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COBOS: Cooperative Backoff Adaptive
Scheme for Multirobot Task Allocation
Cheng-Heng Fua, Student Member, IEEE, and Shuzhi Sam Ge, Senior Member, IEEE

Abstract—In this paper, the cooperative backoff adaptive scheme
(COBOS) is proposed for task allocation amongst a team of hetero-
geneous robots. The COBOS operates in regions with limited com-
munication ranges, and is robust against robot malfunctions and
uncertain task specifications, with each task potentially requiring
multiple robots. The portability of tasks across teams (or when
team demography changes) is improved by specifying tasks using
basis tasks in a matrix framework. The adaptive feature of COBOS
further increases the flexibility of robot teams, allowing robots to
adjust their actions based on past experience. In addition, we study
the properties of COBOS: operation domain; communication re-
quirements; computational complexity; and solution quality; and
compare the scheme with other task-allocation mechanisms. Real-
istic simulations are carried out to verify the effectiveness of the
proposed scheme.

Index Terms—Cooperative backing off, disjoint networks, fault
tolerance, multirobot tasks, task allocation.

I. INTRODUCTION

ANUMBER of schemes have been proposed for fault-tol-
erant multirobot task allocation in ST-SR-IA1 domains.

A well-known architecture is ALLIANCE [2] (and extended
with parameter adaptivity in L-ALLIANCE [3]), which inte-
grates impatience and acquiescence into each robot. Another
approach is the broadcast of local eligibility (BLE) technique [4]
that uses cross inhibition of behaviors between robots in a team.
A task-assignment architecture that uses task templates and the
prioritization of task instances in a task-assignment planner has
been proposed [5] for transportation applications in unknown,
but static, environments. The M+ protocol [6] has a task-allo-
cation layer, with the negotiation process based on the contract
net protocol.

Auctioning schemes using explicit communications have
been used in various forms in allocation schemes. Robust
multirobot cooperation may be achieved through the use of
market-based approaches [7], [8]. A dynamic role-assignment
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1For convenience, we use the notations proposed in [1] (ST-MR-IA: single-
task robots, multirobot tasks, instantaneous assignment systems; SR: single-
robot tasks; TA: time-extended assignment).

TABLE I
NOMENCLATURE

scheme that represents roles as control modes in hybrid au-
tomatons has also been proposed [9]. MURDOCH [10] uses an
auctioning approach with a publish/subscribe communication
model. A role-assignment strategy based on multithreaded
computer programming was used to resolve any risks and
conflicts that may arise during dynamic role swapping [11].
In cases where communication losses are considered (e.g., in
MURDOCH [10]), it is often assumed that persistent com-
munication loss implies robot failure, when in fact the robot
may still be performing the task adequately. For instance, for
reconnaissance missions, due to security and practical issues,
communication ranges for robots may be intentionally reduced.
Thus, in the absence of team-wide communications, robots
should be able to respond appropriately.
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For domains with MR tasks, coalitions may be formed [12].
However, with uncertain (and/or incomplete) task specifica-
tions, the evaluation of team effectiveness is impaired. Consider
the task of clearing an obstructing rock detected during a mis-
sion. It is difficult for a remote user to determine, using only
sensor information (e.g., video), the exact weight of the rock,
and the number of robots required, which may vary across
different teams. It is also beneficial to use a robot’s history of
failures to assess and determine which of its onboard capabili-
ties is the most likely cause of failures. A number of research
papers, such as [10] and [13], have considered the issue of
adapting to robot malfunctions. However, fault detection based
on equipment access (e.g., in [13]) may not be applicable, such
as when a resource suffers from diminished capability (e.g., a
worn-out gripper that reduces its ability to carry heavy loads)
and the robot still has continued access to the resource.

The main contributions of this paper are: 1) a matrix-based
approach proposed for specifying tasks (accounting for task de-
pendencies and alternative methods of performing tasks) using
basic task-achieving behaviors. It improves the portability of
tasks across different robot teams and allows robots to make
use of task success/failure histories to detect and adapt to device
imperfections and malfunctions; and 2) fault-tolerant task allo-
cation is achieved using a cooperative backoff adaptive scheme
(COBOS),2 designed to improve robot autonomy in ST-MR-IA
domains with uncertain task specifications, and with disjoint
communication networks.

