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Uncalibrated Dynamic Visual Servoing

J. A. Piepmeier, G.V. McMurray, H. Lipkin

Abstract— A dynamic quasi-Newton method for uncalibrated,
vision-guided robotic tracking control with fixed imaging is devel-
oped and demonstrated. This method does not require calibrated
kinematic and camera models. Robotic control is achieved at each
step through minimizing a nonlinear objective function by taking
quasi-Newton steps and estimating the composite Jacobian at
each step. The Jacobian is estimated using a dynamic recursive
least squares algorithm. Experimental results demonstrate the
validity of this approach.

Index Terms— Uncalibrated visual servoing, dynamic nonlin-
ear least squares, Jacobian estimation.

I. INTRODUCTION

This article develops an uncalibrated, vision-guided, robotic
control method with a fixed imaging system. The controller
is a dynamic quasi-Newton method based on nonlinear least
sguares optimization methods. The system model is approx-
imated using a dynamic Jacobian estimation scheme. Using
this controller, the robot can be servoed to both static and
moving targets, even with uncalibrated robot kinematics and
cameramodels. The control method is completely independent
of robot type, camera type, and camera location. In other
words, it is independent of the system model.

By rejecting a model based paradigm, the control algorithm
eliminates the necessity of extensive system modeling, sys-
tem re-calibration, and ancillary hardware that constrains the
workspace. In a manufacturing setting, these are nonvalue-
added activities; reducing or eliminating the amount of time
spent on them reduces the overall cost of a product.

Specifically, the contributions of this work are:

« Algorithms are explicitly derived to track a moving
target using uncalibrated visual servoing with stationary
cameras.

« A theoretical basis for uncalibrated vision-guided control
algorithms is devel oped based on the direct minimization
of Frobenius norms.

o The developed algorithms are experimentally verified for
uncalibrated vision-guided robotic control and tracking.

Quasi-Newton methods implementing Jacobian estimation
have been used with success to servo arobot to a static target.
This work seeks to thoroughly develop the quasi-Newton
control method for target tracking.

There are severa instances in the literature where Jacobian
estimation is used in visual servoing. Hosoda and Asada [1]
and Hosoda, Igarashi, and Asada [2] have presented uncal-
ibrated vision-guided robotic control for static targets using
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fixed cameras.. The Jacobian estimation scheme utilized in [1]
is similar to an exponentially weighted recursive least squares
update equation for vectors. However, the vector format is
applied to the Jacobian matrix estimation problem. In [3],
Asada, Tanaka, and Hosoda extend the Jacobian estimation
scheme to eye-in-hand stereo tracking of moving objects using
static reference points to estimate target motion.

Jagersand [4], [5] takes the approach of a nonlinear least
squares optimization method utilizing a trust region method
and Broyden estimation. The moving target scenario is not
addressed.

Previous work has shown the feasibility of uncalibrated
visua servo control for stationary targets. However, a control
law for the moving target scenario has not been rigorously
developed.

Il. AN UNCALIBRATED DYNAMIC VISUAL SERVOING
METHOD

A stationary vision system is assumed that can sense
sufficient end-effector and target features to locate both bodies
in space. This renders the target features, y* (¢), as functions
of only time ¢ and the end-effector features, y (¢), as functions
of only the robot joint angles, § € R™. It is important to note
that ¢ and # are independent variables since as time varies
the joint angles can be held constant, and conversely at every
given time the joint angles can take on any values. There
are no assumptions yet about target tracking. To optimaly
track the target, a constraint relationship is imposed between
# and ¢t so joint angles are selected as a function of time,
0(t) = g(y*(¢)). This establishes an optimal end-effector
trgjectory y (6(t)) to follow the moving target. The constraint
is established by minimizing the tracking error, f € R™, as
seen in the image plane

f0,t) =y () —y* () @

The combined transformations of forward kinematics and
imaging geometry render f (6,t) a highly nonlinear function.
This multivariate optimization problem is solved at each
increment by a dynamic quasi-Newton controller (Section 1I-
A) with a dynamic Jacobian estimator (Section I1-B).

