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Robust Adaptive Motion/Force Tracking Control of straints. Physically, this implies that the constraints provide the neces-
Uncertain Nonholonomic Mechanical Systems sary reactions. However, the magnitude of the constrained forces may
not be desirable, as a result of control efforts on position errors. What-

Masahiro Oya, Chun-Yi Su, and Ryozo Katoh ever sophisticated control algorithms there may be, it is impractical

unless the position and the force of interaction are controlled simulta-
. ) ) ) neously. However, the literature on the force control of nonholonomic
Abstract—The position/force tracking control of Lagrangian mechanical

X X . D S mechanical systems is sparse [10], [19], [20].
systems with classical nonholonomic constraints is addressed in this paper. . . . .
The main feature of this paper is that 1) control strategy is developed at N this paper, we are concerned with Lagrangian mechanical systems

the dynamic level and can deal with model uncertainties in the mechanical With classic nonholonomic constraints. The challenge addressed here is
systems; 2) the proposed control law ensures the desired trajectory tracking to ensure, at the dynamic control level, desired trajectory and constraint
0; tc}:)igt?gifir%:‘frlggr;sséagﬁn%fgg?N(i:tlr?séegc-)lr?t?gl|?E)S|fee{;nc;u3n) dt_hgnt(;a:)kglg l‘;gglr force tracking in the presence of parameter modeling uncertainties. By
gsymptotic stability result is obtained in the Lyapunov s’ense. A dgtailed ass‘_Jm'”g Completg knowledge of the_ constraint manifold, and_tak'ng
numerical example is presented to illustrate the developed method. the internal dynamics of the systems into account, a full dynamics de-
Index Terms—Adaptive control, mechanical systems, motion/force con- scription suitable fqr motion and force control is deriV(_ed by Qecom-
trol, nonholonomic constraints, robust control, tracking c’ontrol, uncertain-  POSNY the system_ into twc_) c.ascaded subsystgms: a klnema_tlc system
ties. and a new dynamic description. A robust motion/force tracking con-
trol algorithm is then derived, ensuring that the desired trajectory and
the desired constraint force can be tracked. Stability analysis shows the
I. INTRODUCTION desired position tracking and force tracking errors are bounded with a
Nonholonomic constraints arise when there is a rolling or slidirgPntrollable bound. The application of the developed design procedure
contact in mechanical systems [16]. A large class of systems, sughlustrated by an example. _
as wheeled vehicles, mobile robots, multifingered robotic hands, This paperis organized as follows. Methods developed in [10] for de-
space robots, etc., involve nonholonomic constraints. Control §pMPOsing nonholonomic mechanical systems into two cascaded sub-
nonholonomic mechanical systems has attracted significant attent®$tems, a kinematic system and a lower dimensional dynamic system,
recently due to the demand for control of the above-referred systefageviewed in Section II, and Section III presents a control strategy.
[2]. Considerable efforts have been expended in designing stabilizihge Stability analysis for the complete system is also conducted in this
controllers, and research results can generally be classified in tagfFtion. Section IV provides illustrative examples using the proposed
classes. The first is kinematic control [2], [4], [17], which provides th@PProach. In Section V, some conclusions are presented.
solutions only on a pure kinematic level, yielding kinematic control
such as driving speed. The second is dynamic control [3]-[13], taking Il. MODEL OF MECHANICAL SYSTEM WITH
inertia and forces into account and yielding physical controls such as NONHOLONOMIC CONSTRAINTS
driving torques. The interested reader may refer to the survey pape

[2] for various control methods [n this section, we are concerned with mechanical systems with a

The tracking problem (tracking a reference trajectory), as a mughassical nonholonomic constraint, whose configuration space is an
gp 9 ! Y), n-dimensional, simply connected manifdtd and whose dynamics are

more interesting issue in practice, has received relatively less attemboe%cribed in local coordinates (termed generalized coordinates), by so
in the literature. Depending on whether the nonholonomic systems e EuI;er—Lagrangian formulation as [5], [16] '

presented at a kinematic or dynamic level, the tracking problem can
also be classified as either a kinematic tracking problem or a dynamic .. N SN T _
tracking problem. Similar to the stabilization case, most of the work D(a)a+Cla, @a+Gla) =7 (@)A + Bla)s (1)
reported to date on the tracking problem is at kinematic level (see [21] J(qQ)q =0 2)
for references). However, it is evident that practical applications call

