
1

A Reliable Optimization on Distributed Mutual Exclusion Algorithm

Moharram Challenger

Department of computer Engineering

IAU of Shabestar-Iran

Challenger@iaushab.ac.ir

Peyman Bayat

Department of computer Engineering

IAU of Tafresh-Iran

Bayat_p@engineer.com

M.R. Meybodi

Department of computer science

AUT-Iran

Meybodi@cs.aut.ac.ir

Abstract– This paper presents a reliable decentralized

mutual exclusion algorithm for distributed systems in which

processes communicate by asynchronous message passing.

When any failure happens in system, the algorithm protects

the distributed system against any crash. It also makes

possible the recovery of lost data in system. It requires

between (N-1) and 2(N-1) messages per critical section

access, where N is the number of processes in the system.

The exact message complexity can be expressed as a order

function of clients in computation. The algorithm does not

introduce any other overhead over Lamport's and Ricart-

Agrawala's algorithms, which require 3(N-1) and 2(N-1)

messages per critical section access, respectively.

Keywords: distributed mutual exclusion, DMX or DME,

reliability, process concurrency, synchronization and fault

tolerance

1.INTRODUCTION

he mutual exclusion problem states that only a

single process can be allowed to access a protected

resource, also termed as a critical section1, at any time.

Mutual exclusion is a form of synchronization and one

of the most fundamental paradigms in computing

systems. Mutual exclusion has been widely studied in

distributed systems where processes communicate by

asynchronous message passing. A comprehensive

survey is given in [4,12,13]. For a system with N

processes, competitive algorithms have a message

complexity between logN and 3(N-1) messages per

access to the CS, depending on their features.

Distributed mutual exclusion algorithms are either

token-based [14] or nontoken-based. In token-based

mutual exclusion algorithms, a unique token exists in

the system and only the holder of token can access the

protected resource.

Examples of token-based mutual exclusion algorithms

are Suzuki-Kasami's algorithm [18], (N messages for

each CS), Singhal's heuristic algorithm [17], ([N/2,N]

messages), Raymond's tree-based algorithm [19], (log

(N) messages), Yan et-al.'s algorithm [21], (O(N)

messages), and Naimi et-al.'s algorithm [16],

(O(log(N)) messages). Non token-based mutual

exclusion algorithms exchange messages to determine

which process can access the CS next. Examples of

nontoken-based mutual exclusion algorithms are

Lamport's algorithm [6,8], (3(N-1) messages), Ricart-

Agrawala's algorithm [5], (2(N-1) messages),

Carvalho-Roucairol's modification on Ricart-

1

CS: Critical section

Agrawala’s algorithm ([0,2(N-1)] messages),

Maekawa's algorithm [7,11], ([3 N, 5 N] messages),

and Singhal's dynamic data structure algorithm [20],

([N-1, 3(N-1)/2] messages).

Sanders proposed a theory of data structures to design

mutual exclusion algorithms. According to this theory,

a data structure describes which process keeps

information about which other process, and from

which process a process must request information

before entering the CS [3].

Table 1: Comparison of three fundamental MDX algorithms

Algorithm
Message per

entry/exit

Delay before

entry
Problems

Centralized 3 2
Coordinator

crash

Distributed 2(n-1) 2(n-1)
Crash of any

process

Token ring 1 to 0 to n-1
Lost token,

process crash

To compare the algorithms in detail, we can see other

characteristics of mentioned algorithms in table 1.

There are following items in table 1 to compare

algorithms: number of required messages per

entry/exit from CS, delay before entry and also major

problems of any algorithm.

We know that time-stamps are assigned to messages

based on Lamport's clock [6]. In the context of mutual

exclusion, Lamport's clocks operate as follows: Each

process maintains a scalar clock with an initial value

of 0. Each time a process wants to access the CS, it

assigns to that request a time-stamp which is one more

than the value of the clock. The process sends the

time-stamped request to other processes to determine

whether it can access the CS. Each time a process

receives a time-stamped request from another process

seeking permission to access the CS the process

updates its clock to the maximum of its current value

and the timestamp of the request.

Reliability is a very important criterion for solutions to

the most real-life-resource-contention problems.

Commonly accepted definition of reliability in the

context of mutual exclusion is the time in which a

system has no crashes or it is able to continue its work

in any condition [1,2].

In the rest of paper, section 2 describes the system

model and reviews on Ricart-Agrawala’s algorithm as

our base algorithm. Section 3 presents the new

algorithm. Section 4 tries to prove that new algorithm

guarantees mutual exclusion and progress in any

condition, and thus, is reliable. This section also

T

1-4244-0106-2/06/$20.00 ©2006 IEEE

2

Initial local state for process Pi

 int My_Sequence_Numberi=0

 int ReplyCounti=0

 array of boolean RDi[j]=0, For all j E {1…N}

 int Highest_Sequence_Number_Seeni=0.

