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Abstract– This paper presents a reliable decentralized 

mutual exclusion algorithm for distributed systems in which 

processes communicate by asynchronous message passing. 

When any failure happens in system, the algorithm protects 

the distributed system against any crash. It also makes 

possible the recovery of lost data in system. It requires 

between (N-1) and 2(N-1) messages per critical section 

access, where N is the number of processes in the system. 

The exact message complexity can be expressed as a order 

function of clients in computation. The algorithm does not 

introduce any other overhead over Lamport's and Ricart-

Agrawala's algorithms, which require 3(N-1) and 2(N-1) 

messages per critical section access, respectively. 

Keywords: distributed mutual exclusion, DMX or DME, 

reliability, process concurrency, synchronization and fault 

tolerance

1.INTRODUCTION

he mutual exclusion problem states that only a 

single process can be allowed to access a protected 

resource, also termed as a critical section1, at any time. 

Mutual exclusion is a form of synchronization and one 

of the most fundamental paradigms in computing 

systems. Mutual exclusion has been widely studied in 

distributed systems where processes communicate by 

asynchronous message passing. A comprehensive 

survey is given in [4,12,13]. For a system with N 

processes, competitive algorithms have a message 

complexity between logN and 3(N-1) messages per 

access to the CS, depending on their features. 

Distributed mutual exclusion algorithms are either 

token-based [14] or nontoken-based. In token-based 

mutual exclusion algorithms, a unique token exists in 

the system and only the holder of token can access the 

protected resource. 

Examples of token-based mutual exclusion algorithms 

are Suzuki-Kasami's algorithm [18], (N messages for 

each CS), Singhal's heuristic algorithm [17], ([N/2,N] 

messages), Raymond's tree-based algorithm [19], (log 

(N) messages), Yan et-al.'s algorithm [21], (O(N) 

messages), and Naimi et-al.'s algorithm [16], 

(O(log(N)) messages). Non token-based mutual 

exclusion algorithms exchange messages to determine 

which process can access the CS next. Examples of 

nontoken-based mutual exclusion algorithms are 

Lamport's algorithm [6,8], (3(N-1) messages), Ricart-

Agrawala's algorithm [5], (2(N-1) messages), 

Carvalho-Roucairol's modification on Ricart-
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CS: Critical section

Agrawala’s algorithm ([0,2(N-1)] messages), 

Maekawa's algorithm [7,11], ([3 N, 5 N] messages), 

and Singhal's dynamic data structure algorithm [20], 

([N-1, 3(N-1)/2] messages).  

Sanders proposed a theory of data structures to design 

mutual exclusion algorithms. According to this theory, 

a data structure describes which process keeps 

information about which other process, and from 

which process a process must request information 

before entering the CS [3]. 

Table 1: Comparison of three fundamental MDX algorithms 

Algorithm 
Message per 

entry/exit 

Delay before 

entry
Problems 

Centralized 3 2 
Coordinator

crash

Distributed 2(n-1) 2(n-1) 
Crash of any 

process

Token ring 1 to 0 to n-1 
Lost token, 

process crash 

To compare the algorithms in detail, we can see other 

characteristics of mentioned algorithms in table 1. 

There are following items in table 1 to compare 

algorithms: number of required messages per 

entry/exit from CS, delay before entry and also major 

problems of any algorithm. 

We know that time-stamps are assigned to messages 

based on Lamport's clock [6]. In the context of mutual 

exclusion, Lamport's clocks operate as follows: Each 

process maintains a scalar clock with an initial value 

of 0. Each time a process wants to access the CS, it 

assigns to that request a time-stamp which is one more 

than the value of the clock. The process sends the 

time-stamped request to other processes to determine 

whether it can access the CS. Each time a process 

receives a time-stamped request from another process 

seeking permission to access the CS the process 

updates its clock to the maximum of its current value 

and the timestamp of the request. 

Reliability is a very important criterion for solutions to 

the most real-life-resource-contention problems. 

Commonly accepted definition of reliability in the 

context of mutual exclusion is the time in which a 

system has no crashes or it is able to continue its work 

in any condition [1,2]. 