for solutions at the dynamic level. Recognizing the importance of aghereq denotes the vector of generalized coordinatesgenotes the
dressing the tracking control problem at the dynamic level, some efferi/ector of generalized control input force;e R™ is the associated
has been devoted to this problem [10], [14], [15]. Lagrangian multipliers which expresses the contact force on the con-
Itis also important to note that constraints usually result from contagfct point between the rigid body and the environmental suriace)
interaction of the machine and the environment. Therefore, the conti9khe (n x n) symmetric, bounded, positive definite inertia matrix;
of the forces of interactions is at least as important as the position ¢ q, q)4 presents the: vector of centripetal and Coriolis torques;
trol. Applying a conventional technique, one can reduce the numberg‘gq) is then vector of gravitational torqued3 (q) is an(n x r) input
state variables with those which provide motion complying with coRransformation matrix, and is assumed to be known because itis a func-
tion of fixed geometry of the system; anfdq) is the(m x n) con-
straint matrix. In the system (1) and (2), the constraint equation (2) is
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where® is an x [ matrix of known functions of, g, v, andv; and velocities case include tricycle-type mobile robots, cars towing several
A, is thel vector of inertia parameters [29] and assumed completetailers, the knife edges, and a vertical rolling wheel (see, e.g., [2]).
unknown in this paper.

Property 2: A suitable definition ofC'(q, ¢) makes matrix D — A. Controller Design

2C') skew symmetric [10]. In the following development, it is assumed that there exists a coor-
The control objective can be specified as follows. Given a desirgghate transformation; = ¥(q), and a state feedback,= €2, (q)u,

contact force\s and desired trajectorieg; andq., which are assumed s that the kinematic system (7) with= 2 could be locally or globally

to be bounded and should satisfy the constraint equation (2), with Wemverted to thehainedform [26]

known inertia parameters,,, determine a control law for such that

A, q, andg asymptotically converge td,, q4, andqq. Y1 =uy
To solve the above tracking problem, we recall tha the necessary . ]
and sufficient number of generalized coordinates required to describe Y5 =u1ys+1, (2<j<n—1)

the configuration of the systems. Likewise, the differepce n — m
of unconstrained degrees of freedom is termededscity of degree of
freedom It is important to note that this denotes the number of gen- A necessary and sufficient condition for existence of the transformation
eralized velocities, or of linear combinations thereof, that can be freqly the kinematic system (7) with = 2 into this chained form (single
assigned without violating the kinematic constraints [24]. Hencefortbhain) was given by [3] and [18]. For the general case (multichain case),
any set of linearly independent velocity variables will be termed a sgfe discussion on the existence condition of the transformation may
of independent generalized velocities. refer to [26].

We thus letv be ap dimensional vector of independent generalized Corresponding to the above transformation, the dynamic model (8)
velocities. Moreover, we leR(q) be ann x p matrix defined so that is converted as
it maps vectow into a vector of feasible generalized velocitigghat

Yn = Uz 9)

obeys the kinematic constraints (2). That is Dy (y)Ra(y)a + Caly, ¥)u+ Ga(y) = Ba(y)7 + J5 () (10)
q= R(q)v. (4)  where

Methods for obtaining the expression Bfq) may refer to [10] and Ds(y) =D(q)|qmw-1(y)
[22]. Based on (2) and (4), it can easily be verified that

T T Ry (y) :R(q)gzl(q”q:\l’*l(y)

R (q)J (@) =0. ®) . . .
Co(y, y) =[D(@) R(q)i(q) + Ci(q, Q1 (D]|q=w-13)
Thus, R(q) is an orthogonal complement gt
Differentiating (4), we can obtain Ga(y) = G(A)lg=w-1(y)
. J2(y) = J(@)|q=w—
§=Rv + hv. 6) =

Bz(y) :B(q)|q:\1’*1(y)'

Since the desired trajectody; should satisfy the constraint equation
(2), therefore, there must exist a desikedsatisfying

Therefore, the dynamic equation (1), when satisfying the nonholo-
nomic constraint (2), can be reformulated as

q =R(q)v. (7
D(q)R(qQ)V + Ci(q, Qv+ G(a) =B(a)r + T (@)A  (8)

