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Abstract— In this paper we study attitude stabilization strate-
gies via output sensor feedback for Micro Aerial Vehicles (MAVs),
inch-size robots capable of autonomous flight. To overcome the
limited size and power budget available to these vehicles, ocelli
and halteres, novel sensors based on body rotation and orientation
sensing mechanisms used by flying insects, are introduced. The
analysis and simulations of these sensors show the feasibility of
using such biologically inspired approaches to build biomimetic
gyroscopes and angular position detectors. Finally, attitude stabi-
lization techniques based on these sensors are proposed and suc-
cessfully tested on an aerodynamic model for a Micromechanical
Flying Insect (MFI). To the authors’ knowledge, this is the first
attempt in using output feedback from biomimetic devices with
ocelli and halteres to achieve attitude stabilization in MAVs.

I. I NTRODUCTION

M ICRO aerial vehicles (MAVs) have drawn a great deal
of attention in the past decade due to the rapid ad-

vances in microtechnology. Several groups have worked on
MAVs with fixed and rotary wings [1]. Flapping flight, how-
ever, provides superior maneuverability that is beneficial in ob-
stacle avoidance and navigation in small spaces. Therefore,
the UC Berkeley Micromechanical Flying Insect (MFI) project
uses biomimetic principles to develop a flapping wing MAV
that will be capable of sustained autonomous flight [2],[3]. One
important concern in designing the components of the MFI is
their power consumption and size. Current power budget for the
MFI is 25mW , and the majority of this power will be allocated
to the actuation of the two wings.

On the other hand, the sensory system of the MFI, which
is crucial for stabilizing flight, should consume little power.
The power requirements of off-the-shelf micro sensors are gen-
erally too expensive for the MFI. At present, piezo-actuated
biomimetic angular rate sensors for use on the MFI have been
constructed [4]. Another biomimetic device, ocelli, has been
fabricated [5]. Ocelli consist of four photoreceptors that sense
the light intensity of surrounding areas in order to estimate the
orientation of the MFI. Both sensors have the advantages of
simple design, easy implementation, low power consumption,
and high performance. This paper first presents the modeling
of these two biologically inspired sensors and then proposes a
close-loop attitude control scheme using the sensor output as
feedback.

II. FLYING INSECTDYNAMICS

Flight dynamics of flapping insects is still an open area of re-
search [6]. This is primarily due to the difficulties in measuring
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aerodynamic forces on real flying insects, and in experimen-
tally validating proposed theoretical models. In this work we
model the dynamics of a flying insect as a rigid body subject
to external forces. Albeit wings do move relative to the insect
body, their mass is within1−5% of total insect mass and hence
their effect on the insect dynamics is relatively small and can be
neglected. Therefore, we assume that the insect body motion
evolves according to the rigid body motion equations subject to
external forces relative to its center of mass [7]. The external
forces acting on an insect are the aerodynamic forces gener-
ated by the wings, the gravity force, and the body viscous drag.
Since we are interested in attitude control, gravity does not play
a role. Also, since only slow body rotations are considered in
this work, angular viscous forces are neglected. Finally, we as-
sume that the aerodynamic torques can be controlled exactly
and continuously. In reality, the aerodynamic forces generated
by flapping wings are highly time-varying within a single wing-
beat and they can not be controlled instantaneously. Current
research is aimed at solving this problem and promising pre-
liminary results have been shown [8] [9]. These results will
soon be applied to the control schemes proposed in this paper.

Summing up, the dynamics of the attitude of a flapping insect
are modeled as follows:

Ṙ = Rω̂b (1a)

ω̇b = J−1
b (τ b − ωb × Jbωb) (1b)

τ b = u (1c)

ω̂b =




0 ωz
b −ωy

b

−ωz
b 0 ωx

b

ωy
b −ωx

b 0


 (1d)

whereωb = [ωx
b ωy

b ωz
b]T is the angular velocity of the insect

body relative to the body frameB, τ b ∈ R3 is the total exter-
nal torque relative to the body frameB attached to the center
of mass of the insect body,Jb ∈ R3×3 is the moment of inertia
of the insect body relative to the body frameB, andu ∈ R3

is the control input vector. To simplify the notation, we drop
the superscriptb from equations, implicitly assuming that all
quantities are measured relative to the body frameB. The ma-
trix R ∈ SO(3) = {R ∈ R3×3 : RT R = I,det R = +1}
is the rotation matrix representing the orientation of the insect
body frameB relative to the fixed frameA. In particular, let
vb = [xb yb zb]T andva = [xa ya za]T the coordinates of a
vectorv ∈ R3 relative to the body frameB and the fixed frame
A, respectively. Then, these coordinates satisfy the following
transformations:

va = Rvb

vb = RT va
(2)
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For example, lete3 = [0 0 1]T , then the coordinates of the
z-axis unit vector of the body frame relative to the fixed frame
areP a

z = Re3 = [r13 r23 r33]T , while the the coordinates of
the z-axis unit vector of the fixed frame relative to the body
frame areP b

z = RT e3 = [r31 r32 r33]T . In general,P b
z 6= P a

z .
Moreover, from the definition of rotation matrix and Equation
(1a), we have the following useful properties:

||P b
z ||2 = r2

31 + r2
32 + r2

33 = 1 (3)

Ṗ b
z = P b

z × ω (4)

This model is very similar to satellite dynamics [10] and con-
trol strategies can be applied [11] [12] [13] [14].

