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Abstract

Functional Testing ofservice centric systems poses new
challenges to traditional test design approaches. As a mean
for achieving network and service convergence, such sys
tems integrate various different notations and technolo
gies into a common framework. Assuming that test arti
facts targeting each of the technologies involved exist, de-
signing functional tests at the service level, by integrat
ing existing test artifacts is still a very complex engineer
ing task. We propose to address those challenges with a
model-driven test engineering approach based on test pat
terns. The approach allows tests to be designed at a higher
level of abstraction as abstract test models, using a test
specific, butplatform independent modeling notation called
UTML(Unified Test Modeling Language). We argue that
our approach can be helpful in speeding up the production
ofnew test cases through reuse ofexisting test artifacts and
test infrastructure, as well as automated generation ofexe
cutable test scripts from the abstract test models.

1 Introduction

With subscriber numbers quickly reaching saturation,
the ability to create and deliver new services rapidly and
flexibly has now become the centre piece of enterprise suc
cess in the telecommunication industry. The introduction
of standardized and distributed Service Delivery Platforms
(SDPs), also referred to as Service Mediation Platforms
(SMP), is a key element of that new strategy. SDPs are
built upon existing Business or Operation Support Systems
(BSS/OSS) to provide horizontal integration between fu
ture, legacy and existing systems. This has lead to a trend
towards Service Oriented Architectures (SOA), i.e. sys
tems based on interacting coarse grained autonomous com
ponents called services [14].

Testing such services and service-centric systems poses
new challenges to traditional testing approaches [4] [13].
This is more the case for functional and integration testing.

SDPs are designed to facilitate access to services across
different kinds of network infrastructures. Therefore they
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naturally involve several different protocols, trying as far as
possible to use existing ones. The IP multimedia subsystem
IMS is a good example of such an SDP. It makes extensive
use of the Session Initiation Protocol (SIP) for signaling, the
DIAMETER protocol for billing and accounting etc. Func
tional and conformance testing of SDPs can be a complex
engineering task, because of that heterogeneity.

In most cases, although legacy test artifacts developed
for individual protocols exist, reusing them for designing
functional tests, that would cover the large variety of dif
ferent components involved can still be either too costly or
technically difficult to achieve. One reason is that different
notations might have been used to design the test suites, thus
making test system integration a very difficult task. More
over, even in cases whereby the same notation may have
been used, test system integration may still be difficult to
achieve, because the mechanisms for reuse (e.g. by defin
ing reusable libraries and export mechanisms), might not
be present in the notation used for the individual test suites
or in the test suites themselves. As a consequence, new
test suites would have to be developed from scratch, thus
causing extra avoidable costs. Which given the potential for
reuse of existing artifacts would be quite a waste.

To address that issue, we propose to model tests at a
higher level of abstraction, independently of any specific
lower level test notation or scripting language. Our ap
proach integrates concepts of Action- or Keyword-Based
Testing (ABT) [2] with the concept of test design patterns
we introduced in previous works [23][22]. This can ease the
integration of legacy test artifacts into new test designs, out
of which new executable test scripts can be generated auto
matically. This paper is organized as follows: In the next
section, we will discuss the challenges in testing SDPs and
present related work in that area. Section 3 provides a more
detailed description of our Model-Driven Test Engineering
approach, before 4 describes how it can be used to achieve
test reuse and test system integration. Section 5 then de
scribes a tool architecture for the approach, before Section
6 then concludes the paper and provides some outlook on
future work.
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2 Related Works: Challenges in Testing
SDPs

The difficulties in testing SDPs on functionality can be
classified in two categories. The first category of difficulties
are those inherent to the specificities of distributed services
and the development process they imply. Service-centric
systems require fast development within increasingly com
plex and heterogeneous environments. Therefore test suites
must be developed faster and at the same time fulfill their
purpose, i.e. uncovering potential failures of the systems
before they are deployed. The second category of difficul
ties stem from the fact that existing testing approaches for
service centric systems are mostly immature or inappropri
ate to address those new requirements.