A. A Dynamic Newton’s Method

The imposed trajectory 6 (¢) that causes the end-effector to
follow the target is established by minimizing the image error
squared

F(6,1) = 3 7(6,0)1(6,1

which can also be modified by a weighting matrix but is
omitted for simplicity. The Taylor series expansion about (6, t)
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F(0+ hg,t+ hy) = F(0,t) + Fyhg + Fihy + ...

where Fy and F; are partiad derivatives and hy and h; are
increments of # and ¢. For a fixed sampling period h,, F' is
minimized by solving
0— OF (0 + hg,t + hy)

N 00

=Fy +Fggh0+tht+O(h2) 2

where O (h?) indicates second order terms in h; and he.
Dropping these terms, rearranging, expanding the partials, and
adding 6 gives what is referred to here as a dynamic Newton’s
method

0+ hg=6— (JTJ+S)’1 JT(f+%ht) ©)

where J is the joint-to-image feature error composite Jacobian
and

of . aJr
Fy = JTf Fop= JTJ + 8, Fop = 7

ot

To compute the terms S and J anayticaly requires a
calibrated system model. The term S is difficult to estimate,
but as 6 approaches the solution, it approaches zero and it
is often dropped to give what is sometimes called a Gauss-
Newton method. It can be shown that for a smal enough
time increment, h;, the method is well-defined for al 6 and
converges linearly to a finite steady-state error [6]. When
an estimated Jacobian, J, is used the algorithm becomes a
dynamic quasi-(Gauss-)Newton method such that at the k"
increment,

s =0 — LI TGt 2oy @
where hy = 0k+1 — 0.

The quaifier “dynamic” specifically refers to the presence
of the error velocity term % which is used to linearly
predict the error vector at the next time increment as fr.1 ~
fr+ %ht, assuming the robot remains at its current position.
Clearly more complex predictors are possible but the linear
one has appealing simplicity. When the predictor is absent the

method is referred to here as “static” so (4) becomes
Ori1 =0k — (JET) LT fi %)

which is the basis for previous work by [1], [5], and [7]. The
derivation is similar to the dynamic case if the error is only a
function of the joint angles, f(6).

The static and dynamic methods coincide in two distinct
cases. Fird, if the time step h; is made sufficiently small in
relation to 2/ then it appears as if the error f; is constant
or static (sometimes this is called a quasi-static condition).
This suggests that the dynamic method should be expected to
track with slower required sampling rates and to track more
demanding error functions compared to the static method.
Second, since 2 = 2(y(9) — y* (t)) = —%, then &L
vanishes if the target is fixed, y* = 0. Thus the predictor
term attempts to compensate for target motion should result
in better tracking than the static method for moving targets.

B. A Dynamic Quasi-Newton Method

As with Newton's method, the moving target scenario re-
quires that the appropriate derivatives are included in estimat-
ing the Jacobian, .J,. For static target servoing, Jagersand in
[4] and [5] employs Broyden's method for Jacobian estimation.
In this section, a dynamic Broyden’s method is derived. Next,
a similar Jacobian estimation scheme is developed that uses
a recursive least squares algorithm and is more stable in
the presence of noise. Finally, the steady state performance
of a quasi-Newton method using the recursive least squares
estimation is discussed.

1) Derivation of a Dynamic Jacobian Estimation Scheme:
Several Jacobian estimation schemes using Broyden's method
or a similar variant have been implemented as discussed in
[1]- [5]. Analogous to the controller, the proposed dynamic
Broyden update contains an additional term, %%ht. This
dynamic Broyden's update is derived for a moving target
scenario by extending the derivation of the static Broyden's
update given in Dennis and Schnabel [8].

