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Abstract—Adaptive Random Testing (ART) is an enhancement of Random Testing (RT), and aims to improve the RT failure-detection
effectiveness by distributing test cases more evenly in the input domain. Many ART algorithms have been proposed, with Fixed-Size-
Candidate-Set ART (FSCS-ART) being one of the most effective and popular. FSCS-ART ensures high failure-detection effectiveness
by selecting the next test case as the candidate farthest from previously-executed test cases. Although FSCS-ART has good failure-
detection effectiveness, it also faces some challenges, including heavy computational overheads. In this paper, we propose an enhanced
version of FSCS-ART, Vantage Point Partitioning ART (VPP-ART). VPP-ART addresses the FSCS-ART computational overhead
problem using vantage point partitioning, while maintaining the failure-detection effectiveness. VPP-ART partitions the input domain
space using a modified Vantage Point tree (VP-tree) and finds the approximate nearest executed test cases of a candidate test case in
the partitioned sub-domains — thereby significantly reducing the time overheads compared with the searches required for FSCS-ART.
To enable the FSCS-ART dynamic insertion process, we modify the traditional VP-tree to support dynamic data. The simulation results
show that VPP-ART has a much lower time overhead compared to FSCS-ART, but also delivers similar (or better) failure-detection
effectiveness, especially in the higher dimensional input domains. According to statistical analyses, VPP-ART can improve on the FSCS-
ART failure-detection effectiveness by approximately 50% to 58%. VPP-ART also compares favorably with the KDFC-ART algorithms
(a series of enhanced ART algorithms based on the KD-tree). Our experiments also show that VPP-ART is more cost-effective than
FSCS-ART and KDFC-ART.

Index Terms—Software testing, adaptive random testing, approximate nearest neighbor, vantage point partitioning, VP-tree.
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1 INTRODUCTION

S OFTWARE testing is an important technique for eval-
uating and verifying the quality of the System Under

Test (SUT), and is an important part of the software life cy-
cle [1], [2]. Software testing involves executing the software,
aiming to find failures. It can be divided into four steps: (1)
definition of test objectives; (2) generation of test cases; (3)
execution of test cases; and (4) examination and verification
of test results. Each test case is selected from the set of all
possible inputs that constitute the input domain. When the
output or behavior of the SUT during the execution of test
case does not meet the expectation (as determined by the test
oracle [3], [4], [5]), the test is considered to fail, otherwise, it
passes.

Random Testing (RT) [6] is a simple and efficient black-box
testing method that generates test cases randomly within
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the input domain. RT has been used in a wide variety
of environments and systems, including: in a stochastic
scheduling algorithm for testing distributed systems [7]; for
testing GCC, LLVM and Intel C++ compilers [8]; and for
GUI testing [9]. Research into RT enhancement has also
been popular, with Dynamic Random Testing (DRT) [10],
[11], for example, improving the selection probability of sub-
domains with high failure-detection rates.

Because RT does not make use of any additional in-
formation beyond input parameter requirements, research
is ongoing into how to improve its testing effectiveness.
Adaptive Random Testing (ART) [12] is a family of RT-based
testing techniques that aims to improve on RT testing effec-
tiveness by more evenly spreading the test cases throughout
the input domain. One of the first, and still most popu-
lar, ART implementations is Fixed-Size-Candidate-Set ART
(FSCS-ART) [13]. Basically, for each next test case, FSCS-
ART randomly generates k candidate test cases, calculates
the distance between each candidate and each previously-
executed test case (that did not reveal any failure), and
selects the candidate furthest from them as the next test
case to execute. Many previous studies have demonstrated
the high effectiveness of FSCS-ART compared to RT [13],
[14], [15], [16], [17], [18]. However, as reported by Wu et
al. [19], although ART enhances RT, and is comparable to
combinatorial testing in 96% of scenarios, it can be 3.5 times
more computationally expensive than severely-constrained
combinatorial testing.
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Although ART is very effective, many problems and
challenges remain that need to be addressed [12]. One of
these problems relates to the time required by FSCS-ART
to select test cases, which can be much greater than the
execution time: This is referred to as the high computational
overhead problem. Many studies have investigated potential
performance improvements for ART algorithms, including:
a forgetting strategy [20] that reduces the number of dis-
tance calculations to previously-executed tests; an approach,
DF-FSCS-ART, that ignores executed test cases not in the
line of sight of a given candidate [21]; implementations
based on a K-Dimensional tree (KD-tree) structure, KDFC-
ART [22]; a Single-Instruction-Multiple-Data (SIMD) mecha-
nism [23] to calculate all pairwise distances for a single
distance calculation instruction; ART-DC [24], which uses
a divide-and-conquer strategy to generate the test cases from
the entire input domain; and DMART [25], an enhancement
of Mirror ART (MART) [26] based on dynamic partitioning,
that generates test cases using a specific ART algorithm in
half of the sub-domains, and then mirrors these test cases to
the other half of the sub-domains to generate the remaining
test cases.

As stated, a significant problem faced by FSCS-ART is
the heavy time overheads related to the large number of
distance calculations required to find the nearest executed
test cases for each candidate test case. Alleviating this prob-
lem will require a better way of identifying nearest executed
test cases. In this paper, we propose a new ART approach
using Vantage Point Partitioning (VPP-ART), to improve the
efficiency of FSCS-ART. VPP-ART uses a modified VP-
tree spatial partitioning structure to avoid redundant dis-
tance calculations, reducing the computational overheads
of FSCS-ART. An original vantage point tree (VP-tree) [27],
[28], [29] is a special kind of spatial partitioning tree that
divides the input space into hyperspheres. Using a VP-
tree, space can be divided into inner and outer regions
of the hypersphere, significantly reducing the number of
computations when querying nearest neighbors (NNs) for
a given query point. Therefore, vantage point partitioning
addresses the need for FSCS-ART time overhead reduction.
To evaluate VPP-ART, we conducted a series of simulations
and experiments on 22 subject programs, written in C++
and Java.

A standard VP-tree is only applicable to static data —
the points must be known before the VP-tree is constructed.

However, ART test case generation is a dynamic process: A
newly-generated test case tc depends on the information of
previously-executed test cases; if no failure is found by tc,
then tc should be saved in the VP-tree. This process requires
that the tree structure support dynamic data, especially
insert operations. Because the original VP-tree structure is
constructed based on distances between the vantage point
and other points, a worst-case scenario exists when a lower-
level node in the tree changes, causing upper-level nodes
to also (possibly) change, which may necessitate reconstruc-
tion of the entire tree. This problem can be addressed by
revising the original VP-tree structure to support dynamic
data.

The main contributions of this paper are:

1) We propose an improved VP-tree structure that can
support dynamic insertion. This tree structure can
identify an approximate NN that does not differ
much from the exact NN, reducing the time cost of
FSCS-ART. To the best of our knowledge, this is the
first paper to propose using vantage point partition-
ing to address the ART time overheads problem.

2) We report on simulations and experiments investi-
gating VPP-ART, from the perspectives of testing
effectiveness and efficiency.

3) Compared with FSCS-ART, our approach signifi-
cantly reduces computational overheads while de-
livering comparable, or better, failure-detection ef-
fectiveness. Compared with KDFC-ART algorithms,
our approach has similar or better performance, with
reduced time costs in high dimensions.

The rest of this paper is organized as follows: Section 2
introduces some background information about failure pat-
terns, the original FSCS-ART method, and vantage point
partitioning. Section 3 presents a framework to enhance
FSCS-ART, and introduces VPP-ART. Section 4 describes
the simulations and experiments, the results and analyses
of which are presented in Section 5. Section 6 discusses the
potential threats to the validity of our studies. Related work
is discussed in Section 7. Finally, we conclude the paper and
discuss some potential future work in Section 8.

2 BACKGROUND

In this section, we briefly present some background infor-
mation about failure patterns and Fixed-Size-Candidate-Set

(a) Block pattern (b) Strip pattern (c) Point pattern

Fig. 1. An illustration of three types of failure patterns in 2-dimensional input domains.
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ART. We also introduce some preliminary concepts about
vantage point partitioning.

2.1 Failure Regions

The inputs to a faulty program can be divided into two
distinct types: failure-causing inputs (those inputs which,
when executed, cause a test to fail); and non-failure-causing
inputs (inputs which do not reveal a failure). The program’s
failure region consists of the set of all its failure-causing
inputs. In software testing, knowledge of a failure region
can be an extremely helpful guide for test case generation
and selection. In general, two basic features are used to
describe the failure region: the failure pattern, which is the
distributions, shape, and locations of failure-causing inputs
in the input domain; and the failure rate, denoted θ, which
is the proportion of failure-causing to all possible inputs in
the entire input domain.

A number of studies [30], [31], [32], [33], [34] have
reported that failure-causing inputs tend to cluster into
contiguous regions. Chan et al. [35] classified failure pat-
terns into three types: block pattern; strip pattern; and point
pattern. Figure 1 shows these three main failure patterns in
2-dimensional input domains, where the bounding boxes
represent the input domain boundaries, and the shaded
areas represent the failure regions (containing the failure-
causing inputs). Chan et al. [35] also suggested that block
and strip patterns are more commonly found than point
patterns.

2.2 FSCS-ART: Fixed-Size-Candidate-Set ART

ART is a family of testing methods that improve over RT
effectiveness by distributing the test cases more evenly
throughout the input domain. One of the first, and still the
most popular, ART implementations is Fixed-Size-Candidate-
Set ART (FSCS-ART) [13]. Many studies have shown FSCS-
ART to be more effective than RT, in terms of failure-
detection effectiveness [13], [14], [15], [16], test case distri-
bution [17], and code coverage [18].

FSCS-ART [13] makes use of the concept of distance to
evaluate similarities among test cases. It maintains two sets
of test cases, the candidate set C and the executed set E.
C stores k test cases that are randomly generated from the
input domain, and E stores the test cases that have already

been executed (but without causing any failure). Previous
studies [13] have recommended a default value of 10 for k.

The FSCS-ART test case generation process can be de-
scribed as follows: The first test case, e1, is randomly gener-
ated from the input domain, and executed. Assuming that
e1 does not reveal a failure, it is then stored in E. From
now on, each time a new test case is needed, k test cases
are randomly generated, and stored in the candidate set
C . The best element from C is selected as the next test
case to be executed — with FSCS-ART, best is defined
as being farthest from the previously-executed test cases
(stored in E). As testing progresses (without failures being
revealed), E grows larger. Formally, given a nonempty set
of executed test cases E ({e1, e2, · · · , e|E|}), and a fixed
number k of candidate test cases inC ({c1, c2, · · · , ck}), then
the requirement for selecting the next (best) test case cbest is:

min
∀ei∈E,cj∈C

dist(cj , ei) ≤ min
∀ei∈E

dist(cbest, ei), (1)

where dist(x, y) is the distance between test cases x and
y (typically the Euclidean distance for numerical input do-
mains).

Figure 2 shows an example of FSCS-ART generating test
cases in a 2-dimensional input domain. In the first step of
the example (Figure 2(a)), there are three executed test cases,
e1, e2, e3 (denoted by small dots); and two candidate test
cases, c1, c2 (denoted by small triangles). In order to select
the next test case, the distance between each candidate test
case and each executed test case is calculated, and the NN
to each candidate is identified. As shown in Figure 2(b),
e1 is the NN of c1, and e3 is the NN of c2. The candidate
with the greatest distance to its NN — c2 in Figure 2(c) — is
selected as the next test case, and executed. If no termination
condition is satisfied (e.g., no failure is revealed), then c2 is
stored in E as the fourth executed test case, e4, as shown
in Figure 2(d). This processes continues until a termination
condition is satisfied.

A challenge for the FSCS-ART algorithm is its high com-
putational overheads: Each iteration of the FSCS-ART process
requires distance calculations between each candidate test
case in C and all the previously-executed test cases. The
time complexity of FSCS-ART is O(kN2), where k is the
size of C and N is the number of previously-executed test
cases [12]. In order to detect a failure in a program, FSCS-
ART could take an enormous amount of time to generate the

e1

e2

e3

c2

c1

(a)

e1

e2

e3

c2

c1

(b)

e1

e2

e3

c2

(c)

e1

e2

e3

e4

(d)

Fig. 2. Example illustration of FSCS-ART generating test cases in a 2-dimensional input domain (from Huang et al. [12]).
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D2

μ 

(vp, μ) 
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σ σ 

(a) Binary VP-tree

vp
D0

D1

μ0 

(vp, {μ0 , μ1, … , με-1}) 

D1D0

Dε-1 

…

μ1 με-1 

Dε-1 …

…

…

(b) ε-ary VP-tree

Fig. 3. VP-tree partitioning strategy in a 2-dimensional input domain.

required number of test cases. When the program’s failure
rate is very small, the FSCS-ART time cost will be very
high. A key to reducing the computational overheads is
to optimize the search for candidates’ nearest executed test
cases. Therefore, adoption of the highly-efficient NN Search
[36] strategies should enable a reduction in the search time.

2.3 Vantage Point Partitioning

Given a point set in a d-dimensional vector space, Vantage
Point Partitioning (VPP) [27] makes use of the relative dis-
tances between the points and a particular vantage point to
enable a very efficient NN search.

VPP can be organized into a tree structure, a Vantage
Point tree (VP-tree) [27], [28], [29]. The VP-tree can re-
duce unnecessary computations when solving NN search
problems [36], and has been used in various contexts, in-
cluding: computational biology [37]; image processing [38];
databases [39], [40]; and computer vision [41]. We have
applied some modifications to the original VPP algorithm
to enable its use with ART. Our research is, to the best of
our knowledge, the first time VP-trees have been applied to
test case generation in the field of ART.

2.3.1 VP-tree Construction Process
To illustrate the VP-tree construction process, we use an
example of binary (2-ary) partitioning. This can easily be
generalized to ε-ary cases, where ε > 2 [42].

Generally speaking, a binary VP-tree is constructed by
splitting a data set into two subsets using a distance partition-
ing criterion and a vantage point. The vantage point is stored
in the root node of the binary VP-tree, and the two subsets
are organized into the left and right sub-trees of the root
node. Then, the sub-trees are both processed recursively,
constructing in each the next level sub-tree according to
newly-selected vantage points. This continues until each

node contains only one data point, and the construction
of the tree is completed. Formally, given a set D of n data
points, a point vp is randomly chosen as the vantage point.
Next, the distances between vp and other points in D are
calculated: S =

{
dist(p, vp)|p ∈ D − {vp}

}
. The entire data

set can be partitioned into two subsets using the median
distance value µ in S : As shown in Figure 3(a), D1 refers to
the points within a distance of µ from vp; and D2 refers to
the points that are more than a distance of µ from vp.