III. O CELLI

A. Morphology and Purpose

Ocelli are a sensory system present in many flying insects.
This system comprises of three wide angle photoreceptors
placed on the head of the insect (see Figure 1). They are ori-
ented in such a way that they collect light from different re-
gions of the sky (see Figure 2), but have poor image resolution.
Although the exact physiology and purpose of ocelli and their
purpose in insect flight are still not completely understood, it is
believed that they play a fundamental role in insect attitude sta-
bilization, and particularly horizon stabilization [15] [16] [17]
[18]. Experimental results performed by Taylor [17] and Kast-
berger [16] on some insect species suggest that ocelli collab-
orate synergistically with compound eyes to minimize the de-
lay of visual processing and to augment visual responsiveness
when no sharp horizontal border is present. When an insect is
presented with a moving artificial horizon, it first tries to rotate
its head in order to fixate the horizon on the retina. Only af-
terwards does it change its wing pattern to realign its abdomen
with its head. Taylor observed that cauterization of ocelli dou-
bles the latency between the horizon motion, and the compen-
satory head movement. Moreover, in dimly lit environments
ablated ocelli also reduced insect sensitivity to horizon motions
resulting in smaller mean amplitude of head motion responses.
Therefore it can be stated that ocelli are especially important
for stabilization of the retinal image of the compound eyes dur-
ing flight, when disturbances are sudden and frequent. Ocelli
seem to be designed for high sensitivity and speed of response
at the expense of acuity. Two additional findings deserve men-
tioning. The first finding is that, in case of ablated compound
eyes and intact ocelli, an inverted horizon, corresponding to
upside-down insect orientation, caused no head motion unless
the two lateral ocelli were unequally illuminated, unlike insects
with intact compound eyes. This is consistent with the math-
ematical modeling of ocelli developed in the following para-
graphs, which predicts an unstable equilibrium configuration
for the upside-down orientation. The second finding is that the
insect head with compound eyes disconnected and intact ocelli,
quickly responded to sudden horizon displacements, but then
soon relaxed toward the rest position even when the horizon
remained displaced. In other cases, animals with intact com-
pound eyes maintained a rotated head. This observation sug-
gests that the ocelli behave similarly to a high pass filter. This

could be motivated by the fact that light distribution can change
substantially during the course of the day due to sun motion,
atmospheric variations or simply because the insect during its
flight can traverse shady trees or urban environments. Nonethe-
less, these variations have a long timescale relative to the insect
motion timescale and can be compensated by the compound
eyes. From an engineering perspective, insects combine low-
bandwidth compound eyes with high-bandwidth ocelli to ob-
tain an accurate horizon sensor for attitude stabilization over a
large frequency domain.

Biologists believe that ocelli estimate the orientation of the
insect with respect to the sky by comparing the intensity of
light measured by the different photoreceptors. Their argument
is based on the assumption that, as a first approximation, the
intensity of light measured by the photoreceptors,I, is only a
function of its latitudeθ relative to the light source (i.e. the
sun).

In this paper, we consider ocelli systems with four photore-
ceptors rather than three, as for real insects. Although all the
results in this paper can be extended to a three-photoreceptor
ocelli, we prefer to present them relative to a four-photoreceptor
configuration since proofs are more elegant and intuitive.

Fig. 1. The ocelli of a blowfly and the visual fields of the median (top)
and right lateral (bottom) ocelli. Courtesy of [15].

Before entering the discussion of ocelli modeling, it is im-
portant to mention that some horizon sensors for attitude stabi-
lization are commercially available. The most interesting ones,
such as the FMA co-pilot, and the Futaba PA-2, for Radio Con-
trolled aircrafts, are based on 4 optical sensors on two-axis pla-
nar configuration that sense the difference in infrared signature
between the earth and the carbon dioxide in the atmosphere to
provide day and night roll-pitch stabilization. Despite their ex-
act functioning is not available to the public, they seem very
much ocelli-like in function, since they rely on the differential
measurements of a monotonic function of the vertical latitude.
Therefore, we believe they may fall within the ocelli mathemat-
ical modeling developed in this paper. The major difference be-
tween a carbon-dioxide-based ocelli and a light-intensity-based
ocelli is that the former one cannot work in indoor environments
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Fig. 2. (a) Four photoreceptors,P1, P2, P3, andP4, are fixed with
respect to the insect’s body frame (xB , yB , zB). The shadowed area,
A3, represents the receptive region ofP3; (b) The projection of the
light source onto thex − y plane of the insect’s body frame. The
shadowed area represents the box given by the inequalities in Equation
(15).

and it is likely to fail in urban or shady environments when part
of the sky is occluded.

B. Modeling

Any pointP in the sky can be represented in spherical coor-
dinates(r, θ, ψ) wherer ∈ [0, +∞] is the radius of the celestial
sphere,θ ∈ [0, π] is the latitude, andψ ∈ [0, 2π] is the longi-
tude, relative to the fixed frameA. Alternatively, the same point
can be written in Cartesian coordinatesP = [xP yP zP ]T . The
transformation from spherical to Cartesian coordinates is given
by:

xP = r sin θ cos ψ
yP = r sin θ sin ψ
zP = r cos θ

(5)

Without loss of generality, the radius of the celestial sphere can
be normalized to unity, i.e.r = 1. The ocelli sensory system
is modeled as four ideal photoreceptors, calledP1, P2, P3, P4,
fixed with respect to the body frameB, that collect the light
intensity from a region of the sky. They are oriented symmet-
rically such that they have the same latitude and their axes in-
tersect the sky sphere forming an imaginary pyramid, whose
vertex is placed at the center of the insect head. Formally, their
orientation relative to the body frameB can be represented in
Cartesian coordinates as follows:

P b
1 = [

√
1− h2 0 h]T , P b

2 = [−√1− h2 0 h]T

P b
3 = [0

√
1− h2 h]T , P b

4 = [0 −√1− h2 h]T
(6)

where the parameterh ∈ (−1, 1) sets the latitude of the pho-
toreceptors. Every photoreceptor collects light from a conic
regionAi around its ideal orientationPi as shown in Figure 2.

The most important assumption made in ocelli modeling is
that the intensity of light,I, measured by a photoreceptorP ,
is independentof its longitude and it is astrictly monotoni-
cally decreasingfunction of only its latitude relative to the fixed
frame. Formally it can be written as:

I(P ) = I(ψ, θ) = I(θ)
θ1 < θ2 ⇒ I(θ1) > I(θ2)

(7)
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Fig. 3. (a) Schematics of ocelli design; (b) Photo of ocelli prototype.
Adapted from [5].

where, with an abuse of notation, we identify the position of the
photoreceptor with its latitudeθ, which is the angle between the
z-axis of the fixed frameA and the orientation of the photore-
ceptor on the celestial sphere.