The affine model (a linear model that does not necessarily
pass through the origin [8]) of the error function f (6,t) is
a first order Taylor series approximation denoted as m (6, t).
The mode! is updated at each iteration and for the k*",
Mk(eat):fk+Jk(9—9k)+%(t—tk) (6)
Requiring that the kt* affine model correctly specifies the
error a the (k — 1)t increment, my(0x _1,tx 1) = fr1 =
(f (Bg—1,tr—1)), yields the so-called secant equation

“ 0 fr
Juho + %ht _Af )

where Af = f. — fr—1. Broyden's method requires that (7)
holds. Subtracting .J,_1hs from each side, rearranging, and
transposing gives,

hEATT = (Af — %ht — Je—1he)" (8)
where AJ = J,—Jj,_;. The Jacobian update A J is selected to
minimize the Frobeniusnorm [|A J||» = (3(AJ)%)# subject
to the constraint (8) where (A.J);; indexes AJ. By stacking
the elements into a vector and rewriting (8) accordingly, the
problem is cast into a familiar form with a minimum norm
solution. Unstacking the result gives the dynamic Broyden
update (see [6], [9] for details),

(Af — Je—rhe — 2R R]
hi hg
The qualifier “dynamic” specifically refers to the presence

of the error velocity term %. If it is assumed that the affine

model is only a function of the joint angles, m (), then the
“static” Broyden update results,

(Af = Ji-rho)hj
hi hg
The static and dynamic Broyden methods are entirely analo-

gousto the static and dynamic Newton methods. They coincide
when either the time increment is very small or the target is

jk = jk—l + 9)

jk = jkq + (10)
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stationary. The dynamic method should be expected to be more
effective with dower sampling rates and should have better
tracking of moving targets.

As a consequence of the secant condition the affine models
are piecewise continuous so at the (k — 1) increment,

my (Op—1,tk—1)

which is easily verified using (6) for m; and my_, at
(Br_1,tr_1), and (7). The k" affine model must contain the
points fr_; and f; as well as satisfy the secant equation.
However consider the case where noise is present in the
system. The measurement f; includes a nomina vaue of
the error function fk as well as system noise d,,i5c SO that
fr = i + Onoise. In the event of large values for d,,0;sc,
requiring that the secant equation holds may result in an affine
model my, which introduces large errorsin Jg. Large errorsin
Ji, will result in poor tracking. Thus, the dynamic Broyden's
method may perform poorly for noisy systems and can be
improved by a recursive formulation that provides a filtering
action.

2) A Dynamic Jacobian Estimation: Recursive Least
Squares: Increased stability can be achieved using an ex-
ponentially weighted recursive least squares (RLS) algorithm
[10] that minimizes a cost function GG, based on the change
in the affine model

k
Ge =Y N lmg (Bi 1, ti 1) —mi 1 (Bi 1,8 0)|° (12)

i=1

— mg—1 (Og—1,tk—1) =0

The objective function in (11) is an exponentially weighted
sum of the differences between the current affine model
and past affine models where 0 < A < 1. By minimiz-
ing G the secant equation (7) no longer holds nor are
the affine models piecewise continuous. Minimizing G, is
equivalent to minimizing the Frobenius norm of the term
(AM)T A (AM) where AM is a k x m matrix whose ith
columnismy (6;—1,t;—1)—mi—1 (@i—1,t;—1) and Aisakxk
diagonal matrix with \*~% at the ith dlagonal element.

Following the approach taken in Brogan [9], it can be shown
[6] that the desired recursive estimation scheme that minimizes
(12) is given by,

i ((fk — fro1) = Jr_1he — %ht) hi P,y
k= Jg—1+ Ry hgTquhe
(12)
1 Pk1h9hg’Pk1>
P=-|P_ ;- -~ 0" > - 13
! A( T N F B P ihg 13)

As before, the static version omits the term 221,

The form is similar to the dynamic Broyden’s method in
(9) with the exception of A and P;,. The weighting parameter
0 < A <1 can be tuned to average in more or less of the
previous information where the effective number of terms is
estimated by ﬁ As shown in [9], it is possible to use more
complex weighting matrices in the formulation. However this
has not been done here due to a lack of a specific physical
justification and the desire for the simplest equations.