The construction process for an ε-ary VP-tree when ε >
2, is similar to the binary tree case: For a given set of points
(D), a vantage point vp is again randomly chosen, and the
distances between vp and all points in D are calculated and
stored in ascending order. The differences compared with
the binary case are: (1) the data set is not partitioned into
only two subsets, but into ε approximately-equal subsets,
and (2) vp is stored in the first subset (in this paper). As
shown in Figure 3(b), µi (i = 1, 2, · · · , ε − 1) denote the
boundary distance values that split Di−1 and Di. Formally,
for a sequence of distances, stored in ascending order, S ={
dist(aj , vp)|aj ∈ D, j = 0, 1, · · · , |D|−1

}
, where |D| is the
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(a) Binary VP-tree partitioning
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(b) ε-ary VP-tree partitioning

Fig. 4. Example comparison between binary and ε-ary VP-tree partition-
ing in a 2-dimensional input domain.
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number of elements in D, the boundary distance values µi
can be calculated as follows:

µi =


0, i = 0

S
(
i×
⌊
|D|/ε

⌋
−1
)
+S
(
i×
⌊
|D|/ε

⌋)
2 , i ∈ [1, ε− 1]

(2)

where S(j) represents the j-th ordered element in S (j =
0, 1, · · · , |D| − 1), and

⌊
|D|/ε

⌋
indicates the rounding down

integer |D|/ε. Therefore, for each point p in Di, the value of
dist(p, vp) is between µi and µi+1.

To illustrate the VP-tree construction process, consider a
set of data points D = {a, b, c, d, e, f, g} in a 2-dimensional
vector space. The binary VPP process is illustrated in Fig-
ure 4(a): (1) Point e is randomly selected as the vantage
point; (2) the distances between e and all other points are
calculated, and stored in S =

{
dist(p, e)|p ∈ D − {e}

}
= {1.414, 2.236, 3.606, 5.099, 5.385, 5.657}; (3) the median
value in S is calculated — µ = (3.606 + 5.099)/2 = 4.3525,
in this example; (4) D1 = {c, b, a} and D2 = {g, d, f} are
constructed; (5) the points in D1 and D2 are recursively or-
ganized, according to the preceding steps, until each subset
contains only one data point. The corresponding binary VP-
tree structure is shown in Figure 5(a).

The ε-ary case is illustrated in Figure 4(b), with the
final ε-ary VP-tree structure shown in Figure 5(b), where
ε = 3. Similar to the binary case: (1) Point e is randomly
selected as the vantage point; (2) the distances between
e and all points are calculated, S =

{
dist(p, e)|p ∈ D

}
= {0.000, 1.414, 2.236, 3.606, 5.099, 5.385, 5.657}; (3) three
boundary values are defined —

µ0 = 0.000,

µ1 =
S
(⌊

7/3
⌋
× 1− 1

)
+ S

(⌊
7/3
⌋
× 1
)

2

=
S(1) + S(2)

2
=

1.414 + 2.236

2
= 1.825,

µ2 =
S
(⌊

7/3
⌋
× 2− 1

)
+ S

(⌊
7/3
⌋
× 2
)

2

=
S(3) + S(4)

2
=

3.606 + 5.099

2
= 4.353,

partitioning D into three approximately-equally-sized sub-
sets; (4) the steps above are repeated in each subset.

2.3.2 Nearest Neighbor Search in a VP-tree
This section describes the algorithm for an NN search in a
VP-tree, which involves identifying the nearest neighboring
point of a query point q with the requirement that the
maximum distance between q and the point be less than a
specific threshold σ. This means that if the distance between
q and its neighbor is greater than σ, then this cannot be
the NN. If dist(q, vp) is the distance between the query
point q and the vantage point vp, then the algorithm focuses
on finding the NN of q within the range dist(q, vp) ± σ.
With these requirements, the search for the NN of q in a
binary VP-tree only needs to explore both D1 and D2 if q
is in the range of [µ − σ, µ + σ] (as shown in Figure 3(a))
— otherwise, only one subset needs to be searched, which
effectively prunes one half of the input space. The approach
is based on the principles of triangular inequality. Formally,

e (4, 3) μ = 4.3525

c (5, 2) d (6, 8) 

b (3, 5) a (1, 1) f (8, 7) g (9, 4) 

μ = 3.8645 μ = 3.618

(a) Binary VP-tree structure

e(4, 3) 

μ0 = 0.000

e (4, 3) 

b (3, 5) 

μ1 = 1.825 μ2 = 4.353

c (5, 2) 

a (1, 1)  

g (9, 4)

d (6, 8)

f  (8, 7)  

(b) ε-ary VP-tree structure

Fig. 5. Example of the comparison between binary VP-tree structure and
ε-ary VP-tree structure in a 2-dimensional input domain.

if dist(q, vp) ≤ µ − σ, for p ∈ D2, the distance between p
and q is lower-bounded by σ [29]:

dist(p, q) ≥
∣∣∣∣∣dist(p, vp)∣∣− ∣∣dist(q, vp)∣∣∣∣∣

≥
∣∣∣∣∣dist(p, vp)∣∣− (µ− σ)

∣∣∣
> |µ− µ+ σ|
= σ,

(3)

therefore, the subset D2 can be ignored. Similarly, if
dist(q, vp) > µ + σ, for p ∈ D1, then D1 can be ignored.
For the ε-ary cases, the system needs to explore Di if:

µi − σ < d(q, vp) ≤ µi+1 + σ, (4)

for i = 0, 1, · · · , ε − 2 (the special case of i = ε − 1 will
be discussed in Section 3.2.3): It is also based on triangular
inequality, and can be derived in a similar way to the binary
case.

3 VPP-ART: ART BASED ON VANTAGE POINT
PARTITIONING

In this section, we present our proposed ART approach,
Vantage Point Partitioning ART (VPP-ART).

3.1 Framework
A main challenge for FSCS-ART lies in the high time cost
in generating test cases. In this paper, we combine vantage
point partitioning with the original FSCS-ART to improve
the efficiency, mainly by organizing the set of executed test
cases into a new storage structure. As noted, ART requires
that the data structure used to store the executed test cases
be able support dynamic insertion.

The entire VPP-ART approach is similar to that of FSCS-
ART. (1) Initially, a test case is randomly generated within
the input domain. This test case is used to execute the SUT,
and, if no testing termination condition is met, then this
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(1)  Generate test cases in the input domain

…
(3)  Construct the modified VP-tree structure(2)  Partition the input domain using VPP

(4)  Insert test cases into the modified VP-tree

…
(5)  Promote a leaf node into a common node

… …
(6) Search for the nearest neighbor test cases in

 the modified VP-tree

…

Fig. 6. The VPP-ART framework, with six main stages.

test case is added to the modified VP-tree. (2) Thereafter, k
candidate test cases are randomly generated in each round,
and (temporarily) stored in the candidate test case set C .
(3) The best candidate in C is determined using a search
strategy to find all candidates’ NNs in the modified VP-
tree, with the candidate whose minimum distance is greatest
then selected (Equation 1).

In general, typical testing termination conditions in-
clude: (1) at least one failure has been detected in the pro-
gram under test; and (2) the number of executed test cases
has reached some predetermined threshold value. When the
termination condition is satisfied, the entire testing process
ends.

The framework is shown in Figure 6. In the figure,
the small squares represent the vantage points, the dots
represent executed test cases, and the star represents a
newly-generated test case. The framework consists of six
main stages: (1) Generate test cases in the input domain;
(2) Partition the input domain using VPP; (3) Construct
the modified VP-tree structure; (4) Insert test cases into the
modified VP-tree; (5) Promote a leaf node into a common
node; and (6) Search for the NN test cases in the modified
VP-tree.

Stage 1: The test cases are generated in the same way
as in FSCS-ART. The candidate test case set (C) contains
k test cases randomly generated in the input domain. The
executed test cases are stored in a modified VP-tree. Similar
to FSCS-ART, the Euclidean distance is used to measure the
similarity (distance) between test cases.

Stage 2: As the testing process proceeds, VPP is used to
partition the input domain into different concentric hyper-
sphere sub-domains, bounded by different vantage points.
Each sub-domain contains far fewer test cases than the
number of executed test cases in the entire input domain.

Stage 3: A modified VP-tree structure that supports
dynamic data is used to store executed test cases, and to

support the NNs searches.
Stage 4: As VPP-ART proceeds, the candidate test cases

(C) are generated randomly within the input domain, and
the best candidate is identified and applied to the SUT. If an
SUT failure is not revealed (and no other testing termination
criteria are met), then the test case is added to the modified
VP-tree. As the testing continues, the number of executed
test cases in the VP-tree increases.

Stage 5: Test cases are only stored in leaf nodes of the
modified VP-tree. During test case insertion, the number
of test cases in a leaf node may reach the storage capacity,
causing a promotion operation to be performed, which
expands the storage capacity of the leaf node. Each round of
test case insertion only needs to be executed, at most, once.
After at most one promotion operation, a suitable leaf node
(with spare capacity) will be identified and used to store the
current test case.

Stage 6: The executed NN for each candidate test case
is identified using the ε-ary VP-tree, with a series of query
thresholds σ used to perform the searches. Starting from the
root node of the modified VP-tree, the distances to vantage
test cases are compared, layer by layer, until the leaf node
containing the NN is identified.

3.2 Algorithm
The original VP-tree structure is constructed according to
the distance criterion. The top-down partitioning strategy
makes the management of VP-tree updates complicated
— the partitioning of upper-level nodes has an impact
on the partitioning of lower-level nodes [42]. In a worst-
case scenario, reconstruction of the entire tree structure
may be required. The VP-tree update operation remains
a problem requiring further study. Fu et al. [42] proposed
a dynamic VP-tree structure, but this strategy involving
upward backtracking and node-splitting/merging, which
may incur significant time overheads.
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Algorithm 1: VPP-ART
Inputs:

The candidate set size, k;
The number of dimensions in the SUT input domain, d;
The capacity of a leaf node, λ;
The partitioning parameter, ε;

Output:
The VP-tree with executed test cases, T ;

1: Set T ← {}; /* Initially, VP-tree for storing the executed test
cases is empty. */

2: Set C ← {}; /* Initially, candidate test case set C, for storing k
candidates in each round, is empty. */

3: Set mindist[k]←∞; /* Initially, the minimum distance between
each candidate test case and T is set to infinity. */

4: Randomly generate a test case tc from the input domain
5: Execute tc;
6: while (No termination condition is satisfied)
7: InsertTCIntoVPtree(tc, λ, ε, node);
8: Randomly generate k candidate test cases c1, c2, · · · , ck

from the input domain, then set C ← {c1, c2, · · · , ck};
9: for (each candidate cj ∈ C, where j = 1, 2, · · · , k)

10: Set mindist[j]← GetMinDistFromVPtree(cj , node);
11: end for
12: Find cbest from c1, c2, · · · , ck having the maximum

distance from its nearest test case;
13: Set tc← cbest and execute tc;
14: end while
15: return T ;

In this paper, we (1) introduce a modified VP-tree structure
in which to store the executed FSCS-ART test cases; and (2)
propose an insertion approach for this modified structure, the
pseudo-code for which is in Algorithm 1.

3.2.1 Modified VPP-ART VP-tree structure

Figure 7 shows the modified VP-tree structure, where nodes
are divided into leaf nodes and common nodes, denoted by
circles and squares, respectively. Leaf nodes contain only test
cases, the maximum number of which that can be stored in a
single leaf node is denoted by λ. Common nodes contain no
test cases, but do contain the vantage test case information,
several boundary distance values with child pointers, and
an NN threshold.

The partitioning parameter, ε, specifies the number of
subsets per division. This determines the number of child
pointers in each common node (c0, c1, · · · , cε−1 in Figure 7).
The child pointers point to nodes in the next level of the tree.
The same ε value is used for each partition, with this value
being set by the tester.

Vantage test cases are at the core of the structure, and
their choice, in each level of the VP-tree, plays an important
role in the performance of the algorithm. An ideal vantage
test case should have a uniform distribution of distances
between it and other test cases. This minimizes the number
of test cases in concentric regions, thereby reducing the
probability that all sub-trees must be explored. However,
finding the ideal vantage test case for a given test case
set can require very heavy computational costs. In practice,
therefore, a test case is randomly selected from the λ test
cases stored in a leaf node, yielding an approximate (instead
of optimal) vantage test case. This selection method has been
shown to be effective, experimentally.

3.2.2 VPP-ART Test Case Insertion Algorithm

The VP-tree update operations, especially insertion, have a
crucial role in the effectiveness of VPP-ART. In the follow-
ing, we focus on the VPP-ART test case storage process, and
propose insert and node promotion strategies to make this
process more dynamic.

Insertion: As testing progresses, it becomes necessary to
insert newly-generated test cases into the modified VP-tree.
For an executed test case e, if the current node is a leaf
node, then the leaf node is said to be the quasi-belonging-
node for e (denoted e-QBN). If the number of test cases in
e-QBN is less than the maximum storage capacity (α < λ),
then e is inserted into e-QBN, and e-QBN is said to be
the belonging-node for e (denoted e-BN). If α = λ, then it
is necessary to promote (reconstruct) e-QBN to find e-BN.
If the current node is a common node, then dist(e, vp) is
calculated (where vp is the vantage test case in this node),
and compared with the boundary values µi to determine
which child pointer should be followed to find e-BN.

Promotion: This step is only performed when α = λ,
which means that it is necessary to transform e-QBN from
a leaf node into a common node. A test case ti (0 < i ≤ λ)
is randomly selected from the test cases stored in e-QBN
as the vantage test case for this node; the remaining test
cases and e are reorganized into child nodes (new leaf
nodes) of this new common node; and e is assigned to
its new e-BN. This promotion process is executed, at most,
one time when inserting e: After (at most) one promotion
process, VPP-ART will find an e-BN in which to store e. The
Insertion/Promotion pseudo-code is listed in Algorithm 2.

3.2.3 Approximate Nearest Neighbor Search in VPP-ART

In this section, the approach to calculate σ is discussed, and
the VPP-ART approximate NN search process is explained.