Qa = R(qq)va4. (112)

Remark: It should be noted that the choice of the feasible trajectory
whereC'(q. ¢) = D(q)R(q) + C(q, &) R(q). for nonholonomic systems is strongly related tofiégness[6] or the

It should be noted that the whole system consists of a new dynarﬁIEOice of back-followable outputs, and itself is an active research topic
model (8) together with a purely kinematic relationship (7). As will b&27]- It is beyond the scope of this paper to address this issue.
clear in the later development, it is this cascade structure that makes fpaSed on the fact that the kinematic system (2) can be converted into
possible to design the robust control algorithm. Regarding the genéftff chained form (9), the;e must exist a transformagion= ¥ (q.)
treatment of modeling issues in the nonholonomic systems, the rea@afl @ state feedbacky = €21 (qa)ua, such that (11) can be converted
may refer to [25]. into

Ydl = Uq
Il MAIN RESULTS ar=ta

We now consider the tracking problem of the uncertain nonholo- Yj = Ud1Ydj+1 2<j<n-1)

nomic mechanical systems discussed above. In the following devel- Gdn = Uds- (12)
opment, the discussions will be focused on those systems, their kine-

matics can be converted into the so-called chained form [26]. In fact,With the above transformations, the tracking problem considered in
it has been shown that many nonholonomic systems can be convettesl paper can be restated as seeking a strategy for specifying a control
into the chained form [2], and therefore, the systems to be discusseplut~ for (9) and (10), subject to the condition that parameters of the
are not very restrictive in practical applications. Also, we only comnechanical systems are not exactly known, such {baty, y} —
sider two independent generalized velocitigs{ 2) cases, just forthe {\4, y4, ya}.

sake of simplicity. The results can be extended to a general case. WEor the development of control law, the following assumptions are
should emphasize that our goal in this paper is to develop a force/megquired.

tion tracking control strategy in a simpler setting that reveals its es-Assumption (A1):The trajectories, and (d'yq. /dt’) (1 < i <
sential features. Interesting examples for two independent generalized 1) are bounded anim;_. . inf |uq41| > 0.
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Remark: As will be seen from stability analysig\ssumption (A1) g =—(e2 —an) — ks(es — a;;)uf,ﬂ’l
on the boundedness ¢f; can be relaxed toys;(2 < ¢ < n) are 1 & das ] 2 das
boundedy.i depending oDs R;, C, andGs. If D2 R3, C2, andG2 +— Z N0 !+ Z Do, it
are bounded op, , there is no boundedness requirementyfar. This w1 5 Jugy = Y¢
is the case in the simulation example.
Assumption (A2):The matrixRJ Rs is nonsingular for alfy € ®"
andt € . i =—=(en—2— an_2) = kn_1(en—1 — an_1)upy *
Remarks: The matrix R» is determined by the constraint matrix e oo
J(q) and is always a full-rank matrix. Such an assumption is gener- + 1 Z 3@'77 —1 “g;rll + Z Doy Citt (14)
ally satisfied. wir = gull —  Oe;
With the above assumptions, the following three properties, similar
to [10], can be obtained by exploiting the structure of (10). wherel = n — 2, ul] means théth derivative ofu ., andk;(2 < i <
Property 3: The generalized inertia matriRs = B3 D2(q)R2is  ,, _ 1) are positive constants. T
symmetric and positive definite. o We suppose only that the parameter vegtpiis uncertain. The ro-
PTroper_ty 4: If C'is defined as thaProperty 2is verified, (D3 —  pyst force/motion tracking control law with the unknown inertia pa-
2R; (%) is a skew-symmetric matrix. rameter vectoB,, is then defined as shown in (15)—(19) at the bottom

Property 5: The dynamic structure (10) is linear, in terms of the;f the page, whereis defined as = e — ; @, is defined inProperty
same suitable selected set of inertia parameters as ugdperty 1 5. i js ann x n positive definite matrixp € B, used in (16) is the
upper bounds of unknown inertia parametgri.e., || 3, || < p, which

Do(y) B2t + Coly, y)u+ Ga(y) = 8uly, ¥, u, W (13) is assumed known. The force tefm is defined as

where®, is a(n x [) regressor matrix and, is thel vector of inertia
parameters. Ae = Aa = Ka(A = Ag)