InvMutEx: Process Pi executes the following to invoke mutual exclosion:

 1- My_Sequence_Numberi = Highest_Sequence_Number_Seeni + 1

 2- Make a REQUEST(Ri) message, where Ri = (My_Sequence_Numberi, i)

 3- Send this REQUEST message to all the other processes

 4- ReplyCounti =0.

 RcvReq: Process Pi receives message REQUEST(Rj), where Rj=(SN, j), from process Pj:

 1- If Pi is requesting then there are two cases:

 - Pi's REQUEST has a higher priority than Pj's REQUEST

 In this case, Pi Highest_Sequence_Number_Seeni =max (Highest_Sequence_Number_Seeni,SN)

 - Pi's REQUEST has a lower priority than Pj's REQUEST. Then, Pi sends a REPLY to Pj

 2- If Pi is not requesting then it sends a REPLY message to Pj.

RcvReply: Process Pi receives REPLY message from Pj:

 1- ReplyCounti=ReplyCounti + 1

 2- If (CheckExecuteCS) then execute CS.

FinCS: Process Pi finishes executing CS:

 1- Send REPLY to all processes Pk.

 CheckExecuteCS: if (ReplyCounti=N-1) then return true. else return false.

Fig.1: Ricart & Agrawala's Distributed Algorithm

analyzes the message complexity. Section 5 gives

concluding remarks.

2. PRELIMINARIES

In this section, the authors describe the general system

model and review Ricart-Agrawala’s algorithm (RA)

which is the best known fair distributed mutual

exclusion algorithm [5]. The algorithm proposed in

Section 3 is an improvement over the RA algorithm.

2.1 System Model

The RA algorithm and the algorithm by Lamport

assume the following model. There are N processes in

the system. Processes communicate only by

asynchronous message passing over an underlying

communication network, which is error-free, and

message transmission times that may vary. Processes

are assumed to operate correctly. Unlike RA’s

algorithm but similar to Lamport's algorithm, we

assume FIFO channels in the communication network.

Without loss of generality, we assume that a single

process executes at a site or a node in the network

system graph. Hence, the terms process, site, and node

are interchangeably used.

A process requests a CS by sending “REQUEST”

messages and waits for appropriate replies before

entering its CS. While a process is waiting to enter its

CS, it cannot make another request to enter another

CS. Each “REQUEST” for CS access is assigned a

priority. And “REQUEST”s for CS access should be

granted in order of decreasing priority for fair mutual

exclusion. The priority or identifier, ReqID, of a

request is defined as ReqID = (SequenceNumber,

PID), where SequenceNumber is a unique locally

assigned sequence number to the request and PID is

the process identifier. SequenceNumber is determined

as follows: Each process maintains the

highest_sequence_number_seen (HSNS) so far in a

local variable HSNS. When a process makes a request,

it uses a sequence number which is one more than the

value of HSNS. When a “REQUEST” is received,

HSNS is updated as follows:
HSNS=max (HSNS, sequence number in the “REQUEST”)

Priorities of two “REQUEST”s, ReqID1 and ReqID2,

where ReqID1=(SN1, PID1) and ReqID2=(SN2,

PID2), are compared as follows: Priority of ReqID1 is

greater than priority of ReqID2 iff SN1 < SN2 or (SN1

= SN2 and PID1 < PID2). All “REQUEST”s are, thus,

totally ordered by priority. This scheme implements a

variant of Lamport's clock mentioned in Section 1, and

when requests are satisfied in the order of decreasing

priority, fairness is seen to be achieved.

In this modeling Pi also uses the following vector:

RDi [1: N] of Boolean. RDi [j] indicates if Pi has

deferred the “REQUEST” sent by Pj, [15].

2.2 Review on Ricart-Agrawala’s Algorithm

The algorithm uses two types of messages:

“REQUEST” and REPLY. As data structure, each

process Pi uses the following local integer variables:

My_Sequence_Numberi, ReplyCounti, and HSNSi

2.3 The Algorithm

RA algorithm is outlined in Fig.1. Each procedure in

the algorithm is executed atomically. Only processes

that are requesting the CS with higher priority block

the REPLY messages sent by a process. Thus, when a

process sends REPLY messages to all deferred

requests, the process with the next highest priority

3

request receives the last needed REPLY message and

enters the CS. The execution of CS requests in this

algorithm is always in the order of their decreasing

priority.

For each CS access, there are exactly 2(N-1)

messages: (N-1) “REQUEST”s and (N-1) REPLYs.

