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Lanthier et al. [16] developed an approximation algorithm
using a traditional discretization approach. By placing discrete
points (called Steiner points) on the boundaries of terrain faces
and interconnecting these points by edges with appropriate
weights, they reduced the original optimal-path problem in a
continuous geometric space to computing an optimal discrete
path (a path with the minimum total weight) in a graph ; the
latter problem can be solved by a number of existing algorithms.
The optimal discrete path found is then converted to a path in
the original continuous space as an approximate solution. This
discretization approach is also used for the weighted-region
optimal-path problem (see [7]–[9] and [11]), as well as the
optimal-path problem in the presence of flows (see [17]).

Other related work includes [18] and [19].

B. Our Results

We provide a couple of complexity results on the combinato-
rial size of optimal paths on terrains under this model. We show
that any optimal path on a weighted terrain contains seg-
ments. Here, is the number of faces in the terrain. With the in-
troduction of anisotropism, however, we can construct a terrain
with specified points and such that any optimal path con-
necting and contains an exponential number of segments.
These complexity results not only are of theoretical interest, but
also have implications on the implementation of approximation
algorithms, as we will explain in Section III.

Lanthier et al. [16] used Dijkstra’s algorithm to compute
an optimal discrete path in . If Steiner points are placed
on each boundary edge, their approximation algorithm has a
time complexity of . We prove that the
BUSHWHACK algorithm [8], [20], originally designed for the
weighted-region optimal-path problem, can be applied to this
problem as well, and therefore, an optimal discrete path in
can be computed in time. BUSHWHACK is a
discrete search algorithm that can efficiently compute optimal
discrete paths by exploiting the geometric properties of the
discretization. We also show that the discretization used by [16]
can be reduced while still guaranteeing the same asymptotic
error bound as in [16]. By combining this discretization of
reduced size with the BUSHWHACK algorithm, our approx-
imation algorithm not only has an improved time complexity
over the result in [16], but also is less dependent on various
geometric parameters, such as the minimum angle between two
adjacent boundary edges of a terrain face, and the maximum
angle of a special range. These observations are supported by
the experimental results presented in Section VI.

We extend our work to difficult terrains containing steep ter-
rain faces on which a robot can only move downhill. In this case,
the optimal path planning is even more challenging, as a terrain
face not only can have different cost metrics in various direc-
tions, but also may become an “anisotropic obstacle” that blocks
any upward movement of a robot.

C. Notations and Organization of the Paper

For any path on the surface of a terrain, we use to denote
the Euclidean length of , and use to denote the cost of ,
i.e., the total energy loss for the robot to traverse . For two

Fig. 2. Energy cost.

points and on , we use to denote the subpath
of between and . For any two points and in the
same terrain face , we say that a path connecting and

is face-wise optimal if it is a minimum-cost path among all
paths that lie entirely inside , and define the region distance

from to to be the cost of .
The rest of the paper is organized as follows. Section II de-

scribes the energy model used for our problem, as well as the
discretization method for converting a terrain into a directed
weighted graph by adding Steiner points on boundary edges.
Section III presents a couple of upper- and lower-bound results
on the combinatorial size of optimal paths on terrains. In Sec-
tion IV, we provide an efficient approximation algorithm based
on the discretization method described in Section II. Section V
provides a similar discretization for the same model, but under
less restricted assumptions. In Section VI, we provide some de-
tails of our implementation, as well as experimental results. Sec-
tion VII concludes the paper with some open problems.

II. PRELIMINARIES

A. Physical Model

We now describe the energy-cost model first developed by
Rowe and Ross [1]. Let be a terrain face with a gradient of

, and let be the friction coefficient between the mobile robot
and the surface of . Following the notation of [16], we define

to be the “weight” of . For a robot traveling on
with an inclination angle of (as shown in Fig. 2), the energy

cost is defined to be

(1)

where is the weight of the robot, and is the traveled dis-
tance. According to Rowe and Ross [1], “This formula was con-
firmed experimentally within 1% for wheeled vehicles on slopes
of less than 20% in [21].”

The problem is to find an energy-minimizing path from a
given source point to a given destination point . The model as-
sumes no acceleration when the robot is moving, and no energy
cost for making turns. In the remainder of this paper, we assume
that each terrain face is a triangular region, and that source and
destination are vertices of some terrain faces. We use to de-
note the total number of all terrain faces.

