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A Human-Assisting Manipulator Teleoperated
by EMG Signals and Arm Motions

Osamu Fukuda, Toshio Tsuji, Member, IEEE, Makoto Kaneko, Senior Member, IEEE, and Akira Otsuka

Abstract—This paper proposes a human-assisting manipulator
teleoperated by electromyographic (EMG) signals and arm mo-
tions. The proposed method can realize a new master—slave manip-
ulator system that uses no mechanical master controller. A person
whose forearm has been amputated can use this manipulator as a
personal assistant for desktop work. The control system consists of
a hand and wrist control part and an arm control part. The hand
and wrist control part selects an active joint in the manipulator’s
end-effector and controls it based on EMG pattern discrimina-
tion. The arm control part measures the position of the operator’s
wrist joint or the amputated part using a three-dimensional posi-
tion sensor, and the joint angles of the manipulator’s arm, except
for the end-effector part, are controlled according to this position,
which, in turn, corresponds to the position of the manipulator’s
Jjoint. These control parts enable the operator to control the ma-
nipulator intuitively. The distinctive featare of our system is fo use
a novel statistical neural network for EMG pattern discrimination.
The system can adapt itself to changes of the EMG patterns ac-
cording to the differences among individuals, different locations of
the electrodes, and time variation caused by fatigue or sweat. Our
experiments have shown that the developed system could learn and
estimate the operator’s intended motions with a high degree of ac-
curacy using the EMG signals, and that the manipulator could be
controlled smoothly. We also confirmed that our system could as-
sist the amputee in performing desktop work.

Index Terms—Adaptation, electromyographic (EMG) signals,

human-assisting manipulator, neural network, pattern discrimi-
nation.

1. INTRODUCTION

HE number of aged or physically handicapped people
requiring someone’s assistance in everyday life has
been increasing in recent years. Furthermore, it is expected
that robots will extend their usefulness to home and office
environments to support daily activities. Under such situations,

if the human operator’s intention can be discerned from the

electromyographic (EMG) signals, EMG signals may be used
as a new interface tool for human-assisting robots and rehabil-
itation systems. The EMG signals contain a lot of important
information such as muscle force, operator’s intended motion,
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and muscle impedance. A physically handicapped person who
has lost a part of his/her upper limb in a traffic accident or
throngh other afflictions may sense a feeling of prosthetic
control similar to that of the original limb using EMG signals
if the central nervous system (CNS) and a part of the muscles
that actuated the original limb remain after amputation.

EMG signals have often been used as control signals for pros-
thetic hands. However, these prosthetic hands are seldom used
by the amputee for two main reasons. First, the hardware device
has problems such as motor noise and excessive weight. Second,
there is the problem of interfacing the human and the device. In
most previous research, the accuracy of the discrimination was
not sufficient to control the prosthetic hand smoothly.

In this paper, we propose and develop a new human-assisting
manipulator system based on the EMG signals. We suppose that
persons whose forearm has been amputated will use this system
as a personal assistant for desktop work. The manipulator is
compact and suitable for use in home environments. The pros-
thetic hand is used as the end-effector of the manipulator, and
the arm part of the manipulator supports it instead of the am-
putee’s upper limb. The prosthetic hand is detachable from the
manipulator, and the amputee can attach it to histher amputated
part. .
The proposed system uses EMG signals to realize a feeling
of control similar to that of the human hand. In many cases,
some part of the muscles near the amputated part remain after
amputation, and the EMG signals measured from them can be
used as a control signal for our proposed system. If the amputee
cannot control the muscular contraction of muscles near the am-
putated part, it is also possible to use muscles in other parts. It
is, however, very difficult to control all joints of the manipulator
using only the EMG signals, so it is helpful to use the remaining
arm motions to control the manipulator. Therefore, the proposed
controller is divided into two parts: the hand and wrist control
part that selects an active joint in the manipulator’s end-effector
part and controls it based on the EMG pattern discrimination;
and the arm control part that controls joint angles of the ma-
nipulator’s arm according to the amputee’s remaining arm mo-
tions as measured by a three-dimensional (3-D) position sensor.
Even if the amputee cannot move his/her amputated part very
much, any slight motion can be amplified and used as the con-
trol signal. The 3-D position sensor may also be attached on the
tip of an additional link fixed to the amputated part to extend the
length of the amputated limb. The operator can control the ma-
nipulator naturally using the EMG signals and the arm motions.

The discrimination of EMG patterns with nonlinear and non-
stationary characteristics is a key topic of this paper. In order
to realize smooth motions of the manipulator, the system has
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to discriminate the EMG patterns with a high degree of accu-
racy. Moreover, we should adopt adaptive learning ability for
robust discrimination against the differences among individuals,
different locations of the electrodes, and time variations caused
by fatigue or sweat. To achieve this, we use a novel statistical
neural network called the log-linearized Gaussian mixture net-
work (LLGMN) to discriminate EMG patterns; this is a distinc-
tive feature of our system. We expect a high learning and dis-
crimination ability as LLGMN is appropriate for discriminating
EMG signals that have stochastic characteristics. Moreover, we
propose a discrimination suspension rule and an online learning
method to reliably discriminate EMG patterns while controlling
the system for a couple of hours. These methods can reduce the
discrimination errors. We also designed a method of regulating
the learning time considering the practical usage of our system.
‘We can thus reduce the mental stress of the operator waiting for
-the convergence of learning.

The paper is organized as follows. Related work is intro-
duced in Section II, the components of the proposed system are
explained in Section III, the experiments are reported in Sec-
tion IV, and Section V concludes the paper.

II. RELATED WORK

Up to the present, many researchers have investigated
human-assisting robots and rehabilitation systems [1]. The
studies in this field can be classified into two groups: the ex-
tension of human ability using the robot; and the rehabilitation
or prostheses/orthoses for the physically handicapped based
on the robotics. As examples of the former, Kazerooni (2]
proposed “Extenders” as a class of robot manipulators that
extend the strength of the human arm. Later, Salter [3] designed
a continuous passive motion (CPM) device that gently bends
and straightens an injured joint after surgery. Also, Krebs et al.
[4] developed a training system for the upper limb movements
through operating an end-effector of an impedance-controlled
robot according to a target pattern, such as a circle, shown
in the computer display. Wu et al. [5] proposed a neuromus-
cular-like control method, based on the spinal reflex, to develop
a rehabilitation robot that assists the operator’s limb motion.