The algorithm is fair and safe. However, this algorithm

has some disadvantages like having a good ability to

arise a fault, having a single point of failure in each

process and bottlenecking for system. It also has a low

power in parallelism. Among these disadvantages, two

of them are more important than the rest because if

they happen, they cause whole of the system crashes.

If any process stops working, all of the information

including process request that is in queue and flags

that are related to the resources will be lost. But other

two problems only affect the efficiency and speed of

the system.

3. PROPOSED ALGORITHM

A “REQUEST” issued by process Pi with sequence

number x is denoted using its ReqID as Ri,x. The

priority of Ri;x is the tuple (x,i), also denoted as

Pr(Ri,x). The sequence number x is omitted whenever

there is no ambiguity, and we say that a “REQUEST”

Ri has a priority Pr(Ri). This notation is used

throughout this paper. Two “REQUEST”s are said to

be concurrent if for each requesting process, the

“REQUEST” issued by the other process is received

after the “REQUEST” has been issued by this process.

3.1 Definitions

Ri and Rj are concurrent if Pi's “REQUEST” is

received by Pj after Pj has made its “REQUEST” and

Pj's “REQUEST” is received by Pi after Pi has made its

“REQUEST”. Each “REQUEST” Ri sent by Pi has a

concurrency set, denoted CSeti, which is the set of

those “REQUEST”s Rj that are concurrent with Ri..

CSeti also includes Ri.

Also, given Ri, CSeti ={Rj | Ri is concurrent with

Rj}U{Ri}. Observe that the relation “is concurrent

with” is defined to be symmetric.

3.2 Basic Idea Description

The algorithm assumes the same model as the RA’s

model. It also assumes that the underlying network

channels are FIFO. A process keeps a queue

containing “REQUEST”s in the order of priorities,

received by the process after making its latest

“REQUEST”. This queue, referred to as Local Request

Queue(LRQ) (explained in Section 3.3), contains only

concurrent “REQUEST”s. The new algorithm uses

five types of messages: “REQUEST”, REPLY, IN-

REGION, AYA (Are You Alive), NEWEPOACH,

FLUSH and obtains savings by cleverly assigning

multiple purposes to each one. Specifically, these

savings are obtained by the following key

observations.

All requests are totally ordered by priority, similar to

the RA algorithm. A process receiving a “REQUEST”

message can immediately determine whether the

requesting process or itself should be allowed to enter

the CS first.

Multiple uses of REPLY messages:

1. A REPLY message acts as reply from a

process that is not requesting.

2. A REPLY message acts as a collective reply

from processes that have higher priority

requests.

A REPLY (Rj) message from Pj indicates that Rj is the

“REQUEST” that Pj had last made and for which it

executed the CS. This indicates that all “REQUEST”s

which have priority>=the priority of Rj have finished

CS and are no longer in contention. When a process Pi

receives REPLY(Rj), it can remove those

“REQUEST”s whose priority >= priority of Rj from its

local queue. Thus, a REPLY message is a logical reply

and denotes a collective reply from all processes that

had made higher priority requests.

Uses of FLUSH message:

A process sends a FLUSH message, after executing

CS, to the concurrently requesting process with the

next highest priority (if it exists). At the time of

entering CS, a process can determine the state of all

other processes in some possible consistent state with

itself. Any other process is either requesting CS access

whose requesting priority is known, or not requesting.

At the time of finishing CS execution, any process Pi

knows the followings:

1. Processes with concurrent lower priority (than

Pi's) requests in Pi's local queue are waiting to

execute CS.

2. Processes, which have sent REPLY to Pi for

Ri, are still not requesting, or are requesting

with lower priority (than Pi's).

3. Processes, which have requested concurrently

with Ri, having higher priority are not

requesting or are requesting with lower priority

(than Pi's).

The “REQUEST”s received from processes identified

in 2 and 3 are not concurrent with Ri, the “REQUEST”

for which Pi just finished executing CS. Such

“REQUESTS” which are received by Pi before

finishing CS, are deferred until Pi finishes its CS. Pi

then sends a REPLY to each of these deferred

“REQUEST”s as soon as finishing its CS. Thus, after

executing CS, Pi sends a FLUSH(Ri) message to Pj

which is the concurrently requesting process with the

next highest priority. For each process Pk identified in

2 and 3 that is requesting, its “REQUEST” defers until

4

Pi leaves the CS, at which time Pi sends Pk a REPLY.

With this behavior, Pi gives permission to both Pj and

Pk that it is safe to enter CS with respect to Pi. Pj and

Pk will have to get permission from one another, and

the one with higher priority will enter the CS first.