In the rest of paper, section 2 describes the system 

model and reviews on Ricart-Agrawala’s algorithm as 

our base algorithm. Section 3 presents the new 

algorithm. Section 4 tries to prove that new algorithm 

guarantees mutual exclusion and progress in any 

condition, and thus, is reliable. This section also 

T
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Initial local state for process Pi 

       int My_Sequence_Numberi=0 

       int ReplyCounti=0 

       array of boolean RDi[j]=0, For all j E  {1…N} 

       int Highest_Sequence_Number_Seeni=0. 

InvMutEx: Process Pi executes the following to invoke mutual exclosion: 

    1- My_Sequence_Numberi = Highest_Sequence_Number_Seeni + 1 

    2- Make a REQUEST(Ri) message, where Ri = (My_Sequence_Numberi, i) 

    3- Send this REQUEST message to all the other processes 

    4- ReplyCounti =0. 

              RcvReq: Process Pi receives message REQUEST(Rj), where Rj=(SN, j), from process Pj: 

    1- If Pi is requesting then there are two cases: 

          - Pi's REQUEST  has a higher priority than Pj's REQUEST 

           In this case, Pi Highest_Sequence_Number_Seeni  =max (Highest_Sequence_Number_Seeni,SN) 

          - Pi's REQUEST has a lower priority than Pj's REQUEST. Then, Pi  sends a REPLY to Pj     

    2- If Pi is not requesting then it  sends a REPLY message to Pj. 

RcvReply: Process Pi receives REPLY message from Pj: 

    1- ReplyCounti=ReplyCounti + 1 

    2- If (CheckExecuteCS) then execute CS. 

FinCS: Process Pi finishes executing CS: 

    1- Send REPLY to all processes Pk. 

                                CheckExecuteCS: if (ReplyCounti=N-1) then return true. else return false. 

Fig.1: Ricart & Agrawala's Distributed Algorithm

analyzes the message complexity. Section 5 gives 

concluding remarks. 

2. PRELIMINARIES

In this section, the authors describe the general system 

model and review Ricart-Agrawala’s algorithm (RA) 

which is the best known fair distributed mutual 

exclusion algorithm [5]. The algorithm proposed in 

Section 3 is an improvement over the RA algorithm.  

2.1 System Model 

The RA algorithm and the algorithm by Lamport 

assume the following model. There are N processes in 

the system. Processes communicate only by 

asynchronous message passing over an underlying 

communication network, which is error-free, and 

message transmission times that may vary. Processes 

are assumed to operate correctly. Unlike RA’s 

algorithm but similar to Lamport's algorithm, we 

assume FIFO channels in the communication network. 

Without loss of generality, we assume that a single 

process executes at a site or a node in the network 

system graph. Hence, the terms process, site, and node 

are interchangeably used. 

A process requests a CS by sending “REQUEST” 

messages and waits for appropriate replies before 

entering its CS. While a process is waiting to enter its 

CS, it cannot make another request to enter another 

CS. Each “REQUEST” for CS access is assigned a 

priority. And “REQUEST”s for CS access should be 

granted in order of decreasing priority for fair mutual 

exclusion. The priority or identifier, ReqID, of a 

request is defined as ReqID = (SequenceNumber, 

PID), where SequenceNumber is a unique locally 

assigned sequence number to the request and PID is 

the process identifier. SequenceNumber is determined 

as follows: Each process maintains the 

highest_sequence_number_seen (HSNS) so far in a 

local variable HSNS. When a process makes a request, 

it uses a sequence number which is one more than the 

value of HSNS. When a “REQUEST” is received, 

HSNS is updated as follows:  
HSNS=max (HSNS, sequence number in the “REQUEST”)

Priorities of two “REQUEST”s, ReqID1 and ReqID2, 

where ReqID1=(SN1, PID1) and ReqID2=(SN2, 

PID2), are compared as follows: Priority of ReqID1 is 

greater than priority of ReqID2 iff SN1 < SN2 or (SN1 

= SN2 and PID1 < PID2). All “REQUEST”s are, thus, 

totally ordered by priority. This scheme implements a 

variant of Lamport's clock mentioned in Section 1, and 

when requests are satisfied in the order of decreasing 

priority, fairness is seen to be achieved.  

In this modeling Pi also uses the following vector: 

RDi [1: N] of Boolean. RDi [j] indicates if Pi has 

deferred the “REQUEST” sent by Pj, [15].