While white-box techniques based on automatic test case
generation from FSMs models of the services would be
quite efficient in testing in-house components as they are
being developed, they cannot be applied for COTS compo
nents widely used in this context. In fact, in most cases,
vendors would provide just the minimal amount of imple
mentation details for their components sufficient to allow
interoperability with the rest of the platform. Furthermore,
white-box techniques would not allow to address the dis
tributed nature of such platforms.

On the other hand, existing black-box testing approaches
such as TTCN-3 (Testing and Test Control Notation [6])
or xUnit (code-driven test frameworks) are specified typ
ically at a lower level of abstraction, which makes their
usage for testing services both less efficient and costly, al
though the benefits of using such test-specific notations for
test development have already been demonstrated in many
instances [15]. In previous work [23], we proposed to gen
erate reusable code snippets and libraries of the target test
notation based on test patterns to address those concerns,
but as we evolved in our work, it became more and more
obvious that what was needed was a model-driven test de
velopment process allowing such tests to be specified at a
high level of abstraction, so that the conceptual gap between
test design and product system design would be reduced.

Functional testing of SDPs is still a new field of research.
While the challenges have already been identified, solutions
for addressing them are yet to be proposed. The need for
the type of high-level test modeling we are arguing for has
already been acknowledged in the testing domain and was
one of the drivers for the UML Test Profile (UTP[25]) and
other earlier efforts around UML, SDL, MSCs [8] etc. The
UML Testing Profile defines a language for designing, visu
alizing, specifying, analyzing, constructing and document
ing the artifacts of test systems [12]. As a UML profile,
UTP inherits all existing UML concepts without defining
restrictions for their usage. While this makes UTP a very
powerful notation for the purpose of test modeling, it does
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not facilitate its usage, because UML does not impose a
specific process, nor does UTP. However, test development
(and even more so pattern-driven test development) implies
a specific process. Therefore, we developed dedicated lan
guage for Model-Driven Test Engineering based on a MOF
meta-model enriching concepts proposed by UTP with test
patterns identified in designing test systems for various do
mains and restricting its scope to the sole purpose of test
modeling.

3 Model-Driven Test Engineering

Figure 1. Overview of UTML Test Modeling
Process

We define test modeling as the application of the OMG's
MDA (Model Driven Architecture) approach to the test de
velopment/specification process. It consists of using mod
eling techniques to describe elements of a test specifica
tion. The resulting abstract platform-independent test mod
els (PITs) are subsequently transformed into more con
crete test models (called also platform-specific test models
(PST)) until executable test scripts for specific test environ
ments (the test code) are obtained [5]. Figure 1 depicts the
test modeling process and the various phases it implies. As
sociated to each of those phases is a particular type of test
model addressing a specific aspect of test design. Those var
ious aspects have been have provided the base for a UML
MOF(Meta Object Facility) meta-model representing a test
specific notation called UTML (Unified Test Modeling Lan
guage [22]). Based on that meta-model, a tool set is pro
vided to guide test modelers in defining test specifications
along the defined patterns. Therefore, figure 1 also provides
an overview of the different types of test models UTML al
lows to define and how they relate to the test design process.
As depicted on that figure, the goal of UTML test modeling
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is to design a test behaviour model, i.e. a complete descrip
tion of the actions to be performed and observed on entities
involved in each test case to verify that a system's behavior
matches its requirements.

3.4 Test Architecture Modeling

3.1 Test Objectives Modeling

rtspPortsipPort

L..-- -------l rtpPort rtpPort L.- -----J

Figure 2. Test Architecture Diagram for sam
ple IMS test case3.2 Test Strategy Modeling

The first phase in UTML test modeling consists of iden
tifying what the test objectives are going to be. A combi
nation of both automatic and manual generation of test ob
jectives is the most realistic approach. If the requirements
on the system are expressed in a machine-processable nota
tion, then automatic generation of test objectives could be
achieved. Those would be completed by manually derived
test objectives based e.g. on an analysis of potential failures
of the system by test design experts.