The RLS algorithm is often used for system identification
[11]. Indeed, the formulation presented here identifies the
system model (the Jacobian) for visualy guided control. It
is interesting to note that in the literature [9], [10] the RLS
algorithm is typically used for the estimation of a vector;
however, the algorithm can be shown [6] to extend to the
estimation of a matrix. Equations (12) and (13) define a
recursive update for estimating Jy.

A dynamic quasi-Newton method using the RLS Jacobian
estimation scheme follows: R

Algorithm 1: Given f : R™ — R™;0y, 61 € R™; Jy €
R™*" Py e R™™ X € (0,1)

Dofor k=1,2,..

Af =fr— fe

Yehy = —(yp —vi_y)

hAe =0k — Ok

Jp=Jg_1 + ()\ + thk_lhg)
(Af = Je—1ho — %ht)hoTqu

Py = L(Poy — (A + BT Py_ihg) ™ (Pooihghd Pyy))

Orir = Ok — (S Te) 2T (fi + S ha)

End for
End

-1

C. Convergence Analysis of Dynamic Quasi-Newton
Method using RLS Jacobian Estimation

The previous section gives a clear rational for the formula-
tion of the Jacobian estimation scheme as an RLS algorithm.
In this section, the convergence properties using Algorithm 1
are addressed. Let ¢; represent the joint position for which
the objective function is minimized. For the dynamic quasi-
Newton method using RLS Jacobian estimation, it is shown
that under certain assumptions, the norm of the joint error
0; — 8y is bounded. This is accomplished using the steady
state properties of the RLS agorithm given by (12) and (13)
as discussed in [12].

It is readily verified that the dynamic quasi-Newton method
(4) can be expressed as the equivalent form

I
ot
by using the substitutions h, = 05 — 0, J,- = (JF Jp) "1 JL,
Ji = Ji(07), By = Ji,—J;, A9* = 607, —6; and the identity
Jif Ji = I. From the Taylor series expansion of 4},

= JF(f + nhy + Jphy, + Eghy, + JyA8*) (14)

9k+1

80: (
L0, = g;., 03+ 002)
and since &b, = Byk he = —Jf ‘99 ) . then
aaf Ehy = —JpA0* — J7O (B2) (15)

so that with f; = fi (65,tx) = 0 equation (14) becomes

JrO(hy))
(16)

h;k+1 = jlj_(fk - fr +Jgh;k +Ekh + B A0 —
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If J* is Lipschitz continuous with a Lipschitz constant -, then
taking the norm of (16) results in

T Y * *
15 I < I NG IR, T+ DI RG,
+ TN BN AG(| + 10 (h7)

where ¢; is some constant. Recall that J,” = (J}F'Jp) ' JL.
Assuming that ||(JTJL) Y| < £, where £ is the smallest
eigenva ue of J Jy, and ||J I < « then
Co (X

by, Il < —<—||h9k|| N ANAl (17)
C a
=B | A87[] + es ||
Cox ”y *
—= (Gl + 1) < o (18)
Cox " .
B2 + eal | < 8 (19)

for some 0 < « < 1 and 8 > 0. Then, requiring that the initial
error ||hy || < 125 , assures that the sequence hj, is linearly
convergent and bounded for dl k.

As discussed in [13] and [12], since the bound on || E || is
based on A, system and measurement noise, and the amount of
variation in J*, it is difficult to rigorously characterize || E}||
such that (18) holds for o < 1. However, it is plausible that
for non-pathological tracking problems, an upper bound on
||Ey || exists, and thus the quasi-Newton method is convergent
and stable. Experimental results verify this assumption, and
the reader is refered to [6] for further verification.