2.2 Review on Ricart-Agrawala’s Algorithm 

The algorithm uses two types of messages: 

“REQUEST” and REPLY. As data structure, each 

process Pi uses the following local integer variables: 

My_Sequence_Numberi, ReplyCounti, and HSNSi

2.3 The Algorithm 

RA algorithm is outlined in Fig.1. Each procedure in 

the algorithm is executed atomically. Only processes 

that are requesting the CS with higher priority block 

the REPLY messages sent by a process. Thus, when a 

process sends REPLY messages to all deferred 

requests, the process with the next highest priority 
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request receives the last needed REPLY message and 

enters the CS. The execution of CS requests in this 

algorithm is always in the order of their decreasing 

priority. 

For each CS access, there are exactly 2(N-1) 

messages: (N-1) “REQUEST”s and (N-1) REPLYs. 

The algorithm is fair and safe. However, this algorithm 

has some disadvantages like having a good ability to 

arise a fault, having a single point of failure in each 

process and bottlenecking for system. It also has a low 

power in parallelism. Among these disadvantages, two 

of them are more important than the rest because if 

they happen, they cause whole of the system crashes. 

If any process stops working, all of the information 

including process request that is in queue and flags 

that are related to the resources will be lost. But other 

two problems only affect the efficiency and speed of 

the system.

3. PROPOSED ALGORITHM

A “REQUEST” issued by process Pi with sequence 

number x is denoted using its ReqID as Ri,x. The 

priority of Ri;x is the tuple (x,i), also denoted as 

Pr(Ri,x). The sequence number x is omitted whenever 

there is no ambiguity, and we say that a “REQUEST” 

Ri has a priority Pr(Ri). This notation is used 

throughout this paper. Two “REQUEST”s are said to 

be concurrent if for each requesting process, the 

“REQUEST” issued by the other process is received 

after the “REQUEST” has been issued by this process. 

3.1 Definitions 

Ri and Rj are concurrent if Pi's “REQUEST” is 

received by Pj after Pj has made its “REQUEST” and 

Pj's “REQUEST” is received by Pi after Pi has made its 

“REQUEST”. Each “REQUEST” Ri sent by Pi has a 

concurrency set, denoted CSeti, which is the set of 

those “REQUEST”s Rj that are concurrent with Ri..

CSeti also includes Ri.

Also, given Ri, CSeti ={Rj | Ri is concurrent with 

Rj}U{Ri}. Observe that the relation “is concurrent 

with” is defined to be symmetric.  

3.2 Basic Idea Description

The algorithm assumes the same model as the RA’s 

model. It also assumes that the underlying network 

channels are FIFO. A process keeps a queue 

containing “REQUEST”s in the order of priorities, 

received by the process after making its latest 

“REQUEST”. This queue, referred to as Local Request 

Queue(LRQ) (explained in Section 3.3), contains only 

concurrent “REQUEST”s. The new algorithm uses 

five types of messages: “REQUEST”, REPLY, IN-

REGION, AYA (Are You Alive), NEWEPOACH,

FLUSH and obtains savings by cleverly assigning 

multiple purposes to each one. Specifically, these 

savings are obtained by the following key 

observations.  

All requests are totally ordered by priority, similar to 

the RA algorithm. A process receiving a “REQUEST” 

message can immediately determine whether the 

requesting process or itself should be allowed to enter 

the CS first.

Multiple uses of REPLY messages:

1. A REPLY message acts as reply from a 

process that is not requesting.  

2. A REPLY message acts as a collective reply 

from processes that have higher priority 

requests.

A REPLY (Rj) message from Pj indicates that Rj is the 

“REQUEST” that Pj had last made and for which it 

executed the CS. This indicates that all “REQUEST”s 

which have priority>=the priority of Rj have finished 

CS and are no longer in contention. When a process Pi

receives REPLY(Rj), it can remove those 

“REQUEST”s whose priority >= priority of Rj from its 

local queue. Thus, a REPLY message is a logical reply 

and denotes a collective reply from all processes that 

had made higher priority requests.  

Uses of FLUSH message:

A process sends a FLUSH message, after executing 

CS, to the concurrently requesting process with the 

next highest priority (if it exists). At the time of 

entering CS, a process can determine the state of all 

other processes in some possible consistent state with 

itself. Any other process is either requesting CS access 

whose requesting priority is known, or not requesting. 