Nearest neighbor threshold: As discussed in Sec-
tion 2.3.2, the threshold value σ is the key to the search
algorithm. It can be used to reduce the NN search effort
such that the NNs of a query point are always very close
to the query point itself — in other words, the smallest
possible value of σ can be used. Chiueh et al. [29] proposed a

…

…

…

common node

leaf node

leaf node structure

tc0 tc1

up to λ test cases

common node structure

…

vp σ μ0 c0 cε-1  …μ1 c1 

ε child pointers
vantage
test case

nearest neighbor 
threshold

…

tcλ-1

με-1

Fig. 7. The modified VPP-ART VP-tree structure.
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Algorithm 2: InsertTCIntoVPtree(tc, λ, ε, node)
Inputs:

The executed test case need to insert into the tree, tc;
The capacity of a leaf node, λ;
The number of subsets partition, ε;
A node of the VP-tree, node;

Output:
Success flag, FALSE or TRUE;

1: if (node is tc-QBN (a leaf node))
2: if (|tc-QBN| < λ)
3: Insert tc into tc-QBN;
4: Set tc-BN← tc-QBN;
5: return TRUE;
6: else if (|tc-QBN| = λ) /* Node promotion strategy */
7: Randomly select a test case from tc-QBN, as the vantage

test case, vp;
8: for (each test case p ∈ tc-QBN ∪{tc})
9: Calculate dist(p, vp);

10: Sort the test cases in ascending order according to the
distance values;

11: end for
12: Calculate the boundary distance values µi according to

Equation 2;
13: Calculate σ of current node, using Equation 6;
14: Partition the input domain into ε sub-domains;

/* Each sub-domain contains approximately the same
number of test cases */

15: Reorganize all the test cases to the children nodes of this
new common node;

16: if (allocate the new tc-BN)
17: return TRUE;
18: end if
19: end if
20: else
21: Calculate dist(vp, tc);
22: if (µi < dist(vp, tc) ≤ µi+1 where 0 ≤ i ≤ ε− 2)
23: InsertTCIntoVPtree(tc, λ, ε, node.i-th child node);
24: end if
25: if (dist(vp, tc) > µε−1)
26: InsertTCIntoVPtree(tc, node.(ε− 1)-th child node);
27: end if
28: end if

minimum possible value of σ, which we adopted and mod-
ified to match our partitioning strategy. Upper (u[i]) and
lower (l[i]) bounds exist for distances in the i-th subset Di
of the partitioned input domain: u[i] is the distance from the
farthest test case in the current subset to its corresponding
vantage test case, and l[i] is the distance from the nearest
test case. When traversing the VP-tree, it is not necessary to
explore the nearest executed test cases of a candidate c in
Di if dist(c, vp) > u[i] + σ, or dist(c, vp) < l[i] − σ. This
use of σ guarantees that dist(c, vp) will fall within at least
one of the ranges in

[
l[i] − σ, u[i] + σ

]
: This means that the

search operation can be performed (and completed) in one
sub-domain of the entire input domain. For each common
node, the upper and lower bounds of ε partitioned subsets
are computed as:

σi =
l[i]− u[i− 1]

2
, (5)

and the default value of σ (for that node) is chosen to be the
maximum value from (ε− 1) values, as determined by:

σ =
ε−1
max
i=1

σi. (6)

Based on the relationship among σ, µ, and dist(c, vp),
VPP-ART can start from the root node of the modified VP-

Algorithm 3: GetMinDistFromVPtree(cj , node)
Inputs:

A candidate test case, cj ;
A node of the VP-tree, node;

Output:
The minimum distance between cj and E, mindist[j];

1: mindist[j]←∞;
2: if (node is leaf node)
3: for (each test case p in node)
4: if (dist(cj , p) < mindist[j])
5: mindist[j]← dist(cj , p);
6: end if
7: end for
8: return mindist[j];
9: else

10: Calculate dist(cj , vp);
11: for (0 ≤ i ≤ ε− 2))
12: if (µi − σ < dist(vp, cj) ≤ µi+1 + σ)
13: Get σ of current common node;
14: GetMinDistFromVPtree(cj , node.i-th child node);
15: end if
16: end for
17: if (dist(cj , vp) > µε−1)
18: GetMinDistFromVPtree(cj , node.(ε− 1)-th child node);
19: end if
20: end if

tree and recursively search downwards until it finds the
leaf node that contains the nearest executed test case of the
current candidate.

Combined with the partitioning boundary values in Fig-
ure 3(b), the last sub-domain (Dε−1) defined in Equation 4
is not covered by the search process. The reason for this is
that the possible values of i can only be from 0 to ε − 2.
When dist(q, vp) > µε−1, the NN search process cannot be
executed in Dε−1. To solve this, Dε−1 is treated separately:
If dist(q, vp) > µε−1, then an exhaustive search in Dε−1 is
conducted to obtain the query point q, and to get the NN
distance in Dε−1. This will mean that the NN of q — which
located at the boundary of Dε−2 and Dε−1 — may be in the
Dε−2, while the VPP-ART only searches in the Dε−1, and
finds an approximate NN, rather than an exact NN.

Approximate Nearest Neighbor Search: The NN obtained
by VPP-ART could be an approximate NN, because this
search process is likely to find an inaccurate neighbor in
the leaf node that does not contain an exact NN, which can
be explained as follows: (1) Some specific sub-domains need
special consideration, and the entire search may be carried
out in these sub-domains, which may not contain the exact
NNs. Such as the last sub-domains (Dε−1) after each round
of partitioning. (2) Because the boundary distance µ and
the NN threshold σ of each node are calculated according
to the fixed number of test cases, these two values of each
node will be affected when a new point is inserted. To a
certain extent, VPP-ART deliberately ignores the impact of
the insertion process on these two values. Specifically, when
a new point is inserted, VPP-ART ignores the change of the
two values of the QBN’s upper-level nodes — it does not
update their µ and σ values. This may cause the NN of
the query point to no longer be in the original sub-domain,
which reduces the accuracy of the search algorithm.

Although VPP-ART adopts an approximate NN search,
it still has advantages in some cases: (1) For an exact NN, an
exhaustive search will be executed — the distances between
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(a) Insertion (b) Promotion (c) Search

Fig. 8. Illustration of VPP-ART insertion, promotion, and search strategies in a 2-dimensional input domain.

the executed test cases and the candidate will all be calcu-
lated, and the closest executed test case will be identified
as the NN. When the number of test cases is very large, or
the dimensionality is relatively high, the search efficiency
decreases sharply. However, VPP-ART can obtain a better
efficiency by using an approximate search: VPP-ART can
identify an acceptable NN using fewer distance calculations
when searching for an approximate NN. (2) An approximate
NN search process, by not being limited to identifying the
exact NN, can improve the search efficiency at an acceptable
cost in the accuracy. When searching some sub-domains,
the accuracy of some NNs may be lost, but VPP-ART may
achieve similar, or even better, results than other exact NN-
based ART algorithms. The difference between approximate
NN and exact NN can be very small, enabling VPP-ART to
have comparable failure-detection effectiveness. (3) Using
the characteristic that test cases closer to the vantage point
are more likely to be divided into the same sub-domain.
When the number of test cases increases, test cases with
greater similarity will aggregate together. Using the VP-tree
structure, VPP-ART, according to the distance relationship
between candidate test cases and vantages points, will
search the possible sub-domains (leaf nodes in the VP-tree)
of executed test cases with greater similarity to candidate
test cases.

The pseudo-code for the search process is listed in Algo-
rithm 3.

3.2.4 Examples of VPP-ART operations
Figure 8 shows examples of insertion, promotion, and
searching with VPP-ART, in a 2-dimensional input domain.

The corresponding VP-tree structures are shown in Figure 9,
where λ = 3, ε = 3.

Insertion: Test case h is a newly-generated test case for
which no software failure is found and needs to be inserted
into the VP-tree (Figure 8(a)). At this point, the third leaf
node of the tree defined by the vantage test case d still has
space for the test case, so it is inserted directly (Figure 9(a)).

Promotion: Test case i is the newly-generated test case
that has revealed no software failure. It needs to be inserted
into the VP-tree (Figure 8(b)). The third leaf node of the
VP-tree defined by the vantage test case d has no space
to accommodate i, so the promotion operation is executed.
During promotion, a is randomly selected as the vantage
test case from a, c, and h). The third sub-domain defined
by the vantage test case d is redistributed, and the four
test cases are reorganized to three leaf nodes according to
the distance values in S =

{
dist(i, a), dist(c, a), dist(h, a)

}
.

Finally, test case i is then inserted into the first node of a
(Figure 9(b)).

Search: For queries with nearest executed test cases, a
candidate test case tcq needs to find the NN in the input
domain (Figure 8(c)). Starting from the root of the tree, the
leaf nodes containing the NNs are searched, layer by layer,
based on the partitioning radius µ, the query threshold σ,
and the distance relations defined in Section 2.3.2. In this
example, if the second leaf node defined by the vantage
point a contains the NN, and this leaf node contains only
c, then c is considered the NN for tcq (Figure 9(c)).

(a) Insert into a leaf node (b) Promote a leaf node (c) Search for the NN in the tree

Fig. 9. Illustration of insertion, promotion, and searching strategies in the modified VP-tree (in a 2-dimensional input domain). These modified
VP-tree structures correspond to Figure 8.
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4 EXPERIMENTAL STUDIES

This section introduces the design and settings of the simu-
lations and experiments that we conducted to evaluate VPP-
ART.

4.1 Research Questions
The proposed VPP-ART algorithm aims to reduce the time
overheads of the original FSCS-ART algorithm, thus, mea-
surement and examination of the test case generation time is
necessary. VPP-ART is also expected to maintain the FSCS-
ART failure-detection effectiveness, which requires evalua-
tion and verification in various scenarios. The experimental
studies were guided by the following research questions:

RQ1 How well does VPP-ART perform, in terms of software
failure-detection, compared with other ART algorithms?

RQ2 Compared with FSCS-ART and KDFC-ART, to what
extent can VPP-ART reduce computational overheads?

4.2 Variables and Evaluation Metrics
This section describes the independent and dependent vari-
ables in our research. The evaluation metrics used to ex-
amine the effectiveness and efficiency of the different ART
algorithms are also introduced.

4.2.1 Independent Variable
The independent variable in the experimental study are the
different ART algorithms used to generate test cases. VPP-
ART, the new algorithm proposed in this paper, is compared
with FSCS-ART [13] and KDFC-ART [22].

VPP-ART is an enhanced version of FSCS-ART, and we
want to know the effects of using VPP on FSCS-ART. The
KD-tree is an efficient spatial indexing mechanism. Mao et
al. [22] introduced KD-trees into ART, and proposed three
KDFC-ART algorithms: Naive-KDFC; SemiBal-KDFC; and
LimBal-KDFC. Naive-KDFC and SemiBal-KDFC search for
the exact NN of candidate test cases, and thus their gener-
ated test cases are the same as those generated by FSCS-
ART. LimBal-KDFC uses a limited backtracking method,
identifying an approximate NN, similar to VPP-ART. The
simulations and experiments sought to examine two things:
(1) the impact of the difference between exact and approxi-
mate NN searching on ART effectiveness and efficiency; and
(2) the differences in effectiveness and efficiency between
the two approximate NN-search-based ART algorithms,
VPP-ART and LimBal-KDFC.

4.2.2 Dependent Variables
The dependent variables in our studies are the evaluation
metrics, for both effectiveness and efficiency.

Effectiveness Metrics The F-measure [14] gives the num-
ber of test case executions before detecting the first failure in
the SUT, and has been widely used in ART studies [12]. We
also used the F-measure as an evaluation metric in our study,
with FRT and FART denoting the F-measure when conducting
RT and ART, respectively. Theoretically, FRT equals to 1/θ
(where θ is the SUT failure rate). The ART F-ratio [14]
denotes the ratio of FART to FRT, showing the improvement
of ART over RT: A lower ART F-ratio indicates better ART
performance.

Efficiency Metrics There are several measurements com-
monly taken when examining the efficiency of a testing
methodology, including: generation time; execution time; and
F-time [12] [43]. The generation time refers to the cost of
generating k test cases; the execution time refers to the time
cost of executing the SUT with k test cases; and the F-
time [43] is defined as the entire time cost for finding the
first failure in the SUT. Generally speaking, the test case
generation time has a great impact on the entire test cost. For
the simulation studies, we recorded the average generation
time to generate a certain number of test cases.

4.3 Experimental Environment
The simulations and experiments were conducted using a
16-GB RAM laptop PC with an i7 CPU, running at 2.20 GHz,
running under the 64-bit Windows 10 operating system. All
the algorithms under study were implemented in Java with
JDK 1.8. The IDEs used were Eclipse (Version 4.15.0) and
Microsoft Visual Studio 2019.

4.4 Data Collection and Statistical Analysis
The F-measure and F-time values were calculated by run-
ning each of the ART algorithms until a failure was de-
tected. In the simulations, a failure was considered to be
detected whenever a test case was generated from within
a simulated failure region. In the experiments, the actual
output was compared with the expected output (the test
oracle [3], [4], [5]): A difference indicated a failure being
detected. To minimize the error caused by randomness, and
to provide confidence in the comparison, each experiment
was run 3000 times, with the average being recorded.

When analyzing the experimental data, the p-value (prob-
ability value) and effect size for the different ART algorithms
were calculated [44], [45], [46]. These can describe any
significant differences or improvements between the two
compared methods [47]. The unpaired two-tailed Mann-
Whitney-Wilcoxon test [46] was used to verify whether or
not there was a significant differences among the investi-
gated ART algorithms. A p-value less than 0.05 indicates
a significant difference between the two algorithms [48].
The effect size [46] shows the possibility that one method
is better than another: We used the non-parametric Vargha
and Delaney effect size [49]. For two methods, A and B, an
effect size between A and B of 0.50 means that A and B are
equivalent; if the value is greater than 0.50, A is better than
method B; and if the value is less than 0.50, B is better than
method A.

4.5 Simulations and Experiments
The original FSCS-ART and KDFC-ART algorithms were
compared with our proposed algorithm, VPP-ART, through
a series of simulations and experiments [12]. The simu-
lations involved simulated software faults, while the ex-
periments used real-life subject programs altered through
mutation analysis techniques [50].