Similar to the Ri parameter on a REPLY message, the

Ri parameter on the FLUSH denotes the ReqID, i.e.,

priority, of the “REQUEST” for which Pi just executed

CS. When a process Pj receives FLUSH(Ri), it can

remove those “REQUEST”s whose priority >= priority

of Ri from its local queue. Thus, a FLUSH message is

a logical reply and denotes a collective reply from all

processes that have made higher priority requests.

Multiple uses of “REQUEST”s:

Process Pi attempting to invoke mutual exclusion

sends a “REQUEST” message to all other processes.

Upon receipt of a “REQUEST” message, process Pj

that is not requesting sends a REPLY message

immediately. If process Pj is requesting concurrently,

it does not send a REPLY message. If Pj's

“REQUEST” has a higher priority, the received

“REQUEST” from Pi serves as a reply to Pj. Pj will

eventually execute CS (before Pi) and then through a

chain of FLUSH/REPLY messages, Pi will eventually

receive a logical reply to its “REQUEST”. If Pj's

“REQUEST” has a lower priority, then Pj's

“REQUEST”, which reaches Pi after Pi has made its

own “REQUEST” serves as a reply to Pi's

“REQUEST”. After Pi executes the CS, Pj will receive

a logical reply to its “REQUEST” through a chain of

FLUSH/REPLY messages. Thus, in the proposed

algorithm, concurrent “REQUEST” messages do not

serve just the purpose of requesting. They are also

some form of REPLY messages. The “REQUEST”

sent by Pi acts like an explicit reply to Pj's

“REQUEST” if Pi's “REQUEST” has a lower priority

than Pj's “REQUEST”. In the proposed algorithm as

outlined above, a “REQUEST” message has three

purposes, as summarized below. Assume that both Pi

and Pj are requesting concurrently. Moreover, assume

that the “REQUEST” of Pi has a higher priority than

the “REQUEST” of Pj.

1. A “REQUEST” message serves as a request

message.

2. The “REQUEST” message from Pi to Pj: This

“REQUEST” message to Pj indicates to Pj that

Pi is also in contention and has a higher priority.

In this case, Pj should await FLUSH/REPLY

from some processes.

3. The “REQUEST” message from Pj to Pi: This

“REQUEST” message to Pi serves as a reply to

Pi.

Thus, no REPLY is sent when the “REQUEST”s are

concurrent. In the proposed algorithm, a process Pi

requesting CS sending a “REQUEST” to other

processes, gets permission from process Pj, in one of

the following ways:

- Pj is not requesting; Pj sends REPLY to Pi.

- Pj is concurrently requesting with a lower priority:

- Pj's “REQUEST” serves as the reply from Pj.

- Pj is concurrently requesting with a higher priority:

- Pj's “REQUEST” indicates that Pj is also in

contention with a higher priority and that Pi should

await FLUSH/REPLY, which transitively gives

permission to Pi. A FLUSH(Rk) or a REPLY(Rk)

message, where

Pr(Ri)<Pr(Rk)<=Pr(Rj), serves as permission from Pj

to Pi

3.3 New Algorithm

After crashing each process in queue, either the system

gets loaded or after a period there will be an election

and the new system will be chosen. Now the suggested

algorithm starts the recovery in the following steps, so

that the lost information including queues and related

flags to CS will be recovered. Thus, the related system

turns back to its normal position. Steps of this

algorithm are:

a. All of the processes, which are in the newly created

system, send a message that introduces itself and also

means that there is a new epoch.

b. All the clients after receiving the “NEWEPOACH”

message understand that there is a new system in the

distributed system and each of them depending on its

situation may send the following answer:

1. The clients that are neither in CS nor have

request for that, send the message of having no

request (it can be omitted in improved

condition). And processes do not do anything

for theses kinds of messages.

2. Clients that are in CS send the “IN-REGION”

message including number of clients and name

of CS.

3. Clients that are not in CS but want to enter and

have not received the “OK” message should

send another request to other processes. This

message includes number of the client, name of

the CS it they want to enter and the time-stamp

that is related to first request. All other related

processes after receiving the message arrange

them according to their time-stamp and enter

them to the queue which is related to that CS.

Therefore, after receiving requests messages

from all clients, queues of the previous system

will be formed in the new one. We must say that

it is necessary to save the time-stamps of

processes.

c. The distributed system checks if there is any reset

flag with void queue in the system or not. There

should be nothing. if there is one, the “OK” message

will be sent to the process at the beginning of the

5

queue. So the new system can continue instead of the

old one.

Fig 2: Timing chart for 3 processes when P1 dies.