The monotonic distribution of light intensity on the celestial
sphere can be satisfied only in an ideal environment where the
landscape is uniform and the light is diffused uniformly around
its generating source. In reality, time-varying atmospheric con-
ditions, trees and building creating shady regions, or multiple
light sources in indoor environments can undermine this as-
sumption. In order to test this assumption, we built a small
prototype of ocelli using off-the-shelf photodiodes with peak
sensitivity at light wavelength900nm, conic field of view of
60o diameter and0.75mm2 active area. These photodiodes are
placed on a square pyramid with angleα = 40o (see Figure 3).
Design details can be found in [5]. The ocelli prototype was
then placed about1m from the ground in three different envi-
ronments that represent typical range of MFI scenarios: inside
a room illuminated by multiple lamps on the ceiling, outdoor
between buildings that were blocking the sun, and outdoor in
a open space during a cloudy day. The output from a single
photodiode placed at different orientation was used to generate
the light intensity map of the celestial sphere shown in Figure 4.
To facilitate the comparison of light intensity for heterogeneous
environments, the intensity in these three plots was normalized
so thatImax = 1, Imin = −1. Although the light intensity is
not strictly monotonic and it depends also on the longitude, it
is still possible to spot a bright portion of the sky opposed to a
dark one in all three scenarios. In the indoor environment, the
bright region is exactly perpendicular to horizontal plane, while
in the outdoor scenarios it is slightly tilted. In particular, in the
urban environment case, the bright area is tilted because a large
building is screening the sun, while in the open area environ-
ment the tilt is caused by the position of the sun close to the
horizon (see photos on the left side in Figure 4). The conse-
quences on the attitude estimation of ocelli caused by these non
ideal scenarios will be addressed later.

The measurements from the photoreceptors are simply sub-
tracted pairwise and these two signals are the output from the
ocelli:

y1 = I(P a
1 )− I(P a

2 )
y2 = I(P a

3 )− I(P a
4 ) (8)

whereP a
i is the photoreceptor orientation in Cartesian coor-

dinates relative to the fixed frameA. Given the orientation
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Fig. 4. Light intensity distribution over the celestial sphere from experimen-
tal data: indoor environment (top), urban environment (center), outdoor open
space environment(bottom). Experimental plots are obtained by interpolating
(but not smoothing) the light intensity measured by the ocelli on a uniform grid
of 100 points collected on locations marked by the cross ”X” on the pictures.

R ∈ SO(3), of the insect body frameB relative to the fixed
frameA, the orientation of the photoreceptorPi relative to the
fixed frame isP a

i = RP b
i . Since the orientation of the photore-

ceptors is fixed with respect to the body frameB, the outputs
from the ocelli depend only on the insect orientationR. From a
mathematical point of view, the ocelli system can be modeled as
a nonlinear functionf : SO(3) → R2 of the insect orientation.

C. Orientation Estimation

This section is devoted to studying the general properties of
the mapf(), i.e. how much information about the orientation
R can be extracted from the ocelli output. We first consider
the special case where the light intensity measured by the pho-
toreceptors isI(θ) = cos θ. This instance clearly highlights
the relation between the insect orientationR and the ocelli out-
put y. Then we consider the general case whereI(θ) is simply
monotonic.

Proposition 1. Suppose that the light intensity measured by the
photoreceptors isI(θ) = cos θ, and let the orientation of the

photoreceptors be such thath =
√

3
2 in Equations (6). Then the

output of the ocelli isy1 = r31, y2 = r32, whererij is thei− j
entry of the insect orientation matrixR.

Proof: Substitutingh =
√

3
2 andI(θ) = cos θ into Equa-

tions (8) we get:

y1 = I(P a
1 )− I(P a

2 ) = cos θP a
1
− cos θP a

2

= eT
3 P a

1 − eT
3 P a

2 = eT
3 RP b

1 − eT
3 RP b

2

= eT
3 R(P b

1 − P b
2 ) = eT

3 Re1 = r31

y2 = . . . = eT
3 R(P b

3 − P b
4 ) = eT

3 Re2 = r32

wheree1 = [1 0 0]T , e2 = [0 1 0]T , e3 = [0 0 1]T . The second
line follows from the fact thatcos θP a = zP = eT

3 P a and that
P a

i = RP b
i .

As described at the end of Section II,r31 andr32 correspond
to thex andy coordinates of thez-axis of the fixed frameA
relative to the body frameB. In other words, the ocelli can
measure thex andy position of the light source relative to the
insect body. Intuitively, it is clear that this information can be
used to rotate the insect body toward the light source.

When the light intensityI(θ) measured by the photoreceptors
is just amonotonically decreasingfunction of the latitude, the
ocelli do not estimate the exact orientation of the sun relative to
the insect body frame, but they can still retrieve the approximate
direction, as shown in the following proposition:

Proposition 2. Suppose that the light intensity measured by
the photoreceptors,I(θ), is an unknown strictly monotonically
decreasing function of the latitudeθ. Then the output of the
ocelli has the following properties:

y1 = 0 ⇐⇒ r31 = 0; y1 6= 0 =⇒ y1r31 > 0
y2 = 0 ⇐⇒ r32 = 0; y2 6= 0 =⇒ y2r32 > 0 (9)

Proof: First we recall thatcos−1() is a strictly monoton-
ically decreasing function of its argument, and that the com-
position of two monotonically decreasing functions is a mono-
tonically increasing function. Thus,̃I(θ) = I ◦ cos−1(θ) is
a monotonically increasing function. Consider the first ocelli
outputy1:

y1 = I(θP a
1
)− I(θP a

2
)

= I(cos−1(eT
3 P a

1 ))− I(cos−1(eT
3 P a

2 ))

= Ĩ(eT
3 P a

1 )− Ĩ(eT
3 P a

2 )

= Ĩ(eT
3 RP b

1 )− Ĩ(eT
3 RP b

2 )

= Ĩ(r31

p
1− h2 + r33h)− Ĩ(−r31

p
1− h2 + r33h) (10)

where we use the factcos θP a = zP = eT
3 P a in the second

line, and the orientationsP b
i of the photoreceptors are given by

Equations (6). Let us definel =
√

1− h2. Since the functioñI
is monotonically increasing we have:

y1 > 0 ⇒ Ĩ(r31l + r33h) > Ĩ(−r31l + r33h)
⇒ r31l + r33h > −r31l + r33h
⇒ 2 r31l > 0 ⇒ r31 > 0

where we use the fact that̃I is monotonically increasing and
that l > 0. Analogously, it is easy to verify thaty1 < 0 ⇒
r31 < 0. From monotonicity of̃I also follows thaty1 = 0 ⇒
r31 = 0. Trivially, from Equation (10) it follows thatr31 =
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0 ⇒ y1 = 0. Finally, the same arguments can be used to prove
the properties of ocelli outputy2.

