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Robust Adaptive Motion/Force Tracking Control of
Uncertain Nonholonomic Mechanical Systems

Masahiro Oya, Chun-Yi Su, and Ryozo Katoh

Abstract—The position/force tracking control of Lagrangian mechanical
systems with classical nonholonomic constraints is addressed in this paper.
The main feature of this paper is that 1) control strategy is developed at
the dynamic level and can deal with model uncertainties in the mechanical
systems; 2) the proposed control law ensures the desired trajectory tracking
of the configuration state of the closed-loop system; 3) the tracking error
of constraint force is bounded with a controllable bound; and 4) a global
asymptotic stability result is obtained in the Lyapunov sense. A detailed
numerical example is presented to illustrate the developed method.

Index Terms—Adaptive control, mechanical systems, motion/force con-
trol, nonholonomic constraints, robust control, tracking control, uncertain-
ties.

I. INTRODUCTION

Nonholonomic constraints arise when there is a rolling or sliding
contact in mechanical systems [16]. A large class of systems, such
as wheeled vehicles, mobile robots, multifingered robotic hands,
space robots, etc., involve nonholonomic constraints. Control of
nonholonomic mechanical systems has attracted significant attention
recently due to the demand for control of the above-referred systems
[2]. Considerable efforts have been expended in designing stabilizing
controllers, and research results can generally be classified in two
classes. The first is kinematic control [2], [4], [17], which provides the
solutions only on a pure kinematic level, yielding kinematic control
such as driving speed. The second is dynamic control [3]–[13], taking
inertia and forces into account and yielding physical controls such as
driving torques. The interested reader may refer to the survey paper
[2] for various control methods.

The tracking problem (tracking a reference trajectory), as a much
more interesting issue in practice, has received relatively less attention
in the literature. Depending on whether the nonholonomic systems are
presented at a kinematic or dynamic level, the tracking problem can
also be classified as either a kinematic tracking problem or a dynamic
tracking problem. Similar to the stabilization case, most of the work
reported to date on the tracking problem is at kinematic level (see [21]
for references). However, it is evident that practical applications call
for solutions at the dynamic level. Recognizing the importance of ad-
dressing the tracking control problem at the dynamic level, some effort
has been devoted to this problem [10], [14], [15].

It is also important to note that constraints usually result from contact
interaction of the machine and the environment. Therefore, the control
of the forces of interactions is at least as important as the position con-
trol. Applying a conventional technique, one can reduce the number of
state variables with those which provide motion complying with con-
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straints. Physically, this implies that the constraints provide the neces-
sary reactions. However, the magnitude of the constrained forces may
not be desirable, as a result of control efforts on position errors. What-
ever sophisticated control algorithms there may be, it is impractical
unless the position and the force of interaction are controlled simulta-
neously. However, the literature on the force control of nonholonomic
mechanical systems is sparse [10], [19], [20].

In this paper, we are concerned with Lagrangian mechanical systems
with classic nonholonomic constraints. The challenge addressed here is
to ensure, at the dynamic control level, desired trajectory and constraint
force tracking in the presence of parameter modeling uncertainties. By
assuming complete knowledge of the constraint manifold, and taking
the internal dynamics of the systems into account, a full dynamics de-
scription suitable for motion and force control is derived by decom-
posing the system into two cascaded subsystems: a kinematic system
and a new dynamic description. A robust motion/force tracking con-
trol algorithm is then derived, ensuring that the desired trajectory and
the desired constraint force can be tracked. Stability analysis shows the
desired position tracking and force tracking errors are bounded with a
controllable bound. The application of the developed design procedure
is illustrated by an example.

This paper is organized as follows. Methods developed in [10] for de-
composing nonholonomic mechanical systems into two cascaded sub-
systems, a kinematic system and a lower dimensional dynamic system,
is reviewed in Section II, and Section III presents a control strategy.
The stability analysis for the complete system is also conducted in this
section. Section IV provides illustrative examples using the proposed
approach. In Section V, some conclusions are presented.