Remark 1.1: “Backing off” that is used in communications
(e.g., IEEE 802.11 networks) is competitive [19]. Conventional
backing off cannot solve the problem considered here. For ex-
ample, consider a system with one task. A robot that fails at the
task will first back off, and continue attempting the task after
each backoff period. The same will occur for any robot that
claims and fails at the task after robot 1 backs off. This causes
the robots to vie for the task, instead of cooperating. In contrast,
COBOS explicitly synthesizes cooperation into the system.

II. COOPERATIVE BACKOFF ADAPTIVE SCHEME (COBOS)

The following assumptions are made in this paper.
Assumption 1: A robot determines the task status of tasks

handled by robots it is currently in contact with via wireless
broadcasting. A task’s status indicates whether a robot has
started the task, or it has been completed. A robot broadcasts
its current activities for this purpose. The broadcasting range
of each robot is limited and finite. If a robot loses contact with
another, and cannot ascertain a task’s current status, the robot
will keep the task status unchanged, until communication links
are established again.

Assumption 2: The generation of tasks is entirely random,
and no a priori planning is possible. This is true for robot op-
eration in unstructured and dynamic environments where con-
ditions fluctuate greatly, and only instantaneous assignment is
possible.

2Deliberative cooperation is examined in this paper, and only the task-allo-
cation layer is considered. The robots are assumed to possess lower level be-
haviors (e.g., [4] and [5]) to carry out their allocated tasks while satisfying task
constraints. A comprehensive overview of issues in multirobot cooperation may
be found in [1].

Fig. 1. Existence of subnetworks in workspace due to deep fading and signal
attenuation.

A. Disjoint Broadcast Networks

In real life, communications may face persistent losses
(e.g., due to deep fading or large interferences), causing loss
of contact over extended time periods, and is the problem
that COBOS is concerned with. Another form occurs when
robots are within the same broadcast region and experience
temporary packet losses. Most work dealing with communi-
cations imperfections deal with the second type, which may
be solved through more frequent auctioning (e.g., in [13]) and
with standard communications protocols. Furthermore, a loss
of access to communications does not necessarily imply device
failure. It has important implications on task allocations, and is
thus treated in detail in this paper.

Let for be dis-
joint subnetworks of the workspace , and is the number
of subnetworks. Each is a network resulting from the sepa-
ration of robots from the main broadcasting network. Since the
subnetworks arise due to the locations of each task, these loca-
tions are related to one of the subspaces, i.e., , where

is the location where is to be conducted (shown in Fig. 1).
Furthermore, information regarding a new task is obtained only
when a robot is in , where the user is located, or another robot
that has claimed the new task enters the subnetwork. For over-
lapping subnetworks, rebroadcasting of information by robots
may be done. However, disjoint subnetworks may still exist at
different locations due to reasons cited earlier, and the formula-
tion still holds.

B. Formal Description of Tasks

The COBOS is implemented on each robot in the team. Each
robot makes use of sensor information (including broadcasted
information) to construct and adapt its internal models (shown
in Fig. 2). The task model consists of the properties and descrip-
tions of tasks robot is currently aware of. The task description
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Fig. 2. Elements of each robot’s internal models.

aims to make the information regarding basic task-achieving be-
haviors required for individual tasks readily available to robots.3

Although similar to task abstractions [7], the proposed approach
allows explicit specification of the capabilities a robot must pos-
sess to be eligible for a task. This would mean the decomposition
of each primitive task into even smaller subtasks (capabilities),
with the constraint that they must all be achievable by one robot.
The proposed representation improves the handling of informa-
tion regarding robot capabilities, alternative ways of performing
tasks, and task dependencies.

Definition 2.1 (Basis Tasks): Basic high-level tasks (or be-
haviors) out of which other, more complex tasks may be com-
posed. Basis tasks may also be seen as basic abilities, motor
schemas [21], or resources [10].

Definition 2.2 (Macro Tasks): Complex tasks that are com-
posed from basis tasks. These will be referred to as “tasks” for
the remainder of the paper.

A task is defined as a quadruplet , and
the individual elements are described as follows.

1) Operator : Let be the known set of basis tasks,
each accepting its own list of arguments (which may be sets
of coordinates, areas to explore, etc.), available for task specifi-
cation, such that . It may not
reflect only the capabilities of current members of the team,
and can encompass a larger set of basis tasks. The basis tasks
and the corresponding list of arguments is cast in vector form
as and , respec-
tively. A task is composed of a combination of basis tasks,
i.e., , and is written as

for and (1)

with and its th element defined as

if requires
otherwise.