Observe that complete nonholonomic mechanical system model (9)
and (10) consists of the two cascaded subsystems. As a consequenerel\, is a constant matrix of force control feedback gains.
the system’s generalized velociycannot be commanded directly, as Remarks: 1) The structure of the above controller is sketched in
is assumed in the design of controllers at the kinematic level, and Fig. 1. The controller consists of two parts. In the first partepre-
stead must be realized as the output of mechanical system dynamgigsts an embedded control input, which may be viewed as an adaptive
(10) throughr. The above properties imply that the dynamics (10) rezontroller that ensures the desired trackingrgfor the subsystem (9)
tains the mechanical system structure of the original system (1), whi¢fhe mechanical dynamics described by (10) were not present. In the
is fundamental for designing the robust control law. In this section, vé&cond part, the inputintends to regulata about the embedded con-
will develop a strategy so that the subsystem (9) trackeith an em-  trol input, and therefore, attempts to provide control input necessary to
bedded control input [i.ez in (17)], and at the same time, the output oinake the desired tracking. The control law (15) in the second part is,
mechanical subsystem (10) is controlled to track this embedded conirph simple fashion, related to the bounds of inertia paramgiesn

input. In turn, the tracking goal can be achieved. that the parameter variations in the dynamics can be taken into account
To design an embedded control input so that the subsystem (&@kily.
tracksy., in the following, we define = [e1, e2. ..., en]" = y—yu 2) For the development of the above control law, this paper takes
anda = [og, a2, g, ..., ﬂ'n]T with the common assumption that the constraint maffie) is known, i.e.,
there are no uncertainties for the kinematic system (2). This assump-
a1 =0 tion is reasonable, since the kinematical parameters are geometric and
az =0 relatively easy to measure. If this is not the case, the technique devel-
oped in [28] to deal with uncertainties in the kinematic system may be
az = —kzezuj‘fl applied. However, as mentioned above, the purpose of this paper is to

Bor =®i(y. ¥, 2, 2)¢p — K. Ro(u —2) — Ro(Ry R2) ™' A — J3 A, (15)
®TRy(u—12)
=" T (o o 16
P e Ra(u— o)l (19
[ wdr + 1
z = R 00 jit1] | = da 17)
. X [i41] Op
Ud2 — Spn—1Ud1 — knbn + Z K Ugq =+ Z . €41
L i=0 8u£& i=2 Je;
~ n—1 n J—1 Sevs
A1 k1~‘?1 =+ Z SilYi+1 — Z‘?]Z 7] Yi+1
A= A\ = po il Oe; (18)

- Sn

n—1

n Jj—1

. Ja;

N =—kon — kisi — Z Siyi+1+23j Z %yi+1 (19)
=3 P 1

=2
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I.[ == —k(ﬂ} - Al. (22)

D,Ru+Cu+G, u - Yy
=B +JA M=y

v

Before giving the stability analysis of the above closed-loop system,
------------------------------------------------- - the following lemmas are required.

i Lemma 1: Given a differentiable function(t): RT — R,ifo(t) €

L, and¢(t) € L, theng(t) — 0 ast — oc [30].

l I P Lemma 2:If a given differentiable functions(t): Rt — R
signals 2,2 : a7 . . L

4¢=—— converges to some limit value when— oo, and if the derivative
i (do/dt)(t) of this function is the sum of two terms, one being

Controller uniformly continuous and the other one tending to zero when o,
then(d¢/dt) — 0 whent — oc [17].
Fig. 1. Structure of the control system. The stability of the above closed-loop system is established in the

following theorem.

reveal the essential feature of controller development. We will not dis-1"€0rem: Consider the mechanical system described by (9) and
cuss this issue here for the sake of simplicity. (10), subject toAssumptions (Aland (A2), the robust adaptive con-