II. M ODEL OF MECHANICAL SYSTEM WITH

NONHOLONOMIC CONSTRAINTS

In this section, we are concerned with mechanical systems with a
classical nonholonomic constraint, whose configuration space is an
n-dimensional, simply connected manifold<, and whose dynamics are
described, in local coordinates (termed generalized coordinates), by so
called Euler–Lagrangian formulation as [5], [16]

D(q)�q+ C(q; _q) _q+G(q) =J
T (q)�+B(q)� (1)

J(q) _q =0 (2)

whereq denotes then vector of generalized coordinates;� denotes the
r vector of generalized control input force;� 2 Rm is the associated
Lagrangian multipliers which expresses the contact force on the con-
tact point between the rigid body and the environmental surface;D(q)
is the (n � n) symmetric, bounded, positive definite inertia matrix;
C(q; _q) _q presents then vector of centripetal and Coriolis torques;
G(q) is then vector of gravitational torques;B(q) is an(n� r) input
transformation matrix, and is assumed to be known because it is a func-
tion of fixed geometry of the system; andJ(q) is the(m � n) con-
straint matrix. In the system (1) and (2), the constraint equation (2) is
assumed to be completely nonholonomic for allq 2 <n andt 2 <.
To completely actuate the nonholonomic system,B(q) is assumed to
be a full-rank matrix andr � n �m.

Two simplifying properties should be noted about this dynamic
structure.

Property 1: There exists a so-called inertial parameterp vector�p
with components depending on mechanical parameters (masses, mo-
ments of inertia, etc.,) such that [10]

D(q) _v + C(q; _q)v +G(q) = �(q; _q; v; _v)�p (3)
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where� is an � l matrix of known functions ofq, _q, v, and _v; and
�p is thel vector of inertia parameters [29] and assumed completely
unknown in this paper.

Property 2: A suitable definition ofC(q; _q) makes matrix( _D �
2C) skew symmetric [10].

The control objective can be specified as follows. Given a desired
contact force�d and desired trajectoriesqd and _qd, which are assumed
to be bounded and should satisfy the constraint equation (2), with un-
known inertia parameters�p, determine a control law for� such that
�, q, and _q asymptotically converge to�d, qd, and _qd.

To solve the above tracking problem, we recall thatn is the necessary
and sufficient number of generalized coordinates required to describe
the configuration of the systems. Likewise, the differencep = n �m
of unconstrained degrees of freedom is termed asvelocity of degree of
freedom. It is important to note that thisp denotes the number of gen-
eralized velocities, or of linear combinations thereof, that can be freely
assigned without violating the kinematic constraints [24]. Henceforth,
any set of linearly independent velocity variables will be termed a set
of independent generalized velocities.

We thus letv be ap dimensional vector of independent generalized
velocities. Moreover, we letR(q) be ann � p matrix defined so that
it maps vectorv into a vector of feasible generalized velocities_q that
obeys the kinematic constraints (2). That is

_q = R(q)v: (4)

Methods for obtaining the expression ofR(q) may refer to [10] and
[22]. Based on (2) and (4), it can easily be verified that

RT (q)JT (q) = 0: (5)

Thus,R(q) is an orthogonal complement ofJ .
Differentiating (4), we can obtain

�q = R _v + _Rv: (6)

Therefore, the dynamic equation (1), when satisfying the nonholo-
nomic constraint (2), can be reformulated as

_q =R(q)v: (7)

D(q)R(q) _v + C1(q; _q)v +G(q) =B(q)� + JT (q)� (8)

whereC1(q; _q) = D(q) _R(q) + C(q; _q)R(q).
It should be noted that the whole system consists of a new dynamic

model (8) together with a purely kinematic relationship (7). As will be
clear in the later development, it is this cascade structure that makes it
possible to design the robust control algorithm. Regarding the general
treatment of modeling issues in the nonholonomic systems, the reader
may refer to [25].