(2)

Equation (1) may be interpreted as , under ( ) , requires
all the basis tasks for which , and accepts as

3There are several ontological issues involved in task specification and com-
bining basis tasks. However, for our purposes here, we are mainly interested in
the problem of allocating a set of tasks (already specified) to a team of robots. As
such, what is proposed here acts to constrain the type of information required,
and is a general structure that users may follow when specifying tasks for the
robot team.

arguments. For simplicity, will be omitted from task speci-
fications in this paper. The operator acts like the matrix mul-
tiplication, except that the result is a set of the required basis
tasks. This facilitates the manipulation and use of task informa-
tion through normal matrix operations.

The nature of a task refers to the generic type of task that
it belongs to, and the related abilities (perhaps in varying de-
grees) required of robots. For instance, two tasks, both involving
grasping and lifting an object (of different weights), are of the
same nature, i.e., both are picking-type tasks. Tasks are decom-
posed into two main parts, the nature and the details of the task,
characterized by and , respectively. A more general task is
stated as

...

(3)

where

for

for and (4)

and is the set of tasks that must be performed before can
be activated, and is indicated by . operates on the
and matrices to form an vector, and the th element
of in (3) is given by . The sign means that
any robot possessing all the capabilities specified in any of the
sets, (referred to as submacro tasks), will be able to handle

.
Consider a mission that requires a gathering task to bring ob-

jects to a point A, and the transportation of these objects from
point A to B across a river. These two tasks may be specified as

search(Area) land current, A)
Area

current, A

with

search(Area) land

water surface Flight

water surface

Flight

where in the matrices is not considered. may be com-
pleted by a robot that is able to transport a load either across
water or through air, but it is not necessary for a robot to have
both capabilities.
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2) Expected Maximum Task Durations: The expected max-
imum duration of a task, , is specified by the user. When
the task is not completed after , it means that either the sub-
team assigned to the task may have encountered problems and
have possibly failed, or none of the robots are doing the task.
Such tasks will be referred to as lapsed tasks. This triggers a re-
allocation, and either replaces or enlarges the current subteam.
The deadline will then be reset, and the new team will be given

to complete the task.

C. Task Suitability Matrices (TSM)

The set of tasks a robot is aware of may be partitioned into
three ordered sets: 1) priority tasks ; 2) active tasks ; 3)
archived tasks . Tasks with precedence requirements are
put in , while the preceding tasks are included in .
consists of high-priority tasks. Any new task that a robot re-
ceives during the mission will be added, according to its pri-
ority, into one of the task sets. The tasks may be written as

with a total of tasks, which may
be larger than the total number of robots in the system.

The task suitability matrix (TSM), i.e., the team model, re-
flects the suitability levels each robot has for each task in .
Task suitability is defined as follows.

Definition 2.3 (Task Suitability): The suitability of a robot
for performing a certain task, based on the set of intrinsic ca-
pabilities it possesses and the abilities required for successful
execution of that task. The computation of suitability levels will
be detailed in the subsequent parts of this section.

Remark 2.1: Task suitability is slightly different from how
utility is normally used. Instead of predicting the expected solu-
tion quality a robot-to-task allocation yields, suitability reflects
how qualified a robot is in performing a certain task, based on
the capabilities it possesses.

Each robot in the team maintains its own TSM (of size
), where is the current number of robots that detects

(based on communications). The number of robots in the system
is not assumed to be fixed. Thus, a robot expands its TSM when
it detects new robots. The suitability of for each basis task in

may be specified in advance as , with
for . The suitability of robot

with is an average of the suitabilities the robot has with the
basis tasks needed by . If a task has more than one submacro
task, suitability is given by the maximum suitability the robot
has with the submacro tasks

TSM
otherwise

(5)

where is the th element of , and reflects the
suitability of for . The matrix is given by

if for

otherwise (6)

where and for
. The values of are initialized to 1 and

Fig. 3. Components and phases of the COBOS.

adapted during runtime. The combined matrix
is the effective suitability of for the basis tasks in . Each
robot will broadcast its suitability for each of the tasks, and also
updates its according to received values. It also broad-
casts the task that it chooses to perform, , together with any
related information (such as ). If there are more tasks than
available robots, higher priority tasks will be serviced first by
using a submatrix of the TSM.

Remark 2.2: Suitability is calculated based on the compati-
bility of a robot’s intrinsic abilities to the nature of the task, and
involves only . Extrinsic factors, such as time and distance,
may be incorporated through . For example, the distance of
a robot to the transportation task (Section II-B) may be com-
puted using the second argument to land . A number
of approaches (e.g., MVERT [22]) based largely on metrics such
as distance have been proposed. Different utility values can be
combined via a weighted summation. However, this complicates
computation, since different tasks demand different kinds of cal-
culations, and it is practically difficult to estimate factors like
task-completion time to allow meaningful comparison of met-
rics computed by different robots, especially if task information
is uncertain.