4.5.1 Simulations Design
The simulations used a d-dimensional hypercube as the pro-
gram input domain (D). D was set as

{
(x1, x2, · · · , xd)|0.0
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TABLE 1
22 subject programs used in experiments

No. Program Dimension
(d)

Input domain Size
(LOC)

Mutant Operators Total
FaultsFrom To

1 airy 1 -5000 5000 43 CR 1
2 bessj0 1 -300000 300000 28 AOR, ROR, SVR, CR 5
3 erfcc 1 -30000 30000 14 AOR, ROR, SVR, CR 4
4 probks 1 -50000 50000 22 AOR, ROR, SVR, CR 4
5 tanh 1 -500 500 18 AOR, ROR, SVR, CR 4
6 bessj 2 (2, -1000) (300, 15000) 99 AOR, ROR, CR 4
7 gammq 2 (0, 0) (1700, 40) 106 ROR, CR 4
8 sncndn 2 (-5000, -5000) (5000, 5000) 64 ROR, CR 5
9 golden 3 (-100, -100, -100) (60, 60, 60) 80 ROR, SVR, CR 5
10 plgndr 3 (10, 0, 0) (500, 11, 1) 36 AOR, ROR, CR 5
11 cel 4 (0.001, 0.001, 0.001, 0.001) (1, 300, 10000, 1000) 49 AOR, ROR, CR 3
12 el2 4 (0, 0, 0, 0) (250, 250, 250, 250) 78 AOR, ROR, SVR, CR 9
13 calDay 5 (1, 1, 1, 1, 1800) (12, 31, 12, 31, 2200) 37 SDL 1
14 complex 6 (-20, -20, -20, -20, -20, -20) (20, 20, 20, 20, 20, 20) 68 SVR 1
15 pntLinePos 6 (-25, -25, -25, -25, -25, -25) (25, 25, 25, 25, 25, 25) 23 CR 1
16 triangle 6 (-25, -25, -25, -25, -25, -25) (25, 25, 25, 25, 25, 25) 21 CR 1
17 line 8 (-10, -10, -10, -10, -10, -10, -10, -10) (10, 10, 10, 10, 10, 10, 10, 10) 86 ROR 1
18 pntTrianglePos 8 (-10, -10, -10, -10, -10, -10, -10, -10) (10, 10, 10, 10, 10, 10, 10, 10) 68 CR 1
19 twoLinesPos 8 (-15, -15, -15, -15, -15, -15, -15, -15) (15, 15, 15, 15, 15, 15, 15, 15) 28 CR 1
20 nearestDistance 10 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (15, 15, 15, 15, 15, 15, 15, 15, 15, 15) 26 CR 1
21 calGCD 10 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000) 24 AOR 1
22 select 11 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) (10, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100) 117 RSR, CR 2

≤ x1, x2, · · · , xd < 1.0
}

, with the dimensionality, d, set as 1,
2, 3, 4, 5, 8 and 10.

To address RQ1, the simulated failure regions were
randomly placed in the input domain D. Once a program
has been written, the failure regions are fixed, but their
locations are unknown to developers and testers (before
testing). Failure regions have geometric shape (described by
the failure patterns) and size (described by the failure rate),
and distribution [12]. In the simulations, the failure rate and
pattern were set in advance, allowing the failure regions
to be located randomly in D. As described in Section 2.1,
failure patterns have often been categorized into three main
types: strip; block; and point. The simulations included all
three failure patterns types. Block patterns used a randomly-
located, single-solid shape with equal lengths of side — a
square in 2-dimensions, cube in 3-dimensions, etc. The strip
patterns were each constructed using two points on adja-
cent boundaries that were connected with a width/volume
to yield the desired size. According to the predetermined
failure rate θ, the point patterns used 25 randomly-located
regions. The simulations used seven different θ settings:
0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002 and 0.0001.

To address RQ2, the simulations recorded the test case
generation times for both FSCS-ART and VPP-ART. A total
of 20,000 test cases were generated by each algorithm in
the d-dimensional input domain, and the generation times
recorded at intervals of 500.

4.5.2 Experiments Design
Although simulations can simulate the performance of the
algorithms in different scenarios, the failure types may
not be representative of real-life situations for example, in
reality, the failure types can be categorized into regular and
irregular types [51] [52]). In addition to the simulations, we
conducted experiments using 22 real-life programs with
faults seeded in using mutation operators [50]. Table 1
presents the detailed information of these programs. 12
of the programs come from Numerical Recipes [53] and

ACM’s Collected Algorithms [54], and have been widely
studied in ART research [13], [16], [55], [25]. Programs
calDay, complex, and line are from Ferrer et al. [56].
The pntLinePos, pntTrianglePos and twoLinesPos
programs describe the positional relationships between a
point and a line, a point and a triangle, and between two
lines, respectively [57]. The triangle program classifies a
triangle into one of three types (acute, right and obtuse) [57].
The nearestDistance program uses five points to real-
ize the nearest point pair function. The calGCD program
calculates the greatest common divisor of 10 integers, and
select returns the i-th largest element from an unordered
array [58].

All subject programs were implemented in Java or C++,
and had previously been used in the KDFC-ART experi-
ments [22]. Six mutation operators were used to generate
mutants of the original subject programs [50]: (1) arith-
metic operator replacement (AOR); (2) relational operator
replacement (ROR); (3) scalar variable replacement (SVR);
(4) constant replacement (CR); (5) statement deletion (SDL);
and (6) return statement replacement (RSR). Five algorithms
were applied in the experiments: the original FSCS-ART; the
three KDFC-ART algorithms; and our proposed VPP-ART.

5 EXPERIMENTAL RESULTS

This section presents the results from the simulations and
experiments. The differences in effectiveness and efficiency
among FSCS-ART, KDFC-ART, and VPP-ART are discussed,
and answers are provided to the two research questions
from Section 4.1. In the tables in this section, a blue bold
number indicates the minimum value of ART F-ratio, F-
measure or F-time across the several ART algorithms; and a
red bold number indicates that the p-value of the comparison
betweenVPP-ART and the corresponding ART algorithm is
less than 0.05, indicating significance.
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TABLE 2
ART F-ratio values of VPP-ART with different 〈ε, λ〉 parameter pair values

Partitioning
Number

(ε)

Dimension
(d)

ART F-ratio

FSCS-ART
VPP-ART

λ = 10 λ = 15 λ = 20 λ = 25 λ = 30 λ = 35 λ = 40 λ = 45 λ = 50

ε = 2

d = 1 0.5564 0.5706 0.5652 0.5523 0.5611 0.5675 0.5747 0.5631 0.5634 0.5702
d = 2 0.6391 0.6790 0.6584 0.6752 0.6712 0.6645 0.6547 0.6641 0.6516 0.6440
d = 3 0.7549 0.8056 0.7890 0.7809 0.7787 0.7964 0.8053 0.7957 0.8096 0.7970
d = 4 0.9033 0.9611 0.9329 0.9243 0.9391 0.9506 0.9539 0.9280 0.9368 0.9462
d = 5 1.0462 1.0824 1.0945 1.0984 1.0852 1.0978 1.1147 1.1260 1.1200 1.1069
d = 8 1.8607 1.7050 1.6886 1.7668 1.7673 1.8200 1.7956 1.7711 1.8460 1.8289
d = 10 2.6138 2.4504 2.4896 2.6366 2.6495 2.6355 2.6268 2.7046 2.7357 2.7719

ε = 3

d = 1 0.5564 0.5555 0.5605 0.5686 0.5584 0.5557 0.5573 0.5599 0.5514 0.5582
d = 2 0.6391 0.6510 0.6601 0.6447 0.6559 0.6377 0.6661 0.6459 0.6725 0.6523
d = 3 0.7549 0.7553 0.7534 0.8083 0.7832 0.7753 0.7663 0.8063 0.8037 0.7940
d = 4 0.9033 0.9390 0.9448 0.9510 0.9385 0.9385 0.9345 0.9355 0.9484 0.9421
d = 5 1.0462 1.0605 1.0890 1.0709 1.0698 1.1085 1.0876 1.0997 1.1178 1.1053
d = 8 1.8607 1.6631 1.8007 1.7354 1.7543 1.8558 1.8406 1.8833 1.8870 1.8493
d = 10 2.6138 2.2916 2.4821 2.4765 2.5670 2.6265 2.6319 2.7906 2.7058 2.7080

ε = 4

d = 1 0.5564 0.5577 0.5636 0.5621 0.5613 0.5529 0.5726 0.5567 0.5607 0.5588
d = 2 0.6391 0.6570 0.6587 0.6590 0.6739 0.6534 0.6296 0.6340 0.6448 0.6529
d = 3 0.7549 0.7617 0.7680 0.7571 0.7604 0.7659 0.7519 0.7900 0.7709 0.7754
d = 4 0.9033 0.9144 0.9159 0.9272 0.9086 0.9418 0.9572 0.9427 0.9418 0.9393
d = 5 1.0462 1.0896 1.0891 1.0734 1.0727 1.1486 1.0854 1.0964 1.0948 1.1133
d = 8 1.8607 1.6900 1.6744 1.8339 1.8043 1.8048 1.8067 1.8578 1.9174 1.9717
d = 10 2.6138 2.3144 2.3562 2.6492 2.6325 2.8174 2.6989 2.8207 2.8412 2.9358

ε = 5

d = 1 0.5564 0.5573 0.5542 0.5507 0.5822 0.5566 0.5639 0.5558 0.5585 0.5496
d = 2 0.6391 0.6467 0.6594 0.6416 0.6360 0.6536 0.6427 0.6412 0.6433 0.6447
d = 3 0.7549 0.7912 0.7747 0.7547 0.7745 0.7674 0.7518 0.7610 0.7671 0.7726
d = 4 0.9033 0.9276 0.9167 0.9024 0.9194 0.9582 0.9239 0.9559 0.9592 0.9391
d = 5 1.0462 1.0932 1.0849 1.0923 1.1254 1.1063 1.1072 1.1258 1.1370 1.1280
d = 8 1.8607 1.7753 1.7982 1.8214 1.8652 1.8581 2.0066 1.9264 1.9821 1.9547
d = 10 2.6138 2.4743 2.5811 2.6273 2.7442 2.7095 2.8409 2.9523 2.8931 2.9514

5.1 VPP-ART Parameter Settings

As explained, the VPP-ART performance is strongly im-
pacted by two parameters: the partitioning parameter, ε;
and the maximum test case capacity of a leaf node, λ. These
two values play important roles in the partitioning of the
input domain, and also limit the amount of executed test
cases in each sub-domain, which will affect the accuracy of
the NN returned by VPP-ART. When VPP-ART performs
the NN search in one sub-domain, the approximate NN
is identified, as explained in Section 3.2.3. When there are
more executed test cases in this sub-domain, — which is
directly influenced by the static values of ε and λ, — then
VPP-ART will have a greater probability of finding a more
accurate NN (of course, it may also be an approximate NN
due to the construction of the modified VP-tree). If the
approximate NN returned by VPP-ART is similar to the
exact NN, the failure-detection effectiveness of VPP-ART
and FSCS-ART will be comparable. Therefore, this section
focuses on the influence of different 〈ε, λ〉 parameter pair
values on VPP-ART. The specific parameter settings for the
simulations were as follows:

• Dimension: d = 1, 2, 3, 4, 5, 8, 10;
• Failure rate: θ = 0.0005;
• Partitioning parameter, ε = 2, 3, 4, 5;
• Maximum test case capacity of a leaf node, λ =

10, 15, 20, 25, 30, 35, 40, 45, 50.

Table 2 presents the ART F-ratio simulation results of
VPP-ART for the different parameter values. Based on the
data in the table, some observations can be summarized as
follows:

(1) As the maximum test case capacity of leaf nodes
(λ) increases, the VPP-ART ART F-ratio differences (when
1 ≤ d ≤ 5) are not significant, but are, on the whole,
slightly higher than FSCS-ART; For d = 8, 10, the ART F-
ratio values increase gradually, and are lower than FSCS-
ART when λ is small. This shows that changes in λ have
little impact on the failure-detection effectiveness of VPP-
ART in low dimensional input domains, but can have a great
impact in high dimensions. Therefore, a small λ value can
effectively ensure VPP-ART failure-detection effectiveness
in low dimensions, and improve FSCS-ART performance in
high dimensions.

(2) When the partition parameter (ε) increases above
2, the VPP-ART ART F-ratio values are not significantly
different when 1 ≤ d ≤ 5. When d = 8, 10, the ART F-ratio
values show a trend of first decreasing, and then increasing;
an inflection point appears when ε = 3. Similar to λ,
changes in ε have little impact on VPP-ART failure-detection
effectiveness in low dimensions, but show a certain change
trend in the high dimensions. Therefore, a smaller ε value
can enhance the VPP-ART performance.

Based on the above, the parameter pair 〈ε, λ〉 were
assigned 〈3, 10〉 for the simulations and experiments.

5.2 Comparisons of Failure-Detection Effectiveness

This section reports on the effectiveness comparisons be-
tween VPP-ART and FSCS-ART, and between VPP-ART and
the three kinds of KDFC-ART. The results and main findings
address RQ1, as follows.
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TABLE 3
ART F-ratio values and statistical analysis comparisons among VPP-ART and other ART algorithms for block patterns

Dimension
(d)

Failure Rate
(θ)