3) The control law (15) for the subsystem (10) is designed based BAlle" specified by (15)—(19) ensures that all closed-loop signals are
the sliding-mode theory. In this case, this sliding-mode control law Rounded. Furthermore,, 32, ... ... . asymptotically converge i,
discontinuous across? R,(u—z), and such a control law may lead to¥<2: - - - » Ydn,s and(A — Aq) is inversely proportional to the norm of
control chattering. Chatter is undesirable in practice because it involV8§ Matix(K +1). . .
high control activity, and further, may excite high-frequency dynamics ~ PT0°f: Multiplying R on both sides of (21), using (5), one can

which were neglected in the course of modeling. This can be renftain

died by approximating this discontinuous control law by a continuous _ . » " o o

one inside the boundary layer. This is the commonly and practically ac-Dsu= Ry @19 — Ry 10, — Ry K.Rou — Ry Chu — A (23)
cepted method. To do this, the tet@! R, (u—z))/(||®T Ry(u—2z)]|)

is replaced by®! Ro(u —z))/(||®F Ro(u — 2)|| + ), wheree is the Let us consider the positive definite function

boundary layer thickness. This leads to tracking to within a guaranteed

precision. The proof of the boundedness of the tracking error is omitted V(t) =Va(t) + Va(t) (24)

here, in order to reveal the essential feature of controller development n

and avoid the overwhelming mathematics. ) Vi(t) =1 (Z s; 4+ kst + '772> (25)
4) Supposey in control law (16) is replaced by,, representing i=2

estimation of,,, and3, is updated by}, = —~T'®]{ R (u — z), where V() = L o Dy, (26)

I is a positive definite constant matrix. With this algorithm, it can be

proven thatly, ¥, A} — {ya, ¥a, Aa} ast — oc. Therefore, the 4 time derivative of/; (¢) along the solution of (20)—(22) is
proposed robust algorithm can easily be transferred into an adaptive

algorithm. Itis important to mention that the question of whether to use ) n
robust control or adaptive control does not have an obvious answer. 1= Z 58, + kisi81 + 9
=2
B. Stability Analysis of the Closed-Loop System n—1
— o2, 20 2 ~ .
Denotingt = u — z = [ -], the closed-loop system of (9), (10), == Z kisiugn — Fnsy + G280 + (1 + 1)
and (15)—(19) can be written as 1=2 ) -
n— n J—
O
. . . Sili+1— S S Yi+1
51 =041, <Zz:; ]z:; ]; Oe; )
59 = sgugy — kasougs + (74 d1)ys s+ Frsiin — kon® — A,
. 21 ~
53 =saua — saugr — kaszugy + (n + u1) noto '
=— Z k,;sfui’l — kn ei — k0n2 + alA. (27)
=2

e = 90
Ya Des Ys

The time derivative o¥%(¢) along the solution trajectory of (21) is

Vo =ua’ (R ®1p — Ry &3, — Ri K.Rot)

St = SpUdl — Sp_olgt — kn_15,_1ugy + (7 + 1)
~T (1 1 T ~ ~ T
n—2 . +u (ED;;—RQCg)u—uA
. (y _ Z Oanfl . ’_+l>
= Qe =—a'RiK.Rou+u' Ry (o —5,) —a' A (28)
s-n = _kns‘n_sn— u +ﬂ‘ — 7 +il ) L .
. s 2= (b, where we have usd@roperty 4to eliminate the terma” ((1/2)D3 —
=2 o, RY C»)u. The second term in (28) can be shown that
Z Je. Yirl (20)
i=2 € @TB ~
. 3L Rt (o — 8.) = (L Rt [~ 5. — 1 42l
DyRott = 1o — @16, — K. Rt — Coit (@1 Ro®)” (p = ) = (@1 Ra)” == ¢ ygrp o

— Ro(RJR2) 'A—J (A = N) (21) <17 Roat|| (13l — p) <0 (29)
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from the Cauchy—Schwartz inequality and our assumptiofi&y|.
Thus, one has

Vo< —i' Ry K.Rou—1u' A. (30)

Based on (27) and (30)'/;' can be expressed as

n—1
V< —kon” = knsy — Y kistudi — @' Ry KRt < 0.
=2

(€1Y)

The considered positive functidri(¢) is, thus, nonincreasing. This,
in turn, implies that, s, andu are bounded, an¥f (¢) converges to
limit value V.., . By the definition ofs, it concludes that is bounded.
Using Assumption (Al)n the theorem, it follows thay is bounded.
In view of (20)—(22),§, 1, ands are bounded. Thus,, s, anda are
uniformly bounded. We should mention thatlif, R», C>, andG- is
bounded ory,, there is no boundedness requirementiar. Next,
we prove thas, §, andy tend to zero. Sincd” is bounded and”
is uniformly continuous, by.emma 1V tends to zero. Therefore,
siuq1(2 <i <n-—1),s,,andu tend to zero. By the assumption tha
lim; .o inf |ugi| > 0, one concludes that; (2 < ¢ < n) tends to
zero.