This proposition indicates that the ocelli still give an approx-
imate orientation of the light source, regardless of the exact ori-
entation of the photoreceptors relative to the insect body and
regardless of the specific light intensity distribution as long as
it is monotonic. Moreover, the outputs of the ocelli are zero if
and only if thez-axis of the fixed and body frame are aligned.
A more intuitive understanding of the ocelli processing is given
by the following lemma:

Lemma 1. Suppose that the light intensity measured by the
photoreceptors,I(θ), is an unknown smooth differentiable
monotonically decreasing function of the latitudeθ. LetP b

z =
[r31 r32 r33]T represent the orientation of the z-axis of the fixed
frame relative to the body frame, and letψb and θb represent
the longitude and latitude of the vectorP b

z relative to the body
frame, respectively. Also let̂ψb represent the longitude of the
vectoryO = [y1 y2 0]T . Then we have:

|ψ̂b − ψb| < π

2
, for yO 6= 0 (11)

a r31 ≤ y1 ≤ a r31; a r32 ≤ y2 ≤ a r32 (12)

θb → 0 =⇒





y1 → a r31

y2 → a r32

ψ̂b → ψb

||yO|| → a sin θb

(13)

where0 < a ≤ a ≤ a < ∞
Proof: According to the definition of longitude given

in Equation (5), we havesin ψb = r31√
r2
31+r2

32

, cos ψb =
r32√

r2
31+r2

32

, sin ψ̂b = y1√
y2
1+y2

2

, cos ψ̂b = y2√
y2
1+y2

2

. Therefore,

if (y1, y2) 6= (0, 0), we have:

cos(ψb − ψ̂b) = cos ψb cos ψ̂b + sin ψb sin ψ̂b

=
r31y1 + r32y2√

(y2
1 + y2

2)(r2
31 + r2

32)
> 0 (14)

where the inequality follows from Proposition 2, and it implies
Equation (11). ForyO = 0, the longitude is ill-defined since it
corresponds to a point of singularity of the spherical coordinate
representation.

Following from Equation (10), ifr31 > 0 we have:

y1 = Ĩ(h r33) + r31

p
1− h2

dĨ(ξ1)

dθ
− [Ĩ(h r33)−

−r31

p
1− h2

dĨ(ξ2)

dθ
] =
p

1− h2[
dĨ(ξ1)

dθ
+

dĨ(ξ2)

dθ
] r31

=⇒ 2
p

1− h2a r31 ≤ y1 ≤ 2
p

1− h2a r31 (15)

where ξ1 ∈ [hr33 , hr33 + r31

√
1− h2], ξ2 ∈ [hr33 −

h31

√
1− h2 , hr33] come from the mean value function the-

orem, and the inequalities from the assumption that0 < b ≤
dĨ
dθ ≤ b < ∞ is smooth with nonnegative bounded first deriva-
tive. These inequalities lead directly to Equations (12).

According to Equations (5), we haver33 = cos θb, |r31| ≤
sin θb, |r32| ≤ sin θb, therefore (θb → 0) ⇒ (P b

z =
[r31 r32 r33] → e3 = [0 0 1]). Also (θb → 0) ⇒ (ξ1 →
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Fig. 5. Longitude estimation error,∆ψb = ψb − ψ̂b, and magnitude of ocelli
output,||yO||, as a function of latitudeθ of the light source position relative
to the insect body for light intensityI = cos5(θ). Each trace corresponds
to a different longitudeψ. The thick line in lower plot is given by function
f = a sin θb of Equation (13)

h ; ξ1 → h), therefore, because of Equation (15),(y1 → ar31)
wherea = 2dĨ(h)

dθ

√
1− h2. Analogously,(θb → 0) ⇒ (y2 →

ar32).
Equation (14) can be expanded in Taylor’s series relative to

the variablesP b
z = [r31 r32 r33] at the pointe3:

cos(ψb − ψ̂b) =
ar2

31 + ar2
32√

a2(r2
31 + r2

32)(r
2
31 + r2

32)
+ o(||P b

z − e3||)

= 1 + o(||P b
z − e3||)

thereforeθb → 0 ⇒ ||P b
z − e3|| → 0 ⇒ cos(ψ − ψ̂) → 1 ⇒

(ψ − ψ̂) → 0. Finally, the magnitude of the output vector can
be written as

||yO|| =
√

y2
1 + y2

2 = a
√

r2
31 + r2

32 + o(||P b
z − e3||)

= a
√

1− r2
33 + o(||P b

z − e3||)
= a

√
1− cos2 θb + o(||P b

z − e3||)
= a sin θb + o(||P b

z − e3||)

where we used the identityr2
31 + r2

32 + r2
33 = 1. Therefore,

θb → 0 ⇒ ||P b
z − e3|| → 0 ⇒ ||yO|| → a sin θb.

This lemma highlights several important features of ocelli
outputs. First, according to Equation (11), the ocellialways
give an approximate estimation of the latitude of the light
source relative to the insect body, in the sense that if the insect
rotates toward the apparent position of the light source given
by the ocelli, it will eventually align thez-axes of the body and
fixed frame. Also, for small latitudesθb, the longitude error of
the light source decreases to zero, and the magnitude of the out-
put vectoryO becomes proportional to the latitude. This means
that the ocelli outputs not only estimate the direction of the light
source but also its distance in terms of the latitude.

Figure 5 gives a pictorial representation of ocelli outputs for
the light intensity functionI(θ) = cos5 θ. The plot on the top
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Fig. 6. Force field relative to the body frame induced by the ocelli for different light intensity distributions: ideal monotonic distributionI(θ) = cos5 θ (left);
measured indoor environment (center); measured urban environment (right). The light intensity distributions of center and right plots are the same as the top and
the center plots shown Figure 4.

displays the latitude errorψ against the latitude for different
longitudes. The plot on the bottom displays the magnitude of
the output vector as a function of the latitude for different lon-
gitudes. As expected, the longitude error is always smaller than
90o and goes to zero as the latitude goes to zero. The magni-
tude of the output vector is always positive except for the two
pointsθb = {0, π}, and it is clearly proportional to thesine of
the latitude for small angles.