Many researchers have also designed prosthetic hands
for amputees since Wiener [6] proposed the concept of an
EMG-controlled prosthetic hand. EMG signals have often
been used as control signals for prosthetic hands, such as the
Waseda hand [7], the Boston arm [8], and the Utah artificial
arm [9], which are the pioneers in this field. Abboudi et al. [10]
proposed a biomimetic controller for a multifinger prosthesis,
and Kyberd et al. [11] developed a two-degree-of-freedom
(DOF) hand prosthesis with hierarchical grip control. Since the
EMG signals also include information about force level and
mechanical impedance properties of the limb motion, Akazawa
et al. [12] designed a signal processor for estimating force from
the EMG signals, and Abul-haj and Hogan [13] analyzed the
characteristics of the prosthetic control based on the impedance
model. Also, Ito et al. [14] used amplitude information of this
signal as the speed-control command of the prosthetic forearm.
This prosthetic forearm was controlled with three levels of
driving speeds.

Most previous research on prosthetic hands used on/off con-
trol based on EMG pattern discrimination or controlled only a
particular joint, depending on torque estimated from the EMG
signals. However, as the number of DOFs increased, it was dif-
ficult to discriminate the operator’s intended motion with suffi-
ciently high accuracy due to their nonlinear and nonstationary
characteristics. Moreover, there is a problem that the EMG pat-
terns are changed according to differences among individuals,
different locations of the electrodes, and time variation caused
by fatigue or sweat. We need a new discrimination imethod to
control the various motions of a prosthetic hand requiired in daily
activities. '

Many studies on using EMG signal pattern discrimination to
control prosthetic hands have been reported. During the first
stage of this research, linear prediction models for EMG sig-
nals, such as the autoregressive (AR) model, were frequently
used [15]-[19]. Graupe et al. [15] reported on discriminating
EMG signal measured from one pair of electrodes using this
model. However, it is very difficult to achieve high discrimina-
tion performance, especially for rapid movements, because of
nonlinear characteristics and the large variability of the EMG
signals.

Subsequent research has proposed several EMG pattern
discrimination methods using neural networks [20]-{27]. The
neural networks can acquire the nonlinear mapping of learning
data. For example, Kelly et al. [20] proposed a pattern discrimi-
nation method combining the back propagation neural network
(BPN) [28] and the Hopfield neural network. This method can
acquire mapping from the EMG patterns measured from one
pair of electrodes to four motions of elbow and wrist joints.
Also, Hiraiwa et al. [21] used BPN to estimate five-finger

-motion. They reported that five-finger motion, joint torque,

and angles were successfully estimated. Koike et al. [22]
constructed a forward dynamics model of the human arm using
EMG signals and arm trajectories. Their experiments estimated
four joint angles, one at the elbow and three at the shoulder,
from surface EMG signals of 12 flexor and extensor muscles
during posture control in 3-D space. Farry et al. [23] proposed
a method to remotely operate a robot hand by classifying the
motions of the human hand from the frequency spectrum of
EMG signals. Huang and Chen [24] constructed several feature
vectors from the integral of the EMG, the zero-crossing and the
variance of the EMG, and eight motions were classified using
BPN. However, BPN, frequently used in previous research,
cannot realize high learning and discrimination performance
when the signal becomes more complex. For example, the EMG
patterns differ considerably at the start and end of the motion
even if they are within the same class. Also, they overlap each
other when we discriminate many. classes. Therefore, BPN
needs a large amount of learning data and a great number of
learning iterations.

The authors have, therefore, proposed a novel statistical
neural network called the LLGMN [29], and used it to dis-
criminate electroencephalograph (EEG) and EMG signals.
LLGMN includes a preorganized structure and can model
the complicated mapping between the input patterns and the
discriminating classes, even for a small sample size. In contrast,
BPN is trained by using only the learning sample data. This
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Fig. 1. Picture of the human-assisting manipulator.

network can acquire a Gaussian mixture model (GMM) [30],
which is a kind of statistical model. The network outputs the a
posteriori probability of each discriminating class. The authors
conducted comparison experiments with maximum-likelihood
neural networks [31], which are based on GMM. Numerical
simulations and EEG discrimination results confirmed that
LLGMN can achieve better discrimination than the previous
statistical technique, even for a small sample size of the
learning data {29]. The authors have also proposed the concept
of a human-assisting manipulator using LLGMN, developed a
prototype system, and conducted preliminary experiments on
healthy subjects {32], [33].

II1. SYSTEM COMPONENTS

This section presents the components of the proposed system.
The developed manipulator, which consists of the prosthetic
hand (Imasen Laboratory) [14] and the robot arm (Mitsubishi
Electric Corporation), is shown in Fig. 1. It has 0.76 m radius
of revolution and is suitable for use in home environments. The
prosthetic hand is detachable from the manipulator, and an am-
putee can attach it instead to his/her amputated part. The robot
arm supports the prosthetic hand and transports it to a position
in the work space designated by the operator, although its struc-
ture does not match that of the human arm.

The manipulator has seven DOFs, as shown in Fig. 2. In this
paper, the prosthetic hand and the J, joint are called the hand
and wrist part, and the part from the first link to the third link
is called the arm part. The joint angles (6;, 83, 83) of the arm
part are defined as zero in the posture shown in Fig. 2(a). The
relationship between the manipulator and the operator is shown
in Fig. 2(¢c). :

~ The prosthetic hand used in the hand and wrist part is shown
in Fig. 3, and the specifications of the prosthetic hand and the
robot arm are shown in Table 1. The prosthetic hand is almost
the same size as an adult’s hand, and weighs about 1.0 kg. It is
made from aluminum alloy and covered with a cosmetic glove.
This glove has five fingers, and the four fingers from the index
finger to the little finger are mechanically connected. This pros-
thetic hand has three DOF (J;, Jg, J7: supination/pronation,
radial flexion/ulnar flexion, and hand grasp/hand open), and
each joint is driven by an ultrasonic motor (SINSEI Corpora-
tion). The encoder attached at Js and potentiometers attached
at Jz and J are installed as the angular sensor of each joint.

wrist part

y

Fig. 3. Picture of the prosthetic hand.