At the time of finishing CS execution, any process Pi

knows the followings:  

1. Processes with concurrent lower priority (than 

Pi's) requests in Pi's local queue are waiting to 

execute CS. 

2. Processes, which have sent REPLY to Pi for 

Ri, are still not requesting, or are requesting 

with lower priority (than Pi's).  

3. Processes, which have requested concurrently 

with Ri, having higher priority are not 

requesting or are requesting with lower priority 

(than Pi's). 

The “REQUEST”s received from processes identified 

in 2 and 3 are not concurrent with Ri, the “REQUEST” 

for which Pi just finished executing CS. Such 

“REQUESTS” which are received by Pi before

finishing CS, are deferred until Pi finishes its CS. Pi

then sends a REPLY to each of these deferred 

“REQUEST”s as soon as finishing its CS. Thus, after 

executing CS, Pi sends a FLUSH(Ri) message to Pj

which is the concurrently requesting process with the 

next highest priority. For each process Pk identified in 

2 and 3 that is requesting, its “REQUEST” defers until 
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Pi leaves the CS, at which time Pi sends Pk a REPLY. 

With this behavior, Pi gives permission to both Pj and

Pk that it is safe to enter CS with respect to Pi. Pj and

Pk will have to get permission from one another, and 

the one with higher priority will enter the CS first. 

Similar to the Ri parameter on a REPLY message, the 

Ri parameter on the FLUSH denotes the ReqID, i.e., 

priority, of the “REQUEST” for which Pi just executed 

CS. When a process Pj receives FLUSH(Ri), it can 

remove those “REQUEST”s whose priority >= priority 

of Ri from its local queue. Thus, a FLUSH message is 

a logical reply and denotes a collective reply from all 

processes that have made higher priority requests.  

Multiple uses of “REQUEST”s:

Process Pi attempting to invoke mutual exclusion 

sends a “REQUEST” message to all other processes. 

Upon receipt of a “REQUEST” message, process Pj

that is not requesting sends a REPLY message 

immediately. If process Pj is requesting concurrently, 

it does not send a REPLY message. If Pj's 

“REQUEST” has a higher priority, the received 

“REQUEST” from Pi serves as a reply to Pj. Pj will

eventually execute CS (before Pi) and then through a 

chain of FLUSH/REPLY messages, Pi will eventually 

receive a logical reply to its “REQUEST”. If Pj's 

“REQUEST” has a lower priority, then Pj's 

“REQUEST”, which reaches Pi after Pi has made its 

own “REQUEST” serves as a reply to Pi's 

“REQUEST”. After Pi executes the CS, Pj will receive 

a logical reply to its “REQUEST” through a chain of 

FLUSH/REPLY messages. Thus, in the proposed 

algorithm, concurrent “REQUEST” messages do not 

serve just the purpose of requesting. They are also 

some form of REPLY messages. The “REQUEST” 

sent by Pi acts like an explicit reply to Pj's 

“REQUEST” if Pi's “REQUEST” has a lower priority 

than Pj's “REQUEST”. In the proposed algorithm as 

outlined above, a “REQUEST” message has three 

purposes, as summarized below. Assume that both Pi

and Pj are requesting concurrently. Moreover, assume 

that the “REQUEST” of Pi has a higher priority than 

the “REQUEST” of Pj.

1. A “REQUEST” message serves as a request 

message.  

2. The “REQUEST” message from Pi to Pj: This 

“REQUEST” message to Pj indicates to Pj that 

Pi is also in contention and has a higher priority. 

In this case, Pj should await FLUSH/REPLY 

from some processes.  

3. The “REQUEST” message from Pj to Pi: This 

“REQUEST” message to Pi serves as a reply to 

Pi.

Thus, no REPLY is sent when the “REQUEST”s are 

concurrent. In the proposed algorithm, a process Pi

requesting CS sending a “REQUEST” to other 

processes, gets permission from process Pj, in one of 

the following ways:  

- Pj is not requesting; Pj sends REPLY to Pi.

- Pj is concurrently requesting with a lower priority: 

- Pj's “REQUEST” serves as the reply from Pj.