Fig.2 shows process P1 is permitted to enter CS but it

is dead in there. After first watch dog timer activation

t7, t8, and t9 are the times that have “AYA”2

messages. And after second watch dog timer the vector

from t10 to t11 is for “OK” message because P2 has

sent “REQUEST” message to P3. In improved case it

is not necessary because P2 received this message

previously.

Fig 3: Similar to Fig.2 but P1 is alive.

Fig.3 is similar to fig.2 but here P1 is alive and active

in CS for a long time. It sends the “IN-REGION”

message to P2 and P3.

The figures show what happens when two processes in

race want a resource which has a CS, in two cases: the

first case, when every process, that is in CS, dies in the

CS, and another when the process that is in CS is still

alive and its job continues.

3.4 Scenarios

Scenario 1: If the process in CS finishes its activity in

it CS and immediately after receiving the “RELEASE”

message receives the “NEWEPOCH” message, it

sends the message of not having request instead of

sending the “IN-REGION” message. And immediately

after that sends the “RELEASE” message because now

the new system is working.

Scenario 2: After sending the “NEWEPOCH” message

by processes in the new system as the first step of the

new algorithm, if one of the clients receives the

2

Are You Alive?

“RELEASE” message, all of these kind of messages

mean having no request up to the end of algorithm.

3.5 Two suggestions for improvement

As answer of “NEWEPOCH” messages, those clients

that are neither in CS nor have request for that can

send no message. So, the processes in the system have

enough time to wait for messages of clients

(depending on network structure). Thus there are only

messages of clients in CS or requesting. As a result the

number of messages decreases vastly.

In addition it is better to use transaction as our

messages because the processes do not need saving

their requests and they can recover their requests

without using anything. Because a transaction that is

sent by a process is either committed or abort. If it is

committed then that is OK other wise its characterize

will be kept safely. The new algorithm is represented

in fig.4.

4. EVALEUATION

4.1 Algorithm Analysis

In this method, there are four different time units till

the system turns into its normal condition:

-Time used to reset previous system

-Time used to broadcast the “NEWEPOCH” messages.

-Required time for receiving messages of all clients.

Of course, after improving the system this period will

change to the period of time that should be spent while

waiting to receive messages some of the clients.

- Processing to arrange the system

As it is mentioned, spent time in part 1 and 2 is needed

in basic algorithm because resetting the system is

related to base algorithm.

About the time that should be spent on part 3,

generally when any server crashes and wants to start

working again, it must send some information to

others as soon as rebooting. This info includes server

name and its accessing address, which are added to

“NEWEPOCH” message and broadcasted to all of the

clients. So, there is only one thing which is added to

the message in ‘Piggy banking’ way. In this part, there

are exactly N messages distributed in net and its

distribution time is essential. The period of time that

was spent in step 3, is not in the normal decentralized

algorithm but it is added to the new algorithm. This

time is equal to the time needed for broadcasting a

message on the net for all the clients. In the worst case,

the message will be broadcasted to N clients and in

best cases (after improvement) the number will be

reduced.

Generally, the number of messages to start the new

system in the worst condition is 2N but after

improvement it is less than 2N, more than N. This

number in centralized algorithm is only N, [4].

6

Initial local state for process Pi

int My_Sequence_Numberi=0

int ReplyCounti=0

array of boolean Rdi[j]=0, For all j E {1..N}

int Highest_Sequence_Number_Seeni=0

FRk=0.

InvMutEx: Process Pi executes the following to invoke mutual exclusion:

1- My_Sequence_Numberi = Highest_Sequence_Number_Seeni + 1

2- Make a REQUEST(Ri) message, where Ri = (My_Sequence_Numberi, I)

3- Send this REQUEST message to all the other processes

4- ReplyCounti =0

5- RDi[k]=0, For all k E {1..N}

6- For all processes save the above parameters.

RcvReq: Process Pi receives message REQUEST(Rj), where Rj=(SN, j), from process Pj:

1- If Pi is requesting then there are two cases:

- Pi's REQUEST has a higher priority than Pj's REQUEST

In this case, Pi sets RDi[j]=1 and

Highest_Sequence_Number_Seeni =max(Highest_Sequence_Number_Seeni,SN)

- Pi's REQUEST has a lower priority than Pj's REQUEST. In this case, Pi sends a REPLY to Pj

2- If Pi is not requesting then it sends a REPLY message to Pj.

RcvReply: Process Pi receives REPLY message from Pj:

1- ReplyCounti=ReplyCounti + 1

2- If (CheckExecuteCS) then (execute CS and set Flag)

3- All process sends AYA and Pi Sends a IN-REGION to all of them (Watch dog timer)

4- If Not IN-REGION message then (NEWEPPOACH and for i+1 RcvReply execute)

For all processes (that send REQUEST) send again REQUEST by preview Time-stamps.