The motor driving unit has voltage-controlled oscillators so that
the driving speed of the ultrasonic motors can be regulated ac-

“cording to the voltage command. The ultrasonic motor has the

advantages of light weight, high torque, and silent action. The
motor noise of the prosthetic hand can, thus, be significantly
reduced. Also, an ultrasonic motor can maintain its torque con-
tinuously against an environment, even when turned off. This is
known as a self-locking characteristic.

The control system is shown in Fig. 4, which depicts the hand
and wrist control part, the arm control part, and the feedback
part. The hand and wrist control part determines the operator’s
intended motion based on EMG pattern discrimination and con-
trols three joints (J5, Js, J7) of the prosthetic hand and one joint
(J4) of the robot arm. The arm control part controls three joints
(J1, Ja, J3) of the robot arm according to the operator’s arm
motions measured by a 3-D position sensor. The operator can

“execute the network learning easily because the system guides

the operator through this procedure interactively via the dis-
play in the feedback part. During manipulator control, the feed-
back part displays information about the monitored EMG sig-
nals, the muscular contraction levels, the results of the EMG
pattern discrimination and the graphical images of the manipu-
lator. The control program is developed on a personal computer
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TABLE I
SPECIFICATIONS (A) ROBOT ARM (B) PROSTHETIC HAND
Degrec of freedom of motion ) “Degree of freedom of motion 3
Length fromljtoJa 300[nm] Length fromJjtols 72{mm]
fromJato I3 250{mm from J5 to lg 135[mm]
from J3 10 J4 160{nm| from Jg to Jy 85 [mm
Motion range I -150" 10 +150° ~ band 58 {mm)
Iz -10° to +120° Motion range Is -180° to +180°
I3 T 10+110° Is -30° to +30°
s SO0 w490 35 Ow+lX"
Maxinmm speed 5 120" flsec] Maximum speed I . 135 fisec
- I 72" fsec) : Is 104" fisec)
13 109" flsec iz . 46" f[sec]
In 100° flsec Holding force Is 6.9{ke/om)
Load capaciy 1.2[kef] Js 9.0{kg/cm)
Drive system 't DC servo motor (J1 axis brake attached) - J7 9.0[kg/iom]
Position sensing method Absolute encoder Drive system Tikrasonic motor
Weight Approx. 10/kgd] Weight Approx. 1.0jkgf]
(a) Robot arm (b) Prosthetic hand

Fig. 4. Control system.

(Pentium 4, 1.8 GHz). It is also possible to implement the pro-

gram on a single-board computer. We would like to develop a
portable system. In this system, the learning period of the neural
network may be extended, but it will be useful in practical ap-
plications. The details of each control part are explained in the
following sections.

A. Hand and Wrist Control Part

EMG signals are used as the control signal to control the
hand and wrist part. These signals are measured from the op-
erator’s forearm muscles when the operator imagines a desired
motion (extension, flexion, ulnar fiexion, radial flexion, supina-
tion, pronation, hand open, and hand grasp) and contracts his/her
muscles. Fig. 5 shows the detailed structure of the hand and
wrist control part, where three joint angles (s, fs, 87) of the
prosthetic hand and one joint angle (84) of the robot arm are
controlled. In this structure, the feature patterns are extracted
from the measured EMG signals, and one driven joint is de-
termined based on EMG pattern discrimination using LLGMN.
The driving speed of the driven joint is controlled according to
force information extracted from the EMG signals.

1) Preprocessing EMG Signals: First, the EMG signals
measured from D pairs of electrodes (Web5000: NIHON KO-
HDEN Corporation) are digitized by an analog-to-digital (A/D)
converier (sampling frequency, 1.0 kHz; quantization, 12 b)
after being amplified (70 dB), rectified, and filtered through the
Butterworth filter (cutoff frequency, f. Hz; order, p). The nth
sampled signals are defined as EMGy(n){(d = 1,...,D).

To recognize the beginning and ending of the operator’s mo-
tions, the square sum of EMGg4(n) is calculated as

D
s(n) = Z (EMGg(n) - ’E‘Mﬁ;‘f

d=1

¢y

where ‘.!:'th\fﬂ'}f;C is the mean value of EMGg(n), which is mea-
sured while the arm is relaxed. When s(n) exceeds the prespec-
ified motion-appearance threshold, the motion is regarded as
having been initiated. '

Next, to extract the EMG pattern, EMG4(n) are normalized
to make the sum of D channels equal 1.0

=St
raln) = — EMGq(n) ~EMG,'
) (BMGd,(n) -““EMG‘“;f)
di=1

d=1,...,D.

' @
This is necessary to extend the EMG pattern in-
dependent of the amplitude of the EMG signals that
highly depend on the force level. Thus, the input vector
zn) = [z1(n),z2(n),...,zp(n)]T € RP is extracted and
used as the nth pattern vector for LLGMN.
Also, ok (n) is defined as

1 <= EMGqy(n) - EMGy
a;;(n) = —D— i TRETrINAaN = rrst
a=1 EMGy, - EMG,

)

where EMG:::X is the mean value of EMGg4(n) while keeping
the maximum voluntary contraction (MVC) for motion k(k =
1,..., K).or(n) is considered to be information about the force
level (0 < ow(n) < 1) for motion k. The speed of the driven
joint corresponding to a determined motion is controlled ac-
cording to this value.