- Pj is concurrently requesting with a higher priority: 

- Pj's “REQUEST” indicates that Pj is also in 

contention with a higher priority and that Pi should 

await FLUSH/REPLY, which transitively gives 

permission to Pi. A FLUSH(Rk) or a REPLY(Rk)

message, where  

Pr(Ri)<Pr(Rk)<=Pr(Rj), serves as permission from Pj

to Pi

3.3 New Algorithm

After crashing each process in queue, either the system 

gets loaded or after a period there will be an election 

and the new system will be chosen. Now the suggested 

algorithm starts the recovery in the following steps, so 

that the lost information including queues and related 

flags to CS will be recovered. Thus, the related system 

turns back to its normal position. Steps of this 

algorithm are:  

a. All of the processes, which are in the newly created 

system, send a message that introduces itself and also 

means that there is a new epoch. 

b. All the clients after receiving the “NEWEPOACH” 

message understand that there is a new system in the 

distributed system and each of them depending on its 

situation may send the following answer: 

1. The clients that are neither in CS nor have 

request for that, send the message of having no 

request (it can be omitted in improved 

condition). And processes do not do anything 

for theses kinds of messages. 

2. Clients that are in CS send the “IN-REGION” 

message including number of clients and name 

of CS. 

3. Clients that are not in CS but want to enter and 

have not received the “OK” message should 

send another request to other processes. This 

message includes number of the client, name of 

the CS it they want to enter and the time-stamp 

that is related to first request. All other related 

processes after receiving the message arrange 

them according to their time-stamp and enter 

them to the queue which is related to that CS. 

Therefore, after receiving requests messages 

from all clients, queues of the previous system 

will be formed in the new one. We must say that 

it is necessary to save the time-stamps of 

processes.

c. The distributed system checks if there is any reset 

flag with void queue in the system or not. There 

should be nothing. if there is one, the “OK” message 

will be sent to the process at the beginning of the 
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queue. So the new system can continue instead of the 

old one. 

Fig 2: Timing chart for 3 processes when P1 dies. 

Fig.2 shows process P1 is permitted to enter CS but it 

is dead in there. After first watch dog timer activation 

t7, t8, and t9 are the times that have “AYA”2

messages. And after second watch dog timer the vector 

from t10 to t11 is for “OK” message because P2 has 

sent “REQUEST” message to P3. In improved case it 

is not necessary because P2 received this message 

previously. 

Fig 3: Similar to Fig.2 but P1 is alive.  

Fig.3 is similar to fig.2 but here P1 is alive and active 

in CS for a long time. It sends the “IN-REGION” 

message to P2 and P3.  

The figures show what happens when two processes in 

race want a resource which has a CS, in two cases: the 

first case, when every process, that is in CS, dies in the 

CS, and another when the process that is in CS is still 

alive and its job continues. 

3.4 Scenarios

Scenario 1: If the process in CS finishes its activity in 

it CS and immediately after receiving the “RELEASE” 

message receives the “NEWEPOCH” message, it 

sends the message of not having request instead of 

sending the “IN-REGION” message. And immediately 

after that sends the “RELEASE” message because now 

the new system is working. 

Scenario 2: After sending the “NEWEPOCH” message 

by processes in the new system as the first step of the 

new algorithm, if one of the clients receives the 

                                                          
2

Are You Alive?

“RELEASE” message, all of these kind of messages 

mean having no request up to the end of algorithm. 

3.5 Two suggestions for improvement

As answer of “NEWEPOCH” messages, those clients 

that are neither in CS nor have request for that can 

send no message. So, the processes in the system have 

enough time to wait for messages of clients 

(depending on network structure). Thus there are only 

messages of clients in CS or requesting. As a result the 

number of messages decreases vastly. 

In addition it is better to use transaction as our 

messages because the processes do not need saving 

their requests and they can recover their requests 

without using anything. Because a transaction that is 

sent by a process is either committed or abort. If it is 

committed then that is OK other wise its characterize 

will be kept safely. The new algorithm is represented 

in fig.4.

4. EVALEUATION

4.1 Algorithm Analysis 

In this method, there are four different time units till 

the system turns into its normal condition:  

-Time used to reset previous system  

-Time used to broadcast the “NEWEPOCH” messages. 

-Required time for receiving messages of all clients. 