ART F-ratio Statistical Analysis

VPP-
ART

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

vs. FSCS-ART vs. Naive-KDFC vs. SemiBal-KDFC vs. LimBal-KDFC

p-value effect size p-value effect size p-value effect size p-value effect size

d = 1

0.01 0.5634 0.5729 0.5664 0.5714 0.5658 0.3679 0.5067 0.7899 0.5020 0.4101 0.5061 0.5294 0.5047
0.005 0.5666 0.5633 0.5670 0.5696 0.5619 0.8994 0.4991 0.7826 0.5021 0.4768 0.5053 0.8362 0.4985
0.002 0.5639 0.5683 0.5665 0.5723 0.5605 0.5704 0.5042 0.9981 0.5000 0.5034 0.5050 0.7817 0.4979
0.001 0.5634 0.5720 0.5549 0.5690 0.5617 0.6041 0.5039 0.1890 0.4902 0.5659 0.5043 0.7915 0.4980
0.0005 0.5555 0.5564 0.5629 0.5556 0.5619 0.5919 0.5040 0.4510 0.5056 0.7454 0.5024 0.4847 0.5052
0.0002 0.5520 0.5700 0.5658 0.5662 0.5614 0.0602 0.5140 0.1353 0.5111 0.2506 0.5086 0.2506 0.5086
0.0001 0.5766 0.5765 0.5527 0.5545 0.5569 0.8939 0.4990 0.0327 0.4841 0.0559 0.4857 0.1115 0.4881

d = 2

0.01 0.6820 0.6911 0.6822 0.6904 0.6953 0.1867 0.5098 0.4907 0.5051 0.1303 0.5113 0.0805 0.5130
0.005 0.6750 0.6613 0.6561 0.6635 0.6671 0.7798 0.4979 0.3619 0.4932 0.6590 0.4967 0.8597 0.4987
0.002 0.6712 0.6536 0.6574 0.6633 0.6561 0.5933 0.4960 0.7498 0.4976 0.5793 0.5041 0.5865 0.4959
0.001 0.6742 0.6573 0.6449 0.6557 0.6595 0.5260 0.4953 0.1795 0.4900 0.6460 0.4966 0.6193 0.4963
0.0005 0.6510 0.6391 0.6525 0.6484 0.6492 0.9636 0.4997 0.2177 0.5092 0.4341 0.5058 0.3357 0.5072
0.0002 0.6489 0.6268 0.6409 0.6414 0.6388 0.2310 0.4911 0.9428 0.4995 0.8521 0.4986 0.5000 0.4950
0.0001 0.6244 0.6248 0.6531 0.6389 0.6313 0.5895 0.5040 0.0030 0.5222 0.0847 0.5129 0.4206 0.5060

d = 3

0.01 0.8840 0.8641 0.8431 0.8504 0.8391 0.6879 0.5030 0.2535 0.4915 0.7570 0.4977 0.2964 0.4922
0.005 0.8391 0.8314 0.8176 0.8195 0.8177 0.3398 0.5071 0.9302 0.5007 0.6204 0.5037 0.5875 0.4960
0.002 0.8214 0.7847 0.7778 0.7948 0.8052 0.2653 0.4917 0.1122 0.4882 0.5126 0.4951 0.3310 0.4928
0.001 0.8189 0.7735 0.7720 0.7735 0.7772 0.1464 0.4892 0.0981 0.4877 0.1562 0.4894 0.0703 0.4865
0.0005 0.7553 0.7549 0.7504 0.7618 0.7615 0.2115 0.5093 0.3457 0.5070 0.2778 0.5081 0.2614 0.5084
0.0002 0.7881 0.7499 0.7603 0.7441 0.7464 0.5469 0.4955 0.5871 0.4960 0.1881 0.4902 0.2464 0.4914
0.0001 0.7688 0.7358 0.7252 0.7518 0.7387 0.6934 0.4971 0.1312 0.4887 0.7021 0.4971 0.2108 0.4907

d = 4

0.01 1.0886 1.0786 1.0739 1.0711 1.0666 0.9147 0.5008 0.6676 0.5032 0.9517 0.4995 0.9651 0.5003
0.005 1.0523 1.0272 1.0350 1.0200 1.0202 0.5394 0.4954 0.8604 0.5013 0.4641 0.4945 0.5352 0.4954
0.002 0.9948 0.9606 0.9497 0.9711 0.9754 0.8243 0.4983 0.5681 0.4957 0.9008 0.5009 0.9820 0.4998
0.001 0.9398 0.9155 0.9122 0.9190 0.9366 0.7930 0.5020 0.4660 0.4946 0.8987 0.4991 0.8987 0.5009
0.0005 0.9390 0.9033 0.8908 0.8904 0.9067 0.1379 0.4889 0.1067 0.4880 0.0464 0.4852 0.2141 0.4907
0.0002 0.8965 0.8522 0.8494 0.8651 0.8708 0.0963 0.4876 0.2810 0.4920 0.1513 0.4893 0.6204 0.4963
0.0001 0.8857 0.8357 0.8234 0.8687 0.8491 0.3925 0.4936 0.3509 0.4930 0.4141 0.5061 0.8148 0.5017

d = 5

0.01 1.3417 1.3346 1.3416 1.3268 1.3209 0.6070 0.5038 0.9107 0.5008 0.8170 0.4983 0.5754 0.5042
0.005 1.2809 1.2694 1.2638 1.2632 1.2550 0.7747 0.4979 0.8919 0.4990 0.6168 0.4963 0.7876 0.5020
0.002 1.1671 1.1661 1.1932 1.1685 1.1550 0.3047 0.5077 0.1059 0.5121 0.5585 0.5044 0.5848 0.5041
0.001 1.1130 1.1097 1.1185 1.1317 1.0850 0.9833 0.5002 0.6000 0.5039 0.2411 0.5087 0.6566 0.4967
0.0005 1.0605 1.0462 1.0498 1.0584 1.0217 0.7815 0.5021 0.7631 0.5022 0.8088 0.5018 0.4692 0.4946
0.0002 1.0404 1.0156 0.9930 1.0215 1.0054 0.8649 0.4987 0.5564 0.4956 0.5235 0.5048 0.5712 0.4958
0.0001 1.0223 0.9935 0.9833 0.9810 0.9867 0.8739 0.5012 0.7783 0.4979 0.3574 0.4931 0.4456 0.4943

d = 8

0.01 2.4832 2.6802 2.6413 2.6390 2.5701 0.0000 0.5319 0.0030 0.5221 0.0046 0.5211 0.0026 0.5225
0.005 2.2558 2.4032 2.4134 2.3672 2.2685 0.0081 0.5197 0.0010 0.5246 0.0079 0.5198 0.1401 0.5110
0.002 1.9843 2.1176 2.1177 2.0986 2.0333 0.0672 0.5136 0.0511 0.5145 0.1144 0.5118 0.1073 0.5120
0.001 1.7889 1.9526 1.9312 1.9525 1.8306 0.0004 0.5263 0.0027 0.5224 0.0068 0.5202 0.1988 0.5096

0.0005 1.6631 1.8607 1.8474 1.8163 1.7219 0.0000 0.5352 0.0000 0.5303 0.0015 0.5237 0.1321 0.5112
0.0002 1.5212 1.7096 1.7099 1.6956 1.5956 0.0000 0.5340 0.0000 0.5314 0.0000 0.5318 0.1752 0.5101
0.0001 1.3741 1.6325 1.5772 1.6110 1.5027 0.0000 0.5510 0.0000 0.5452 0.0000 0.5502 0.0003 0.5267

d = 10

0.01 3.3475 3.9718 3.9114 3.9454 3.8735 0.0000 0.5539 0.0000 0.5552 0.0000 0.5567 0.0000 0.5583
0.005 3.1357 3.5995 3.4993 3.5591 3.4597 0.0000 0.5456 0.0000 0.5342 0.0000 0.5447 0.0000 0.5434
0.002 2.8812 3.1565 3.1775 3.1184 2.9093 0.0000 0.5372 0.0000 0.5367 0.0000 0.5306 0.0239 0.5168
0.001 2.6297 2.8741 2.8712 2.9142 2.6868 0.0004 0.5263 0.0011 0.5243 0.0005 0.5259 0.1794 0.5100

0.0005 2.2916 2.7049 2.7083 2.7002 2.4310 0.0000 0.5432 0.0000 0.5466 0.0000 0.5443 0.0728 0.5134
0.0002 1.9882 2.4118 2.3827 2.4727 2.1770 0.0000 0.5536 0.0000 0.5528 0.0000 0.5614 0.0007 0.5252
0.0001 1.8902 2.2568 2.2235 2.3156 2.0289 0.0000 0.5481 0.0000 0.5466 0.0000 0.5549 0.0150 0.5181

5.2.1 Answer to RQ1 - Part 1: Results of Simulations

Tables 3 to 5 present the simulation ART F-ratio value
comparisons among FSCS-ART, KDFC-ART, and VPP-ART,
for block, strip, and point patterns, respectively. In the tables,
the effect size values represent the probability that VPP-
ART outperforms the compared ART algorithm; and the p-
value indicates the statistical significance of the ART F-ratio
differences. Based on the data in these three tables, we have
the following observations:

In general, for all five ART algorithms, the ART F-
ratio values decrease as θ decreases, for both block and
point patterns: This indicates that ART has better failure-
detection effectiveness when the failure rate is small. As the
dimensionality, d, increases, the ART F-ratio values generally
increase, showing that d has an important negative impact

on the effectiveness of ART algorithms.

A. VPP-ART versus FSCS-ART

(1) Block-pattern simulation findings: When considering
a fixed failure rate θ, the VPP-ART ART F-ratio values
increase with increases in the dimension d: The higher
dimension is, the worse the failure-detection effectiveness
of VPP-ART is. When 1 ≤ d ≤ 4, the failure-detection
effectiveness of VPP-ART is significantly better than RT, in
most cases. Except in some cases (d = 4, θ = 0.01, 0.005), the
ART F-ratio values are less than 1.0, but when d increases,
then the VPP-ART failure-detection effectiveness becomes
weaker than RT. When 1 ≤ d ≤ 5, the failure-detection
effectiveness of VPP-ART and FSCS-ART are similar. When
d = 8, 10, the failure-detection effectiveness of VPP-ART is
obviously better than that of FSCS-ART, which is shown
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TABLE 4
ART F-ratio values and statistical analysis comparisons among VPP-ART and other ART algorithms for strip patterns

Dimension
(d)

Failure Rate
(θ)

ART F-ratio Statistical Analysis

VPP-
ART

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

vs. FSCS-ART vs. Naive-KDFC vs. SemiBal-KDFC vs. LimBal-KDFC

p-value effect size p-value effect size p-value effect size p-value effect size

d = 1

0.01 0.5634 0.5729 0.5664 0.5714 0.5658 0.3679 0.5067 0.7899 0.5020 0.4101 0.5061 0.5294 0.5047
0.005 0.5666 0.5633 0.5670 0.5696 0.5619 0.8994 0.4991 0.7826 0.5021 0.4768 0.5053 0.8362 0.4985
0.002 0.5639 0.5683 0.5665 0.5723 0.5605 0.5704 0.5042 0.9981 0.5000 0.5034 0.5050 0.7817 0.4979
0.001 0.5634 0.5720 0.5549 0.5690 0.5617 0.6041 0.5039 0.1890 0.4902 0.5659 0.5043 0.7915 0.4980
0.0005 0.5555 0.5564 0.5629 0.5556 0.5619 0.5919 0.5040 0.4510 0.5056 0.7454 0.5024 0.4847 0.5052
0.0002 0.5520 0.5700 0.5658 0.5662 0.5614 0.0602 0.5140 0.1353 0.5111 0.2506 0.5086 0.2506 0.5086
0.0001 0.5766 0.5765 0.5527 0.5545 0.5569 0.8939 0.4990 0.0327 0.4841 0.0559 0.4857 0.1115 0.4881

d = 2

0.01 0.9302 0.9816 0.9365 0.9490 0.9276 0.0415 0.5152 0.3121 0.5075 0.2007 0.5095 0.4732 0.5053
0.005 0.9434 0.9716 0.9521 0.9279 0.9456 0.2303 0.5089 0.7102 0.5028 0.9005 0.5009 0.4696 0.5054
0.002 0.9457 0.9961 0.9749 0.9611 0.9859 0.0644 0.5138 0.8804 0.5011 0.3378 0.5071 0.3354 0.5072
0.001 0.9852 0.9561 0.9783 0.9775 0.9547 0.2154 0.4908 0.9536 0.5004 0.9391 0.4994 0.9948 0.5000
0.0005 0.9978 0.9784 0.9769 0.9641 0.9808 0.4873 0.4948 0.3322 0.4928 0.0716 0.4866 0.7090 0.4972
0.0002 0.9871 0.9827 0.9574 0.9915 0.9811 0.2026 0.4905 0.1222 0.4885 0.5323 0.4953 0.3852 0.4935
0.0001 0.9678 1.0130 0.9726 0.9534 0.9760 0.2234 0.5091 0.4883 0.5052 0.4522 0.4944 0.5044 0.5050

d = 3

0.01 0.9515 0.9639 0.9606 0.9850 0.9491 0.6975 0.5029 0.8514 0.5014 0.2837 0.5080 0.6560 0.4967
0.005 0.9844 0.9404 0.9817 0.9803 0.9809 0.5083 0.4951 0.6035 0.5039 0.4249 0.5059 0.3965 0.5063
0.002 0.9946 0.9853 0.9569 0.9918 0.9653 0.3922 0.4936 0.0275 0.4836 0.9863 0.4999 0.1312 0.4887
0.001 0.9861 0.9514 0.9852 0.9757 1.0010 0.1059 0.4879 0.5522 0.5044 0.8288 0.4984 0.7370 0.5025
0.0005 1.0068 0.9978 0.9859 0.9510 0.9832 0.7362 0.4975 0.4889 0.4948 0.1556 0.4894 0.2067 0.4906
0.0002 0.9862 0.9734 0.9834 0.9730 0.9974 0.6592 0.4967 0.7665 0.4978 0.5442 0.4955 0.7425 0.5024
0.0001 0.9996 0.9945 1.0162 1.0572 1.0066 0.9807 0.4998 0.4034 0.5062 0.0476 0.5148 0.6856 0.4970

d = 4

0.01 0.9984 0.9733 1.0022 0.9895 0.9723 0.7517 0.4976 0.5908 0.5040 0.9209 0.5007 0.4972 0.5051
0.005 0.9913 0.9830 0.9971 0.9604 0.9602 0.9922 0.4999 0.7150 0.5027 0.6021 0.4961 0.3329 0.4928
0.002 0.9949 1.0274 1.0084 0.9749 0.9919 0.2591 0.5084 0.6052 0.5039 0.8414 0.4985 0.7604 0.5023
0.001 0.9839 0.9982 0.9874 0.9767 0.9807 0.9649 0.5003 0.9953 0.5000 0.4106 0.4939 0.9186 0.4992
0.0005 0.9997 1.0038 1.0264 0.9968 0.9792 0.8139 0.5018 0.2896 0.5079 0.8391 0.4985 0.4397 0.4942
0.0002 0.9832 1.0081 1.0013 1.0117 1.0206 0.1872 0.5098 0.5527 0.5044 0.0689 0.5136 0.2540 0.5085
0.0001 0.9693 1.0268 0.9943 1.0038 0.9911 0.0456 0.5149 0.5598 0.5043 0.5370 0.5046 0.3980 0.5063

d = 5

0.01 0.9714 1.0162 0.9736 0.9806 1.0228 0.1548 0.5106 0.3827 0.5065 0.4749 0.5053 0.0056 0.5206
0.005 0.9787 1.0210 1.0097 1.0002 0.9613 0.3629 0.5068 0.1643 0.5104 0.5924 0.5040 0.6791 0.4969
0.002 1.0196 1.0108 0.9807 0.9871 1.0363 0.6384 0.5035 0.4244 0.4940 0.5290 0.4953 0.3940 0.5064
0.001 1.0095 0.9791 1.0039 1.0275 1.0236 0.4323 0.4941 0.8983 0.4990 0.5204 0.5048 0.5039 0.5050
0.0005 0.9939 1.0236 1.0298 0.9708 1.0223 0.3717 0.5067 0.2420 0.5087 0.7043 0.4972 0.4610 0.5055
0.0002 0.9987 0.9751 0.9881 1.0208 0.9881 0.5492 0.4955 0.9281 0.5007 0.3255 0.5073 0.6977 0.5029
0.0001 0.9954 1.0039 0.9648 0.9953 0.9832 0.7696 0.4978 0.4521 0.4944 0.6092 0.4962 0.4384 0.4942

d = 8

0.01 0.9446 0.9907 0.9836 0.9847 1.0045 0.0642 0.5138 0.3624 0.5068 0.2449 0.5087 0.2238 0.5091
0.005 1.0329 1.0145 0.9723 1.0094 0.9781 0.3021 0.4923 0.0229 0.4830 0.6840 0.4970 0.3628 0.4932
0.002 0.9842 0.9905 1.0159 1.0024 1.0316 0.3255 0.5073 0.1617 0.5104 0.6831 0.5030 0.3427 0.5071
0.001 1.0189 1.0107 0.9999 1.0069 1.0411 0.4169 0.4939 0.7538 0.4977 0.6408 0.4965 0.9866 0.5001
0.0005 1.0247 1.0123 1.0064 0.9830 0.9866 0.1190 0.4884 0.1358 0.4889 0.0036 0.4783 0.0290 0.4837
0.0002 0.9792 1.0166 0.9967 0.9596 0.9942 0.5020 0.5050 0.8309 0.5016 0.5052 0.4950 0.6009 0.5039
0.0001 0.9932 1.0207 1.0074 0.9979 0.9935 0.3650 0.5068 0.3201 0.5074 0.4655 0.5054 0.5424 0.5045

d = 10

0.01 0.9760 1.0068 1.0196 0.9771 0.9967 0.8753 0.5012 0.1357 0.5111 0.3455 0.4930 0.9348 0.4994
0.005 1.0035 1.0265 0.9950 1.0067 1.0089 0.7691 0.5022 0.5492 0.5045 0.8914 0.5010 0.5979 0.4961
0.002 0.9856 0.9933 0.9827 0.9882 0.9974 0.5222 0.5048 0.8152 0.4983 0.8856 0.5011 0.7253 0.5026
0.001 1.0031 1.0083 1.0074 0.9946 0.9834 0.6407 0.5035 0.7539 0.5023 0.9126 0.5008 0.7832 0.4979