2) EMG Pattern Discrimination: The EMG signals are the
sum of the spike potential generated in the muscle fibers. Their
generation intervals are not constant, and differ greatly in each
fiber. It is quite difficult to model these signals using a simple
equation. Therefore, in our approach, these patterns are regarded
as stochastic patterns, and an LLGMN [29] is used to discrimi-
nate EMG patterns. This network is constructed based on a pat-
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Fig. 5. Hand and wrist control part.

TABLE I
STRUCTURE OF LLGMN
" The 1st layer [Number of wnits| H
Input 1in)
anm mO.(ft)
O function | Identity function
The 20d layer| Number of units| EM.
Tnput ®l =" Onyt
Output ®0,(n)
1O function | Gereralized sigmoid function [se¢ (7)]
The 3rd layer|Number of units} X -
Input mlt("#_émou(")
Output 204n)
1/0 function Identity function
Weight coeficients from 1st layer to 2nd layer Wi
Weight coeficients from 2nd layer to 3nd layer 1

tern discrimination using the GMM [30], which is a kind of sta-
tistical model, and exhibits a high learning and discrimination
ability.

Table II describes the LLGMN parameters. First, the input
vector z(n) € RP is preprocessed and converted into the mod-
ified input vector (VI(n) € R¥ as follows:

O1(0) =[1,8(n)7 21, 1Mz (o).
z1(n)zp(n), z2(n)?, z2(n)zs(n), . . .,

T ;
z2(n)zp(n),... ,xD(n)2] . {4)

This nonlinear transformation is needed to represent the prob-
ability density function (pdf) corresponding to each component
of the GMM as a linear combination of the new input vector
(M I(n). The first layer consists of H = 1 + D(D + 3)/2
units corresponding to the dimension of (VI(n), and the iden-
tity function is used for an activation function of each unit. The
output (O, of the unit A in the first layer is defined as

O0op(n) = VI, (n). 5

The second layer consists of the same number of units as the

total number of components of GMM. Each unit of the second

Force Information G,

layer I'CCCIVCS the output of the first layer weighted by the coef-
ficient 'w('c and outputs the a posteriori probability of each
component. The input to the unit {k,m} in the second layer,
@) It m(n), and the output, Oy, 1, (n), are defined as

H
OF, n(n) =3 DO (m)ui™

©)
h==1
@ - 1
Ok,m(n) = My .
' Y exp [(231 o me(n) — (2)Ik,m(n)]
=1lm'= N
9

The parameter M}, in LLGMN indicates the number of the
Gaussian components that construct GMM. In GMM, the pdf of
the sample data is approximated by summing up the Gaussian
components. The modeling ability generally increases as the
number of components increases, although the learning pro-
cedure requires many learning iterations. The weight coeffi-
cients of LLGMN originally correspond to the statistical pa-
rameters in GMM, and have several statistical constraints {(e.g.,
1 > probability > O, standard deviation > 0). These con-
straints may cause difficulty in the learning procedure, so we
defined new weight coefficients w,ik ™) as the difference from

(K Mx) and ignored these stansuca.l constraints. The weight
coefﬁcxents 'w(K Me) (b = ., H) are set to zero for this
reason {29]. It should be notcd that (7) can be considered as
a kind of generalized sigmoid function. The third layer con-
sists of K units corresponding to the number of hand and wrist
motions, and outputs the a posteriori probability of the motion

k(k = 1,...,K). The relationship between the input and the
output is defined as
(3)Ik(n) Z @O u(n) ®)
“masl
@0k (n) = I (n). ©

It should be noted that, in LLGMN defined above, GMM can
be( :c%mred through only the learning of the weight coefficient
3 ) Motion Control: The motion of the hand and wrist
part is determined and controlled based on the outputs of
LLGMN, which indicates’the a posteriori probabilities of the
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corresponding motions, so that the operator’s intended motion
can be discriminated according to Bayes’ decision rule. At the
same time, we calculate the entropy E(n), defined as

Kk
=Y @ 0k(n)log D Ox(n) (10)

k=1

E(n) =

to achieve reliable discrimination and use it for a discrimina-
tion-suspension rule [33], because the entropy indicates, or may
be interpreted as, the risk of incorrect discrimination. For ex-
ample, if the entropy exceeds the prespecified discrimination
threshold Ey4, the discrimination and motor control should be
suspended, since large entropy means that the network output is
- ambiguous. Thus, this rule should reduce the possible incorrect
discriminations.

Finally, if the square sum of EMG4(n) defined as (1) exceeds
the prespecified motion appearance threshold and the entropy

E(n) is below the prespecified discrimination threshold Ey, the .

driven joint is determined and controlled based on the result of
the EMG pattern discrimination. The driving speed is controlled
proportionally to the force level ox(n) defined as (3).

4) Learning: We use offline and online learning methods to
discriminate the EMG pattern with a high degree of accuracy.
Before starting the manipulation, LLGMN must learn in the
offline leamning method to adapt itself to the differences among
individuals and different locations of the electrodes. The
electrodes do not have to be placed on specific muscles. Fur-
thermore, the operator does not need physiological knowledge
for electrode placement, because LLGMN learns the mapping
bétween the input pattern and the hand and wrist motions. A
one-arm amputee can place the electrodes by himself, but a
person with both arms amputated will require assistance. We
conducted the experiments with several electrode placement
patterns and confirmed discrimination robustness to different
electrode locations [25], [26]. The network learning takes about
ten seconds using a personal computer (Pentium 4, 1.8 GHz),
and 3 min is enough to place the electrodes on the operator’s
arm. During manipulation, the online learning method is used
because the EMG properties are gradually changed due to
muscle fatigue, sweat, and changing electrode characteristics.
Online learning plays an important role when the operator uses
the manipulator for a couple of hours.

In the offline leaming method, we use the EMG
pattern vector x(i) and the teacher vector T(i) =
(T1(3)y -y Th(a)y .., T ()T (¢ = 1,2,...,N) for the
ith learning sample data, where N is the number of samples.
The EMG patterns are measured for each motion. The teacher
signal is T3 (4) = 1 for the particular class k, and Tx(:) = O
is used for all the other classes. Here, £ = 1,2,..., K corre-
sponds to the hand and wrist motions. As the energy function
J for the network, we use

N K
J=-3 ZTE(i) log P 0(3) an

i=1 k=1

and the learning is performed to minimize this energy function
(i-e., to maximize the likelihood function).