FinCS: Process Pi finishes executing CS:

1- Send REPLY to all process Pk, such that RDi[k]=1.

CheckExecuteCS: if (ReplyCounti=N-1) then return true else return false.

Fig.4: Ricart & Agrawala's Distributed Algorithm

Analyzing New Algorithm in Specific Conditions:

Reaction of the system in all conditions, in which

processes are active, is very close to decentralized

algorithm. But for some specific conditions that

system is not restarted, analyses are as following:

If while the system is not active one of the clients

whose request is in CS gets crashed, according to the

algorithm all of the informations get recovered. It

means, even if the client does not work, algorithm can

easily support this condition. When the system is down

for a while, if a client, who is owner of that CS, leaves

there according to algorithm Recart- Agrawala, client

sends a “RELEASE” message to other processes and

because the process that crashed is not working, it can

not send the message. So, after resenting of

“RELEASE” message, the client realizes that the

process has crashed, and will not send “RELEASE”

message. Instead as answer to “NEWEPOCH” it sends

nothing message and this answer in new system will

cause having flag that is not active and also not having

void queue, for that CS.

If before the clients’ requests a “NEWEPOCH”

message is received, algorithm works currently too.

Because after receiving the “NEWEPOCH” message

the client realizes that a new system has came up. To

improve using method ‘piggy banking’ the client

should send its request as an answer for

“NEWEPOCH” having a previous request with

present time-stamp.

4.2 Proof

As static point’s of view, at any moment a client is a

manager or coordinator of CS, like centralized

algorithm. Therefore, we consider a simple moment in

system with a coordinator, which is in-region process,

and other as clients.

In this subsection, it will be proved that the new

algorithm makes DMX algorithm more fault tolerant.

Therefore, it can be inferred that the new algorithm

works accurately to make a robust DMX algorithm.

To do so, it should be proved that the set of data before

coordinator crash, data in old coordinator, and after

that, data in new coordinator, is correspondent. First,

we will survey the correspondence of old coordinator’s

data with the systems’ CS-related data. Second, The

equality of systems’ CS-related data with new

coordinator’s data will be surveyed (according to new

algorithm’s routine). Finally, considering the crash

time, the fault tolerance of coordinator will be gain.

We consider the system processes as set S; the old

coordinator’s data as set C and the new coordinator’s

data as C’. However, the set S includes three sub set of

clients’ data (clients in three states: in-region,

requesting and unrelated).

As data structure, each coordinator has a queue to

store requests of processes and a flag, which saves the

in-region process name3.

3

We consider that the coordinator and network platform are safe

and sound. So they are not virus or something destructive.

7

Then we have, S={S1,S2,S3}
Such that, S1 = {Pi | Pi is in_region, P is a process}

 S2 = {Pj | Pj is requesting}

 S3 = {Pk | (Pk S1) & (Pk S2)}
It is observable that set S is partitioned by S1, S2 and

S3. Therefore, S3 = S – (S1 S2) = S1’ S2’

Also, C = {C1,C2,C3}

 C1 = {Pi | Pi C_flag, P is a process}

 C2 = {Pj | Pj C_queue, P is a process}

 C3 = S – (C1 C2)
Because the old coordinator was working accurately

before its crash, the CS info in distributed system was

in old coordinator. In the other words, in-region

process’s name is in coordinator’s flag and each

requesting process’s name is in the coordinator’s

queue.

Therefore, we have, S1 = C1
 S2 = C2

So, S3 = S – (S1 S2) = S – (C1 C2) = C3
Thus, all of the coordinator’s info is correspondent

with system’s CS-related info.

S={S1,S2,S3}={C1,C2,C3}=C
C’ = {C1’,C2’,C3’}

In the other hand, according to C’ definition we have,

C1’ = {Pi | Pi C’_flag, P is a process}

C2’ = {Pj | Pj C’_queue, P is a process}

C3’ = S – (C1’ C2’)
The new coordinator has gathered its data using new

algorithms steps. After sending a “New Epoch”

message in step one of new algorithm, according to

step 2.a in-region process sends an “In-region”

message to new coordinator as an answer. And the

new coordinator sets its flag with system’s in-region

process name. So, C1’ = S1

In addition, according to new complementary

algorithm step2.b those processes, which have sent a

request to old coordinator and now are blocked, send

request with previous time-stamp again (to new

coordinator). Therefore, requesting or blocked

processes in system will have a request in new

coordinator’s queue. So C2’ = S2

Thus, C3’ = S – (C1’ C2’) = S – (S1 S2) = S3
Therefore, C’ = {C1’,C2’,C3’} = {S1,S2,S3} = S

According to two main results above, we have:

C’ = S & S = C C = C’
In result, the data in old coordinator is correspondent

with the data in new coordinator, which is gathered

with new complementary algorithm. Therefore, the

new algorithm can recover the lost data or system.