Of course, after improving the system this period will 

change to the period of time that should be spent while 

waiting to receive messages some of the clients. 

- Processing to arrange the system 

As it is mentioned, spent time in part 1 and 2 is needed 

in basic algorithm because resetting the system is 

related to base algorithm. 

About the time that should be spent on part 3, 

generally when any server crashes and wants to start 

working again, it must send some information to 

others as soon as rebooting. This info includes server 

name and its accessing address, which are added to 

“NEWEPOCH” message and broadcasted to all of the 

clients. So, there is only one thing which is added to 

the message in ‘Piggy banking’ way. In this part, there 

are exactly N messages distributed in net and its 

distribution time is essential. The period of time that 

was spent in step 3, is not in the normal decentralized 

algorithm but it is added to the new algorithm. This 

time is equal to the time needed for broadcasting a 

message on the net for all the clients. In the worst case, 

the message will be broadcasted to N clients and in 

best cases (after improvement) the number will be 

reduced.

Generally, the number of messages to start the new 

system in the worst condition is 2N but after 

improvement it is less than 2N, more than N. This 

number in centralized algorithm is only N, [4]. 
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Initial local state for process Pi 

int My_Sequence_Numberi=0 

int ReplyCounti=0 

array of boolean Rdi[j]=0, For all j E  {1..N} 

int Highest_Sequence_Number_Seeni=0 

FRk=0. 

InvMutEx: Process Pi executes the following to invoke mutual exclusion: 

1- My_Sequence_Numberi = Highest_Sequence_Number_Seeni + 1 

2- Make a REQUEST(Ri) message, where Ri = (My_Sequence_Numberi, I) 

3- Send this REQUEST message to all the other processes 

4- ReplyCounti =0 

5- RDi[k]=0, For all k E {1..N} 

6- For all processes save the above parameters. 

RcvReq: Process Pi receives message REQUEST(Rj), where Rj=(SN, j), from process Pj: 

1- If Pi is requesting then there are two cases: 

- Pi's REQUEST  has a higher priority than Pj's REQUEST 

In this case, Pi sets RDi[j]=1 and 

Highest_Sequence_Number_Seeni  =max(Highest_Sequence_Number_Seeni,SN) 

- Pi's REQUEST has a lower priority than Pj's REQUEST. In this case, Pi  sends a REPLY to Pj 

2- If Pi is not requesting then it sends a REPLY message to Pj. 

RcvReply: Process Pi receives REPLY message from Pj: 

1- ReplyCounti=ReplyCounti + 1 

2- If (CheckExecuteCS) then (execute CS and set Flag) 

3- All process sends AYA and Pi Sends a IN-REGION to all of them (Watch dog timer) 

4- If Not IN-REGION message then (NEWEPPOACH and for i+1 RcvReply execute) 

For all processes (that send REQUEST) send again REQUEST by preview Time-stamps. 

FinCS: Process Pi finishes executing CS: 

1- Send REPLY to all process Pk, such that RDi[k]=1. 

CheckExecuteCS: if (ReplyCounti=N-1) then return true else return false. 

Fig.4: Ricart & Agrawala's Distributed Algorithm

Analyzing New Algorithm in Specific Conditions: 

Reaction of the system in all conditions, in which 

processes are active, is very close to decentralized 

algorithm. But for some specific conditions that 

system is not restarted, analyses are as following: 

If while the system is not active one of the clients 

whose request is in CS gets crashed, according to the 

algorithm all of the informations get recovered. It 

means, even if the client does not work, algorithm can 

easily support this condition. When the system is down 

for a while, if a client, who is owner of that CS, leaves 

there according to algorithm Recart- Agrawala, client 

sends a “RELEASE” message to other processes and 

because the process that crashed is not working, it can 

not send the message. So, after resenting of 

“RELEASE” message, the client realizes that the 

process has crashed, and will not send  “RELEASE” 

message. Instead as answer to “NEWEPOCH” it sends 

nothing message and this answer in new system will 

cause having flag that is not active and also not having 

void queue, for that CS. 

If before the clients’ requests a “NEWEPOCH” 

message is received, algorithm works currently too. 

Because after receiving the “NEWEPOCH” message 

the client realizes that a new system has came up. To 

improve using method ‘piggy banking’ the client 

should send its request as an answer for  

“NEWEPOCH” having a previous request with 

present time-stamp. 