The newly extracted learning samples, which are pairs of the
input pattern vectors and the discrimination results while con-
trolling the manipulator, are used for the online learning method.
However, the problem is that we cannot ascertain whether the
discriminated motion coincided with the amputee’s intended
one. Thus, we cannot directly find the desired output, that is, the
teacher signal. To solve this problem, we also calculate the en-
tropy E(n), and the new learning samples are automatically pro-
vided based on this value [33]. If the entropy E{(n) of the output
of LLGMN for the EMG pattern z(n) is less than the online
learning threshold E,, the reliability of the discrimination result
seems to be high. Therefore, z(n) and the discrimination result
are added to the learning data set, and the oldest of the stored

Jearning data is deleted. The network weights are then updated

using the new learning data set. If the energy function J does
not decrease during the first ten iterations of the learning pro-
cedure, the weights are not updated to avoid incorrect leaming.
In the online learning procedure, the weight coefficients of the
network are modified gradually so that the discrimination does
not degrade rapidly. However, this method may not be effec-
tive when the EMG pattern is changed significantly and rapidly.
If discrimination performance begins to decrease gradually, the
operator can use the offline learning mode again.

For practical applications of the proposed system, we must
take into account the convergence time of network learning.
This paper proposes a method to regulate this time. In this
learning method, the energy function always converges stably
to the equilibrium point in finite time. The equilibrium point is
a kind of terminal attractor discovered by Zak [34]. Using this
method, the convergence time of learning is always less than
the prespecified upper limit, so that we may reduce the mental
stress of the operator waiting for the convergence of leamning.

Weight w;, %:m) is considered as a time-dependernt continuous
variable. In the proposed method, its time derivative is defined
as

(hym 87
o = - (12)
h
JB
T4 &k M o7 2 a3
> 5 3 ()
h=1 k=1 m==1 3

where 7 > 0 is a positive learning rate and (0 < 8 < 1) is
a constant. The time derivative of the energy function J can be
calculated as

H K M,

T=322

( Gy " '")) =-nJ% < 0. (19)
h—lilc-l m=1 ow

From (14), it can be seen that J is a monotonically nonin-
creasing function and always converges stably to the equilib-
rium point (the global minimum or a local minimum). In this
case, the convergence time can be calculated as

ty Jf dJ Jl"“ﬂ Jf"ﬂ JQ
b= f‘““f = T-p) S a1=p)

where Jj is an initial value of the energy function J calculated
using initial weights, and J is a final value of J at the equilib-

as)
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rium point. For J; = 0, the equal sign of (15) is held. Thus, the
convergence time can be specified by learning rate 7. In con-
trast, for Jy # 0, the convergence time is always less than the
upper limit of (15). In this paper, the learning is performed by a
discrete form of (16) derived from (12)

wl™(t + At)
m At - m . m ’
= w™(t) + 5 (wg’“’ () + W™t + At)) (16)

where At denotes the sampling time. The total number of
learning iterations becomes ¢5/At, and the computation time,
in turn, depends on this number.

B. Arm Control Part

The arm control part uses a 3-D position sensor (ISO-
TRACK H; POLHEMUS, Inc.) as an input device for
the control signal. The size of the sensor control umit is
28.9(W)x28.1(1.)x9.2(H) cm, and sufficiently portable to use
beside the manipulator. If an amputee attaches the prosthetic
hand, which is detached from the manipulator, to his/her
amputated part, the arm control part is not needed and the
system can be more portable. _ ’

The 3-D position sensor uses electromagnetic fields to deter-
mine its 3-D position. The static accuracy is 2.4 mm for the z,
y, and z axes. It should be noted that this device allows the oper-
ator to take an arbitrary position having no occlusion problem.
The operator’s wrist position (o, Yo, 20)” is measured with the
sampling frequency of 60 Hz. The desired position of the Jy
joint (X1,Y1, Z1)T (see Fig. 2) is calculated as

X]_ To
Yi | =cl v an
Z 20

where ¢ = diag [c;, ¢y, ;] is the gain matrix. The sensitivity of
the manipulator’s motion to the operator’s motion can be reg-
ulated using this matrix. The desired values of joint angles of
the robot arm (6;, 05, 03) are then calculated according to this
position, and the corresponding joints are controlled by the pro-
portional-integral-derivative (PID) control method. The corre-
spondence of the movement of the operator’s wrist joint with
that of the manipulator’s joint enables the operator to control
the manipulator intuitively.

IV. EXPERIMENTS

We conducted experiments with the developed manipulator
system on eight subjects. Subjects A and B were 51- and
43-year-old men whose forearms were amputated when they
were 18 and 41 years old, and they had never used EMG-con-
trolled devices. Subjects C-H were fully functional, from
21- to 31-year-old men. Rehabilitation training is beneficial
before manijpulation when the amputee’s muscle force declines
with long lapses of time after amputation. For this purpose,
Subject A was trained using an EMG-based training system for
prosthetic control [35], [36]. This system seeks to enhance three
kinds of muscle abilities: cooperation among several muscles,

" timing of EMG generation, and muscular contraction. We first
performed control experiments on the hand and wrist part,
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and examined the effect of online learning while the subject
controlled this part for a couple of hours. We then performed
experiments on manipulator control using the EMG signals
and the 3-D position sensor. Finally, to improve the feeling
of control in the hand and wrist part, we tried to control the
joint angles based on the joint impedance model of the human
forearm.