D. A Comparison of Uncalibrated Static and Dynamic Con-
trollers and Jacobian Estimators

A convergence analysis for the static controller can be
done in a similar manner to Section 11-C. However, the
requirement that || Ey|| is bounded may not necessarily be
met by a static Jacobian estimator. Simulations performed in
MATLAB demonstrate the improved tracking and stability of
the dynamic controller with dynamic Jacobian RL S estimation
(Algorithm 1) over the static controller with static Jacobian
RLS estimation (Algorithm 1 without the % terms) which
exhibits stability problems for faster moving targets.

The experimental workcell (see Section I1l) is simulated
using Corke's Robotics Toolbox and Machine Vision Toolbox
[14]. The first three joints (two revolute and one prismatic)
of an AdeptOne robot servo the toolpoint to follow a moving
target with one feature point on each tracked by two cameras.
Thetarget movescircularly in the z-y plane and sinusoidally in
the z direction. Simulations were run for 25 seconds with a 100
ms sampling time at various target speeds. Uniform £0.5 pixel
noise was added to the data. Twenty-five simulations were per-
formed at each speed for each controller, and the average RMS
tracking error in pixels is plotted for both cameras in Figure
1. At dower speeds, the visual servoing problem is quasi-
static and the two controllers behave similarly at expected. As
the target motion increases, the static controller’s performance
degrades with the tracking lagging substantially and often
becoming wildly divergent. Clearly, the static controller is
unsuitable for tracking moving targets.

m
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Fig. 1. A dynamic controller using Algorithm 1, and a static controller

(Algorithm 1 without the ayf’;t(t) terms) are compared at increasing target
speeds for a 3DOF tracking problem. The static controller causes the robot
to lag behind the target motion and often goes unstable for higher target
speeds. While tracking error increases at higher speeds, the dynamic controller
remains stable.

I1l. EXPERIMENTAL SYSTEM

In [6] an initia verification of the dynamic quasi-Newton
method and dynamic RLS Jacobian estimation is given in
using a small reconfigurable Robix "™ RCS-6 robot (ina2-
DOF planar configuration), a single Pulnix camera, a MuTech
frame grabber and two personal computers. This system
demonstrated stable and convergent tracking of a moving
target.

The system used here employs stereo vision and the first
three degrees-of-freedom on an AdeptOne robot. Image pro-
cessing and pattern recognition is accomplished on a 400
MHz Pentium Il running Windows98 utilizing the MV S-8000
software including the PatQuick tool from Cognex. The end
effector is gripping atool that holds a screw. The tool has been
covered with a small pattern easily identifiable by the Cognex
software. The target is comprised of a small paper pad with
a pattern drawn on it moving on an industrial conveyor belt.
The robot/vision system servos to the centroid of the pattern
and tracks it on the belt.

Various hardware and software elements perform: image
acquisition, image processing, algorithmic calculations, and
the sending of control commands. During one control cycle,
two images are captured; the second one is used to estimate
the position of target and end effector at the end of the control
cycle, becauseit is algorithmically important to sense the result
of the most recent control signal before calculating the next
update. Velocity commands are sent to the robot controller,
creating a smooth motion.

The forgetting factor A in (12) and (13) is used to tune the
memory of the Jacobian estimation. A valueof A = 0.5 isused
until convergence is achieved and then a value of A = 0.99
is used. This creates a shorter memory while the system is
learning the Jacobian and alonger memory during steady state
tracking.
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No model of target motion is used, the stereo vision system
is completely uncalibrated, and none of the robot’s kinematic
parameters are used in the control agorithm. Due to hardware
limitations, the update rate is a very slow 0.352s (2.8 Hz), yet
the system is still able to exhibit convergence and steady state
tracking of a moving target.

IV. EXPERIMENTAL RESULTS

The initial Jacobian is estimated using three initial moves
by each of the three joints being controlled by the dynamic
guasi-Newton method. The target is kept stationary initially
due to a limited field of view. The target is then moved by
a conveyor belt at 2.5cm/s which corresponds to an average
motion of 26 pixels/s and 12 pixels/s for Cameras 0 and 1
respectively.