For each of the test objectives defined in the test plan
and designed in the test objectives model, a test strategy
must be designed, describing how that test objective will
be assessed. Test procedures can be modeled as sequence
of test steps, with each test step representing an action or
an observation to be performed on one or more elements in
the test setup. Each test step can be described with natural
language. To ensure that all designed test procedures meet
specific requirements with regard to their structure and se
mantics, model validation techniques can be applied on the
resulting model. In fact that is the case for any UTML test
model at every phase of test modeling. If any syntactic or
semantic rule defined by the meta-model is violated in a test
model, e.g. a mandatory field being omitted, than a warning
message is issued for the test modeler to react accordingly
and fix the issue. This ensures that conceptual errors in test
design are discovered at the very early stage and that the
resulting test models are both complete and consistent syn
tactically and semantically.

3.3 Test Data Modeling

The purpose of test data modeling is to precisely describe
data that will be exchanged between elements of the SDP to
implement the designed test procedures. Those data include
stimuli, i.e. messages that will be sent to entities, as well as
potential responses. Responses are modeled based on con
straints dictated by semantic descriptions of the protocols.
Generally, a static description of the protocol is available as
a plain text document (IETF RFC), an XSD(XML Schema
Descriptor) file or any other data description mechanism
(e.g. ASN.l, IDL). Provided a machine-processable nota
tion has been used for that purpose, the system data model
could be imported automatically and provide a base for the
test data modeling activity.

The test architecture describes the topology of the test
system, i.e. its composition in terms of parallel test com
ponents and the points of communication between those
and elements of the SUT. Figure 2 displays a test architec
ture diagram for a sample IMS interoperability test case.
UTML concepts of test architecture modeling are inherited
from TTCN-3 and UTP. A test architecture model consists
of a collection of test configurations, i.e. predefined setups
of a test system as a composition of parallel test and sys
tem components interconnected with each other via ports
over which they exchange messages. The communication
mode between such test components can be synchronous
(request/reply) or asynchronous (message based). Depend
ing on the objective of the test, any of the components de
fined in a test configuration can be labelled as part of the
SUT and are displayed with a black color accordingly to un
derline the fact that we follow a black-box testing approach.
This facilitates the creation of new test configurations as
variants of existing ones, since the same base configuration
can be used or adapted for additional test objectives.

As depicted on figure 2, the designed test configura
tion for features a scenario involving two PTCs (Parallel
Test Components) testing an IMS network for Video-On
Demand functionality. As visible on that figure, the test
scenario requires 3 different protocols, i.e. SIP, RTSP and
RTP.

3.5 Test Behaviour Modeling

Based on previously defined test data and test archi
tecture models, semantic requirements on the service can
be expressed as UTML test behaviour models using their
graphical representation called UTML test behaviour dia
grams. Each UTML test behaviour diagram is built upon a
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Figure 4. Different Views on the Test Design
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Figure 3. Test Behaviour Diagram for sample
IMS test case

test configuration previously defined in the associated test
architecture model. A test behaviour model describes ab
stractly how each of the test procedures designed in the test
strategy model will traduce in terms of actions on and be
tween the entities in the associated test configuration. Fig
ure 3 displays an example test behaviour diagram for an
IMS Video-On-Demand (VOD) service. As depicted on
figure 3, a UTML test behaviour diagram shows many sim
ilarities with a classical UML sequence diagram. The main
differences lie in the fact that UTML behaviour diagrams
provide a concept of test components, with a test compo
nent containing one or many lifelines representing its com
munication ports.