0.0005 1.0161 1.0054 1.0052 1.0388 1.0265 0.6510 0.4966 0.4760 0.4947 0.2862 0.5079 0.4809 0.5053
0.0002 1.0008 1.0073 1.0096 0.9823 1.0246 0.5084 0.5049 0.9860 0.5001 0.6003 0.4961 0.8356 0.5015
0.0001 0.9743 0.9945 1.0097 0.9832 1.0149 0.2287 0.5090 0.1881 0.5098 0.9243 0.4993 0.3204 0.5074

by statistical analysis of the ART F-ratio value comparisons
between VPP-ART and FSCS-ART. When 1 ≤ d ≤ 5, all p-
values are greater than 0.05; however, when d = 8, 10, the
effect size values are all greater than 0.5, and the p-values are
all significantly less than 0.05 (except for d = 8, θ = 0.002).

(2) Strip-pattern simulation findings: When d = 1, both
VPP-ART and FSCS-ART have better failure-detection ef-
fectiveness than RT, with ART F-ratio values of about 0.55.
In other dimensions, regardless of dimension d and failure
rate θ, the ART F-ratio values of VPP-ART are similar to
those of FSCS-ART. Nearly all p-values are greater than 0.05
(except d = 2, θ = 0.01 and d = 4, θ = 0.0001), indicating
that the failure-detection performance of VPP-ART is not
significantly different from FSCS-ART.

(3) Point-pattern simulation findings: Similar to with

the block pattern, for a give failure rate θ, the failure-
detection effectiveness of both VPP-ART and FSCS-ART
decrease as the dimension d increases — as seen from the
increasing ART F-ratio values for increasing dimensionality.
When d = 1, 2, both VPP-ART and FSCS-ART outperform
RT, but when d ≥ 3, VPP-ART has similar, or better, per-
formance than FSCS-ART — reflected in VPP-ART having
lower ART F-ratio values than FSCS-ART, in most cases.
When 1 ≤ d ≤ 4, the p-values are usually greater than
0.05, and all effect size are about 0.50. When d ≥ 5, the p-
values are less than 0.05 (except d = 5, θ = 0.0002, 0.0001),
and all effect size values are greater than 0.50. In summary,
when 1 ≤ d ≤ 4, there is no significant difference in the
failure-detection effectiveness of VPP-ART and FSCS-ART;
but when d ≥ 5, VPP-ART has a much better performance
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TABLE 5
ART F-ratio values and statistical analysis comparisons among VPP-ART and other ART algorithms for point patterns

Dimension
(d)

Failure Rate
(θ)

ART F-ratio Statistical Analysis

VPP-
ART

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

vs. FSCS-ART vs. Naive-KDFC vs. SemiBal-KDFC vs. LimBal-KDFC

p-value effect size p-value effect size p-value effect size p-value effect size

d = 1

0.01 0.9592 0.9607 0.9755 0.9621 0.9763 0.6231 0.5037 0.4279 0.5059 0.3374 0.5072 0.0750 0.5133
0.005 0.9262 0.9543 0.9563 0.9576 0.9320 0.0654 0.5137 0.0993 0.5123 0.1321 0.5112 0.6065 0.5038
0.002 0.9355 0.9568 0.9627 0.9825 0.9788 0.7519 0.4976 0.8121 0.5018 0.6477 0.5034 0.1144 0.5118
0.001 1.0026 0.9346 0.9771 0.9623 0.9651 0.0445 0.4850 0.8614 0.4987 0.1676 0.4897 0.2653 0.4917

0.0005 0.9779 0.9380 0.9815 0.9446 0.9422 0.3095 0.4924 0.5943 0.5040 0.7309 0.4974 0.2594 0.4916
0.0002 0.9708 0.9693 0.9798 0.9282 0.9655 0.9067 0.4991 0.4938 0.5051 0.1021 0.4878 0.9205 0.5007
0.0001 0.9750 0.9721 0.9807 0.9610 0.9530 0.8204 0.5017 0.9610 0.4996 0.9196 0.5008 0.6786 0.4969

d = 2

0.01 0.9979 0.9988 0.9918 0.9894 1.0207 0.2747 0.5081 0.2338 0.5089 0.8688 0.5012 0.3148 0.5075
0.005 0.9662 0.9762 1.0042 0.9825 0.9917 0.8852 0.5011 0.1460 0.5108 0.5882 0.5040 0.2836 0.5080
0.002 0.9918 0.9675 0.9718 0.9557 0.9877 0.7730 0.4979 0.4953 0.4949 0.1776 0.4900 0.6302 0.5036
0.001 0.9688 0.9995 0.9550 0.9672 0.9817 0.0655 0.5137 0.7319 0.4974 0.5542 0.4956 0.9392 0.4994
0.0005 0.9427 0.9663 0.9650 0.9806 0.9777 0.0864 0.5128 0.1931 0.5097 0.0339 0.5158 0.0245 0.5168
0.0002 0.9681 1.0034 0.9522 0.9392 0.9428 0.1068 0.5120 0.7450 0.4976 0.1525 0.4893 0.2421 0.4913
0.0001 0.9758 0.9792 0.9511 0.9673 0.9556 0.9347 0.5006 0.4807 0.4947 0.8478 0.5014 0.7290 0.4974

d = 3

0.01 1.0376 1.1231 1.0930 1.1084 1.0795 0.0005 0.5260 0.0149 0.5182 0.0038 0.5216 0.1723 0.5102
0.005 1.0609 1.0744 1.0973 1.0665 1.1051 0.5259 0.5047 0.0861 0.5128 0.9106 0.4992 0.0198 0.5174
0.002 1.0269 1.0235 1.0297 1.0746 1.0499 0.7553 0.5023 0.5115 0.5049 0.0372 0.5155 0.1239 0.5115
0.001 1.0221 1.0343 1.0151 1.0548 1.0551 0.6355 0.5035 0.6821 0.5031 0.1631 0.5104 0.1841 0.5099
0.0005 0.9988 1.0017 1.0121 1.0113 1.0077 0.8080 0.5018 0.2859 0.5080 0.3116 0.5075 0.8003 0.5019
0.0002 1.0183 1.0093 1.0036 1.0122 1.0074 0.8180 0.4983 0.5799 0.4959 0.7378 0.4975 0.7097 0.4972
0.0001 1.0023 1.0072 0.9795 0.9905 0.9824 0.9596 0.4996 0.2742 0.4918 0.9740 0.5002 0.5906 0.4960

d = 4

0.01 1.2336 1.3211 1.2789 1.3035 1.3037 0.0023 0.5227 0.1548 0.5106 0.0181 0.5176 0.0014 0.5238
0.005 1.2100 1.2614 1.2517 1.2633 1.2192 0.0265 0.5165 0.2072 0.5094 0.0424 0.5151 0.2278 0.5090
0.002 1.1283 1.1809 1.1735 1.1524 1.1212 0.1155 0.5117 0.0355 0.5157 0.3352 0.5072 0.8672 0.4988
0.001 1.0915 1.1137 1.1287 1.1401 1.1370 0.0935 0.5125 0.1586 0.5105 0.0229 0.5170 0.0257 0.5166
0.0005 1.0788 1.1117 1.1062 1.0980 1.1065 0.1022 0.5122 0.3322 0.5072 0.2515 0.5085 0.0720 0.5134
0.0002 1.0444 1.0521 1.1007 1.0487 1.0510 0.5517 0.5044 0.0073 0.5200 0.4581 0.5055 0.5910 0.5040
0.0001 1.0506 1.0837 1.0500 1.0589 1.0509 0.2403 0.5088 0.9512 0.5005 0.6854 0.5030 0.6532 0.5033

d = 5

0.01 1.4384 1.5695 1.5413 1.5603 1.5243 0.0003 0.5273 0.0012 0.5241 0.0007 0.5253 0.0206 0.5173
0.005 1.3364 1.4785 1.4519 1.4385 1.4456 0.0002 0.5278 0.0032 0.5219 0.0154 0.5181 0.0030 0.5222
0.002 1.2637 1.3549 1.3642 1.3691 1.3510 0.0000 0.5332 0.0001 0.5288 0.0000 0.5324 0.0000 0.5365
0.001 1.1862 1.2964 1.2948 1.3005 1.2110 0.0002 0.5282 0.0015 0.5237 0.0000 0.5312 0.0569 0.5142

0.0005 1.1718 1.2559 1.2236 1.2361 1.1938 0.0006 0.5256 0.0107 0.5190 0.0092 0.5194 0.1488 0.5108
0.0002 1.1638 1.1746 1.1636 1.1562 1.1708 0.4006 0.5063 0.3808 0.5065 0.9149 0.4992 0.4725 0.5054
0.0001 1.1276 1.1257 1.1474 1.1553 1.1074 0.6017 0.5039 0.2233 0.5091 0.1501 0.5107 0.5762 0.4958

d = 8

0.01 2.0945 2.4049 2.3487 2.4215 2.3374 0.0000 0.5377 0.0000 0.5366 0.0000 0.5400 0.0000 0.5339
0.005 2.0220 2.3711 2.3543 2.3313 2.2386 0.0000 0.5443 0.0000 0.5396 0.0000 0.5387 0.0000 0.5333
0.002 1.8539 2.1827 2.2076 2.1710 2.0722 0.0000 0.5515 0.0000 0.5491 0.0000 0.5432 0.0000 0.5380
0.001 1.7151 2.0761 2.1198 2.0804 1.9098 0.0000 0.5534 0.0000 0.5613 0.0000 0.5519 0.0000 0.5372
0.0005 1.6117 1.9976 1.9948 1.9881 1.8038 0.0000 0.5626 0.0000 0.5643 0.0000 0.5633 0.0000 0.5368
0.0002 1.4995 1.7979 1.7829 1.8695 1.6424 0.0000 0.5528 0.0000 0.5546 0.0000 0.5619 0.0000 0.5303
0.0001 1.4719 1.7575 1.7223 1.7567 1.5938 0.0000 0.5539 0.0000 0.5450 0.0000 0.5512 0.0037 0.5216

d = 10

0.01 2.3399 2.5080 2.5382 2.5738 2.5994 0.0271 0.5165 0.0069 0.5201 0.0002 0.5277 0.0000 0.5320
0.005 2.4368 2.8216 2.6878 2.7286 2.7150 0.0000 0.5437 0.0000 0.5313 0.0000 0.5428 0.0000 0.5379
0.002 2.3325 2.8479 3.0133 2.8899 2.6569 0.0000 0.5561 0.0000 0.5735 0.0000 0.5577 0.0000 0.5387
0.001 2.2444 2.8835 2.8983 2.8322 2.6249 0.0000 0.5657 0.0000 0.5743 0.0000 0.5672 0.0000 0.5439
0.0005 2.0856 2.7033 2.7247 2.6135 2.4393 0.0000 0.5710 0.0000 0.5743 0.0000 0.5602 0.0000 0.5408
0.0002 1.8928 2.4606 2.4871 2.5065 2.2301 0.0000 0.5711 0.0000 0.5723 0.0000 0.5738 0.0000 0.5446
0.0001 1.7778 2.0912 2.3241 2.3366 2.1341 0.0000 0.5445 0.0000 0.5708 0.0000 0.5744 0.0000 0.5553

than FSCS-ART.

B. VPP-ART versus KDFC-ART

(1) Block-pattern simulation findings: For a given failure
rate θ, the failure-detection effectiveness of FSCS-ART, VPP-
ART, and all three KDFC-ART versions appear similar, as
the dimension d increases. When 1 ≤ d ≤ 5, the three
KDFC-ART versions have lower ART F-ratio values than
VPP-ART, indicating that KDFC-ART has similar, or bet-
ter, failure-detection in these dimensions. However, when
d = 8, 10, VPP-ART has the lower ART F-ratio values,
showing a much better failure-detection effectiveness. When
1 ≤ d ≤ 5, nearly all KDFC-ART p-values are greater than
0.05, and all KDFC-ART effect size values are around 0.50.
When d = 8, 10, the Naive-KDFC and SemiBal-KDFC p-
values are less than 0.05 (except d = 8, θ = 0.002), and all

effect size values are greater than 0.50. For LimBal-KDFC,
when d = 8, all effect size values are greater than 0.50, and p-
values are greater than 0.05 (except d = 8, θ = 0.01, 0.0001).
When d = 10, all LimBal-KDFC effect size values are greater
than 0.50, and all p-values are less than for d = 8 (except
θ = 0.0001); furthermore, except for θ = 0.001, 0.0005,
all p-values are less than 0.05. Overall, VPP-ART has sim-
ilar failure-detection effectiveness to KDFC-ART in lower-
dimensional input domains, and better performance than
Naive-KDFC and SemiBal-KDFC in higher dimensions.
VPP-ART also performs similar or better than LimBal-KDFC
in some high-dimensional cases.