There are three impermissible (angular) ranges defined for
each terrain face, as shown in Fig. 3. The first one is the im-
permissible force range, which indicates the range of uphill tra-
versal directions that are too steep for a robot to climb. The other
two are the sideslope overturn ranges, which include the for-
bidden directions that can cause overturn, as the projection of
the robot’s center of gravity falls outside the convex hull of the
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Fig. 3. Impermissible, braking, and regular (angular) ranges.

support points. Each boundary angle of an impermissible range
is called a critical impermissibility angle.

Another special case occurs when a robot is traveling down-
hill with such an inclination angle that . This
will cause the robot to gain energy and accelerate. Therefore,
the robot has to apply a braking force of to
avoid acceleration. The range in which the robot has to use a
braking force is called a braking range. The two boundary an-
gles of the braking range, critical braking angles, can be com-
puted by finding the solution for the following equation:

(2)

The robot expends no energy when traveling in a direction inside
the braking range, as the energy gained by going downhill is
exactly offset by the energy expended for braking.

We call the impermissible force range, the sideslope overturn
ranges, and the braking range special ranges of a terrain face.
These special ranges are fixed for all points in that face. We de-
fine the angle of a range to be the angle between the two rays
defining the boundary of the range. Let , and be the
angles of the impermissible force range, each sideslope over-
turn range, and the braking range, respectively. There are four
regular ranges, each of which is between two adjacent special
ranges. The energy-cost formula only applies
to the case when a robot is traveling in a direction inside a reg-
ular range.

Any feasible path consists of only segments whose directions
are inside regular and braking ranges. To effectively move in a
direction inside an impermissible range, a robot has to take a
zigzag path with alternating directions that are inside regular or
braking ranges. It is, therefore, implicitly assumed that a robot
can freely switch between two directions inside regular ranges,
even if there is an impermissible range in between. In partic-
ular, if the impermissible range is a sideslope overturn range,
we assume that the robot can rotate sufficiently quickly to avoid
overturn.

We say a range is degenerate if the size of the range is zero.
A regular range can be degenerate if the two neighboring spe-
cial ranges overlap with each other. In particular, if the braking
range overlaps with the two sideslope overturn ranges, not only
would the two adjacent regular ranges be degenerate, but also
the actual braking range would be reduced; its boundary would

be determined by the boundary angles of the two sideslope over-
turn ranges, instead of by (2).

A terrain face is regular if all four special ranges are de-
generate inside ; otherwise, is irregular. If all the faces of a
terrain are regular, we say that it is a regular terrain; otherwise,
it is an irregular terrain.

In this paper, we mainly consider the optimal-path problem
on irregular terrains. In particular, we are interested in the case
where the angle of one of the special ranges is close to . As we
shall see later in this paper, the closer the size of a special range
is to , the larger the difference in cost metrics can be between
two directions inside that range.

An irregular terrain face is totally traversable if it is always
possible to travel between two points in through a (straight or
zigzag) path that lies entirely inside . This can be guaranteed if
the two upper regular ranges are not degenerate, which means

. Otherwise, the impermissible force range of
would overlap with the two sideslope overturn ranges, forming
a combined impermissible range with an angle equal to .

For any direction inside this range, there is no feasible path

connecting and that lies entirely inside , as cannot be
expressed as a nonnegative linear combination of permissible
directions. However, the braking range and/or the two lower reg-
ular ranges are not degenerate (as ), and therefore, there
will still be permissible (downhill) traversal directions inside .
In this case, is partially traversable. We say that a terrain is a
totally traversable terrain if each terrain face is totally travers-
able; otherwise, it is a partially traversable terrain.

B. Construction of Graph

In the following, we show that we can construct a graph
in such a manner that, for any discrete path from to in ,
there exists a path from to in the original continuous space
with the same cost. Furthermore, can be computed from in
time linear to the combinatorial size of . Here we assume that
the robot always translates along straight lines and rotates at the
same position to achieve path optimality. In Section IV, we will
show that the BUSHWHACK algorithm can be applied to to
compute an optimal discrete path.

Following the approach of Lanthier et al. [16] for the same
problem, we discretize the original space by introducing Steiner
points on boundary edges. For each terrain face , we add a
number of Steiner points on each boundary edge of . We con-
struct a graph that includes all Steiner points and vertices as
nodes. For any two such nodes on the boundary of , we
add a directed edge in .