D. Fault Tolerance and Uncertain Task Specifications

COBOS consists of the allocation and the recruitment phases
(Algorithms 1 and 2), and the main structure is shown in Fig. 3.
The idle task (at ) may be a gathering point near the user.
For a robot , the lapsecounter keeps track of the amount
of time that has elapsed since it received , records
the number of robots that have attempted , and
is initialized to one, visitinglist is an ordered list (in as-
cending priority, with as the first in the list) of tasks that has
lower priority than . The flag recruitFlag indicates if a
task is a recruiting task. The number of robots required for a
task, , is initialized to one.

Robots enter the allocation phase when: 1) the tasks under
consideration change (when new/recruiting tasks are detected in
the subnetwork, or tasks are completed/leave the subnetwork);
or 2) one or more tasks a robot is currently considering has
lapsed. A robot first examines the lapsed tasks it has detected,
and enters the backoff process to adjust the number of robots
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required for (lines 7–14 of Algorithm 1), and adapt to un-
certainties in ’s specifications. If a robot is the first to fail at
completing a task, it backs off by setting its suitability for that
task to , and lets other robots attempt this task. If the first
robot is unsuitable for the task, the second robot will succeed.
Otherwise, it is highly probable that more robots are needed for
the task, and increases . Robots that are not allocated any
tasks return to (line 34 of Algorithm 1), where lapsed tasks
in all subnetworks are considered (lines 2 and 3 of Algorithm 1),
and will be deployed to these tasks.

Algorithm 1 COBOS Allocation Phase
1: if ( is in ) then
2: Broadcast all detected lapsed tasks.
3: tasks performed by robots in + recruiting tasks +

all lapsed tasks detected in the broadcast.
4: else
5: tasks performed by robots in ’s subnetwork +

recruiting tasks.
6: Reset lapsecounter of all recruiting tasks.
7: // Backoff Process: Adapt parameters of lapsed tasks.
8: for all (lapsed tasks in ) do
9: if (All robots doing has started OR no robots are doing

) then
10: if ( ) then
11: .
12: if ( ) then
13: restore its previous suitability for .
14: else if ( ) then
15: Set the suitability of for as , where .
16: .
17: else
18: Set the suitability of for as .
19: // Compile
20: Let , where is the

number of tasks in .
21: // Allocation Process.
22: Get possible new allocation.
23: // Examine solution. Is recruitment needed?
24: for all ( in the first tasks of ) do
25: if not enough suitable robots allocated to then
26: For all robots assigned to : Enter

.
27: for all (robots that have no tasks in the new allocation) do
28: if (there exists a th task, in ) then
29: Robot enters the .
30: else
31: if ( ) then
32: Robot remains in subnetwork.
33: else
34: Robot goes to (or remains in) .
35: broadcasts decision, and related information.

In the recruitment phase, undersized teams visit other task lo-
cations that they are aware of (which may not be the entire set of
user-specified tasks), while still holding on to the task . This

brings awareness of into other subnetworks, forcing robots
in these subnetworks to enter the allocation phase (lines 1–6 of
Algorithm 1). This causes a limited exchange of robots, task in-
formation, and robot resources between subnetworks. When a
robot finds (from its TSM) that the number of robots required
for a task is greater than the number of robots that can perform
the task, the team is deemed to be unable to perform the task,
and the task is put into until the number of capable robots
is enough (e.g., when additional robots enter the team).

Algorithm 2 COBOS recruitphase
1: // Label as a recruiting task.
2: Set recruitFlag TRUE.
3: Set .
4: Compile visitinglist .
5: // Move to recruitment locations in sequence.
6: Instead of moving to : Move to the location of , the

first task in visitinglist .
7: if (visitinglist is empty) then
8: Goto Idle location and wait.
9: if ( is reached) then
10: Remove from visitinglist
11: Set recruitFlag FALSE.
12: Exit .