(2) Strip-pattern simulation findings: Similar to other
ART algorithms, there is no significant difference in ART F-
ratio values among VPP-ART and KDFC-ART. When d = 1,
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TABLE 6
F-measures and statistical analysis comparisons among VPP-ART and other different ART algorithms with the 22 subject programs

No. Program Dimension
(d)

F-measure Statistical Analysis

VPP-
ART

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

vs. FSCS-ART vs. Naive-KDFC vs. SemiBal-KDFC vs. LimBal-KDFC

p-value effect size p-value effect size p-value effect size p-value effect size

1 airy 1 797.28 816.03 806.91 803.29 809.33 0.1793 0.5100 0.3791 0.5066 0.4055 0.5062 0.3163 0.5075
2 bessj0 1 450.05 448.20 443.44 440.31 449.13 0.8286 0.5016 0.9175 0.5008 0.4290 0.4941 0.5561 0.5044
3 erfcc 1 1019.32 1054.65 1040.58 1045.86 1033.00 0.0301 0.5162 0.3323 0.5072 0.1319 0.5112 0.2828 0.5080
4 probks 1 1452.91 1469.21 1450.82 1452.57 1475.86 0.4970 0.5051 0.9523 0.5004 0.9427 0.5005 0.4633 0.5055
5 tanh 1 312.42 319.82 306.91 309.85 309.36 0.3084 0.5076 0.3982 0.4937 0.7942 0.4981 0.4720 0.4946
6 bessj 2 462.96 452.49 457.52 457.60 461.69 0.4585 0.4945 0.9216 0.5007 0.6456 0.4966 0.5489 0.4955
7 gammq 2 1063.88 1087.52 1066.34 1100.74 1172.50 0.2777 0.5081 0.8889 0.5010 0.0757 0.5132 0.0011 0.5243
8 sncndn 2 640.22 643.40 629.63 649.75 655.74 0.5157 0.5048 0.9029 0.4991 0.3750 0.5066 0.1915 0.5097
9 golden 3 1824.80 1831.29 1806.09 1816.82 1902.52 0.4552 0.5056 0.9594 0.4996 0.5315 0.5047 0.0038 0.5216
10 plgndr 3 1733.83 1572.82 1648.26 1618.40 1665.89 0.0076 0.4801 0.1738 0.4899 0.0951 0.4876 0.6289 0.4964
11 cel 4 1628.50 1572.56 1577.88 1593.71 1586.13 0.5594 0.4956 0.7333 0.4975 0.7584 0.4977 0.7521 0.4976
12 el2 4 796.70 714.58 710.58 714.01 749.98 0.0003 0.4730 0.0009 0.4753 0.0001 0.4702 0.0429 0.4849
13 calDay 5 1101.30 1312.37 1295.35 1262.40 1226.75 0.0000 0.5380 0.0000 0.5380 0.0000 0.5354 0.0006 0.5256
14 complex 6 1134.81 1283.25 1155.82 1150.68 1142.01 0.0002 0.5278 0.9074 0.5009 0.8793 0.5011 0.7912 0.5020
15 pntLinePos 6 1397.57 1589.92 1444.04 1490.97 1458.47 0.0000 0.5431 0.5160 0.5048 0.0299 0.5162 0.0980 0.5123
16 triangle 6 1411.86 1396.55 1415.63 1389.04 1324.95 0.4483 0.4943 0.7890 0.4980 0.1772 0.4899 0.0175 0.4823
17 line 8 3322.27 3435.07 3343.48 3269.93 3370.50 0.1796 0.5100 0.7428 0.5024 0.3340 0.4928 0.2840 0.5080
18 pntTrianglePos 8 4584.95 5067.49 5046.12 4955.54 4659.86 0.1498 0.5107 0.2122 0.5093 0.3528 0.5069 0.3202 0.4926
19 TwoLinesPos 8 7415.10 9814.67 8297.09 8430.90 8909.71 0.0000 0.5922 0.0000 0.5304 0.0000 0.5337 0.0000 0.5522
20 nearestDistance 10 2145.31 2259.57 2277.88 2161.20 2188.53 0.0000 0.5489 0.0176 0.5177 0.4080 0.5062 0.1908 0.5098
21 calGCD 10 1004.15 1016.98 1016.14 1017.74 1056.02 0.5202 0.5048 0.6552 0.5033 0.3601 0.5068 0.0242 0.5168
22 select 11 5490.70 5599.86 5907.50 5634.03 5808.85 0.6502 0.5034 0.0368 0.5156 0.5461 0.5045 0.0885 0.5127

VPP-ART and KDFC-ART have lower F-measures than RT.
In other dimensions, the ART F-ratio values are about 1.0,
indicating similar failure-detection effectiveness to RT. The
statistical analyses also indicate no significant difference
among the four ART algorithms.

(3) Point-pattern simulation findings: For a given failure
rate θ, as the dimension d increases, the failure-detection
effectiveness of both VPP-ART and KDFC-ART declines.
When d = 1, 2, the effectiveness of VPP-ART and KDFC-
ART is better than RT, with their ART F-ratio values being
less than 1.0; when d ≥ 3, the VPP-ART ART F-ratio
values are similar or better than those of KDFC-ART. When
1 ≤ d ≤ 4, the p-values are usually greater than 0.05, and the
effect size values are around 0.50; When d = 5, in the cases
of the lower failure rates (θ = 0.0002, 0.0001 for Naive-
KDFC and SemiBal-KDFC, and θ = 0.0005, 0.0002, 0.0001
for LimBal-KDFC), the p-values are greater than 0.05, indi-
cating no statistically-significant difference. When d = 8, 10,
all p-values are less than 0.05, and all effect size values are
greater than 0.50. In summary, when the dimensionality
is low, VPP-ART and KDFC-ART have comparable failure-
detection effectiveness; and in high dimensions, VPP-ART
performs better.

Discussion of effectiveness simulation results: We exam-
ined the failure-detection effectiveness of VPP-ART, FSCS-
ART, and three versions of KDFC-ART through simulations.
Naive-KDFC and SemiBal-KDFC search for the exact NN of
a candidate test case (the same as FSCS-ART); but VPP-ART
and LimBal-KDFC use approximate NN searches. Through
the simulations, it was found that VPP-ART has a similar
failure-detection effectiveness to FSCS-ART and other ART
algorithms that use the exact NN search approach, when the
input domain dimensionality is low, and has better effective-
ness in high dimensions. There was no significant difference
between VPP-ART and LimBal-KDFC, in low dimensions,
in terms of their failure-detection effectiveness. However,
in high dimensions, VPP-ART can perform comparably or

better than LimBal-KDFC.

5.2.2 Answer to RQ1 - Part 2: Results of Experiments
Table 6 presents the ART F-ratio data and statistical analyses
for VPP-ART, FSCS-ART, and KDFC-ART with the 22 sub-
ject programs. Based on the data in this table, we have the
following observations:
A. VPP-ART versus FSCS-ART

VPP-ART has lower F-measures than FSCS-ART in 16 of
the 22 real-life programs (73%). The effect size values for
comparisons between VPP-ART and FSCS-ART range from
0.47 to about 0.60, indicating that VPP-ART can effectively
ensure or improve on the failure-detection effectiveness of
FSCS-ART in real-life programs. Six of the eight programs
(erfcc, calDay, complex, pntLinePos, twoLinesPos,
and nearestDistance) whose p-values are less than 0.05
have effect size values greater than 0.5, indicating that VPP-
ART outperforms FSCS-ART in the tests of these programs;
FSCS-ART performs better for the programs plgndr and
el2. Generally speaking, VPP-ART performs similarly or
slightly worse than FSCS-ART in low-dimensional pro-
grams, but has comparable or better failure-detection ef-
fectiveness in high-dimensional programs — from the per-
spective of the F-measure, VPP-ART may require fewer test
cases to find the first program failure in high-dimensional
programs.
B. VPP-ART versus KDFC-ART

In low-dimensional input domain programs, KDFC-ART
can usually achieve lower F-measure values, but this changes
for high dimensional input domains, when VPP-ART per-
forms best.

Discussion of effectiveness experiments using subject
programs: In the experiments using real-life programs,
the VPP-ART failure-detection effectiveness was found to
be comparable to that of other ART algorithms. VPP-
ART had comparable failure-detection effectiveness in low-
dimensional programs, and often had better performance
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than other ART algorithms with the high-dimensional pro-
grams — VPP-ART will use fewer test cases to detect the
first failure in the high-dimensional programs.

Summary and Discussions of answering to RQ1: Both
the simulations and experimental data suggest that VPP-
ART can achieve comparable, or better, failure-detection
effectiveness, especially in higher dimensions.

5.3 Comparisons of Efficiency
This section reports on the efficiency comparisons between
VPP-ART and the other ART algorithms. The results and
main findings address RQ2, as follows.

5.3.1 Answer to RQ2 - Part 1: Results of Simulations
Figure 10 shows the test case generation times of VPP-ART,
FSCS-ART, and the three KDFC-ART algorithms, for various
test suite sizes, in 1, 2, and 3−dimensional input domains.
Figure 11 shows the data for 4, 5, 8, and 10−dimensional
input domains. In the figures, the x-axis shows the size of
the test suite (k), and the y-axis shows the time taken to
generate the k test cases. Based on the simulation results,
we have the following observations:
A. VPP-ART versus FSCS-ART

VPP-ART has a significant advantage over FSCS-ART
in terms of test case generation time, across different input
domain dimensionalities. Compared with FSCS-ART, VPP-
ART uses vantage point partitioning and approximate NN
strategies to increase the efficiency. The simulation results
indicate that the VPP-ART test case generation time is not
obviously impacted by increases in dimensionality: VPP-
ART still maintains a strong ability to reduce the time
overheads in high dimensions.
B. VPP-ART versus KDFC-ART

Figure 10 shows that when d = 1, 2, or 3, there is little
difference in test case generation time for the three KDFC-
ART versions, all of which have better performance than
VPP-ART. Figure 11 shows that when the input domain
dimension increases to d = 4, the KDFC-ART performance
becomes worse than VPP-ART. As the dimensionality in-
creases (d ≥ 5), the performance differences among the
three KDFC-ART versions gradually increases, with LimBal-
KDFC emerging as the best. However, the performance of
all three KDFC-ART versions is worse than that of VPP-
ART, with the difference increasing as the dimensionality
increases.

Discussion of efficiency simulation results: The simu-
lation results show that VPP-ART requires much less time
than FSCS-ART to generate an equal number of test cases.
VPP-ART performs slightly worse than KDFC-ART when
the dimensionality is low, but increasingly becomes the
better performer as the dimensions increase. The two ART
algorithms based on approximate NN (LimBal-KDFC and
VPP-ART) have better test case generation time. As the
number of test cases get larger, the time cost of the approxi-
mate NN search is lower than that of the exact NN search.

5.3.2 Answer to RQ2 - Part 2: Results of Experiments
This section reports on the investigation into the efficiency
of the five ART algorithms (VPP-ART, FSCS-ART, Naive-
KDFC, SemiBal-KDFC, and LimBal-KDFC) on the 22 subject
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(c) d = 3

Fig. 10. Generation times for various test suite sizes, for d = 1, 2, and 3.

programs. Table 7 reports the average time taken to detect
the first failure (F-time) in each program, by each algorithm.
Based on the data in the table, the main findings are as
follows.
A. VPP-ART versus FSCS-ART

The experiment data show the VPP-ART F-time results to
be much lower than those of FSCS-ART: The effect size scores
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(b) d = 5
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(c) d = 8
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(d) d = 10

Fig. 11. Generation times for various test suite sizes, for d = 4, 5, 8, and 10.

show VPP-ART to be better than FSCS-ART 78% to 93% of
the time. The p-values for both algorithms are 0.0000, which
shows a significant difference between VPP-ART and FSCS-
ART. In summary, VPP-ART greatly improves on the testing
efficiency of FSCS-ART for the real-life subject programs.
B. VPP-ART versus KDFC-ART

The results show that when the input domain dimen-
sionality is low, all three KDFC-ART versions require less
time than VPP-ART to find the first failure in the subject
programs. When d = 1, 2, Naive-KDFC has better perfor-
mance than VPP-ART, except for the bessj program, but
for higher dimensions, according to the effect size scores,
VPP-ART outperforms Naive-KDFC approximately 51% to
91% of the time. When 1 ≤ d ≤ 4, except for the golden
and el2 programs, SemiBal-KDFC and LimBal-KDFC out-
perform VPP-ART. For the other programs/dimensions,
VPP-ART outperforms SemiBal-KDFC and LimBal-KDFC
in (approximately) 50% to 91%, and (approximately) 51%
to 91%, of the time, respectively. All p-values are less than
0.05, except for Naive-KDFC’s performance with golden,
which shows that the differences in VPP-ART and KDFC-
ART performances are significant.

Discussion of efficiency experiments using subject pro-
grams: In general, for all subject programs, VPP-ART out-

performs FSCS-ART, in terms of the time taken to find the
first failure. In low dimensions, KDFC-ART shows better ef-
ficiency than VPP-ART, but as the dimensionality increases,
VPP-ART outperforms KDFC-ART.

Summary and Discussions of Answers to RQ2: VPP-
ART is more efficient than FSCS-ART, according to both the
simulation and experimental results. KDFC-ART is more
efficient in low-dimensional input domains, but VPP-ART
outperforms KDFC-ART when the dimensionality is higher.