4.2 Proof 

As static point’s of view, at any moment a client is a 

manager or coordinator of CS, like centralized 

algorithm. Therefore, we consider a simple moment in 

system with a coordinator, which is in-region process, 

and other as clients. 

In this subsection, it will be proved that the new 

algorithm makes DMX algorithm more fault tolerant. 

Therefore, it can be inferred that the new algorithm 

works accurately to make a robust DMX algorithm. 

To do so, it should be proved that the set of data before 

coordinator crash, data in old coordinator, and after 

that, data in new coordinator, is correspondent. First, 

we will survey the correspondence of old coordinator’s 

data with the systems’ CS-related data. Second, The 

equality of systems’ CS-related data with new 

coordinator’s data will be surveyed (according to new 

algorithm’s routine). Finally, considering the crash 

time, the fault tolerance of coordinator will be gain. 

We consider the system processes as set S; the old 

coordinator’s data as set C and the new coordinator’s 

data as C’. However, the set S includes three sub set of 

clients’ data (clients in three states: in-region, 

requesting and unrelated). 

As data structure, each coordinator has a queue to 

store requests of processes and a flag, which saves the 

in-region process name3.

                                                          
3

We consider that the coordinator and network platform are safe 

and sound. So they are not virus or something destructive.
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Then we have, S={S1,S2,S3}
Such that, S1 = {Pi | Pi is in_region, P is a process} 

  S2 = {Pj | Pj is requesting} 

  S3 = {Pk | (Pk  S1) & (Pk  S2)} 
It is observable that set S is partitioned by S1, S2 and 

S3. Therefore, S3 = S – (S1  S2) = S1’  S2’ 

Also, C = {C1,C2,C3} 

         C1 = {Pi | Pi  C_flag, P is a process} 

         C2 = {Pj | Pj  C_queue, P is a process} 

         C3 = S – (C1 C2) 
Because the old coordinator was working accurately 

before its crash, the CS info in distributed system was 

in old coordinator. In the other words, in-region 

process’s name is in coordinator’s flag and each 

requesting process’s name is in the coordinator’s 

queue.

Therefore, we have, S1 = C1 
                  S2 = C2

So, S3 = S – (S1  S2) = S – (C1  C2) = C3 
Thus, all of the coordinator’s info is correspondent 

with system’s CS-related info. 

S={S1,S2,S3}={C1,C2,C3}=C 
C’ = {C1’,C2’,C3’} 

In the other hand, according to C’ definition we have, 

C1’ = {Pi | Pi  C’_flag, P is a process} 

C2’ = {Pj | Pj  C’_queue, P is a process} 

C3’ = S – (C1’  C2’)
The new coordinator has gathered its data using new 

algorithms steps. After sending a “New Epoch” 

message in step one of new algorithm, according to 

step 2.a in-region process sends an “In-region” 

message to new coordinator as an answer. And the 

new coordinator sets its flag with system’s in-region 

process name. So, C1’ = S1 

In addition, according to new complementary 

algorithm step2.b those processes, which have sent a 

request to old coordinator and now are blocked, send 

request with previous time-stamp again (to new 

coordinator). Therefore, requesting or blocked 

processes in system will have a request in new 

coordinator’s queue. So C2’ = S2 

Thus, C3’ = S – (C1’  C2’) = S – (S1  S2) = S3 
Therefore, C’ = {C1’,C2’,C3’} = {S1,S2,S3} = S 

According to two main results above, we have: 

C’ = S & S = C  C = C’ 
In result, the data in old coordinator is correspondent 

with the data in new coordinator, which is gathered 

with new complementary algorithm. Therefore, the 

new algorithm can recover the lost data or system. 

Fault Tolerance 

With considering the crash time as T0, the old 

coordinator was working accurately at T1 exactly 

before crash, where T1<T0. In addition, 

reestablishment time of new coordinator is T2 (after 

running new algorithm leading to fully recovery), 

where T0<T2. Thus, we have T1<T0<T2.

The data in old coordinator at T1 is set C and the data 

in new coordinator at T2 is set C’. As proved before, 

we have C=C’. Therefore, the system works correctly 

and continuously before and after crash. In result 

system is Fault-Tolerant.