III. M AIN RESULTS

We now consider the tracking problem of the uncertain nonholo-
nomic mechanical systems discussed above. In the following devel-
opment, the discussions will be focused on those systems, their kine-
matics can be converted into the so-called chained form [26]. In fact,
it has been shown that many nonholonomic systems can be converted
into the chained form [2], and therefore, the systems to be discussed
are not very restrictive in practical applications. Also, we only con-
sider two independent generalized velocities (p = 2) cases, just for the
sake of simplicity. The results can be extended to a general case. We
should emphasize that our goal in this paper is to develop a force/mo-
tion tracking control strategy in a simpler setting that reveals its es-
sential features. Interesting examples for two independent generalized

velocities case include tricycle-type mobile robots, cars towing several
trailers, the knife edges, and a vertical rolling wheel (see, e.g., [2]).

A. Controller Design

In the following development, it is assumed that there exists a coor-
dinate transformation,y = 	(q), and a state feedback,v = 
1(q)u,
so that the kinematic system (7) withp = 2 could be locally or globally
converted to thechainedform [26]

_y1 =u1

_yj =u1yj+1; (2 � j � n� 1)

_yn =u2: (9)

A necessary and sufficient condition for existence of the transformation
of the kinematic system (7) withp = 2 into this chained form (single
chain) was given by [3] and [18]. For the general case (multichain case),
the discussion on the existence condition of the transformation may
refer to [26].

Corresponding to the above transformation, the dynamic model (8)
is converted as

D2(y)R2(y) _u+ C2(y; _y)u+G2(y) = B2(y)� + JT
2 (y)� (10)

where

D2(y) =D(q)j
q=	 (y)

R2(y) =R(q)
1(q)jq=	 (y)

C2(y; _y) = [D(q)R(q) _
1(q) + C1(q; _q)
1(q)]jq=	 (y)

G2(y) =G(q)j
q=	 (y)

J2(y) =J(q)j
q=	 (y)

B2(y) =B(q)j
q=	 (y):

Since the desired trajectoryqd should satisfy the constraint equation
(2), therefore, there must exist a desiredvd satisfying

_qd = R(qd)vd: (11)

Remark: It should be noted that the choice of the feasible trajectory
for nonholonomic systems is strongly related to itsflatness[6] or the
choice of back-followable outputs, and itself is an active research topic
[27]. It is beyond the scope of this paper to address this issue.

Based on the fact that the kinematic system (2) can be converted into
the chained form (9), there must exist a transformationyd = 	(qd)
and a state feedback,vd = 
1(qd)ud, such that (11) can be converted
into

_yd1 =ud1

_ydj =ud1ydj+1; (2 � j � n� 1)

_ydn =ud2: (12)

With the above transformations, the tracking problem considered in
this paper can be restated as seeking a strategy for specifying a control
input� for (9) and (10), subject to the condition that parameters of the
mechanical systems are not exactly known, such thatf�; y; _yg !
f�d; yd; _ydg.

For the development of control law, the following assumptions are
required.

Assumption (A1):The trajectoriesyd and(diyd1=dti) (1 � i �
n � 1) are bounded andlimt!1 inf jud1j > 0.
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Remark: As will be seen from stability analysis,Assumption (A1)
on the boundedness ofyd can be relaxed to:ydi(2 � i � n) are
bounded,yd1 depending onD2R2,C2, andG2. If D2R2,C2, andG2

are bounded ony1, there is no boundedness requirement foryd1. This
is the case in the simulation example.

Assumption (A2):The matrixRT
2 R2 is nonsingular for ally 2 <n

andt 2 <.
Remarks: The matrixR2 is determined by the constraint matrix

J(q) and is always a full-rank matrix. Such an assumption is gener-
ally satisfied.