One difference between the weighted-region optimal-path
problem and this problem is that edge does not necessarily
represent the straight-line path from to . In particular, if

direction is inside one of the impermissible ranges, the
straight-line path from to is not allowed, according to
the physical model we defined above. In this case, edge
represents a face-wise optimal path connecting and . Edge

still represents the straight-line path from to if it is in a
braking or regular range. In all cases, is assigned a weight

equal to the cost of the path it represents.
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Now we consider how to compute the weight of edge . Let

be the inclination angle of vector , and let be the length
of . By (1), the energy-cost formula is for
traveling from to following a straight line, if is in a regular
range. The first part of the formula represents the energy
expended due to the force of friction (friction cost), whereas
the second part represents the energy expended
due to gravity (gravity cost). The total gravity cost for traveling
from to is always the altitude difference between the two
points, regardless of the path taken. Therefore, for the purpose
of computing optimal paths we can extract the gravity cost from
the cost formula. This leads to a simplified model, in which the
cost of traveling for distance with an inclination angle of
is (if is in a regular range). Similarly, if is in the
braking range, the energy cost is zero for the robot. Therefore, in
the simplified model, after removing the (negative) gravity cost
of , the cost formula becomes , which
is the energy cost for braking. (Note that the cost is a positive
value, as in the braking range.)

In the following discussion, whenever we refer to the cost of
a path, we mean the cost defined by the simplified model. This
strategy is also used by [16]. With the simplified model, we have
the following properties for face-wise optimal paths.

Property 1: Let be two points in a terrain face . Let

be the angle of the range to which belongs, and let be the

angle between and the ray bisecting the range. Then:

1) if direction is inside a regular range, the face-wise
optimal is the straight-line path , and the cost is

;

2) if direction is inside an impermissible range,
any zigzag path with alternating directions of the
two critical impermissibility angles of the range
is face-wise optimal, and the cost is

;

3) if direction is inside the braking range, any path whose
traversal direction remains in the braking range is face-
wise optimal, and the cost is

.

The above formulae reveal two properties of face-wise op-
timal paths: 1) can be stated in a uniform form for
both impermissible ranges and the braking range, although
may represent different values; and 2) inside each special range,

is proportional to , the Euclidean length of
the projection of on the ray bisecting the range.

III. UPPER BOUND ON NUMBER OF

SEGMENTS OF AN OPTIMAL PATH

In Section II, we showed how to construct a graph from
a terrain. is totally dependent on the discretization, i.e., the
placement of Steiner points on boundary edges. An easy-to-im-
plement discretization scheme is the uniform discretization,
which places Steiner points with an equal distance between
them on each boundary edge. For each terrain face , we can
properly choose the distance between two adjacent Steiner

Fig. 4. Lemma 1 for planar space.

Fig. 5. Lemma 2 for terrain.

points on boundary edges of , so that, for any crossing seg-
ment in with cost , there exists a neighboring approximation
segment (a segment that connects two Steiner points/vertices)
with cost , for some user-specified . Therefore, for any
optimal path with cost , there exists an approximate op-
timal path, which consists entirely of approximation segments,
with a total cost of no more than , where is the
number of segments of the optimal path.

To construct a uniform discretization that has a constant (ad-
ditive) error bound, we need to find an upper bound on the
number of segments for all optimal paths.

We first consider the case of regular terrains. Recall that any
terrain face in a regular terrain has no impermissible or braking
range. Therefore, finding an optimal path on a regular terrain is
equivalent to the weighted-terrain optimal-path problem.

Mitchell and Papadimitriou [4] showed that an optimal path in
a weighted planar subdivision has segments. Their proof
is generally applicable to the weighted-terrain case, except that
the proofs of two key “shortcut lemmas” [4, Fact 1 and Fact
2] need to be strengthened. The proofs use the following basic
lemma.

Lemma 1: As shown in Fig. 4, let , and be three
points in a space, and let and be two paths connecting

with and , respectively. If is a point such that segment
lies entirely inside the region bounded by and line

segment , then , where is defined to
be the Euclidean length of path .

This lemma is no longer valid on a terrain. Even though line
segment is inside the terrain area bounded by path
and on the surface of the terrain, the above inequality may
not hold, as the elevation difference between and can be
arbitrarily large, and so is the Euclidean length of segment .
(Note that here segments and are not necessarily inside
the same terrain face.) We need the following alternative basic
lemma.

Lemma 2: As shown in Fig. 5, let , and be three
points in a space, and let and be two paths connecting

with and , respectively. Let be a point on line segment
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Fig. 6. Two noninteresting cases of long paths. (a) A zigzag path on one terrain
face. (b) A zigzag path on multiple terrain faces.