Differentiatingu’, » yields

1 I—1 -1 1
—kiugrst Flug gin — kougn

1
— Ud41

d
— upn =
at di?

n—1

>

1=2

—1
" 3 O
SiYi+1 — E S; E oo Yit+1
=3 ; O

1=2

)

where the first term is uniformly continuous and the other terms tend

to zero. ByLemma 2 one concludes thatl/dt)(u), 1) converges to
zero, which, in turn, implies that);, s, ands, tend to zero. There-

fore,s ands tend to zero. To complete the proof and establish asymp-
totic convergence of the tracking error, it is necessary to show that

{y. ¥} — {ya,ya} ast — oo. This is accomplished by the fol-
lowing arguments.

Based on the definition af given in (14) and the relationship=
e — «, it is obvious thats; = 0(: = 1, 2) yieldslim:— o y; = yai
andlimi—o 9; = 94 (i = 1, 2) because ofv; = a, = 0. From
the boundedness af;; , one obtains that; andds converge to zero,
which results ilim;— .. y3 = yq3 andlim;— . ys = yq3. The con-
vergences ofiz andds lead to the conclusion that; andd., converge
to zero, thuslim; .o« ya = yqs andlim; .o ga = gaq4. Similarly, we
can prove thaim,— . y; = yq; andlimi—o 9 = 9a; (5 < i < n).
In summary, we have proved thig, vy} — {yd4, ya} ast — .

To prove that A — Aq) is inversely proportional to the norm of the
matrix (K + I), (21) can be written as

JT(Ae = A) = —=DyRya+ &1 — ®13, — K. Rou
—RICou— Ry(REIR) A =0(-). (32)
It can be easily shown that(-) is bounded. Thus

J"A=2)=(K\+D)7'o

179
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Fig. 2. Mobile robot configuration.

[15] can be considered as special cases of our result. Therefore, this
paper gives a general solution for the dynamic tracking problem of the

tnonholonomic systems with uncertain inertia parameters.

IV. SIMULATED EXAMPLE

A simplified model of a mobile wheeled robot moving on a
horizontal plane, constituted by a rigid trolley equipped with non-
deformable wheels, as shown in Fig. 2, is used to verify the validity
of the control approach outlined in this paper. Details regarding the
system may be found in [5].

The dynamic model can be expressed as [5]

ma =Acosf — % (11 + 72)siné
miy = Asinf + %(71 + 72) cosd

Iné = £

P (33)

(11— 72)
wherezr, y are the coordinates of the reference p@pin the inertial
frame,d is the orientation of the basis with respect to the inertial frame,
m is the mass of the robot, and is its inertia moment around the
vertical axis at poing), P is the radius of the wheels agd the length
of the axis of the front wheels, and andr, are the torques provided
by motors.

The nonholonomic constraint is written as

Zcost + gsing = 0. (34)

Given the desired trajectory; = [2cost, 2sint, t]7, which is a
circular path on the plane, and a desired contact farce= 10, the
control objective is to determine a feedback control so that the trajec-
toryq = [z, y, #]" follows q4, and the contact forck, follows \.

The matrixJ(q) is, therefore, defined af q) = [cos 8 sin 8 0]. The
matrix R(q) defined in (5) is chosen as

—sind 0
R= cosf 0
0 1

and therefore{\ — \;) are bounded and can be adjusted by changing

the feedback gaik’, . Thus, the theorem is proved. \Y%
Remarks: From the above theorem, it can be seen thaty} —
{yda, ya} ast — oo, which, inturn, impliesthafq, q} — {q4, 4a}-

On top of this, the control of contact force is also included. In the liter-

ature, there are only limited reports considering the dynamic tracki

problem [10], [14], [15], and the results developed in [10], [14], and

Therefore, the kinematic system (34) can be written as
T =—v;sinf

gy =wvy cosd
ng
(35)