With the above assumptions, the following three properties, similar
to [10], can be obtained by exploiting the structure of (10).

Property 3: The generalized inertia matrixD3 = RT
2D2(q)R2 is

symmetric and positive definite.
Property 4: If C is defined as thatProperty 2is verified, ( _D3 �

2RT
2 C2) is a skew-symmetric matrix.

Property 5: The dynamic structure (10) is linear, in terms of the
same suitable selected set of inertia parameters as used inProperty 1

D2(y)R2 _u+ C2(y; _y)u+G2(y) = �1(y; _y; u; _u)�p (13)

where�1 is a(n� l) regressor matrix and�p is thel vector of inertia
parameters.

Observe that complete nonholonomic mechanical system model (9)
and (10) consists of the two cascaded subsystems. As a consequence,
the system’s generalized velocityu cannot be commanded directly, as
is assumed in the design of controllers at the kinematic level, and in-
stead must be realized as the output of mechanical system dynamics
(10) through� . The above properties imply that the dynamics (10) re-
tains the mechanical system structure of the original system (1), which
is fundamental for designing the robust control law. In this section, we
will develop a strategy so that the subsystem (9) tracksyd with an em-
bedded control input [i.e.,z in (17)], and at the same time, the output of
mechanical subsystem (10) is controlled to track this embedded control
input. In turn, the tracking goal can be achieved.

To design an embedded control input so that the subsystem (10)
tracksyd, in the following, we definee = [e1; e2; . . . ; en]

T = y�yd
and� = [�1; �2; �3; . . . ; �n]

T with

�1 =0

�2 =0

�3 =�k2e2u
2l�1
d1

�4 =�(e2 � �2)� k3(e3 � �3)u
2l�1
d1

+
1

ud1

0

i=0

@�3

@u
[i]
d1

u
[i+1]
d1 +

2

i=2

@�3

@ei
ei+1

...

�n =�(en�2 � �n�2)� kn�1(en�1� �n�1)u
2l�1
d1

+
1

ud1

n�4

i=0

@�n�1

@u
[i]
d1

u
[i+1]
d1 +

n�2

i=2

@�n�1

@ei
ei+1 (14)

wherel = n� 2, u[i]d1 means theith derivative ofud1, andki(2 � i �
n � 1) are positive constants.

We suppose only that the parameter vector�p is uncertain. The ro-
bust force/motion tracking control law with the unknown inertia pa-
rameter vector�p, is then defined as shown in (15)–(19) at the bottom
of the page, wheres is defined ass = e��; �1 is defined inProperty
5; Ke is ann� n positive definite matrix,� 2 R+ used in (16) is the
upper bounds of unknown inertia parameter�p, i.e.,k�pk � �, which
is assumed known. The force term�c is defined as

�c = �d �K�(�� �d)

whereK� is a constant matrix of force control feedback gains.
Remarks: 1) The structure of the above controller is sketched in

Fig. 1. The controller consists of two parts. In the first part,z repre-
sents an embedded control input, which may be viewed as an adaptive
controller that ensures the desired tracking ofyd for the subsystem (9)
if the mechanical dynamics described by (10) were not present. In the
second part, the input� intends to regulateu about the embedded con-
trol input, and therefore, attempts to provide control input necessary to
make the desired tracking. The control law (15) in the second part is,
in a simple fashion, related to the bounds of inertia parameters�p so
that the parameter variations in the dynamics can be taken into account
easily.