Conclusion: Compared with FSCS-ART, the proposed
VPP-ART approach not only shows comparable or better
failure-detection effectiveness in most cases, but also sig-
nificantly improves on the FSCS-ART efficiency in most
cases. VPP-ART has similar failure-detection effectiveness
to KDFC-ART, outperforming KDFC-ART in higher dimen-
sions. VPP-ART, due to the use of vantage point partitioning
and the approximate NN search strategy, has the follow-
ing advantages: (1) VPP-ART can generate an equivalent
number of test cases to FSCS-ART in very short time; (2)
VPP-ART can find software failures more efficiently than
FSCS-ART; and (3) VPP-ART can relieve the influence of
dimensionality on the efficiency of KDFC-ART, with VPP-
ART not showing performance degradation as the input
domain dimensionality increases.
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TABLE 7
F-times and statistical analysis comparisons among VPP-ART and other different ART algorithms with the 22 subject programs

No. Program Dimension
(d)

F-time Statistical Analysis

VPP-
ART

FSCS-
ART

Naive-
KDFC

SemiBal-
KDFC

LimBal-
KDFC

vs. FSCS-ART vs. Naive-KDFC vs. SemiBal-KDFC vs. LimBal-KDFC

p-value effect size p-value effect size p-value effect size p-value effect size

1 airy 1 12.74 329.08 3.31 3.33 3.71 0.0000 0.8740 0.0000 0.2000 0.0000 0.2008 0.0000 0.2182
2 bessj0 1 6.38 98.95 1.66 1.66 1.76 0.0000 0.8382 0.0000 0.2062 0.0000 0.2061 0.0000 0.2151
3 erfcc 1 17.33 529.69 4.46 4.60 4.80 0.0000 0.8904 0.0000 0.1919 0.0000 0.1971 0.0000 0.2039
4 probks 1 37.18 1081.17 18.11 17.95 18.57 0.0000 0.8845 0.0000 0.3000 0.0000 0.2973 0.0000 0.3057
5 tanh 1 3.98 50.72 1.08 1.17 1.21 0.0000 0.8273 0.0000 0.2044 0.0000 0.2173 0.0000 0.2218
6 bessj 2 7.55 132.59 8.43 3.08 3.97 0.0000 0.7889 0.0000 0.5326 0.0000 0.3214 0.0000 0.3647
7 gammq 2 20.60 775.74 16.10 13.08 14.28 0.0000 0.8319 0.0000 0.4520 0.0000 0.4153 0.0000 0.4330
8 sncndn 2 11.18 287.05 5.53 9.03 9.06 0.0000 0.7967 0.0000 0.3773 0.0000 0.4399 0.0000 0.4528
9 golden 3 45.73 2417.30 45.16 72.10 66.76 0.0000 0.8518 0.1062 0.5120 0.0000 0.5623 0.0000 0.5760
10 plgndr 3 42.52 1714.59 94.44 19.43 21.65 0.0000 0.8155 0.0000 0.6282 0.0000 0.3541 0.0000 0.3745
11 cel 4 36.14 1858.20 155.37 23.46 28.03 0.0000 0.8601 0.0000 0.7358 0.0000 0.4126 0.0000 0.4457
12 el2 4 15.42 379.12 25.32 29.34 28.23 0.0000 0.7910 0.0000 0.5933 0.0000 0.5869 0.0000 0.5968
13 calDay 5 27.57 968.30 169.88 36.91 36.18 0.0000 0.8371 0.0000 0.7733 0.0004 0.5264 0.0088 0.5195
14 complex 6 27.62 1317.92 136.16 136.54 113.95 0.0000 0.8536 0.0000 0.7358 0.0000 0.7446 0.0000 0.7431
15 pntLinePos 6 34.46 1895.50 182.67 193.30 155.95 0.0000 0.8563 0.0000 0.7496 0.0000 0.7640 0.0000 0.7651
16 triangle 6 35.23 1562.98 177.93 180.97 142.86 0.0000 0.8339 0.0000 0.7444 0.0000 0.7453 0.0000 0.7372
17 line 8 102.64 10274.08 1542.17 1659.12 936.30 0.0000 0.8931 0.0000 0.8484 0.0000 0.8432 0.0000 0.8511
18 pntTrianglePos 8 153.93 21846.93 2864.84 3077.41 1450.36 0.0000 0.8972 0.0000 0.8594 0.0000 0.8676 0.0000 0.8547
19 TwoLinesPos 8 272.39 70499.32 6015.84 6919.79 3177.67 0.0000 0.9347 0.0000 0.8831 0.0000 0.8946 0.0000 0.8870
20 nearestDistance 10 69.81 3493.54 3113.37 3467.71 1067.29 0.0000 0.8596 0.0000 0.8503 0.0000 0.8540 0.0000 0.8608
21 calGCD 10 27.96 916.10 483.69 554.96 364.48 0.0000 0.8139 0.0000 0.8033 0.0000 0.8119 0.0000 0.8055
22 select 11 216.93 26894.43 24325.93 23561.25 4338.21 0.0000 0.9035 0.0000 0.9088 0.0000 0.9086 0.0000 0.9039

In conclusion, VPP-ART is more cost-effective than
FSCS-ART; and in high dimensions, VPP-ART is more cost-
effective than KDFC-ART.

6 THREATS TO VALIDITY

This section examines some potential threats to the validity
of our study.

6.1 Construct Validity
Construct validity refers to how well a study examines
and measures its assertions. In this paper, we used the
F-measure (and related ART F-ratio) [14] to measure the
failure-detection effectiveness of RT and different ART al-
gorithms. In addition to the F-measure, two other failure-
detection effectiveness metrics that are commonly used are
the E-measure and the P-measure [15]. The E-measure refers
to the expected number of failures to be identified by a
set of test cases; and the P-measure is the probability of
a test set identifying at least one program failure. The E-
measure and P-measure are most suitable for the evaluation
of automated testing systems when the number of test cases
is fixed [59]. The F-measure, in contrast, is more suitable
when testing continues until a failure is detected. Previous
studies have shown that ART outperforms RT in terms
of the P-measure [60]. A criticism of the E-measure is that
multiple failures may be associated with a single fault [59].
In this paper, we examined FSCS-ART and the enhanced
RT algorithms VPP-ART and KDFC-ART in simulations
and experiments, with the algorithm stopping whenever
a (first) program failure was detected. Accordingly, the F-
measure was the metric used to evaluate the failure-finding
effectiveness of the three algorithms.

6.2 External Validity
External validity refers to the extent to which our exper-
iments are generally valid, and to what degree can the

results and findings be generalized. A potential external
threat relates to the existing empirical research (e.g., KDFC-
ART [22]). Although the subject programs in our study cover
a wide range of failure rates and dimensions, the programs
are relatively small in size. To address this threat, our future
work will involve more subject programs, including both
different types of subject programs (e.g., object-oriented
software/systems), and larger-scale programs.

6.3 Internal Validity
Internal validity refers to the accuracy and completeness of
the experiments. Each of our experiments was repeated
3000 times, allowing confidence in the calculated average
data. Different parameter settings for VPP-ART will lead
to different outcomes, which is also a potential threat. For
example, we recommended setting the parameter pair val-
ues as 〈ε, λ〉 = 〈3, 10〉 (Section 5.1): VPP-ART will produce
different behavior and results when different parameter
values are chosen. As discussed in Section 5.1, a smaller
λ and a smaller ε can enhance the VPP-ART performance.
However, it is not possible to enumerate every possible
parameter value combination.

7 RELATED WORK

Many techniques have been proposed to address the ART
computational overhead problem, including: forgetting [20];
Distance-aware Forgetting for Fixed-Size-Candidate-Set ART
(DF-FSCS-ART) [21]; KD-tree-enhanced Fixed-Size-Candidate-
Set ART (KDFC-ART) [22]; and Fixed-Size-Candidate-Set ART
using SIMD instructions (FSCS-SIMD) [23].

7.1 Forgetting
With ART, generation of the next test case depends on the
|E| test cases that were already executed, without revealing
any failures. As the number of test cases in E grows, the
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computational overhead of generating test cases becomes
greater. Chan et al. [20] proposed a forgetting strategy that
only examines up to a constant M number of executed test
cases when generating new test cases, typically with M
being� |E|. The forgetting strategy thus makes generation
of the next test case independent of the size of E. VPP-ART
uses the concept of partitioning, with all |E| test cases, but
only λ test cases are considered in the search process. Both
forgetting and VPP-ART can reduce the searching scale of
E, but there is a difference between the algorithms: The
forgetting strategy ignores some executed test cases without
considering the relationship between them; with VPP-ART,
however, the attribute (distance) information of each test
case is indexed by vantage points, thus implicitly including
the information when reducing the search scale.

7.2 DF-FSCS-ART
DF-FSCS-ART [21] uses information about the distribution
of executed test cases, ignoring those not in the sight of a
given candidate test case. The input domain is first divided
into p×p sub-domains (where p is a predefined parameter).
During test case generation, FSCS-ART is applied to the
entire input domain, but for each candidate test case, only
those executed test cases lying in adjacent sub-domains
are included in the distance calculation process. When DF-
FSCS-ART is dividing the input domain, as long as the
division conditions are satisfied, a new round of division
will be performed. To avoid too many test cases within the
sub-domains, DF-FSCS-ART randomly filters them to keep
the number below a threshold value λ.

DF-FSCS-ART faces some challenges: (1) Two parame-
ters (p and λ) need to be set before testing, with different
values of these two parameters causing the performance of
DF-FSCS-ART to vary widely. This is also a threat to our
proposed VPP-ART, which requires that the parameter pair
〈ε, λ〉 be set before testing. (2) As the number of executed
test cases increases, more distance calculations need to be
performed, increasing the time overheads. Although VPP-
ART and DF-FSCS-ART share the same goal of reducing
the FSCS-ART computational overheads, the dimension-
ality and number of executed test cases are significantly
stronger limitations for DF-FSCS-ART: As seen in this paper,
the VPP-ART time cost changes very little in response to
increases in the executed test set size and input domain
dimension.

7.3 KDFC-ART
To reduce the high computational overheads of FSCS-ART,
Mao et al. [22] proposed three KDFC-ART algorithms, based
on the K-dimensional tree (KD-tree) [61], [62], [63], [64] struc-
ture: Naive-KDFC; SemiBal-KDFC; and LimBal-KDFC. Naive-
KDFC sequentially divides the input space in each dimen-
sion to construct the KD-tree. To improve the balance of the
KD-tree, SemiBal-KDFC prioritizes the partitioning using a
splitting strategy [22] Because the KD-tree structure has a
drawback that, in the worst case (especially when the di-
mensionality increases), all nodes may need to be traversed,
the third algorithm, LimBal-KDFC, was proposed: LimBal-
KDFC uses an upper limit to control the number of traversed
nodes in the backtracking. Naive-KDFC and SemiBal-KDFC

are based on an exact NN search; while LimBal-KDFC uses
on approximate NN search — the same as VPP-ART. As
shown in this paper, both VPP-ART and KDFC-ART focus
on reducing the high computational overheads of ART,
and each has its own advantages and disadvantages. VPP-
ART shows the improvement in high-dimensional efficiency
due to its use of the VPP for distances among test cases:
VPP-ART test case generation time changes little as the
dimensionality increases.

7.4 FSCS-SIMD

Ashfaq et al. [23] proposed an efficient FSCS-ART imple-
mentation, Fixed-Size-Candidate-Set using Single-Instruction-
Multiple-Data (FSCS-SIMD), which uses the SIMD instruc-
tion architecture to calculate the distances among multiple
test cases simultaneously, in a many-to-many manner. FSCS-
SIMD loads a batch of multiple test cases from the candidate
and executed test case sets at once. FSCS-SIMD accelerates
the distance computation by increasing the CPU execution
utilization, but is dependent on the available hardware
resources [23]. VPP-ART, in contrast, improves the efficiency
at the level of the algorithm and data structures. In poorer
hardware environments (such as with a low number of
CPU cores), FSCS-SIMD has greater limitations than VPP-
ART because FSCS-SIMD depends more on the hardware
resources.

8 CONCLUSIONS AND FUTURE WORK

Adaptive Random Testing (ART) [13] improves on the failure-
detection effectiveness of Random Testing (RT) [6], by making
the test cases more evenly distributed in the input do-
main. The Fixed-Size-Candidate-Set ART (FSCS-ART) [13] was
among the first ART implementations, and has remained
among the most popular [12]: FSCS-ART is widely used in
practice, and has been shown to have better failure-detection
effectiveness [13], [14], [15], [16], test-case distribution [17],
and code coverage [18] than RT. However, FSCS-ART still
has a significant computational overhead problem [12]: The
time required to generate/select FSCS-ART test cases is
much greater than their execution time. In this paper, we
have proposed the VPP-ART algorithm, which make use
of Vantage Point Partitioning (VPP) and an approximate
nearest neighbor (NN) search strategy. VPP-ART achieves
a significant reduction in the time overheads for FSCS-ART
while maintaining its effectiveness.

We conducted a series of simulations and experimental
studies to validate the VPP-ART approach, using FSCS-
ART and three KDFC-ART algorithms for comparison. The
simulations showed that VPP-ART not only requires less
time to detect software failures compared with FSCS-ART,
but also retains comparable failure-detection effectiveness.
VPP-ART also has similar, or better, failure-detection ef-
fectiveness compared with KDFC-ART [22]. In terms of
efficiency, KDFC-ART has lower overheads in low dimen-
sions, but VPP-ART performs better in high dimensions.
Furthermore, the VPP-ART time overheads only increase
slightly for increases in the input domain dimensionality.
VPP-ART effectively reduces the computational overhead
problem of FSCS-ART, and is cost-effective.
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The ART algorithms based on exact NN searches have
better failure-detection effectiveness in lower dimensional
input domains, while those based on approximate NN are
better in higher dimensions. This is because of the clustering
of similar test cases, which is more pronounced as the
dimensionality and number of test cases increases, result-
ing in more similar test cases clustering in the same sub-
domain. Moreover, when there is little difference between
the approximate and the exact NNs, the approximate NN
can replace the exact NN, improving the search efficiency
(test case generation efficiency) at the cost of a tolerable loss
in accuracy.

In this paper, we introduced a modified VP-tree to sup-
port the dynamic nature of FSCS-ART. Because many other
ART approaches and implementations also suffer from the
same drawbacks and overheads as FSCS-ART, our future
work will include exploration of application of the insert-
able VP-tree to these other ART algorithms. Furthermore,
as mentioned in the Threats to Validity section (Section 6),
confirmation of the VPP-ART parameter settings for λ and ε
is also one of the future research directions. The influence
of the parameter pairs (λ and ε) on the effectiveness of
the experiments has been discussed, with the experimental
parameter pair values determined from the simulations.
However, because there has not yet been much research
into these two parameters, exploring the functional or de-
pendency relationship between them, so that our proposed
insert-able VP-tree structure can be better applied, will also
form part of our future work. VPP-ART is an ART algorithm
based on an approximate NN search (like LimBal-KDFC):
Our experimental analysis has shown that VPP-ART and
LimBal-KDFC can effectively improve on the high dimen-
sional failure-detection effectiveness of the original ART
algorithm, and greatly reduce the test case generation time.
This gives us some inspiration to identify and create other
algorithms or data structures that may be enhanced through
an approximate, rather than exact, NN search.
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