. Then, for any point in the space and any path con-
necting and .

Proof: Refer to Fig. 5. By using the triangle inequality
three times, we have the following inequalities:

Adding these three inequalities up, we have
, and therefore,

, as .
Note that for the terrain case, we need an extra term to

bound . Therefore, to adopt Mitchell and Papadimitriou’s
proof technique to the weighted-terrain case, the proofs of the
two shortcut lemmas need to be tightened. We leave the descrip-
tions, as well as the modified proofs of the two shortcut lemmas,
in Appendix A due to their lengths. Here we just state our result
in the following theorem.

Theorem 1: Any optimal path on a regular terrain has
segments.

The shortcut lemmas are not applicable to irregular terrains
due to the anisotropism introduced by the special ranges. First of
all, if there exists an impermissible range, an optimal path
may choose to zigzag for an arbitrary number of times without
losing its optimality, even if there is only one terrain face [see
Fig. 6(a)]. Even if we consider only the optimal path with the
minimum combinatorial size, this path may still have to zigzag
an exponential number of times before reaching the destination
point, if the impermissible range of a terrain face has an angle
close to . Therefore, the number of segments of an optimal path
can only be bounded by the geometric parameters of the terrain
faces.

However, since inside any terrain face, the face-wise optimal
path between two points and can be computed directly, we
can treat each maximal subpath of that is face-wise optimal
as one “virtual segment.” The total error of an approximate op-
timal path of is not dependent on the number of segments
of , but rather the number of virtual segments of , that is,
the number of times switches from one region to another.
In case there are multiple optimal paths from to , we are inter-
ested in only the optimal path with the fewest virtual segments.
For example, on the surface of a pyramid with four identical
faces [see Fig. 6(b)], an optimal path connecting a point at the
bottom of the pyramid to a point near the apex can switch re-
gions (faces) an infinite number of times while looping around
the apex. However, there also exists another optimal path that
stays in the same region while zigzagging toward the apex, and
therefore has only one virtual segment.

Fig. 7. Long path on irregular terrain.

Fig. 8. Ranges of A and B .

For partially traversable terrains, we have the following
theorem.

Theorem 2: If the input problem is specified with a total of
bits (i.e., the coordinates of all vertices are integers ranging

from 0 to ), for two points and on a partially traversable
terrain, an optimal path with the fewest virtual segments, among
all optimal paths that connect and , can contain vir-
tual segments for some constant .

Proof: As shown in Fig. 7, we construct an optimal-path
problem on a partially traversable terrain with eight faces. In the
figure, the arrow in each terrain face defines the upward direc-
tion in that terrain face.

Each , with a gradient of and a friction coefficient of
, is a totally traversable face. As shown in Fig. 8, there is no

impermissible force range, and the two upward regular ranges
combine into a single regular range with an angle of (ra-
dian measure). There is also a braking range with an angle of

. We use to denote the inclination angle of the vector
that separates the braking range and each of the two sideslope
overturn ranges in (and therefore, is the inclination angle
of the vector that separates the regular range and the sideslope
overturn ranges). Each , with a gradient of and a friction
coefficient of , is a partially traversable face. All four regular
ranges are degenerate, resulting in a combined impermissible



SUN AND REIF: ON FINDING ENERGY-MINIMIZING PATHS ON TERRAINS 107

range with an angle of and a braking range with an
angle of . Similarly, we let be the inclination angle
of the vector that separates the braking range and the combined
impermissible range in .

Observe that in each terrain face ( , respectively), the
slope is steep enough so that the sideslope overturn ranges cover
most parts of the braking range, and therefore, ( , respec-
tively) is not really determined by (2), but rather the boundary
angles of the sideslope overturn ranges. In this case, increases
as increases. From Fig. 7(a), it is easy to see that ,
and therefore, and .

An optimal path from to will contain alternating uphill and
downhill segments. Each uphill segment is in a terrain face with
an inclination angle of . A downhill segment could only be one
of the two cases: 1) a segment in a terrain face with an incli-
nation angle of ; or 2) a segment in a terrain face with an
inclination angle of . Traveling in the braking range by an
elevation decrease of costs in both and . (Recall that
we remove the gravity cost factor from the cost function, and thus
the cost of traveling inside the braking range is equal to the po-
tential energy lost.) However, due to the fact that
and that the braking range is larger in than in , a downhill seg-
ment in can take the robot closer to the center of the terrain than
a downhill segment in . Therefore, it is more advantageous to
move downhill in and, as a result, an optimal path from to
has to move counterclockwise, as shown in the figure. If we let

for some constant , each loop will take the
robot closer to for some constant . Therefore, any op-
timal path from to will have to switch regions times.