5. CONCLUSION

One of the original goals of making distributed 

systems is to make them more reliable than single-

processor systems. The idea is that if a machine goes 

down, some other machine takes over the job. In other 

words, theoretically the overall system reliability could 

be the Boolean OR of the component reliabilities. 

Of all the distributed mutual exclusion algorithms in 

the literature, only the non-token based algorithms of 

Lamport [6] and Ricart-Agrawala [5], RA, are not 

reliable in the sense described above. 

We presented a reliable mutual exclusion algorithm for 

distributed systems with asynchronous message 

passing. The savings in message complexity was 

obtained by exploiting the concurrency of requests and 

assigning multiple meanings to the requests and replies 

whenever there are concurrent requests. However, this 

is also a drawback of Lamport's algorithm and the RA 

algorithm. The following improvements can be made 

to the algorithm. The first improvement saves on the 

number of “REPLY” messages. A process Pi on 

finishing CS (procedure FinCS) sends a FLUSH to the 

concurrently requesting process with the next highest 

priority (if it exists) and REPLYs say m, to the 

processes whose “REQUEST”s were deferred. By 

examining these “REQUEST”s, Pi can determine the 

relative order in which these processes will execute 

CS. Using this fact, the following optimization can be 

made. Assume Pk has the highest priority among these 

“REQUEST”s. Pi can send “REPLY” just to Pk, 

apprising Pk of all the information Pi has gathered. 

Thus Pi can avoid sending upto m (worst case is m-1) 

messages. Now it is Pk to take care of the rest. 

However, this optimization requires a significant 

increase in message sizes and local data structures. 

Second way to save the number of “REPLY” 

messages is by treating deferred “REQUEST” 

messages as concurrent to the next “REQUEST” of 

this process (although they are not truly concurrent by 

definition). If the process exiting the CS knows that it 

will request CS soon, it can keep deferred 

“REQUEST” as deferred until it makes its next 

“REQUEST”. At that time, its “REQUEST” acts as a 

REPLY to the deferred “REQUEST”, and the deferred 

“REQUEST” act a REPLY to its “REQUEST”. This 

optimization could slow down the computation at 

processes. A third improvement is as follows: The 

HSNS behaves as a global function of the sequence 
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number of requests and is used as a determinant of the 

priority of each request for CS entrance. Now fair 

algorithm satisfies requests in order of decreasing 

priority. In the presented algorithm, HSNS is a 

parameter only on “REQUEST” messages, akin to the 

Lamport and the Ricart-Agrawala algorithm. In order 

that the priority is determined most fairly, taking into 

account the transitive causality relation among events 

induced by all messages exchanged, the HSNS can be 

introduced as a parameter on all algorithm messages. 

As it was mentioned in this essay a new algorithm for 

improving the decentralized algorithm from different 

methods of mutual exclusion was introduced. 

According to this algorithm after crashing of any 

related process, the system can easily recover the lost 

data including the concept of the queues and the flags 

that are related to CS, in the previous system. And also 

the new algorithm increased the fault tolerance and the 

negative effect of single point of failure for all 

processes that cause the whole system not to work is 

removed. Therefore now, the system is more reliable 

and totally the system has reached more reliability. But 

beside all this advantages there is only one 

disadvantage, and that is, the system has to spend a 

little more expense and it is because of more massages 

that should be distributed on the network. The number 

of extra massages in comparison of decentralized 

algorithm is maximum N. The final conclusion is that 

after adding this suggested algorithm to a 

decentralized algorithm, in specific period of time that 

one of the process is crashed, new decentralized 

algorithm never stops working.

Future works:

This algorithm can be applied in distributed operating 

systems, as is discussed in all of the distributed 

operating systems texts [1], and distributed 

programming cases [10,11]. For example in java 

programming it maybe used to create the CS for 

common resources that are objects or classes [9]. In 

these cases, we must define a class for managing the 

CSs. Another applications are: 3D and animation [23], 

for example in a game net an object is shared between 

N players and so they are in race over the CSs for 

winning. Finally Internet that is a semi distributed 

system. In Internet, there are a lot of common 

resources and other conditions to create the mutual 

exclusion. However we can use the presented 

algorithm in very sensitive or non-sensitive distributed 

systems.  
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