E. Adaptation of Internal Robot Model

Let the task success matrix be . It identifies the
ability of a robot (as reflected by the corresponding basis task)
that is causing persistent failure in the tasks it attempts, and is
updated upon the successful completion of a task, when it hands
over a task to another, or when the related TSM value is restored
(line 13 in Algorithm 1). The matrix is initialized to zero, and is
updated by

(7)

where

Successful completion of
Failure of

and produces a matrix of the same size as its argument, but
converts all elements greater than zero into one. The values of

in (6) are calculated from as

if
otherwise (8)

where . The parameter is user defined and
determines the sensitivity of ’s task suitabilities to the number
of task failures it experiences. Intuitively, (8) means that the suit-
ability of the robot for the basis task is reduced as the number
of failed tasks associated with the basis task increases. Further-
more, if a robot can initially handle a basis task, its effective
suitability for that task will never be zero. Hence, it will still try
to participate in tasks that require those basis tasks for which it
has a low effective suitability. This aids in the recovery of the
robot from previous task failures that may or may not have been
a result of actual malfunction.
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III. TASK PRIORITIZATION AND ALLOCATION

In general, this class of problems involving MR tasks can be
formulated as a set partitioning problem (SPP) [1], [12], which
is strongly NP-hard. The task-allocation problem, formulated as
the SPP, is as follows [1].

Definition 3.1: Given a finite set of robots and , a
family of all feasible pairs of subsets of (coalitions) and the
associated task collectively termed as (coalition task) pairs, find
a subset of that maximizes the total utility derived
from the partition, according to the utility function
for each (coalition task) pair, and such that and

.
If some robots are allowed to be idle, it is equivalent to as-

signing these robots to an arbitrarily defined idle task . The
SPP is written as

Maximize

subject to (9)

where , is a matrix that contains
all the elements of in its columns,
is the cardinality of , gives the utility derived from the
coalition task pair represented by (the th column of ), and

is a vector containing ones. To reduce the complexity due to
the nonlinear mapping from robot coalitions to a utility level
for a task, we may reformulate the problem as a transporta-
tion problem (TP) by considering task suitabilities and assuming
tasks gain from being allocated highly suited robots, i.e., robots
whose intrinsic capabilities match the nature of the tasks as
closely as possible. This is intuitive in real-life scenarios, when
robots do not have sufficient information to estimate and com-
pare the outcome of each possible team. The transformation thus
converts the NP-hard problem to a simpler P-problem. The TP
is stated as follows.

Definition 3.2: Given a set of supply points , each capable
of supplying a certain quantity of goods to elements in a set of
demand points , at a fixed cost/utility per unit (i.e.,
, for , ), the TP involves finding the amount of

goods to be supplied from each supply point to satisfy the de-
mand at each point in , with minimal total cost (or maximum
total utility).

Lemma 3.1: Assuming that it is always preferable for robots
with high suitabilities for a task to serve that task, by using the
notion of task suitability and restricting the number of robots
required to service each task to exactly , the task-allocation
problem in (9) can be reduced to the TP.

Proof: Since each coalition of robots can be assigned only
one task (inclusive of ), and each task to at most one coalition,
the cardinality of . The partition
can be written as , where
is the th row of , a (0,1) matrix. Intuitively,

represents a subset of robots from (those corresponding to
ones in ) that is paired with . The SPP can be reformulated
as finding vectors, each associated with a task, such

that the total utility generated from all the coalition task pairs is
maximized

Maximize

subject to for (10)

Consider the highest priority tasks in . This is rea-
sonable when tasks are prioritized and the robots are unable to
be assigned to all the tasks. Let be a matrix con-
taining the suitability levels of the robots with each of the
tasks, inclusive of the idle task , with .
Assuming that for a task requiring exactly robots, the task is
better served by robots that have high suitabilities for it, the in-
dividual suitabilities can be linearly summed up,4 and (10) can
be rewritten as

Maximize Suitability

subject to for

for

(11)

The above formulation may be viewed as a TP [23] by letting
tasks and robots correspond to the demand and supply nodes,
respectively, of a typical TP. Each supply node provides exactly
one robot, while each task has a demand for robots. The rev-
enue generated by satisfying a task’s demand with a robot is
given by the robot’s suitability for the task, and the objective of
the TP considered here will be to maximize suitability.

Since remains fixed during the allocation process, the
robots will face a TP each time (re)allocation occurs. Note that
in the normal sense of utility, a robot team’s utility for a task
may not be a combination of the robots’ individual utilities.
However, the use of task suitability, together with the TP, helps
determine a team (of the required size) with robots that are
highly suited for each task, such that the team has a high overall
suitability (and chance of success). Furthermore, although each
task may be viewed as a collection of subtasks, these need not
be independent.

Remark 3.1: If COBOS is implemented using standard def-
initions of utilities, the reduction of the SPP to the TP will only
hold for the set of tasks that can be decomposed into a set of
subtasks that can be executed independently.