Also, UTML behaviour diagrams take black-box testing
patterns into account. As shown in Figure 3, selected test
components can be labelled as being part of the SUT or be
ing parallel test components, which is the default assump
tion. This has implications on the operations allowed on a
component and its owned ports in term of semantics. For in
stance a send action, i.e. an action modeling the sending of
a request or the invocation of a method on an interface, will
not be allowed from an SUT component, because that would
violate the black-box testing paradigm, according to which,
we do not have such access from the test system. Addition
ally, the test behaviour model provides the means for mod
eling constraints on actions performed by service providers
or users. For example, for an action describing that the test
system expects a response from a service provider, the test
behaviour can set a timing constraint for that response along
with other constraints on the data contained in the response
itself. Also visible on figure 3 is the equivalence between

the architecture diagram and the layout for the associated
behaviour diagram. In fact, as depicted on figure 4, the
various diagrams merely provide a different view on the
same test design model. Therefore, the initial setup for
the behaviour diagram (i.e. the component instances and
their connections) can be generated automatically from a
previously defined architecture diagram to speed up test be
haviour modeling, which would then simply consist in mod
eling the test actions. Furthermore, if available, system be
haviour models expressed using UML sequence diagrams
or state machines can be transformed into test behaviour
models, either manually or automatically using the afore
mentioned automatic test generation techniques based on
EFSMs. However, it should be taken into consideration that
this might lead to a large number of test cases being gener
ated, to the extend that the trade-out would outweigh the ex
pected benefits. Another benefit of modeling test behaviour
at such a high level of abstraction is that it allows tests for
complex combinations of SDP entities to be modeled in the
same way as tests for services taken individually.

4 Test System Integration using Model
Driven Test Engineering

Test development is a particular kind of software devel
opment. Therefore, the potential benefits of using domain
specific notations tailored for the processes it implies are
high. However, introducing a new notation always poses a
series of problems for organizations. It has to be ensured
that the investment of learning the new notation, adapting
the existing process and infrastructure to it etc. are worth
the effort. To keep those investments as low as possible ap
propriate tools for the notation are required, that facilitates
the usage of the notation, while integrating to the existing
testing infrastructures.
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Figure 5. Possible Architecture of Test Mod
eling Tool
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Figure 6. UTML Tool chain and relation to
EMF and TOPCASED

Figure 5 depicts a possible architecture for a model
driven test engineering tool and how it could be used to de
sign functional tests of SOP infrastructures. As displayed
on that figure, the center-piece of the tool is a test model
editor, in which the aforementioned views can be used to
design the different aspects of the test model. Addition
ally the tool should define both a front-end- and a back-end
plug-in interface. Using the front-end interface, legacy test
artifacts (e.g. targeting single entities of the platform) can
be imported via the appropriate front-end for reuse in test
modeling. Using the same mechanism, elements of the sys
tem model (e.g. WSOL-files for SOAP web services, UML
system models) can be imported for reuse in the test system
as well. Furthermore, as depicted on the figure, the back
end interface provide the ability to export the integrated test
model into an executable test scripting notation suitable for
the target environment, via the appropriate back-end plug
in.

Furthermore, the tool is required to allow for external
front-end-, and back-end plug-ins to be added, e.g. to im
port legacy test artifacts or to generate new test scripts writ
ten in proprietary notations.

5 Tool chain and Implementation Approach

Figure 6 depicts the implementation approach we used
to develop a prototype visual editor for UTML test model
ing. The prototype implementation is based on an ECore
representation of the UTML meta-model. ECore is the
Eclipse [19] Modeling framework's (EMF) variant of the
Omega's Meta-Object Facility (MOF), i.e. a standard
ized meta modeling language. Through a set of tools
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hosted under the common umbrella of the Eclipse Modeling
Project [18], EMF provided us with the means for follow
ing a model-driven development approach for the UTML
modeling tool chain.

As depicted on figure 6, the UTML meta-model was de
fined using EMF's meta-model editor. Then, using the EMF
generator, a set of APIs are generated automatically for han
dling the model, along with a basic model tree and tabular
editor.