6 =wvs.
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Using a diffeomorphism transformation,= ¥(q), and a state feed-

back,v = Qi (q)u, which are defined as

y1 =46
Yo =xcosf + ysinb

ys =—asinf + y cosd

Uy =v2
we =v1 — (xcosf + ysin#)vo (36)
the above kinematic system is transferred intodh&inedform
g1 =u1
Y2 = ysu1

The corresponding dynamic model (33) is converted to

—myssiny; —msin yy
U1
Myz COS Y1 m cos Y1
lo
I, 0

—My2y1 COSY1 — MY28iny;r  —my1 cos Y1

-

+ | =myz91 sinys + myz cosyr  —myi sin y1
0 0
—siny; —siny; COs Y1
1 T1 .
= = cos ¥ Cos Y1 + | siny: | A (38)
P o
L —L 0
with
—y2siny;  —siny
Ry = Y2 COS Y1 COS Y1
1 0

For the givenR(q), the desired trajectoryy = [2 cost, 2sint, t]”

1 T
0.5 1

o=

03 5 10

Fig. 3. Responses ¢f:(t) — z(t)), (y(t) — ya(t)), and(8(t) — 64(t)).

20 T

-20
0
Fig. 4. Responses ¢f\; — X).

diffeomorphism transformation, the desired kinematic systgm=
R(qq)va can be expressed as

yar =1
Yaz =2
yaz =0 (39)

with ug; = 1 anduge = 0. It is obvious thaty; andu, satisfy As-
sumption (Alyegarding the desired trajectories.

The robust controller (15) is used, where the unknown parameters
3, in (38) are chosen as, = [m, I,]7, then, the regressor matrix can
be written as shown in the matrices at the bottom of the page with

€1 Y1 — Ydi S1 e
€2 | = (Y2 — Yd2 S2 | = €2
e3 Ys — Yas 53 es + koesuygy

The physical values for this simulation are = 0.5, I, = 0.5,
andL = P = 1. The initial positions and velocities of the wheeled
robot are chosen ag(0) = [3, 0, 0.5] andq(0) = [0, 0, 0]. In the
simulation, the design parameters are sekas= diag(5, 5), ko =
ki = ks = k3 = 5,p = 1, K\ = 10, andn(0) = 0. In order to
reduce the control chattering, the boundary layer is choser=a8.

The results of the simulation are shown in Figs. 3-5. Fig. 3 shows the

satisfiesqa = R(qa4)va With var = 2 andvge = 1. Using the above trajectory tracking errors afq — qa), Fig. 4 shows the force tracking

¢1 (y? y‘,‘ Z‘,‘ i) =

N =—ko — kisi — yss2

'—ygzl SINY1 — 228N Y1 — Y2Y1 21 COSYL — Y221 81 Y1 — Y122 COS Y

Yo i1 cosyr + Zo cOS Y1 — Yo1 21 SIn Y1 + Yo z1 COS Y1 — Y1 Z2 Sin Yy

0
0

0 Z

Ud1 + 7
zZ =
| wa2 — s2uar — k3sz — kaeauar — kaesua
A [ Ay kis1 + s2ys + kassysuar
N _AQ - 83
- 0
(Ry Re)™' = ,
-2 y2+1
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ol 71

/ \ .

3 Q / 3 9]

-3} [10]

Fig. 5. Geometric trajectory of via y. (11
[12]

errors of(A — \y), and the geometric trajectory efvia y is shown

in Fig. 5. These results confirm the validity of the proposed algorithm [13]
In simulations, we have tested different sets of the inertia parameters
using only one set of the upper bounds (which are valid for all set 14]
of the inertia parameters) and the results are all similar, which shows
the robustness of the proposed scheme. Due to space limitation, the
simulation results for different sets of the inertia parameters will not be15]
included.

[16]
V. CONCLUSION

In this paper, the trajectory and force tracking problem is addresseld”]
for a class of uncertain nonholonomic mechanical systems, and a robust
adaptive controller is presented at the dynamic level. The controllef g
guarantees that the configuration state of the system asymptotically
tracks the desired trajectory and the force tracking error is bounded
with a controllable bound. The application to a simplified mobile robot[
is described, and the simulation results show the effectiveness of the
approach. [20]
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