An additional graphical representation of the ocelli perfor-
mance as an estimator of the light source position is given by
the virtual torque field induced by the ocelli output as if the
body frame were attracted toward the apparent light source po-
sition with magnitude proportional to the ocelli output. More
formally, this induced torque field can be written as:

τ y = −e3 × yO =



−y2

y1

0


 ; (16)

wheree3 = [0 0 1]T . The left plot in Figure 6 shows the vir-
tual force field relative to the body frame, which is given by
Fy = P b

z × τ y, for the light intensity functionI(θ) = cos5 θ.
Clearly, this field would eventually move the insect body frame
toward the north pole, although the magnitude and the direction
change for different latitudes and longitudes. We also estimated
the virtual force field relative to the light intensity measured in
the three scenarios of Figure 4. The force field for the indoor
setting was very close to the ideal case where all vectors were
pointing directly to the north pole (see center plot of Figure 6).
Also in the outdoor settings the vector field points to the posi-
tion of the apparent light source, as it can be seen in the right
plot of Figure 6. However, the apparent light source does not
coincide with the azimuth of the sky sphere as in the indoor set-
ting. As a consequence, the insect would rotate accordingly to
ocelli output, its body would be titled and would not be parallel
to the ground plane. However, the orientation could be biased
to move the apparent light source position to the ground z-axis,
by adding an offset to the ocelli output,. This could be possible

only if another sensor, such as the compound eyes or simply a
gravity sensor, would estimate correctly the ground azimuthal
axis. Once the ocelli is biased, it would still respond to sudden
changes in attitude due to external disturbances. This attitude
estimation strategy is consistent with the observation that the
ocelli behave like a high-pass filter, as described above. To this
end, we are currently exploring the fabrication of a simple elec-
tromechanical gravity sensor that could be used to provide the
correct bias for the ocelli, thus allowing the MFI to adapt to
a variety of heterogenous and time-varying environments while
maintaining high responsiveness to quick external disturbances.

IV. H ALTERES

Fig. 7. (a) Schematic of the enlarged halteres; (b) Photo of the com-
pleted haltere on a fourbar structure. Adapted from [5]

A. Morphology

Research on insect flight revealed that in order to maintain
stable flight, insects use structures, called halteres, to detect
body rotational velocities via gyroscopic forces [19]. The hal-
teres of a fly evolved from hindwings and are hidden in the
space between thorax and abdomen so that air current has neg-
ligible effect on them (see Figure 7). The halteres resemble
small balls at the end of thin rods. There are about 400 sensilla
embedded in the flexible exoskeleton at the haltere base. These
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mechanoreceptors function as strain gauges to detect the Cori-
olis force exerted on the halteres [20]. During flight the hal-
teres beat up and down in vertical planes through an angle of
nearly180o anti-phase to the wings at the wingbeat frequency.
When a fly’s halteres are removed or immobilized, it quickly
falls to the ground. In addition, the two halteres of a fly are
non-coplanar (each is tilted backward from the transverse plane
by about30o). This non-coplanarity of the two halteres is es-
sential for a fly to detect rotations about all three turning axes.
In fact, a fly with one haltere removed is unable to detect ro-
tations about an axis perpendicular to the stroke plane of the
remaining haltere [21].

B. Modeling

A complex force, as a result of insect motion and haltere
kinematics, acts on the halteres during flight [21]. Assuming no
translational motion of the insect, this force can be expressed in
vector notation by the following:

F = mg−ma−mω̇× r−mω× (ω× r)− 2mω×v (17)

wherem is the mass of the haltere,r, v, anda are the position,
velocity, and acceleration of the haltere relative to the insect
body, ω and ω̇ are the angular velocity and angular accelera-
tion of the insect, andg is the gravitational constant. Further,
this force can be decomposed into radial, tangential, and lat-
eral components as depicted by the exploded view of the hal-
tere in Figure 7. Insect’s body rotations produce centrifugal
(−mω × (ω × r)) and Coriolis (−2mω × v) forces on the
halteres. The centrifugal force is generally smaller than the
Coriolis force and mostly in the radial and tangential directions.
Moreover, the centrifugal force is proportional to the square of
angular velocity of the insect, it provides no information on the
sign of rotations. The Coriolis force, on the other hand, has
components in all three directions and contains information on
the axis, sign, and magnitude of the insect’s body rotations. The
angular acceleration force (−mω̇×r) and the Coriolis force are
separable because of the90o phase shift (they are orthogonal
functions). The primary inertial force (−ma) has only radial
and tangential components and is orders of magnitude larger
than the Coriolis force. The gravitational force (mg) is always
constant and depending on the haltere position and the insect’s
body attitude in space, its distribution in the three directions
varies. However, the effect of this gravitational force on the
rotation sensing is negligible because it is a tonic lateral com-
ponent which can be considered as DC offset on the Coriolis
force and removed by the subsequent signal processing step.

Figure 8 shows the traces of the components of the Corio-
lis force for rotations about the roll, pitch, and yaw axes. Note
that since the Coriolis force is proportional to the cross product
of the angular velocity and the instantaneous haltere velocity,
there is no tangential component in the Coriolis force. In ad-
dition, to detect body rotations, only the lateral forces on the
halteres are measured because the large primary inertial force
has no contribution in the lateral direction and hence it is pos-
sible to measure the relatively strong Coriolis signal among all
other interfering force signals appearing in this direction. Be-
cause of the dependence of the Coriolis force on the haltere
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Fig. 8. Coriolis force signals for rotations about the roll, pitch, and yaw axes.

velocity, these force signals are modulated in time with haltere
beat frequency. For a roll rotation, the signal is modulated with
the haltere beat frequency and the left and right signals are180o

out-of-phase. For a pitch rotation, the signal is also modulated
with the haltere beat frequency, but the left and right signals are
in-phase. For a yaw rotation, the signal is modulated with dou-
ble the haltere beat frequency and the left and right signals are
180o out-of-phase.

