule has the sensitivity
ratings matching those specified in the semi-formal statement.

V. PRACTICAL EXPERIENCE

We have applied the presented technique to the validation
of verification rules expressing the consistency and safety
constraints of signalling control tables. The case study deals
with real-life, industry-produced layouts and control tables
and required verification rules were defined with the help of
railway engineers.

A. Project description

We apply the mutation testing technique to a substantial
(>100) number of verification rules validating control tables
against the given railway layouts. One set of such rules
implements a certain national standard and can be applied to
a large number of specific cases of layouts and control table
pairs. Control tables form a part of the production cycle of a
SIL (Safety Integrity Level) 4 product and hence must go via
thorough validation and testing stages. Since the data we use in
the case study is no longer a part of an ongoing development
project we expected to find only a small number of errors,
with few, if any, critical ones.

A typical data set under verification is a station or a junction
with around 100 routes, 60 points, and 50 signals. Control
tables formatting must comply with a national standard, while
control table data are given in a digital, structured format. We
have analysed 12 control table types, comprising 204 columns.
Some columns are split into sub-cells, so there are overall

260 constant relations capturing the control table data. This
number would be the same for all control table instances as
the structure remains the same throughout the analysis.

A layout is also represented as a collection of constant typed
relations derived mechanically from the edge/node layout
model, as illustrated in the running example.

Two data sources combined yield 370 constant relations
as well as a number of shared data types such as routes,
signals, tracks and etc. During the basic consistency check,
SafeCap checks that there are no typing conflicts (e.g., one
entity defined both as a signal and a route). Furthermore, there
are 40 formal consistency checks encoding the assumptions
about suitability of a combined data set. These help to uncover
mismatches in versions of layout and control tables.

All together, there are 132 formal verification rules derived
from 82 informal requirements. This set of rules was devel-
oped over the course of two years and is a very valuable asset.
Checking its status in terms of the quality of individual rules
and the attained global coverage is clearly quite an appealing
goal. Since the project data sets are independently validated
prior to attempted verification, there is a solid foundation for
the mutation testing of rules.

B. Missing rules
The verification rule construction is guided by the railway

safety principles, requirements for control tables, and domain
expert knowledge. The process is informed by a certain
methodology but cannot be made completely systematic and
hence does not guarantee to deliver all necessary rules. Hence,
it is vital to establish whether any rules were missing and
what they might be before the approach based on automatic
verification can itself be SIL qualified.

We have carried out investigation of missing rules for the
columns presumed to be already well addressed by the existing
verification rules. In particular, a domain expert could not
suggest any extra rules related to these columns.

In this study, the first step was to understand the cumulative
sensitivity of the rules constraining any given column. As
described above, the column data is iteratively and randomly
changed using the synthesised mutation scripts and then all
the rules are re-evaluated on the changed data. This delivers
per-column rating of a collection (that is, a conjunct) of the
verification rules constraining the column data. Ideally, we
expect to see maximum rating MM AA RR SS XX.

A snapshot of the real-life mid-size project coverage is
given in Fig. 7. The table in the figure depicts the measured
column rating for one control table (truncated for presentation
purposes) at a stage where no more rules could be suggested
by the domain expert involved in the study. In other words,
this is a stage of a perceived maturity where coverage analysis
could be used reveal systemic problems in a formalisation.

The displayed coverage is rather poor. There are two pos-
sible explanations:
• the hypothesis about strongly constrained data set is

incorrect and thus our technique reports overly pes-
simistic results. Conversely, the probability of idempotent
mutation is significant and that is what we observe in
experiments;
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Fig. 6. Layout example, a small excerpt.

Fig. 7. Coverage diagram, an excerpt.

• there is a significant number of missing or ineffective
verification rules.

To plan the next steps, it is imperative to rule out the
possibility of weakly constrained control tables. For this,
we have instructed our tool to print out control tables with
the injected changes that are not flagged as errors by the
verification rules.