Figures 2-4 give experimental image feature data with two
image captures per control cycle. Figure 2 shows the tracking
error norm for each camera. The robot converges on the
target smoothly, and the error converges to a nominal value.
Convergence is achieved in 8 control cycles after which the
tracking error is 8.6 pixels for Camera 0 and 10.0 pixels for
Camera 1. Slight breaks in the tracking error indicate a failure
of the vision system to identify target or robot features. In the
event of insufficient data, no move is made.

Figure 3 and 4 show the image features for the end effector
and the target point as seen by Cameras 0 and 1. Without
known camera or robot models, the end-effector tracks the
target point. The tracking does display a slight oscillatory
nature. This could be the result of the memory inherent in
the recursive least squares Jacobian estimation.

Figures 2-4 demonstrate that the algorithm is able to con-
verge on and track a target moving on a conveyor belt. Itisalso
interesting to examine the algorithm’s response to an abrupt
change in the target’'s motion. Figure 5 shows a detail of the
RMS tracking error in pixels as the target moves back and
forth in the camera’s field of view. During this experiment,
the target is moving at about 42 pixels/s and 25 pixels/'s for
Cameras 0 and 1 respectively. This corresponds to an average
movement of about 15 and 9 pixels per control cycle for the
respective cameras. The arrows in the figure denote the points
where the target motion was changed by reversing the motion
conveyor belt. Aswould be expected, the algorithm overshoots
by 10-20 pixels, but regains tracking within roughly 3 control
cycles.

The cameras are positioned such that one pixel corresponds
to roughly to 1-2 mm. For the tracking of a steadily moving
target shown in Figure 2, the average image errors are on the
order of 10 or less pixels. This correspondsto a Cartesian error
of 10-20 mm or less. There is a trade-off in selecting a camera
position for this type of a system. If the camerais far away, an
error of 5 pixels results in a greater error in Cartesian space
than a 5 pixel error when the camera is closely positioned to
the work area. However, the work volume becomes constrained
as the field of view decreases.

V. CONCLUSIONS

This article has developed and demonstrated a dynamic
quasi-Newton method for visual servo control of uncalibrated

N
o
o

—— Camera 0
Camera 1

150 |

100 [

Image Feature Tracking Error Norm (pixels)

50
0 10 20 30 40 50
control cycles
Fig. 2. Tracking error showing convergence after 8 control cycles (Two

images are taken per control cycle.) After 8 control cycles, the tracking error
is 8.6 pixels for Camera 0 and 10.0 pixels for Camera 1.
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Fig. 3. The image features of the end effector and the target as seen by

Camera 0 demonstrate the convergent tracking of a moving target. The average
steady state tracking error is 10 pixels.

robotic systems with stationary imaging. Estimation of a
Jacobian representing unknown imaging and robotic kinematic
models is accomplished using a recursive least-squares algo-
rithm.

While the methods in this work are closely related to the
work in [1]- [5], the specific contributions are three-fold:

1) The moving target problem is explicitly addressed and
algorithms are derived for this purpose. Simulations
verify the inappropriateness of the static controller for
the moving target problem.

2) A sound theoretical basis is established for uncalibrated
vision-guided control algorithms.

3) The algorithms are experimentally verified, and model
independent vision-guided robotic control and tracking
are demonstrated within the bounds of hardware limita-
tions.
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Fig. 4. The image features of the end effector and the target as seen by
Camera 1 are shown. The average steady state tracking error is 8.6 pixels.
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Fig. 5. Error in pixels for Camera O as robot tracks a target moving on a
conveyor belt. The arrows denote the reversal of the conveyor belt motion.
Note there is a 10-20 pixel error as the robot overshoots the target position.
Tracking is regained within approximately three control cycles.
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