Formally, the Coriolis forces can be obtained by explicitly
writing the positions and velocities of the two halteres:

rl(t) = [sin α cos β(t) − cosα cosβ(t) sin β(t)]T (18)

rr(t) = [sin α cos β(t) cos α cos β(t) sin β(t)]T (19)

Fl(t) = −2mtl[ω × ṙl(t)] (20)

Fr(t) = −2mtr[ω × ṙr(t)] (21)

β(t) = −Φcos 2πνt (22)

whererl(t), rr(t) are the position vectors of the left and right
halteres,Fl(t), Fr(t) are the lateral Coriolis forces measured
by the left and right halteres,Φ is the amplitude of the haltere
stroke,α is the tilt angle of the halteres relative to the trans-
verse plane,β(t) is the angle between the haltere positionr and
thex − y plane, andν is the haltere beat frequency. The unit
vectors,tl = [− cos α − sin α 0] andtr = [− cos α sin α 0],
define the positive (forward) lateral directions of the left and
right halteres, respectively (see Figure 7). After some straight-
forward but tedious manipulation, the measured forces can be
written as follows:

Fl(t) = −[2m sin α f1(t)]ωx+[2m cos α f1(t)]ωy−[2mf2(t)]ωz

Fr(t) = +[2m sin α f1(t)]ωx+[2m cos α f1(t)]ωy+[2mf2(t)]ωz

f1(t) = β̇(t) cos β(t); f2(t) = β̇(t) sin β(t)

where the modulating signals of the roll (x), pitch (y), and
yaw (z) velocities are highlighted in the square brackets and
plotted in Figure 8. A careful inspection at these modulating
signals reveals specific periodicity and they can be expanded in
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Fourier’s series as follows:

f1(t) =
+∞∑
n=1

an(Φ) sin((2n)2πνt) (23)

f2(t) =
+∞∑
n=0

bn(Φ) sin((2n + 1)2πνt) (24)

where the coefficients,an(Φ) and bn(Φ), depend on the
haltere stroke magnitudeΦ. Note that even in the case
when the halteres motion is not perfectly sinusoidal, but it
is still in phase with the wingbeat frequency, i.e.β(t) =
−∑+∞

n=1 cn cos(2πnν), the Fourier expansion in Equations
(23)-(24) still hold. This includes the case more com-
monly observed in real insects, where halteres move at con-
stant velocity during upstroke and downstroke, i.e.β̇(t) =
vmaxsign(sin(2πnν)), where sign(x) = x

|x| andvmax is a con-
stant. This fact is very important, since it highlights one of the
robustness properties of the haltere demodulation scheme.

Utilizing the characteristics (frequency, modulation, and
phase) of these force signals on the left and right halteres, a
demodulation scheme is proposed to decipher roll, pitch, and
yaw rotations. First, a pitch rotation can be easily distinguished
from roll and yaw rotations by noting the phases of the left and
right signals. Because the left and right signals are in-phase
for pitch while out-of-phase for roll and yaw, adding the left
and right signals retains pitch component and eliminates roll
and yaw components. If the left and right signals are subtracted
instead, the pitch component is eliminated. The roll angular ve-
locity is distinguished from the yaw angular velocity by noting
that the two modulating signals are orthogonal in the Fourier
space. In particular, we can extract the first coefficients of the
Fourier expansionsa1(Φ) andb0(Φ) with the following demod-
ulation:

hy(t) = −(Fl(t) + Fr(t)) sin(2πνt) (25)

hx(t) = (Fl(t)− Fr(t)) sin(2πνt) (26)

hz(t) = (Fl(t)− F2(t)) sin(4πνt) (27)
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Fig. 10. Angular rotation detection by halteres.

From the above equations, it is clear that when the signalshx,
hy, andhz are averaged over one haltere cycle, a sinusoidal sig-
nal at the haltere frequency retrieves the roll component which
is modulated with the haltere beat frequency, while a sinusoidal
signal at double the haltere frequency retrieves the yaw compo-
nent which is modulated with double the haltere beat frequency.
All higher frequency components are removed by averaging the
signals over one haltere cycle:

y1(t) =
∫ t

t− 1
ν

hx(τ)dτ =
2ma1 sin α

ν
ωx =

1
Ax

ωx (28)

y2(t) =
∫ t

t− 1
ν

hy(τ)dτ =
2ma1 cos α

ν
ωy =

1
Ay

ωy (29)

y3(t) =
∫ t

t− 1
ν

hz(τ)dτ =
2m b0

ν
ωz =

1
Az

ωz (30)

where the constantsAx, Ay, andAz set the gains for the ampli-
fiers. Therefore, this technique effectively decouples roll from
yaw. Figure 9 illustrates graphically the proposed demodulation
scheme.

C. Haltere Performance

The mechanism by which the halteres detect angular veloc-
ities and the proposed demodulation method have been tested
for the performance of the halteres. The angular velocities of
an insect under hovering condition are generated by the Vir-
tual Insect Flight Simulator (VIFS), a software testbed that is
used to simulate the dynamics of the MFI and evaluate con-
trol algorithms [22], and the results are shown in Figure 10.
From the simulation, it is clear that the proposed demodulation
scheme, using box integrators as low pass filters, averages out
the oscillatory disturbances due to the beating wings. From a
flight control’s point of view, this is beneficial since the wing-
beat kinematics can be controlled at most on a wingbeat-by-
wingbeat basis. The halteres filter out the periodic oscillations
of the angular velocity due to the wing flapping motions.
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TABLE I
COMPARISON OF THE HALTERE TO COMMERCIALLY-AVAILABLE SILICON

MICROMACHINED ANGULAR RATE SENSORS.

Silicon
Haltere1 MicroRing ADXRS3003 KX210 4

Gyro2

Weight (mg) 305 < 600 6 < 500 6 < 600 6

Sens. (mV/(o/s)) 0.1 25 5 6.7
Max Rate (o/s) ±300, 000 ±60 ±300 ±300

B.W. (Hz) 15 10 40 75
Power (mW ) 1 75 30 75

1 Assuming parasitic drive and1% duty cycle strain gauge sampling [4].
2 MicroSensors, Inc., http://www.microsensors.com/
3 Analog Devices, Inc., http://www.analog.com/
4 Kionix, Inc., http://www.kionix.com/
5 Including the weight of the fourbar structure.
6 Including the weight of the package.