However, to increase usability and make test modeling
and the resulting test model more accessible to people who
might not be test experts, we also targeted a visual editor
allowing for test models to be designed graphically. The
TOPCASEO [20] modeling framework combines EMF and
Eclipse's Graphical Editing Framework (GEF) [17] to pro
vide the means for defining graphical visual elements for an
ECore/EMF meta-model. Those graphical elements are de
fined in so-called diagram configuration files, out of which
the TOPCASEO generator generates a graphical editor for
the associated ECore meta-model automatically.

The tool chain has been designed and implemented to
support the process depicted on Figure 1 by providing a set
of wizards to guide the user through that process. Addition
ally, the tool chain defines an Eclipse plug-in API, via which
back-ends can be provided for exporting the UTML test
model, once it is ready. The current version of the tool chain
provides back-end plug-ins for TTCN-3, XML and PHP.
Those plug-ins use template-based model-to-text transfor
mation to transform UTML models into the targeted nota
tion. However, the choice of the transformation approach is
left to the back-end provider. This high level of flexibility
in Before each export operation the model is validated for
consistency against the meta-model and some predefined
Object Constraint Language (OCL) constraints. Therefore,
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flaws in test design can be identified and addressed at early
stage of testing. Also, by ensuring that the designed test
model is complete and consistent, the approach enables the
automatic generation of fully executable test scripts from
the test model.

This ability of flexible mapping, that allows for mapping
rules to be provided on-the-fly for a notation is particularly
interesting for heterogeneous systems, as it allows the new
notation to be integrated seamlessly in existing infrastruc
tures. Furthermore, the tool chain provides a similar mech
anism for importing test artifacts into the test modeling en
vironment. The current version provides two plug-ins for
importing TTCN-3 and WSOL files into UTML test mod
els

The TTCN-3 code generated automatically from the
UTML test model for the IMS is valid and ready for compi
lation in terms of its behaviour. The additional effort re
quired consisted in completing the definition of TTCN-3
templates generated from the UTML data instances defined
in the test data model.

One of the additional benefits of our approach is that the
resulting test models can be understood by test designers
as well as system designers and dedevelopers alike. Fur
thermore, by decoupling test system engineering into a de
sign and implementation activities, it allows a more flex
ible organization of the work to avoid bottlenecks. This
is especially important when agile test driven development
(TOO) is practised, whereby the test design drives the whole
product development process[1]. Also, for large projects
in which design-by-contract is applied, UTML test models
could provide the common ground for understanding the re
quirements on each entity in the architecture and for verify
ing that, that entity's implementation behaves accordingly.
Although we assume that the learning curve for such a vi
sual test modeling notation should be lower than that of a
functional programming or a test scripting notation, a more
in-depth qualitative analysis is required to validate that as
sumption. Furthermore the flexibility of the approach is also
underlined by the fact that transforming the test model into
a specific notation for a particular test infrastructure would
only require providing the back-end plug-in for that nota
tion.

6 Conclusion and Outlooks

We have presented a new approach for model-driven test
engineering based on black-box test design patterns and de
scribed how it could be used to enhance reuse of system
models and legacy test artifacts. Although a full quantita
tive evaluation of the approach is still ongoing, first results
clearly indicate that the test development cycle is shortened
significantly. The fact that the approach is also applicable
to other kinds of service centric architectures, independent
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of the protocols being used. However some challenges are
yet to be addressed. One major challenge that is inherent
to model-driven development and that also needs to be ad
dressed in this context is that of model consistency. While
model validation and a well-defined process help avoiding
errors in test modeling, mechanisms for ensuring model
consistency have not yet reached the same level of matu
rity. Further work will aim at improving that aspect to avoid
problems of unresolved references between inter-dependent
test models which would be a major hampering factor for
the adoption of test modeling.
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