Fault Tolerance

With considering the crash time as T0, the old

coordinator was working accurately at T1 exactly

before crash, where T1<T0. In addition,

reestablishment time of new coordinator is T2 (after

running new algorithm leading to fully recovery),

where T0<T2. Thus, we have T1<T0<T2.

The data in old coordinator at T1 is set C and the data

in new coordinator at T2 is set C’. As proved before,

we have C=C’. Therefore, the system works correctly

and continuously before and after crash. In result

system is Fault-Tolerant.

5. CONCLUSION

One of the original goals of making distributed

systems is to make them more reliable than single-

processor systems. The idea is that if a machine goes

down, some other machine takes over the job. In other

words, theoretically the overall system reliability could

be the Boolean OR of the component reliabilities.

Of all the distributed mutual exclusion algorithms in

the literature, only the non-token based algorithms of

Lamport [6] and Ricart-Agrawala [5], RA, are not

reliable in the sense described above.

We presented a reliable mutual exclusion algorithm for

distributed systems with asynchronous message

passing. The savings in message complexity was

obtained by exploiting the concurrency of requests and

assigning multiple meanings to the requests and replies

whenever there are concurrent requests. However, this

is also a drawback of Lamport's algorithm and the RA

algorithm. The following improvements can be made

to the algorithm. The first improvement saves on the

number of “REPLY” messages. A process Pi on

finishing CS (procedure FinCS) sends a FLUSH to the

concurrently requesting process with the next highest

priority (if it exists) and REPLYs say m, to the

processes whose “REQUEST”s were deferred. By

examining these “REQUEST”s, Pi can determine the

relative order in which these processes will execute

CS. Using this fact, the following optimization can be

made. Assume Pk has the highest priority among these

“REQUEST”s. Pi can send “REPLY” just to Pk,

apprising Pk of all the information Pi has gathered.

Thus Pi can avoid sending upto m (worst case is m-1)

messages. Now it is Pk to take care of the rest.

However, this optimization requires a significant

increase in message sizes and local data structures.

Second way to save the number of “REPLY”

messages is by treating deferred “REQUEST”

messages as concurrent to the next “REQUEST” of

this process (although they are not truly concurrent by

definition). If the process exiting the CS knows that it

will request CS soon, it can keep deferred

“REQUEST” as deferred until it makes its next

“REQUEST”. At that time, its “REQUEST” acts as a

REPLY to the deferred “REQUEST”, and the deferred

“REQUEST” act a REPLY to its “REQUEST”. This

optimization could slow down the computation at

processes. A third improvement is as follows: The

HSNS behaves as a global function of the sequence

8

number of requests and is used as a determinant of the

priority of each request for CS entrance. Now fair

algorithm satisfies requests in order of decreasing

priority. In the presented algorithm, HSNS is a

parameter only on “REQUEST” messages, akin to the

Lamport and the Ricart-Agrawala algorithm. In order

that the priority is determined most fairly, taking into

account the transitive causality relation among events

induced by all messages exchanged, the HSNS can be

introduced as a parameter on all algorithm messages.

As it was mentioned in this essay a new algorithm for

improving the decentralized algorithm from different

methods of mutual exclusion was introduced.

According to this algorithm after crashing of any

related process, the system can easily recover the lost

data including the concept of the queues and the flags

that are related to CS, in the previous system. And also

the new algorithm increased the fault tolerance and the

negative effect of single point of failure for all

processes that cause the whole system not to work is

removed. Therefore now, the system is more reliable

and totally the system has reached more reliability. But

beside all this advantages there is only one

disadvantage, and that is, the system has to spend a

little more expense and it is because of more massages

that should be distributed on the network. The number

of extra massages in comparison of decentralized

algorithm is maximum N. The final conclusion is that

after adding this suggested algorithm to a

decentralized algorithm, in specific period of time that

one of the process is crashed, new decentralized

algorithm never stops working.

Future works:

This algorithm can be applied in distributed operating

systems, as is discussed in all of the distributed

operating systems texts [1], and distributed

programming cases [10,11]. For example in java

programming it maybe used to create the CS for

common resources that are objects or classes [9]. In

these cases, we must define a class for managing the

CSs. Another applications are: 3D and animation [23],

for example in a game net an object is shared between

N players and so they are in race over the CSs for

winning. Finally Internet that is a semi distributed

system. In Internet, there are a lot of common

resources and other conditions to create the mutual

exclusion. However we can use the presented

algorithm in very sensitive or non-sensitive distributed

systems.