There are several advantages for the MFI in using halteres
instead of MEMS gyroscopes as angular rate sensors. First, the
haltere needs very little power since it does not use active ac-
tuation. It can be driven parasitically from the wing vibrations
when it is placed on the thorax of the MFI. The thorax structure
consists of mechanically amplifying fourbar structures actuated
by piezoelectric actuators to drive the MFI wings [2] [23][3]
(see Figure 7). Second, the haltere has a large dynamic range.
It can measure angular velocities from as low as tens of de-
grees per second to as high as hundreds of thousands of degrees
per second, which is often encountered during saccades (90o

turns in less than100ms) of flying insects. Finally, when the
wings are flapping, the MFI body would oscillate, as a result
of the wing inertia, along an axis parallel to the wing stroke
direction. Since the forces orthogonal to the haltere’s beating
plane (i.e. lateral forces) are sensed, it is possible to avoid the
error caused by this common-mode body oscillation by phase-
locking the halteres to the wings in the stroke plane. Table I
shows a comparison of the prototype of a mechanical haltere
to commercially available MEMS angular rate sensors. Details
on halteres design, fabrication and performance can be found in
[4].

V. ATTITUDE STABILIZATION VIA OUTPUT FEEDBACK

In the previous sections we described how the ocelli can es-
timate the position of thez-axis of the fixed frame relative to
the body frame, and how halteres can estimate the insect an-
gular velocities relative to the body frame. In this section we
combine the outputs from these two sensory systems to obtain
global stabilizing control laws to align thez-axis of the body
frame with thez-axis of the fixed frame. These two axes are
aligned if and only if the angle,θ, between them is zero. This
angle can be computed from the rotation matrix,R, by recalling
that the cosine of the angle between two unit vectors is given by
their inner product,i.e. cos θ = eT

3 P a
z = eT

3 Re3 = r33 where
P a

z represents thez-axis unit vector of the body frame. Based
on the intuition that the input torque should rotate the insect
body frame such that the angleθz would decrease, we propose
the following output feedback law:

u = −ky[y2 − y1 0]T − kω ω̃b (31)

whereky, kω are scalar and̃ωb is the halteres output.

This control law stabilizes the insect orientation as shown in
the following two theorems:

Theorem 1. If the light intensity function isI = f(θ) =
cos(θ), andky, kω > 0 then the control law (31) aligns thez-
axes of the fixed and body frames, i.e. all trajectories of System
(1a) approach the setM = {(R, ω) | P b

z = (0, 0,±1), ω =
0}. However, only the pointM1 = {(R, ω) | P b

z =
(0, 0, 1), ω = 0} is locally asymptotically stable.

Proof: Substituting control law (31) into Equations (1a),
and using Proposition 1, we get:

Ṙ = Rω̂
ω̇ = J−1(−ky[r32 − r310]T − kωω + ω × Jω)

(32)

The equilibrium points of this system require thatω = 0 and
yO = 0 ⇔ r31 = r32 = 0 ⇔ r33 = {−1, 1} ⇔ P b

z =
(r31, r32, r33) = (0, 0,±1). Let us consider the following Lya-
punov function for the setM1:

V =
1

2
ky[r2

31+r2
32+(1−r33)

2]+
1

2
!T J! = ky(1−r33)+

1

2
!T J!

(33)
which is clearly a positive definite function. Its time derivative
is given by:

V̇ = −ky ṙ33 + ωT [u− ω × Jω]
= ky[r32 − r31 0] ω − ky[r32 − r31 0] ω − . . .

−kω ωT ω − ωT (ω × Jω)
= −kω ||ω||2 ≤ 0

(34)
where we used the identityaT (a×b) = 0. Since the functionV
satisfies LaSalle’s Principle [24], then all trajectories approach
the largest invariant set inS = {(R, ω) | V̇ = 0}. If we sub-
stitute the conditionω ≡ 0 into Equations (32), we find that
the largest invariant set inS is M = {(R, ω) | (r31, r32) =
(0, 0), ω = 0}, which proves the first part of the theorem.
To prove local asymptotical stability for setM1, it is suffi-
cient to restrict the set of initial condition to the compact set
Ω = {(R, ω) | V ≤ ky}. Recalling again LaSalle’s Principle,
the largest invariant set inSΩ = {(R, ω) ∈ Ω | V̇ = 0} is
exactlyM1 = {(R, ω) | (r31, r32, r33) = (0, 0, 1), ω = 0},
sinceP b

z = (0, 0,−1) 6∈ SΩ, thereforeM1 is locally asymp-
totically stable. The pointM2 = {(R, ω) | (r31, r32, r33) =
(0, 0,−1),ω = 0} is unstable, but we omit the proof that can
be easily obtained by considering the linearized system.

This theorem states that a simple proportional feedback law
of the ocelli and halteres outputs can steer the orientation such
that the insectz-axis will always point toward the light source,
i.e. the pointM1, regardless the initial condition. Although
from a theoretical point of view some trajectories converge to
the pointM2, in practice all trajectories converge to the stable
pointM1, sinceM2 is unstable. It is interesting to note that the
Lyapunov function is composed of two parts, the kinetic energy
K = 1

2ωT Jω and the potential-like functionU = ky||P b
z −

e3||2 = ky(1 − r33) = 1 − cos(θb). The potential function is
the same as that would arise from a 3D pendulum in a uniform
gravitational field. Therefore, for this particular choice of light
intensity function, the ocelli output corresponds to the gradient
of a potential function on the sky-sphere.
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The theorem above can be generalized to simply monoton-
ically decreasing light intensity function, although it is neces-
sary to add an additional constraint.

Theorem 2. If the intensity functionI = f(θ) is a differ-
entiable monotonically decreasing function, then there exist
positive constantsλ > 0 such that for(kω > λky > 0),
the control law (31) aligns thez-axes of the fixed and body
frames, i.e. all trajectories of System (1a) approach the set
M = {(R, ω) | P b

z = (0, 0,±1), ω = 0}. However, only
the pointM1 = {(R, ω) | P b

z = (0, 0, 1),ω = 0} is locally
asymptotically stable.

Proof: First, note that Equation (10) can be rewritten
as y1 = r31 g(r31, r33), y2 = r32 g(r32, r33), wherea ≤
g(x, y) ≤ a according to Equation (15). Define alsoγ = a+a

2

and δ = a−a
2 . The proof of this theorem requires a slightly

different choice of Lyapunov function:

V =
1

2
(γky+ckω)[r2

31+r2
32+(1−r33)

2]+
1

2
!T J!−c[r32−y310]J!