In this paper, optimality is defined as follows.
Definition 3.3 (Optimality): For a given set of robots and

tasks, and each robot having a suitability level for each task, a
task allocation is optimal when the number of robots servicing
each task is the smallest (i.e., robot teams of sizes less than the
current is unable to perform the task), and the total suitability
value is maximum.

4The problem of forming infeasible coalitions is avoided by assigning �1
(or a very large negative value) suitability values, instead of zero, to tasks a robot
cannot handle.
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TABLE II
COMPARISON BETWEEN DIFFERENT TASK-ALLOCATION ARCHITECTURES. FOR SIMPLICITY, r = n AND n = n . THE FIGURES

PERTAINING TO ALLIANCE, BLE, M+, AND DYNAMIC ROLE ASSIGNMENT ARE BASED ON THE WORK PRESENTED IN [1]

Theorem 3.2: Optimal allocation of robots to the fea-
sible and most important tasks in the system is achieved with
COBOS by solving a TP, under the condition that all tasks lie
within the main broadcast region .

Proof: By construction, the size of coalitions required
for each task is constrained to be . When all the tasks are
within , by Algorithm 1, robots always consider all the
available tasks, and will contain the tasks with
the highest priorities. Hence, by Lemma 3.1, each robot will
be solving a TP associated with , and in the form
of (11). Such optimization problems may be easily solved,
e.g., using the Hungarian Algorithm [of ] to produce an
allocation with maximum suitability. However, since COBOS
adjusts the values of , the convergence of a present allocation
to one, where tasks with the highest priorities get the needed
number of robots, depends on the convergence of the initial TP
to a stable TP, i.e., stops changing for the tasks in .
As described in Section II-D, each task needs a default of one
robot. Let be the set of tasks under consideration.
As the operation progresses, if a task is inadequately
performed, will be incremented, which correspondingly
influences the size of and .

Consider , where is the total number of robots.
In the beginning, , since each task is assumed to re-
quire only one robot, and there will be extra robots.
If the stable TP is not reached (i.e., there are not enough robots
servicing at least one of the tasks in ), at least one task in

will increase their demand for robots, and a maximum of
adaptations of will occur before the pool of extra

robots are fully deployed. If the stable TP is still not reached, an
increase in robot demand by any task in would result in ex-
cess demand. COBOS hence reduces (and the size of )
to include only the high-priority tasks that can be serviced. The
worst case resulting from the reduction of would be to free
up robots, originally servicing the th task.
These robots will be deployed, in at most adap-
tations, to satisfy any increased demands. This continues until
a stable TP, or the terminating case (where the highest priority
task in requires robots to perform) is reached. Consid-
ering the worst-case scenario to reach the terminating case, at
most adaptations of are required.
The analysis is similar for cases where , except with

at the beginning, since COBOS will only consider
the highest priority tasks. The upper bound on the number of
adaptations of will be .

Since the time between operations mainly depends on the
backoff and expected task-completion times (which are finite),

together with a finite and , the total time taken for the TP
to converge to a stable TP is finite.

A robot selects the task that it should perform by solving the
TP associated with . For the whole system, because
of eventually identical TSMs between robots within the same
subnetwork (Section II-B), each robot will arrive at the same
allocation decision. Hence, the combined actions of the robots
result in an optimal allocation for the whole system.

IV. ANALYSIS AND COMPARISONS

The four architectures used for comparison purposes with
COBOS are: 1) ALLIANCE [2]; 2) BLE [4]; 3) M+ [6]; and
4) dynamic role assignment [9]. Comparisons are made re-
garding: 1) the domain of operation, and based on the work
in [1]; 2) communication requirements; 3) computation re-
quirements; and 4) quality of solution. A summary of the
comparisons is shown in Table II.5

A. Domain of Operation

1) Multirobot Tasks and Uncertain Task Requirements: As
discussed earlier, COBOS operates in ST-MR-IA domains, and
task-specific information is not available for a priori division
of tasks into SR tasks. In contrast, most of the other architec-
tures had been designed for ST-SR-IA/TA systems. Applied to
ST-SR-IA systems, COBOS will still be able to generate appro-
priate allocations, except that the recruitment phase will always
be off.

2) Isolated Pockets of Communication Networks:
Proposition 4.1: COBOS is able to guarantee feasible allo-

cation of robots to tasks in the presence of disjoint broadcast
networks, given that all the robots are initially located within
the main broadcast network .