2) For the development of the above control law, this paper takes
the common assumption that the constraint matrixJ(q) is known, i.e.,
there are no uncertainties for the kinematic system (2). This assump-
tion is reasonable, since the kinematical parameters are geometric and
relatively easy to measure. If this is not the case, the technique devel-
oped in [28] to deal with uncertainties in the kinematic system may be
applied. However, as mentioned above, the purpose of this paper is to

B2� =�1(y; _y; z; _z)'�KeR2(u� z)�R2(R
T
2 R2)

�1�� J
T
2 �c (15)

' =��
�T
1 R2(u� z)

k�T
1 R2(u� z)k

(16)

z =

ud1 + �

ud2 � sn�1ud1 � knsn +

n�3

i=0

@�n

@u
[i]
d1

u
[i+1]
d1 +

n�1

i=2

@�n

@ei
ei+1

(17)

� =
�1

�2

=
k1s1 +

n�1

i=2

siyi+1 �

n

j=3

sj

j�1

i=2

@�j

@ei
yi+1

sn

(18)

_� =�k0� � k1s1 �

n�1

i=2

siyi+1 +

n

j=3

sj

j�1

i=2

@�j

@ei
yi+1 (19)
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Fig. 1. Structure of the control system.

reveal the essential feature of controller development. We will not dis-
cuss this issue here for the sake of simplicity.

3) The control law (15) for the subsystem (10) is designed based on
the sliding-mode theory. In this case, this sliding-mode control law is
discontinuous across�T

1 R2(u�z), and such a control law may lead to
control chattering. Chatter is undesirable in practice because it involves
high control activity, and further, may excite high-frequency dynamics
which were neglected in the course of modeling. This can be reme-
died by approximating this discontinuous control law by a continuous
one inside the boundary layer. This is the commonly and practically ac-
cepted method. To do this, the term(�T

1 R2(u�z))=(k�
T
1 R2(u�z)k)

is replaced by(�T
1 R2(u� z))=(k�

T
1R2(u� z)k+ �), where� is the

boundary layer thickness. This leads to tracking to within a guaranteed
precision. The proof of the boundedness of the tracking error is omitted
here, in order to reveal the essential feature of controller development
and avoid the overwhelming mathematics.

4) Suppose' in control law (16) is replaced bŷ�p, representing

estimation of�p, and�̂p is updated by_̂�p = ���T
1 R2(u� z), where

� is a positive definite constant matrix. With this algorithm, it can be
proven thatfy; _y; �g ! fyd; _yd; �dg as t ! 1. Therefore, the
proposed robust algorithm can easily be transferred into an adaptive
algorithm. It is important to mention that the question of whether to use
robust control or adaptive control does not have an obvious answer.

B. Stability Analysis of the Closed-Loop System

Denoting~u = u� z = [~u1~u2], the closed-loop system of (9), (10),
and (15)–(19) can be written as

_s1 = � + ~u1

_s2 = s3ud1 � k2s2u
2l
d1 + (� + ~u1)y3

_s3 = s4ud1 � s2ud1 � k3s3u
2l
d1 + (� + ~u1)

� y4 �
@�3
@e2

y3

...

_sn�1 = snud1 � sn�2ud1 � kn�1sn�1u
2l
d1 + (� + ~u1)

� yn �

n�2

i=2

@�n�1

@ei
yi+1

_sn = � knsn � sn�1ud1 + ~u2 � (� + ~u1)

�

n�2

i=2

@�n

@ei
yi+1 (20)

D2R2
_~u =�1'� �1�p �KeR2~u� C2~u

�R2(R
T
2 R2)

�1�� JT (�c � �) (21)

_� =�k0� � �1: (22)

Before giving the stability analysis of the above closed-loop system,
the following lemmas are required.

Lemma 1: Given a differentiable function�(t): R+ ! R, if �(t) 2
L2 and _�(t) 2 L1, then�(t) ! 0 ast ! 1 [30].

Lemma 2: If a given differentiable function�(t): R+ ! R
converges to some limit value whent ! 1, and if the derivative
(d�=dt)(t) of this function is the sum of two terms, one being
uniformly continuous and the other one tending to zero whent!1,
then(d�=dt) ! 0 whent ! 1 [17].

The stability of the above closed-loop system is established in the
following theorem.