Observe that we choose to be a point very close to the center
of the terrain. If is located exactly at the center of the terrain,
then the optimal path will only approach it asymptotically, but
never reach there.

In the above construction, we used four partially traversable
terrain faces. It occurs to us that such an example cannot be con-
structed without using partially traversable terrain faces. There-
fore, we have the following conjecture.

Conjecture: For any two points and on a totally travers-
able terrain, there exists an optimal path connecting and with

virtual segments.

IV. AN IMPROVED APPROXIMATION ALGORITHM

A. Applicability of the BUSHWHACK Algorithm

Sun and Reif [20] defined piecewise pseudo-Euclidean
spaces and showed that BUSHWHACK can be applied to
any piecewise pseudo-Euclidean optimal-path problem. (For
details of the BUSHWHACK algorithm, we refer readers to
[20].) A space is said to be piecewise Euclidean if it consists of
regions, each with a cost metric that satisfies the following two
properties.

Property 2: ([20, Prop. 1]) Region is associated with a cost
function so that, for any two points

and in , the cost of the straight-line path is .
if and only if . The cost function has the

property that the face-wise optimal path between and is the
straight-line path .

Property 3: ([20, Prop. 2]) Letting be a point in region
(including the boundary), and letting be an edge of

that is not incident to , there are only a small number of local
extrema for function , where

. These local extrema can be computed
efficiently.

Strictly speaking, a space defined by the physical model we
study in this paper is not a piecewise pseudo-Euclidean space.
Although it does satisfy Property 3, it does not satisfy Property

2: for two points and inside terrain face , if direction
is inside an impermissible range, straight-line segment is
not a valid path, and therefore, is not a face-wise optimal path
between and .

Nevertheless, BUSHWHACK is still applicable to the
anisotropic optimal-path problem, as we will show in the
following. We prove this by claiming that the following two
lemmas hold for any terrain face . The proof for Lemma 3 is very
trivial, and therefore, we only include the proof of Lemma 4.

Lemma 3: Letting be two Steiner points on a boundary
edge of , for any other boundary edge of , all Steiner points
on can be divided into two subsets, and , so that

and
,

where denotes the cost of an optimal path from to .
Furthermore, for any , straight-line segments

and do not intersect with each other.
Lemma 4: For any fixed point on boundary edge of a

terrain face , each boundary edge of can be divided into
two monotonic segments, so that in each such segment,
is a monotonic function. Also, the split point can be computed
in constant time.

Proof: Without loss of generality, we can assume that is
a triangular region with vertices , and . Let be , and

let be . Supposing there are critical angles between

and , let be points on so that each is
a critical angle for . Additionally, we let
and . Let point be the perpendicular point of
on boundary edge , and let be the segment that
contains .

If and are the boundaries of a regular range, then
has a local minimum at , as is proportional

to inside a regular range. If and bound an im-
permissible range or the braking range, according to Property
1, is proportional to the projection of onto direc-

tion , where is the intersection point of boundary edge
and the ray bisecting the range. If , then
is a local minimum; otherwise is a local minimum.

Similarly, we can prove that function is decreasing
(respectively, increasing) when moves from to for

(respectively, ). Therefore, function
has only one local extremum between and , which

is the local minimum between and , as is a
continuous function. With this local minimum point, can
be divided into two monotonic segments. And from the above
discussion, it is also clear that this local minimum point can be
computed efficiently in constant time.

Observe that in the above, we assume that is between
and . If is not between and , we can prove with an
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analogous argument that either there is no local minimum point
between , or there is only one local minimum point.

This finishes the proof.
Lemma 3 shows that the Steiner points on can be divided

into intervals of contiguous Steiner points, so that an optimal
discrete path from to only needs to be
propagated to Steiner points inside the interval associated with

. Lemma 4 guarantees that the cost metric in each terrain face
satisfies Property 3, and thus paths generated by extending

to those Steiner points can be sorted in linear time.
Therefore, the above two lemmas are sufficient to show that
BUSHWHACK can be applied to finding an optimal discrete
path in constructed from any discretization of a problem
instance of the anisotropic optimal-path problem.