Proof: The condition that all the robots start from within
allows them to receive the initial set of tasks. Let

. Assume that there is only one task related to each sub-

network in . The recruitment process is the same for subnet-
works with more tasks, except that the recruiting robot(s) does
not need to travel to another subnetwork if it is recruiting from
tasks within its own subnetwork. In the beginning, one robot
will be allocated to each task (subnetwork). If the robot is un-
able to complete the task, it enters the recruitment phase and
visits each task in visitinglist until it recruits enough robots.
Since tasks in visitinglist are of lower priority than , a

5Analysis of ALLIANCE, BLE, M+, and dynamic role assignment based on
communication, computation, and solution quality is presented in [1].
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higher priority task requiring assistance will obtain help from
those of lower priorities. Therefore, a feasible allocation will
always result for the current subset of tasks that the team has de-
cided to service. Recruiting tasks will get the number of robots
they require, and tasks that are currently not considered will be
serviced when robots become available.

Systems with disjoint broadcast networks have not been con-
sidered in current task-allocation schemes. In addition, for many
schemes, a robot is deemed to be malfunctioning when the task
it is handling shows no progress. This is, in general, untrue for
systems with disjoint subnetworks. Furthermore, bidding mech-
anisms, where the auctioneer is located at the site of the task in-
volved, are not equipped to enlist the help of robots in other sub-
networks. In cases where there is only one broadcast network,
and sufficient information to allow users to specify the number
of robots required per task, and determine the effectiveness of
coalitions, the performance of COBOS is similar to that of other
work in the ST-SR-IA domain.

B. Communication Complexity

Communication complexity reflects the number of messages
a robot broadcasts per execution cycle of the algorithm. For
COBOS, a robot broadcasts its suitabilities for each task, i.e.,

messages. Hence, communication overhead is .
In addition, each robot also broadcasts its chosen task and the
task’s attributes (recruitFlag, , , and ). This con-
tributes an additional messages, and the total communica-
tion is . In comparison, COBOS has
a higher dependence on communications, although the order of
communication complexity is approximately the same as BLE
and M+, as shown in Table II.

C. Computation Complexity

The computational requirement of an algorithm is measured
in terms of the frequency that one or more resource-expen-
sive operation(s) is executed by each robot. Each robot using
COBOS mainly uses linear programming approaches (of
complexity [23]) to solve a TP. As shown in Table II,
computational complexity is for most other cases except
for dynamic role assignment ( for the auctioneer), and
COBOS requires more processing power. However, by sacri-
ficing optimality, a greedy mechanism that considers all tasks
in a subnetwork (similar to the BLE), may also be used in place
of solving the TP for COBOS’ allocation process, resulting in
a computational complexity of . This does not influence
the actual operation of COBOS in handling subnetworks and
uncertain task specifications.

D. Quality of Solutions

From Theorem 3.2, COBOS can produce instantaneous op-
timal allocation. For the comparison of solution quality (except
for dynamic role assignment that sorts tasks according to arrival
times, and does not handle task priorities), we account for task
prioritization and consider the performance of allocating tasks
to the first tasks of . If task suitability is used for com-
puting bids, the main difference between the four schemes and
COBOS would be that for COBOS, each robot compiles all the
information (e.g., bids) and makes a decision based on all the
information, instead of handling the information task by task.

Fig. 4. Closed room (30 m�30 m) with multiple communication networks.

The allocation schemes considered here employ some form of
the greedy mechanism, which is well known to be 2-competitive
(i.e., solution is at least 1/2 as good as optimal). On the other
hand, from Theorem 3.2, COBOS allows optimal allocation in
the presence of one connected broadcast network. If a greedy
mechanism is used for COBOS, the performance will be similar
to that of other algorithms. For disjoint broadcast networks, we
have the following.

Proposition 4.2: COBOS results in locally (in the sense of
subnetworks) optimal allocation, when physical conditions re-
sult in disjoint broadcast subnetworks, and the TP is solved.

Proof: Consider a subnetwork associated
with the set of tasks (for ), such
that . By construction, each robot considers only
the tasks within its subnetwork, plus any recruiting tasks (lines
1–6 of Algorithm 1). Recruiting tasks are transient, i.e., if robots
are allocated to service the recruiting tasks, they will ultimately
leave the subnetwork. Hence, the robots in eventually con-
sider only the tasks in . Any allocation that occurs within this
subnetwork will thus be optimal only locally.