(35)
wherec > 0. If the scalarc is small, than the quadratic Lya-

punov function is positive definite relative to the point(z =
P b

z − e3 = [r31 r31 1− r33]T ,ω). In fact:

V ≥ 1
2
(γky+ckω)||z||2+1

2
σmin(J)||ω||2−c σmax(J)||z|| ||ω||

(36)
whereσmax(A) andσmax(A) are respectively the largest and
the smallest eigenvalues for the matrixA, and we used the
fact that ||[r32 − y310]||2 = r2

32 + r2
31 ≤ ||z||2. There-

fore, the quadratic form is positive definite forc2σ2
max(J) <

σmin(J)(γky + ckω), which holds true forc sufficiently small.
Let us define the vectord = [r32 − r31 0]T , therefore the time
derivative of this Lyapunov function becomes:

V̇ = −(γky + ckω) ṙ33 + ωT [u− ω × Jω]− . . .

−cdT [u− ω × Jω]− cωT
b J ḋ

= γky dT ω + ckωdT ω − ky[y2 − y1 0] ω−
−kω ωT ω − ωT (ω × Jω)− cky[y2 − y1 0]d−
−ckωdT ω − cdT (ω × Jω)− cωT J ḋ

= ky(γdT − [y2 − y1 0])ω − kω||ω||2 − cky||d||2+
+c ωT J(ω × d)− cωT J(ω × d)

≤ −kω||ω||2 + δky||ω|| ||d|| − cky||d||2
(37)

where we used the factωT (ω×Jω) = 0, and that(d = −e3×
P b

3 ) ⇒ ḋ = −e3 × Ṗ b
3 = −e3 × (P b

z × ω) = (−e3 × P b
z ) ×

ω = d × ω = −ω × d, and that||γdT − [y2 − y1 0]||2 =
r2
31(γ−g(r31, r33))2+r2

32(γ−g(r32, r33))2 ≤ r2
31δ

2+r2
32δ

2 =
δ2||d||2. If kω > δ2

4cky, then V̇ ≤ 0. Since the Lyapunov
function is quadratic and positive definite, it satisfies LaSalle’s
Principle. The largest invariant set inS = {(R, ω) | V̇ = 0} =
{(R, ω) | ||ω|| = 0, ||d|| = 0}, is M = S = {(R, ω) | P b

z =
(0, 0,±1),ω = 0}. Therefore, all trajectories converge to the
setM . This proves the first part of the theorem, whereλ = δ2

4c .
If we restrict the set of initial condition to the compact setΩ =
{(R, ω) | V ≤ γky}, we can use La Salle’s Principle to claim
that the setM1 = {(R, ω) | P b

z = (0, 0, 1), ω = 0} is locally
asymptotically stable, as in the previous theorem.
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Fig. 11. Simulations results of insect dynamics.

This second theorem states that if the damping gainkω is
sufficiently large, the dynamics of the insect is slow enough
that the field generated by the ocelli feedbackuy = −ky[y2 −
y1 0]T , steer in practice all the trajectories toward the stable
orientation M1. However, it is reasonable to ask whether
this restrictive condition arises only from the bad choice of
potential-like functionU , which was not obtained consider-
ing the light intensity function. More formally, we are in-
terested to know whether there exists a potential-like func-
tion U = U(r31, r32, r33) that gives rise to the torque vector
field uy = −ky[y2 − y1 0]T , wherey1 andy2 are defined in
Proposition (2). A necessary condition for its existence is that
∇U × P b

z = uy, where∇U = [ ∂U
∂r31

∂U
∂r32

∂U
∂r33

]. It is easy to
verify that this condition implies alsor31y2 = r32y1, which is
satisfied only if the light intensity function isI(θ) = A cos(θ),
whereA is a constant. Therefore, in general a potential-like
function that generates the torque vector fielduy does not ex-
ist.

It is remarkable that a simple proportional feedback control
law based on ocelli and halteres output can reorient the insect
toward the light source without knowing the exact light inten-
sity function or the ocelli latitudeh. Moreover, the set of sta-
bilizing gains(ky, kω) is quite large and they can be optimized
relative to some performance metrics, such as settling time or
minimal input torque. In particular, the ocelli output can be lin-
earized relative to the stable equilibrium, as shown in Lemma
1. Since the output is linear relative to the variables(r31, r32),
in principle it is possible to design a simple locally stabilizing
PD controller based only on ocelli output. This approach is
currently under investigation.

VI. SIMULATIONS

Simulations of control law (31) with light intensity function
I = cos5 θ and initial conditions(θz = π

2 , ω = [1 − 2 2]T ) are
shown in Figure 11. As expected, the angle between thez-axes
as well as the insect angular velocity and the ocelli output go to
zero.
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This control law is very promising for three main reasons.
First, it issimple: the input control is simply some proportional
feedback of the sensor outputs. This is very important in terms
of the implementation of control laws, since the MFI has very
limited computational power. Second, it isrobust: despite its
simplicity, this control law does not depend on the exact light
intensity function, as long as it is a monotonically decreasing
function of the latitude. Third, it isglobally stabilizing: re-
markably, this control law guarantees the alignment of the in-
sect vertical axis with the light source from any initial condition
including the upside down orientation which are likely to occur
in the presence of unpredictable wind gusts.

VII. C ONCLUSIONS

In this work we have investigated two types of biologically
inspired sensing mechanisms. The halteres and the ocelli have
already been fabricated and tested as biomimetic sensors for use
on the MFI [4] [5]. We also developed a formal model for ocelli
and halteres and proposed a stabilizing attitude control law for
the MFI via sensor output feedback. Through our work, we
have shown that simple schemes (simple sensor architectures
and proportional feedback control) can achieve robust global
stability. Finally, we studied the effects on attitude estimation
of non ideal light intensity distributions obtained from exper-
iments performed in informative MFI scenarios. We showed
that the major consequence was an off-set in the attitude esti-
mation from the ocelli, which could be easily removed with the
aid of an additional low-pass filter such as a gravity sensor or
the compound eyes.

In the future, we will employ more realistic insect body dy-
namics that can account for the viscous torques resulting from
body rotation, and consider limiting factors such as input torque
saturation and control of the torques only on a wingbeat-by-
wingbeat basis. In addition, we will address the questions on
how to design the gainskω andky to improve performance, and
how sensor noise affects the performance of the control law. Fi-
nally, a simple MFI prototype is under development to test the
proposed control schemes.
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