Theorem: Consider the mechanical system described by (9) and
(10), subject toAssumptions (A1)and (A2), the robust adaptive con-
troller specified by (15)–(19) ensures that all closed-loop signals are
bounded. Furthermore,y1, y2; . . . ; yn asymptotically converge toyd1,
yd2; . . . ; ydn, and(� � �d) is inversely proportional to the norm of
the matrix(K� + I).

Proof: Multiplying RT
2 on both sides of (21), using (5), one can

obtain

D3
_~u = RT

2 �1'�RT
2 �1�p �RT

2KeR2~u�RT
2 C2~u� �: (23)

Let us consider the positive definite function

V (t) =V1(t) + V2(t) (24)

V1(t) =
1

2

n

i=2

s2i + k1s
2

1 + �2 (25)

V2(t) =
1

2
~uTD3~u: (26)

The time derivative ofV1(t) along the solution of (20)–(22) is

_V1 =

n

i=2

si _si + k1s1 _s1 + � _�

=�

n�1

i=2

kis
2

iu
2l
d1 � kns

2

n + ~u2sn + (� + ~u1)

�

n�1

i=2

siyi+1�

n

j=3

sj

j�1

i=2

@�j

@ei
yi+1

+ k1s1� + k1s1~u1 � k0�
2 � ��1

=�

n�1

i=2

kis
2

iu
2l
d1 � kns

2

n � k0�
2 + ~uT�: (27)

The time derivative ofV2(t) along the solution trajectory of (21) is

_V2 = ~uT (RT
2 �1'�RT

2 �1�p �RT
2KeR2~u)

+ ~uT 1

2
_D3 �RT

2 C2 ~u� ~uT�

=�~uTRT
2KeR2~u+ ~uTRT

2 �1('� �p)� ~uT� (28)

where we have usedProperty 4to eliminate the term~uT ((1=2) _D3 �
RT
2 C2)~u. The second term in (28) can be shown that

(�T
1 R2~u)

T ('� �p) = (�T
1 R2~u)

T ��p� �
�T
1 R2~u

k�T
1 R2~uk

�k�T
1 R2~uk(k�pk � �) � 0 (29)
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from the Cauchy–Schwartz inequality and our assumption onk�pk.
Thus, one has

_V2 � �~uTRT
2 KeR2~u� ~uT

�: (30)

Based on (27) and (30),_V can be expressed as

_V � �k0�
2 � kns

2
n �

n�1

i=2

kis
2
iu

2l
d1 � ~uTRT

2KeR2~u � 0:

(31)

The considered positive functionV (t) is, thus, nonincreasing. This,
in turn, implies that�, s, and~u are bounded, andV (t) converges to
limit valueVlim. By the definition ofs, it concludes thate is bounded.
Using Assumption (A1)in the theorem, it follows thaty is bounded.
In view of (20)–(22),_s, _~u, and _� are bounded. Thus,�, s, and~u are
uniformly bounded. We should mention that ifD2R2, C2, andG2 is
bounded ony1, there is no boundedness requirement foryd1. Next,
we prove thats, _s, and� tend to zero. Since�V is bounded and_V
is uniformly continuous, byLemma 1, _V tends to zero. Therefore,�,
siud1(2 � i � n� 1), sn, and~u tend to zero. By the assumption that
limt!1 inf jud1j > 0, one concludes thatsi (2 � i � n) tends to
zero.

Differentiatinguld1� yields

d

dt
uld1� = �k1u

l
d1s1 + lul�1d1 _uld1� � k0u

l
d1�

�uld1

n�1

i=2

siyi+1 �

n

j=3

sj

j�1

i=2

@�j

@ei
yi+1

where the first term is uniformly continuous and the other terms tend
to zero. ByLemma 2, one concludes that(d=dt)(uld1�) converges to
zero, which, in turn, implies thatuld1s1 ands1 tend to zero. There-
fore,s and _s tend to zero. To complete the proof and establish asymp-
totic convergence of the tracking error, it is necessary to show that
fy; _yg ! fyd; _ydg as t ! 1. This is accomplished by the fol-
lowing arguments.