In the experiments, we used six electrodes (D = 6: ch. 1
Flexor Carpi Radialis; ch. 2 Flexor Carpi Ulnaris; ch. 3 Pronator
Teres; ch. 4 Supinator; ch. 5 Biceps Brachii; ch. 6 Brachialis).
If the subject was an amputee, we placed four electrodes (ch.
1-4) on the muscles near the amputated part, and two elec-
trodes on the upper arm muscles (ch. 5 Biceps Brachii, ch. 6 Tri-
ceps Brachii). The sampling frequency for controlling the arm
part and hand and wrist part were 60 and 100 Hz, respectively.
The cutoff frequency and the order of the Butterworth filter in
the preprocessing part were determined as fo = 1.0 Hz and
p = 2. The discrimination suspension and the online learning
thresholds were determined by trial and error, considering the
results of our previous research [25], [26]. The LLGMN struc-
ture was determined based on the number of electrodes, the
Gaussian components, and the desired motions. Gaussian com-
ponents were used to approximate the pdf of the sample data.
The numbers of components and learning samples were spec-
ified as one and 20 for each motion, which were adequate for
achieving high-discrimination performance.

A. Discrimination Ability of the Hand and Wrist Motions

First, we examined the EMG pattern discrimination ability.
In the experiments, we used the discrimination suspension rule
and the online learning method, and determined the thresholds
as Fy = 0.55, E, = 2.0. There were N = 160 (eight mo-
tions, 20 for each motion) learning data inputs. Fig. 6 shows
an example of the discrimination results for Subject C. The
subject performed eight motions (K = 8; (E) extension, (F)
flexion, (UF) ulnar flexion, (RF) radial flexion, (S) supination,
(P) pronation, (HO) hand open, and (HG) hand grasp) for about
30 s. The figure shows the motion photos, EMG signals, force
level o (n), the entropy E(n), and the discrimination results.
Darkened areas indicate no motion because the square sum of
EMGg(n), which was defined as (1), was below the prespeci-
fied threshold. We achieved quite high discrimination accuracy,
although we observed several suspended discriminations and in-
correct discriminations at the beginning and ending of the mo-
tion. The incorrect discriminations can be reduced using the dis-
crimination suspension rule.

Next, we performed experiments to compare LLGMN and
the common BPN network. Table ITI presents the discrimination
results for five subjects, including the two amputees. Subjects
B-E executed all eight motions, but Subject A executed six mo-
tions, excluding UF (ulnar flexion) and RF (radial flexion) be-
cause he could not imagine them. We calculated the mean values
and standard deviations for ten randomly chosen initial weights.
During the experiment, we did not use the discrimination sus-
pension rule or the online learning method. The discrimination
rates of BPN decreased in some motions, and the standard devi-
ations were greater than those of LLGMN. However, LLGMN
realized quite high discrimination accuracy for all subjects. The
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Fig. 6. Example of the hand and wrist control using the EMG signals: the
subject executed eight hand and wrist motions for about 30 s. The darkened areas
indicate no motions because the square sum of EMG 4(n), which was defined as
(1), was below the prespecified threshold. “SUS” in the discrimination results
indicates the suspended discrimination where E(n) exceeds the prespecified
threshold E;.

subjects could, thus, control the hand and wrist part successfully
based on EMG pattern discrimination using LLGMN.

* B. Effect of Online Learning

‘We next examined the effect of the discrimination suspension
rule and the online leaming method on discrimination perfor-
mance under the following experimental conditions.

D The discrimination suspension rule and online learning

method were used.

II)  Only the online learning method was used.

III) Only the discrimination suspension rule was used.

IV) Neither the discrimination suspension rule nor the on-

line learning method were used.

Subject C, who had enough manipulation experience, was
asked to continue to perform eight motions (K = 8; (E)
extension, (F) flexion, (UF) ulnar flexion, (RF) radial flexion,
(S) supination, (P) pronation, (HO) hand open, and (HG)
hand grasp) for 120 min. This task was very exhausting as
1600 forearm motions had to be executed. The number of
learning data was N = 160. The discrimination suspension

TABLE M
DISCRIMINATION RESULTS IN HAND AND WRIST PART
Subjects | Methods || E | F {UF {RF [ s | P | HO | HG | Toui %
) A LLGMN 10001000{ | _ [950 987 |100.0]1000] 989
MeanxSD@) {| 0.0 | £0.0 +00 | £13|£00|£00] +02
BRN 4|39 | _ | _ |91 840|807 sws]| 74
MeamSD || £38.1] £8.2 +20 [£288[£307) 17| "x79

LLGMN 100.0 {1000 | 96.5 {1000 (1000 | 828 |100.0 {1000] 971

B Mem=SD%) | £0.0 | £0.0 | 204 | £00 | £0.0 | £1.1 | £00 | £00| =*02

BENN 20| 48 {662 963 {977 | 894 | 97.0 |1000] 726

Mean:SD 1141 8] 83 |£a4.0] 277 [£73 (142|251 | 200] 2738

LLOMN 989 |1000 [100.0 | 95.9 |100.0 (1000 | 889 |1000| 979

C Meam25D%) | +23 1 £00 | £0.0 |£30 [ 200|200 [ £33 | +00] 06

BPNN 1000 | 96.5 | 815 | 980 | 60.1 {1000 509 | 874 | 854

MeanzSD(% [| 0.0 | £5.1 [£24.1] +32 |£453{ 200 |[£365{+207| +62

D " | Loy 7.6 | 972 | 94.3 [100.0 [ 100.0 {1000 | 963 | 984 | 954

MeankSD [l 211 [£32 | £0.1 200 [%00]200|£77|*00]| *11

BPNN 00 | 00 [1000{1000]21.0 [1000] 823 |1000] @38

Men£SD; || 0.0 | £0.0 | £0.0 | £00 [£35.2| 200 [£19.0| £00| 49

E LLGMN 1000 | 96.1 [100.0 | 81.0 |100.0 {1000{100.0] 995 | 968

Men=SDi%; § 0.0 | 0.1 | +00 [ £02 | £0.0 [ £00|£00|202{ =01

BPNN 648 | 61.0 | 800 | 729 1000 963 | 12 [ ™3] &4

MemzSD% 444 4| £44.2}+42 20421 2] 200 [£11.7) £38 [£272] %90

Motions: Extension (E), Flexion (F), Ulnar Flexion (UF), Radial Flexion (RF).
Sepination (S), Pronation (P), Hand Open (HO), Hand Grasp (HG)
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Fig. 7. Effect of the online learning method on the motion-discrimination
ability while controlling the hand and wrist part for 120 min.

threshold and the online learning thresholds were determined
to be Eq4 = 0.55, E, = 2.0, respectively. The discrimination
rates were calculated every 10 min. Cases in which the system
did not recognize any motions were counted as incorrect
discriminations. During the experiment, the subject was not
informed of the discrimination results.