The locally optimal allocation for the case in Proposition 4.2
may be seen as a form of greedy assignment, since optimization
is performed for each subgroup that arises due to the subnet-
works, which “greedily” selects the robots it wants. Since opti-
mization is performed within each subgroup, the solution will
be at least 2-competitive.

V. SIMULATION EXPERIMENTS

Realistic simulations were carried out using Player and
Stage [24]. The simulated environment is shown in Fig. 4.
The team consists of seven heterogeneous robots, and their
capabilities and the suitability levels with each basis task is
given in Table III. The find-and-attach basis tasks are chosen
for convenience and simplicity and may easily be replaced by
others, e.g., transportation between two locations, for more
elaborate missions. The following five tasks are presented to
the robot team.

1) : Idle task.
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TABLE III
ROBOT CAPABILITIES AND SUITABILITY LEVELS FOR BASIS TASKS AND TASKS. B: BLUE, R: RED. TASKS ARE PRIORITIZED USING THEIR SUBSCRIPT. (NOTE:

INFORMATION REGARDING TASK 4 IS PRESENTED HERE FOR CONVENIENCE. IT IS, IN FACT, INTRODUCED ONLY AT RUNTIME AS A NEW TASK)

Fig. 5. Activity charts of the robots in the presence of multiple subnetworks. The small kinks in the graphs, characterized by slightly raised lines, indicate that
the robot is in recruitment phase for the associated task.

2) (for ): To locate and attach to all the red
pucks at . The task is completed or adequately per-
formed only when all the pucks are simultaneously in con-
tact with robots.

3)
4) : Similar to tasks 1, 3, and 4, except that the pucks are

blue.
5)

More than 30 simulation runs were performed, with different
numbers of robots required for each task. Since only the nature

of the tasks are defined, task specifications remain unchanged.
This is consistent with the fact that users are usually unable
to provide all the specifics of the task. The number of colored
pucks at each location is unknown to the robots. In addition,
some robots can only locate pucks of one color, although they
are initially assumed to be fully capable of detecting both
colors. Furthermore, the broadcasted messages of a robot can
only reach others within 10 m from it.

Remark 5.1: For experiments with physical robots, when
communication imperfections exist within a subnetwork, a
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Fig. 6. Robot allocation per task, and robot suitability for basis tasks at the end of mission, for domain with multiple subnetworks.

Fig. 7. Activity charts of the robots with one connected network and no uncertain task specifications.

forced short information-synchronization period may be neces-
sary to delay the robots’ allocation process, to ensure that they
have all the required information regarding other robots (within
the same subnetwork) before making decisions.

The expected maximum completion times of all tasks are set
to 250 s, and (8) is set to 0.5. The activity charts of the robot
team, and the number of robots allocated per task over time, are

shown in Figs. 5 and 6(a), respectively. After the initial allo-
cation, and moved out of . When the tasks cannot be
completed, the robots enter the recruitment phase. At the same
time, and lapse in , triggering a reallocation in ,
where and take up and , respectively. , unable to
complete , enters the recruitment phase, and eventually forms
a team of two with at s. being unable to detect red
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pucks gets replaced by at s. Task 4 was introduced
at s. Only the robots in are aware of the task, and

was sent. Since is of the lowest priority, extra robots are
always sent first to the subnetworks with higher priority tasks
when these tasks are observed (from ) to have lapsed. This
accounts for the relatively long period that remains in recruit-
ment mode ( s s) before starts . Despite
disjoint subnetworks, the robots are still able to reach the suit-
able allocation for all the tasks by s. The suitabilities
of each robot to the basis tasks after allocation is complete is
shown in Fig. 6(b).

When the number of robots required per task is known, in
addition to having a single broadcast network, the robot allo-
cations using COBOS augmented with the greedy mechanism
are shown in Fig. 7. The tasks are considered in order of pri-
ority, and robots are assigned according to suitability. Realloca-
tion is performed when a task lapses. Although there are fewer
fluctuations in the allocations, the number of robots per task is
assumed to be known, in the absence of which, a suitable distri-
bution cannot be achieved without COBOS.

VI. CONCLUSIONS AND FUTURE WORK

COBOS, a fault-tolerant task-allocation scheme for
ST-MR-IA domains with restrictive communication, has
been presented. It can accommodate uncertainties in task
specifications due to incomplete knowledge. This eases the
requirements made on the sensing capabilities of robots and
high-level task-decomposition algorithms. Flexibility and fault
detection are further increased through COBOS’ adaptive
capabilities. The scheme can potentially be used in marsupial
teams (see chapter by Murphy in [18]). Simulations verify the
effectiveness of the proposed scheme.
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