A number (approximately 50) of such tables were manually
analysed to determine their correctness. Almost all of them
(49) were found to be incorrect. This led to the following
conclusions:

1) there is a number of rules missing to address the
situations that seem obviously nonsensical to a human
(e.g., an entrance signal is missing for a route). However,
these still must be a part of automated check;

2) most of the defined rules were asymmetric in their
formulation and missing their converse counterpart. For
instance, one would often check an implication of the
form when something holds for an element in a layout
then a rule holds for the element in a control table. A
converse version would reverse the argument direction.
One example is checking both that all the required route
points are set and that no unnecessary points are listed
as being set;

3) the exclusion and swap mutations were largely unde-
tected. The former one requires extra conditions for
domain checks (e.g., is there a route for which there is
no table at all), while the latter one requires formulation
of new requirements (e.g., are route points listed in the
order they are traversed on a line of a route).

Due to a large number of missing rules required to address
cases 1 and 2 above, we have added an automatic rule template
generation for a given column and its rating. A template is

designed to address specific weaknesses in column rating and,
at the moment, we cover the cases of low mutation, addition
or removal rating.

The generation templates are as follows:
• To address weak mutation rating:

∀ d, v · d 7→ v ∈ c ⇒ ”put your predicate here”(d, v)

where c is the column relation. The template asks to
provide a rule for each element v ∈ c(d). The intuition is
that, should the value v change to an incorrect one, the
predicate would flag it up as an error;

• To address weak addition rating:

∀ d, v · d ∈ dom(c) ⇒ c[{d}] ⊆ ”define upper bounding set”

To guard against an invalid extra value, the template asks
to provide a bounding set containing all concept elements.
It most cases, such a set would be indirectly qualified by
a predicate and written as a set comprehension;

• To address weak removal rating:

∀ d, v · d ∈ dom(c) ⇒ ”define lower bounding set” ⊆ c[{d}]

This template is a mirror version of the addition template
asking for a lower bounding set.

C. Rule debugging

It is fairly common to make a mistake in a verification
rule. One typical case is a problem carried over from informal
and semi-formal statements that cover the ”normal” case but
forget to cover less common but often numerous exceptional
cases. This makes a rule overly restrictive, which is caught
by examining verification reports. Using mutation testing,
we aim to debug the rules that do not trigger verification
errors. Apart from perfectly correct ones, such rules fall into a
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number of categories: a blunder in a formal statement making
check vacuous, a mismatch between formal and semi-formal
statements where the formal one covers only a part of semi-
formal constraints (an artifact of incremental development), or
a conceptual error that can be traced back to semi-formal and
informal statements.

There were plenty of examples of either case in the project
but due to space constraints we illustrate here only the first
one. In this case, a simple rule is incorrectly formalised and
could not react to injected changes it was expected to. The
semi-formal statement is as follows:

[for]
every permissive ixl route

[it holds that]
{TRACK CIRCUITS>OCC} not empty.

The statement requires that a permissive route has at least
one occupied track section declared in a control table.

The initial, incorrect, formal rule was given in a set theoretic
style in the following manner:

SettingTrackOccupied[ixlRoutes ∩
(route.class−1[{C}] ∪ route.class−1[{S}]) ∩

route.subclass [{P}]] 6= ∅

where route.class is a constant function mapping a route name
into a route class. Consequently, route.class−1[{C}] is a set
of all routes of class C (call-on). S is another route class –
a shunt class. The partial function route.subclass defines a
route sub-class. In this property we are interested in shunt
routes with subclass P (permissive).

Mutation testing shows that the rule is completely in-
sensitive to any changes in column {SIG & ASP>ROUTE
SETTING>TRACK CIRCUITS>OCC} represented by con-
cept SettingTrackOccupied. The problem is that the formal
statement translated back would correspond to a rather differ-
ent semi-formal statement:

[for]
any permissive ixl route

[it holds that] ...

The rule would only trigger an error if all the routes (a half
hundred of them) had the said column empty. This is a state
that is never, in practice, explored by mutation testing. The
correct formal statement checks the non-emptiness condition
for every route.