The time histories of discrimination rates and the accumula-
tive frequency of the incorrect discrimination data are shown in
Fig. 7. The discrimination rate of condition IV, which did not
use the discrimination suspension rule and the online learning
method, decreased over time, possibly because of variations of
the EMG pattern potentially caused by fatigue and/or sweat. No-
tably, the discrimination rate of condition I, which used both the
discrimination suspension rule and the online learning method,
maintained the highest discrimination rate during the experi-
ment. Finally, only 16 incorrect discriminations were observed
through 1600 trials.
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Fig.8. Changes of discrimination accuracy for three subjects under conditions
I and IV, where the discrimination suspension rule and the online learning
method were used or not used.

We examined these effects for three other subjects (F-H) who
were not familiar with the manipulation. There were six mo-
tions; UF (ulnar flexion) and RF (radial flexion) were not in-
cluded because this experiment was the first time subjects G
and H experienced controlling the manipulator. The number
of learning data was N = 120, and the discrimination sus-
pension and the online learning thresholds were determined as
E; = 0.47, E, = 1.7, respectively. The subjects executed the
exhausting work, executing 900 hand and wrist motions, and
were not informed of the discrimination results. The experi-
mental conditions were I and IV, and the discrimination rates in
every 100 trials are plotted as shown in Fig. 8. Cases in which the
system did not recognize any motions were counted as incorrect
discriminations. The length of the experiments of subjects was
41.3 min for F, 64.4 min for G, and 75.6 min for H. Each sub-
ject achieved high discrimination performance in the beginning
of the experiments. Especially, the high discrimination perfor-
mance could be realized in condition I by using the discrimina-
tion suspension rule and the online learning method. For condi-
tion IV, the discrimination rates tended to decrease with time. In
contrast, the discrimination rates for condition I remained rela-
tively high during the experiment. Only 5 ~ 9 incorrect discrim-
inations were observed after 900 trials. The proposed method
can adapt to the changes of the EMG pattern caused by fatigue
or sweat.

' C. Manipulator Control Using the 3-D Position Sensor

Previous experiments demonstrated the ability of the pro-
posed method to discriminate hand and wrist motions using the
EMG signals with high accuracy. However, it is very difficult to
control all joints of the manipulator using only the EMG signals,
so it is helpful to use the remaining arm motions to control the
manipulator. Therefore, our system utilizes the information of
the 3-D position sensor for the manipulator’s arm control. This
sensor was attached to the subject’s wrist joint, and enabled the
operator to control the manipulator’s arm part intuitively.

Fig. 9(a)—(c) shows the control examples for subjects A and
C. In the experiments, all signal processing, such as prepro-
cessing the EMG signals, EMG pattern discrimination, motion
control, and online learning, is done in real time, whereas it
takes a relatively long period of time for the amputee to exe-
cute even a simple task because the operator’s control ability
depends highly on the level of disablement and the experience
of the EMG operation. In many cases, however, this time pe-
riod can be shortened considerably through the rehabilitation
training. The developed system’s advantage is in assisting the
disabled with their daily activities, even if it takes a long period
of time. .

The plotted data () tracked the trajectory of the wrist joint
of the operator and Jy joint of the manipulator every 0.1 s. The
gain matrix ¢ = diag [¢;, ¢y, ¢;] Was specified as ¢; = ¢, =
1.0, ¢, ='0.5 for the fully functional subject and ¢; = ¢, =
c. = 0.6 for the amputee subject. The manipulator and the op-
erator have the same orientations for comparing their motions.
Most gain parameters were assigned low values considering the
movable range. .

In Fig. 9(a), Subject C controlled the arm part using the 3-D
position sensor. The joint angles of the arm part were controlled
according to the subject’s wrist position, which, in turn, corre-
sponds to the position of the manipulator’s Jy joint. The ma-
nipulator’s motion was delayed a little from the subject’s mo-
tion, primarily due to the phase lag of the Butterworth filter used
to smooth the EMG signal in the preprocessing. Also, the mo-
tion appearance threshold is specified as a large value so that
the sensitivity decreases. The discrimination is executed every
10 ms, and there is no time delay. The operator has no significant
problem controlling the manipulator at normal speed. The feed-
back gains of the PID control were determined as Kp = 5.0,
Ky = 0.8, and K; = 2.0 to ensure safety. These values were
specified by trial and error. Also, in Fig. 9(b), the hand and wrist
part was controlled using the EMG signals while keeping the
arm in the same position. In Fig. 9(c), Subject A executed a
pick-and-place task using his EMG signals and remaining arm
motions. He picked up the object from the table, performed
some motions, and then set it on the table again. No incorrect
discriminations were observed, and all motions were performed
smoothly.

D. Control Based on the Joint Impedance Model

In the previous experiments, the driving speed of the hand and
wrist part was controlled proportionally to the force level ox(n)
defined as (3). The operator could control the manipulator in-
tuitively and perform some simple tasks based on this method.
However, it is more realistic to control the hand and wrist part
based on the joint torque, which is calculated from the force
level 0% (n) and joint impedance properties, because the skillful
motions of the human arm are realized by regulating them. Mo-
tions similar to those of the hurnan arm may be realized if the
joint impedance model of the human arm is introduced into the
control system and the arm is controlled by the estimated torque.