Based on the definition of� given in (14) and the relationships =
e � �, it is obvious thatsi = 0(i = 1; 2) yields limt!1 yi = ydi
and limt!1 _yi = _ydi (i = 1; 2) because of�1 = �2 = 0. From
the boundedness ofud1, one obtains that�3 and _�3 converge to zero,
which results inlimt!1 y3 = yd3 andlimt!1 _y3 = _yd3. The con-
vergences of�3 and _�3 lead to the conclusion that�4 and _�4 converge
to zero, thus,limt!1 y4 = yd4 andlimt!1 _y4 = _yd4. Similarly, we
can prove thatlimt!1 yi = ydi andlimt!1 _yi = _ydi (5 � i � n).
In summary, we have proved thatfy; _yg ! fyd; _ydg ast!1.

To prove that(� � �d) is inversely proportional to the norm of the
matrix (K� + I), (21) can be written as

JT (�c � �) = �D2R2
_~u+�1'� �1�p �KeR2~u

�RT
2 C2~u�R2(R

T
2 R2)

�1� = �(�): (32)

It can be easily shown that�(�) is bounded. Thus

JT (�� �d) = (K� + I)�1�

and therefore,(�� �d) are bounded and can be adjusted by changing
the feedback gainK�. Thus, the theorem is proved. r

Remarks: From the above theorem, it can be seen thatfy; _yg !
fyd; _ydg ast!1, which, in turn, implies thatfq; _qg ! fqd; _qdg.
On top of this, the control of contact force is also included. In the liter-
ature, there are only limited reports considering the dynamic tracking
problem [10], [14], [15], and the results developed in [10], [14], and

Fig. 2. Mobile robot configuration.

[15] can be considered as special cases of our result. Therefore, this
paper gives a general solution for the dynamic tracking problem of the
nonholonomic systems with uncertain inertia parameters.

IV. SIMULATED EXAMPLE

A simplified model of a mobile wheeled robot moving on a
horizontal plane, constituted by a rigid trolley equipped with non-
deformable wheels, as shown in Fig. 2, is used to verify the validity
of the control approach outlined in this paper. Details regarding the
system may be found in [5].

The dynamic model can be expressed as [5]

m�x =� cos � �
1

P
(�1 + �2) sin �

m�y =� sin � +
1

P
(�1 + �2) cos �

Io�� =
L

P
(�1 � �2) (33)

wherex, y are the coordinates of the reference pointQ in the inertial
frame,� is the orientation of the basis with respect to the inertial frame,
m is the mass of the robot, andIo is its inertia moment around the
vertical axis at pointQ,P is the radius of the wheels and2L the length
of the axis of the front wheels, and�1 and�2 are the torques provided
by motors.

The nonholonomic constraint is written as

_x cos � + _y sin � = 0: (34)

Given the desired trajectoryqd = [2 cos t; 2 sin t; t]T , which is a
circular path on the plane, and a desired contact force�d = 10, the
control objective is to determine a feedback control so that the trajec-
tory q = [x; y; �]T follows qd, and the contact force�d follows �.

The matrixJ(q) is, therefore, defined asJ(q) = [cos � sin � 0]. The
matrixR(q) defined in (5) is chosen as

R =

� sin � 0

cos � 0

0 1

:

Therefore, the kinematic system (34) can be written as

_x =�v1 sin �

_y = v1 cos �

_� = v2: (35)
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Using a diffeomorphism transformation,y = 	(q), and a state feed-
back,v = 
1(q)u, which are defined as

y1 = �

y2 =x cos � + y sin �

y3 =�x sin � + y cos �

u1 = v2

u2 = v1 � (x cos � + y sin �)v2 (36)

the above kinematic system is transferred into thechainedform

_y1 =u1

_y2 = y3u1

_y3 =u2: (37)