∀r · r ∈ ixlRoutes ∧
r ∈ route.class−1[{C}] ∪ route.class−1[{S}])∩

route.subclass [{P}]
⇒
SettingTrackOccupied[{r}] 6= ∅

The revised rule has r XX rating that is in line with the
expectations.

D. Effort planning

Without a top down elicitation process in place, there is
no immediate progress indication for the verification rule
construction process. Despite this, effort planning is essential
for industrial projects.

Fig. 8. Extrapolation of rule construction from three different points. The
predicted overall number of rules required to achieve the complete coverage
is about 500. The blue, red and green lines are extrapolations built at different
project stages. By plotting the trend line against time, one can get an estimate
of the overall time to define properties required to achieve complete coverage.

The challenge of effort planning can be attempted at differ-
ent levels of specificity:
• Establishing, early in a project stage, whether a verifica-

tion project is feasible in principle. For instance, if 20-30
already constructed rules yield no measurable coverage,
it should ring alarm bells;

• Estimating the amount of effort required to attain a certain
coverage threshold, e.g., 300 rules to attain the 80%
coverage requiring circa 400 man/hours;

• Planning the effort within a column to attain the maxi-
mum rating.

The principle behind effort planning is extrapolation of a
record of the rule construction effort using the data obtained
from the coverage analysis. Via sub-sampling of a set of
constructed rules, we can estimate the deviation and plot
confidence intervals for further predictions. The diagram in
Fig. 8 depicts three extrapolations constructed at different
project stages. Stage 1 is the point when the project reached
24 rules, Stage 2 – 80 rules and Stage 3 – 135 rules. Each
successive stage includes all the rules of the previous stage
plus a number of additional rules.

In this projection the prognosis is circa 500 rules to attain
the 80% coverage. It is prudent to presume it is an optimistic
estimate as commonly the simpler principles are formulated
first, while the ”trickier” ones are left for later.

VI. DISCUSSION

As railway signalling is typically required to satisfy SIL4
requirements, there is a number of exhaustively tested and
verified data sets, which can be used to establish the ’ground
truth’ for rule testing. As a result, any deficiency in the cov-
erage is vastly more likely attributed to missing or inadequate
rules. In other words, for an already validated data set, it is
extremely unlikely that a data set mutation would correct an
existing error and it is relatively likely that a mutation would
make a data set incorrect.

The manner in which a mutation is performed is controlled
by the given verification rules, e.g., a mutation tries to generate
mutants that trigger the verification errors. Such errors in turn
lead to possible corrections made in a set of rules (with the
approval of domain experts). Thus, in our approach mutation
testing itself is the main technique guiding rule development.
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A question arises whether one may end up in a degenerate
situation where the described process results in mutants that
guide towards a ”worse” version of verification rules. In our
work, ”worse” has concrete, quantitative meaning expressed in
the terms of lesser coverage and constrainment. Therefore, a
degenerate situation is the one where mutation testing suggests
a change that would make the verification rules somehow less
differentiating or target a smaller part of a data set. However,
in our method such an outcome is rather impossible as any
changes are prompted by low rule sensitivity (i.e., with a goal
of increasing rule sensitivity), thus leading to increasing the
semantic rule coverage.

It is entirely possible to have a combination of the verifi-
cation rules that cannot be improved by our technique. One
reason is the high semantic complexity of a data set that makes
difficult generation of useful mutants. Another one is that,
with the increase in the semantic coverage attained by the
verification rules, it becomes more difficult to find an (ever
smaller) subset of incorrect values missed by these rules.

If we were to encode a typical railway signalling data set
in a list of Boolean values, the list would have approximately
40000 entries. Clearly, 240000 is well beyond any Monte Carlo
style algorithm. Our technique works because a data set is
naturally constrained and respecting these constraints hugely
improves the odds. This however is still not enough to be able
to rely on Monte Carlo. The conducted computational experi-
ments show that respecting the data set constraints reduces the
exploration space to circa 240− 2200. Within this space many
point pairs are equivalent (i.e., all rules react in the same way
to all such points) and many points are not interesting (all
the rules report correct result). Mutant generation attempts to
reduce the search space and hit interesting points more by
tuning the given mutation rules using a fitness function defined
over the verification rules.