REFERENCES
[1] Tanenbaum, A.S., and Steen M.V.: “Distributed Systems

Principles and Paradigms,” Prentice-Hall International, Inc, 2002.

[2] Tanenbaum, A.S.: ”Distributed Operating Systems,” Prentice-

Hall International, Inc, 1995.

[3] Sanders, B.A.: “The Information Structure of Distributed Mutual

Exclusion”, ACM Trans. On Computer Systems, vol. 5, pp. 284-299,

Aug. 1987.

[4] Agrawal, D., and El Abbadi, A.: “An Efficient and Fault-

Tolerant Solution of Distributed Mutual Exclusion”, ACM Trans. on

Computer Systems, vol. 9, pp. 1-20, Feb. 1991.

[5] Ricart, G., and Agrawala, A.K.: “An Optimal Algorithm for

Mutual Exclusion in Computer Networks”, Commun. of the ACM,

vol. 24, pp. 9-17, Jan. 1981.

[6] Lamport, L.: “Time, Clocks, and the Ordering of Events in a

Distributed System”, Commun. of the Acm, vol. 21, pp. 558-564,

July 1978.

[7] Maekawa, M., Oldehoeft, A.E., and Oldehoeft, R.R.: “Operating

Systems Advanced Concepts”, Menlo Park, CA: Benjamin/Cumings,

1987.

[8] Lamport, L.: “Concurrent Reading and Writing of Clocks”,

ACM Trans. on Computer Systems, vol. 8, pp. 305-310, Nov. 1990.

[9] Andrews, G.: “Foundations of Multithreaded, Parallel, and

Distributed Programming”, Reading, MA: Addison Wesley, 2000.

[10] Singhal, M.: “A Taxonomy of Distributed Mutual Exclusion”, J.

Par. Distr. Comput., vol. 18, no. 1, pp. 94-101, May 1993.

[11] Maekawa, M.: “A Square-root(N) Algorithm for Mutual

Exclusion in Decentralized Systems”, ACM Trans. Comp. Syst., vol.

3, no. 4, pp. 145-159, May 1985.

[12] Michel, T., and Housni A.: “Comparison of Techniques used in

Prioritized Mutual Exclusion by Groups”, Int. Conf. on Par. and

Dist. Comput. PDCAT 2001.

[13] Baldoni, R., Virgillito, A., Petrassi, R.: “A Distributed Mutual

Exclusion Algorithm for Mobile Ad-Hoc Networks”, IEEE,

Proceedings of the 7th Int. Symposium on Computers and

Communications (ISCC’02), 2002.

[14] Toyomura, M., Kamei, S. and Kakugawa, H.: “A Quorum-

Based Distributed Algorithm for Group Mutual Exclusion”, IEEE

Trasns. On Distr. and Par. Sys., 2003.

[15] Lodha, S. & Kshemkalian, A. “A Fair Distributed Mutual

Excolsion Algorithm”, IEEE Transaction, On Parallel And

Distributed System, June 2000, Vol 11, No. 6, PP. 537-549.

[16] M. Naimi, M. Trehel, and A. Arnold, “A log(N) Distributed

Mutual Exclusion Algorithm Based on Path Reversal”, J. Parallel

and Distributed Computing, vol. 34, pp. 1-13, 1996.

[17] Singhal M., “A Heuristically Aided Algorithm For Mutual

Exclosion In Distributed Systems”, IEEE Transaction On

Computers, May 1989, Vol. 38, No. 5, PP. 651-662.

[18] Suzuki I. And Kasami T., “A Distributed Mutual Exclosion

Algorithm”, ACM Transaction On Computer Systems, Nov 1985,

Vol. 3, No. 4, PP. 344-349.

[19] K. Raymond, “A Tree-Based Algorithm for Distributed Mutual

Exclusion”, ACM Trans. Computer Systems, vol. 7, pp. 61-77, Feb.

1989.

[20] M. Singhal, “A Dynamic Information Structure Mutual

Exclusion Algorithm for Distributed Systems”, IEEE Trans. Parallel

and Distributed Systems, vol. 3, no. 1, pp. 121-125, Jan. 1992.

[21] Y. Yan, X. Zhang, and H. Yang, “A Fast Token- Chasing

Mutual Exclusion Algorithm in Arbitrary Network Topologies”, J.

Parallel and Distributed Computing, vol. 35, pp. 156-172, 1996.

[22] Maffeis s., Schmidet D.C., “Constructing Reliable Distributed

Communication Systems with CORBA” IEEE Magezine on

Communications, vol. 14, No. 2, Feb. 1997.

[23] Mazzacano f., ”A Reliable Multicast Protocol for a Distributed

System”, thesis, Boston College Computer Science Department

,2003.