The corresponding dynamic model (33) is converted to

�my2 sin y1 �m sin y1

my2 cos y1 m cos y1

Io 0

_u1

_u2

+

�my2 _y1 cos y1 �m _y2 sin y1 �m _y1 cos y1

�my2 _y1 sin y1 +m _y2 cos y1 �m _y1 sin y1

0 0

u1

u2

=
1

P

� sin y1 � sin y1

cos y1 cos y1

L �L

�1

�2
+

cos y1

sin y1

0

� (38)

with

R2 =

�y2 sin y1 � sin y1

y2 cos y1 cos y1

1 0

:

For the givenR(q), the desired trajectoryqd = [2 cos t; 2 sin t; t]T

satisfies_qd = R(qd)vd with vd1 = 2 andvd2 = 1. Using the above

Fig. 3. Responses of(x(t)� x(t)), (y(t)� y (t)), and(�(t)� � (t)).

Fig. 4. Responses of(� � �).

diffeomorphism transformation, the desired kinematic system_qd =
R(qd)vd can be expressed as

yd1 = t

yd2 =2

yd3 =0 (39)

with ud1 = 1 andud2 = 0. It is obvious thatyd andud satisfyAs-
sumption (A1)regarding the desired trajectories.

The robust controller (15) is used, where the unknown parameters
�p in (38) are chosen as�p = [m; Io]

T , then, the regressor matrix can
be written as shown in the matrices at the bottom of the page with

e1

e2

e3

=

y1 � yd1

y2 � yd2

y3 � yd3

s1

s2

s3

=

e1

e2

e3 + k2e2ud1

:

The physical values for this simulation arem = 0:5, Io = 0:5,
andL = P = 1. The initial positions and velocities of the wheeled
robot are chosen asq(0) = [3; 0; 0:5] and _q(0) = [0; 0; 0]. In the
simulation, the design parameters are set asKe = diag(5; 5), k0 =
k1 = k2 = k3 = 5, � = 1, K� = 10, and�(0) = 0. In order to
reduce the control chattering, the boundary layer is chosen as� = 2.

The results of the simulation are shown in Figs. 3–5. Fig. 3 shows the
trajectory tracking errors of(q� qd), Fig. 4 shows the force tracking

�1(y; _y; z; _z) =

�y2 _z1 sin y1 � _z2 sin y1 � y2 _y1z1 cos y1 � _y2z1 sin y1 � _y1z2 cos y1 0

y2 _z1 cos y1 + _z2 cos y1 � y2 _y1z1 sin y1 + _y2z1 cos y1 � _y1z2 sin y1 0

0 _z1

_� =�k0 � k1s1 � y3s2

z =
ud1 + �

ud2 � s2ud1 � k3s3 � k2e2ud1 � k2e3ud1

� =
�1

�2

=
k1s1 + s2y3 + k2s3y3ud1

s3

(RT
2 R2)

�1 =
1 �y2

�y2 y22 + 1
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Fig. 5. Geometric trajectory ofx via y.

errors of(� � �d), and the geometric trajectory ofx via y is shown
in Fig. 5. These results confirm the validity of the proposed algorithm.
In simulations, we have tested different sets of the inertia parameters
using only one set of the upper bounds (which are valid for all sets
of the inertia parameters) and the results are all similar, which shows
the robustness of the proposed scheme. Due to space limitation, the
simulation results for different sets of the inertia parameters will not be
included.

V. CONCLUSION

In this paper, the trajectory and force tracking problem is addressed
for a class of uncertain nonholonomic mechanical systems, and a robust
adaptive controller is presented at the dynamic level. The controller
guarantees that the configuration state of the system asymptotically
tracks the desired trajectory and the force tracking error is bounded
with a controllable bound. The application to a simplified mobile robot
is described, and the simulation results show the effectiveness of the
approach.
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