One critical issue is whether the method can be safely
transferred to a different setting. We believe we have a reliable
applicability test that would indicate whether useful results
may be obtained for some pair of data set and constraining
rules. The applicability test entails computing the data set cov-
erage, followed by picking and removing any rule intuitively
deemed important, and then recomputing the coverage metric.
The metric should indicate lesser coverage. If the metric has
not decreased then the method should not be applied.

As the main limitation of the technique, we see the prereq-
uisite of a strongly constrained data set. It is an open question
how one can establish this efficiently when it is not a given
fact. Mutator synthesis is also something that is not guaranteed
to be successful for every application. It is not impossible that
it will fail for data sets with highly complex structure. Finally,
the interpretation of sensitivity values and their mapping might
have to be changed in a different application setting.

The prevailing practice in validation of verification rules
in railway is based on a manual review of such rules by
domain experts. Our method is not aiming to replace such a
validation process but rather to extend or improve it by adding
steps of automated validation based on mutation testing, the
goal of which is to identify or suggest to domain experts the
potentially weak or incorrect rules. On the other hand, using

the traditional completely formal techniques for proving that
the set of verification rules is sound and complete is rather
expensive in terms of time and effort required as they need a
full and verified formal railway domain model.

The proposed approach can be seen as a compromise
between the two extremes, which can give the developers a
tool and experiment supported argument on the adequacy and
completeness of the compiled verification rules, even if this
argument can never reach absolute terms afforded by formal
techniques, where derivation of such rules relies on a complete
formal model of the problem domain. Crucially, our technique
gives an unambiguous direction towards improvement of the
given rule set, especially when the coverage is still fairly low.
In particular, a tautology or a rule, which is subsumed by
the other existing rules, would not improve the coverage and
thus can be removed. A contradictory rule is easy to detect
with all the metrics maxing out, while an overly restrictive
rule would affect many sensitivity metrics and produce a
big jump in the coverage. With the coverage increasing, it
takes longer to collect meaningful statistics on the relative
coverage change and hence there will be a point where it
becomes impractical to run such a computational experiment.
However, this very difficulty to improve the coverage would
indicate a high quality of the resulting set of verification rules
with respect to both their consistency (soundness) as well as
completeness (coverage).

VII. CONCLUSIONS

This paper proposes a mutation based validation technique
that guides domain experts in the construction or modification
of the required verification rules. While the paper is based on
a study in the railway domain, we do not see why the same
technique cannot be applied in another setting of configuration
data verification. Data-rich systems are common and assurance
of correct data model instances is essential for the certification
of safety critical applications.

In our previous work [19] we have developed a similar
approach based on the Monte Carlo method. However, the
application of of this method did not scale up to the complexity
of real industrial systems. The work presented in this paper
significantly improves on the earlier approach by exploring an
alternative avenue based on genetic programming. This made
it both more practical and scalable. The presented case study
serves as a good illustration of that.

To the best of our knowledge, our work is the first approach
aiming to help the developers to evaluate the semantic cover-
age of formal verification rules. Unlike code mutation testing,
our proposed technique mutates models under verification
represented as a collection of formalised typed relations. To
improve the efficiency of generating the well-formed data mu-
tations, genetic programming methods are used to synthesise
the mutation programs themselves.

The automatic check of sensitivity rating acts as a form of
an enforceable contract between semi-formal and formal parts
of a rule and this opens novel development opportunities. We
would like to collect usage statistics to see whether the intro-
duction of rating in semi-formal statements has a measurable
impact on productivity and quality of formalisation.
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From our experience of applying the technique to an
industrial case study, the categorical sensitivity values are
well understood and accepted by domain experts. More case
studies should help to assess if there is a more effective
way to communicate the mutation testing results to various
stakeholders (signalling engineers and managers, certification
experts, formal method experts).

In our future work we will continue to improve the tool
support and the feedback offered on the verification rule
coverage as well as to seek to deploy the approach in industry
and in differing problem domains. In a longer term, an
exciting and challenging objective will be to develop an
approach to automated synthesis of missing verification rules.
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