Several studies on the wrist joint impedance of the human
arm, such as stiffness, viscosity, and inertia, have been carried
out [37]-[42]. These were conducted primarily in the physi-
ological field to examine the kinetic characteristics of human
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Fig.9. Motion photos while controlling the manipulator. Subject C (fully functional) and A (amputee) performed the manipulation using their EMG signals and

arm motions.

movements. For example, Akazawa et al. [37] reported on
the relation between the stiffness of the Flexor pollicis longus
and the myotatic reflex. Gielen and Houk [38] discovered that
changes in the wrist joint viscosity depended on its angular
velocity. Sinkjer and Hayashi [39] examined the changes in
wrist joint stiffness by intercepting the reflection system. Fur-
thermore, Abul-haj and Hogan [13] utilized the joint impedance
model for prosthetic control and tried to realize control feelings
similar to those of the human hand. Tsuji [40] and Tsuji et al.
[41] have also been studying how to estimate joint impedance
parameters from EMG signals.

Let us consider control based on the joint impedance model
of the human forearm. For example, the dynamic equation of
the jth joint in the hand and wrist part is defined as

I;0; + Bj#; + K;(8; — 09) = 7¢° (18)

where I;, B;, and K are the inertia, the viscosity, and the stiff-
ness, and T;‘ and 0,- are the external torque and the measured

angles of the jth joint. The equilibrium angle (virtual trajectory)
of jth joint is calculated as

19

where 7;°* is the maximal torque for the motion k.

- TABLE IV
PARAMETERS OF IMPEDANCE MODEL USED IN EXPERIMENTS
Joints Motions(k) KJ [Nm/rad] BjINmmdl I, kem?}| T k""“ [Nm}
Js | Plexion 1)/ Extemion 2) 6.0 0. 0004 | 030(k=1,2)
J5 _|Promatios (3)/ Supisation (4) 4.0 0.1 0002 | 020%=34)
) Geasp (5)/ Open (6) 40 0.2 0001 | 036(k=5.6)

This impedance model functions as a kind of the filter so that
the joint angles are controlled smoothly even if the system fails
to discriminate the motion with complete accuracy. In the pro-
posed method, the joint angle and velocity are calculated by
integrating (18) numerically. The joint angle then tracks them
using the PID control method. If the numerical calculation is
executed in a sufficiently short time and the PID controller con-
trols the joint angles with a high degree of accuracy, this method
can be regarded to be the same as the conventional impedance
control method.

We conducted an experiment in order to examine the ability
of the joint impedance control defined above. As the first step
of this trial, we determined the parameters in Table IV, although
they may change depending on the joint angles, the muscular
contraction levels, and other factors. These values were spec-
ified by trial and error considering the results in our previous
research [40], [41]. Subject C executed six forearm motions
(K = 6: 1. flexion, 2. extension, 3. pronation, 4. supination,
5. hand grasp, 6. hand open), and six electrodes (D = 6: ch.
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Fig. 10. Example of the joint impedance control. The subject executed six
hand and wrist motions for about 20 s. The darkened areas indicate no motions
because the square sum of EMG,(n), which was defined as (1), was below the
prespecified threshold.

1 Flexor Carpi Radialis, ch. 2 Triceps Brachii, ch. 3 Extensor
Carpi Radialis, ch. 4 Biceps Brachii, ch. 5 Brachioradialis, ch.
6 Flexor Carpi Ulnaris) were used. '

Fig. 10 shows an example of the joint impedance control .

for about 20 s. Fig. 10(a) shows the EMG signals, force level
ox(n), the entropy E(n), the discrimination results, and joint
angles ;. The darkened areas indicate no motion because
the square sum of EMGy4(n), which was defined as (1), was
below the prespecified threshold. It can be seen that the oper-
ator could successfully control the joint angles based on the
joint impedance model. During the manipulation, all motions
were performed very smoothly. The motion photographs are
presented in Fig. 10(b) and show three hand positions corre-
sponding to the different joint angles marked (i), (ii), and (iii)
in Fig. 10(a). Hand and wrist motions similar to those of the
human arm were realized using the control method based on
the joint impedance model.

However, we cannot clarify whether speed control or
impedance control is better, because it depends heavily on the
operator’s disabled limb and control ability. We should thus
select the control method according to the operator’s control
ability and the objective task.

V. CONCLUSION

This paper proposed and developed a new human-assisting
manipulator system. The distinctive feature of our system is that
it uses a novel statistical neural network, called LLGMN, to dis-
criminate the EMG pattern. LLGMN includes a preorganized
structure and can model the complicated mapping between the
input pattern and the discrimination classes even for a small
sample size. Furthermore, the weight coefficients of LLGMN
are not statistically constrained and are mutually independent,
so that LLGMN achieved higher discrimination performance
than the conventional statistical technique. In contrast, BPN,
which was frequently used in previous research on EMG-con-
trolled prosthetic hands, is trained by using only a large amount
of learning data, and cannot achieve high discrimination perfor-
mance. Also, the discrimination suspension method and an on-
line learning method can be designed using the LLGMN’s out-
puts, which indicates the a posteriori probabilities of the cor-
responding motions. We conducted experiments using the de-
veloped system for eight subjects, including two amputees. The
results obtained in the experiments are summarized below.

* The operator’s intended motions could be discriminated
from the EMG patterns accurately enough using LLGMN.

* The system maintained highly accurate motion discrim-
ination using the discrimination suspension rule and the
online learning method, even if the operator used the ma-
nipulator continuously for a couple of hours.

 The operator could control the human-assisting manipu-
lator intuitively using his/her EMG signals and arm mo-
tions measured by the 3-D position sensor.

* Motions similar to those of the human arm were realized
based on the joint impedance-control method using the
joint torque calculated from the EMG signals.

In our future research, we would like to try to perform a
“having-a-meal” task using the developed system. However, it
will be difficult to directly extend the proposed method in this
paper, since the operator will have to concentrate heavily on the
EMG operation. A new control strategy may be necessary to
improve the control of the developed system. Therefore, we are
trying to introduce task models, such as a grasping an object and
spooning soup, into the system [43]. Based on this technique, an
amputee may realize various tasks by selecting a simple com-
mand using the EMG signals. Also, we would like to examine
the relationship between the joint impedance parameters of the
human arm and the muscular contraction level, and introduce
this regulation mechanism into the control system to realize
more a natural feeling of the prosthetic control.
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