B. Discretization With Reduced Size

The uniform discretization does not guarantee a relative
(multiplicative) error bound for the approximation. Lanthier
et al. [16] developed a logarithmic discretization scheme that
guarantees a -approximation for any optimal path. Here

, where is the max-
imum angle of all special ranges, and ( , respectively)
is the maximum (minimum, respectively) weight of all terrain
faces. To achieve this error bound, the discretization needs to
place Steiner points on each
boundary edge. Here is the length of the longest boundary
edge, and , where is the minimum
angle between any two adjacent boundary edges of any terrain
face. For each vertex , let be the faces incident to

, and let be the minimum distance between and boundary
edges of ’s not incident to . We let and be the
minimum of all ’s. Furthermore, is a parameter dependent
on and some other geometric parameters.

The discretization scheme proposed by [16] adds Steiner
points in three stages. In Stage 1, Steiner points are placed using
the algorithm of [7] to ensure that the Euclidean distance between
any two adjacent Steiner points on a boundary edge is at most

times the length of any face-crossing segment with one end
between them. In Stages 2 and 3, some additional Steiner points
are added for each of the braking and regular ranges.

In the following, we show that the Steiner points added in
Stage 1 alone can guarantee the same error bound of . In
[16], the following assumption is implicitly used, and we will
use the same assumption here.

Assumption 1: Each terrain face is totally traversable. Oth-
erwise, the terrain face is considered to be nontraversable.

We first briefly describe the placement of Steiner points (we
refer readers to [7] for details). Let be a boundary edge of
a terrain face. The Steiner points are placed from

to on in such a way that . Here is defined
to be if , or if otherwise, where
is the smallest angle between any two incident boundary edges
of . We add Steiner points from to on in
an analogous manner.

To prove that the discretization can guarantee an -ap-
proximation, we need to show that, for any optimal path in
the original space, we can construct an approximation path in
with a cost at most .

Fig. 9. Proof of Lemma 5.4.

Our construction of an approximation path is different from
the one used in [16]. Suppose is a segment of an optimal
path (“optimal segment”) in a terrain face , where is between
two Steiner points on boundary edge , and is between

on boundary edge . The construction scheme in [16]
will choose either or , whichever is in the same direc-
tional range as , as the approximation segment for . The
addition of Steiner points in Stages 2 and 3 is to guarantee that

at least one of and is in the same directional range as

. Observe that, according to this method, the approximation
segments corresponding to two consecutive optimal segments
are not necessarily connected. In this case, an additional “joint”
segment, which connects two adjacent Steiner points, is added
to the approximation path.

Our construction scheme does not require that an approxima-
tion segment be in the same range as the corresponding optimal
segment. We show that the cost of an approximation segment
can be bounded, regardless of its direction, by using the fol-
lowing lemma.

Lemma 5: For each and , we suppose

is in a range with an angle of . Then:
1) if both and are inside the same regular range,

then ;

2) if both and are inside the same impermis-
sible range, then

;

3) if both and are inside the braking range, then
;

4) if and are not in the same range, then
for

.
Lemmas 5.1 and 5.2 are the same as the ones given by Lan-

thier et al. for their discretization scheme. Lemma 5.3 is slightly
stronger than the corresponding one in [16], but can be proved
similarly (recall that can be expressed in a unified form
for impermissible ranges and braking ranges).

Lemma 5.4 is very important, as it allows us to bound the cost
of an approximation segment even if the approximation segment
is not in the same directional range as the corresponding optimal
segment. We prove Lemma 5.4 in the following.

Proof: (Lemma 5.4) Refer to Fig. 9. Let be the angle

between and . The placement of Steiner points
added in Stage 1 guarantees that

, and therefore, . In the following,
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we assume that . The case in which is
trivial, and thus is omitted here.

Let be the point such that and . With a
fixed , we can apply the “Law of Sines” twice on , and
obtain and

. With and
, we

have . On the other

hand, since the angle between and the boundary angle of

the range containing is at most , we have

.
To give an upper bound to , we first

assume that , where . Therefore

Similarly, if

This finishes the proof.

One difference between our path construction and the one
used in [16] is that each of segments , and

can be used as an approximation segment for . We
will pick a segment so that it is connected to the approxima-
tion segment corresponding to the previous optimal segment of

. Therefore, we can avoid adding the “joint” segments, as the
path construction in [16] does.

Recall that , and are the angles of the impermis-
sible force range, each sideslope overturn range, and the braking
range, respectively. Combining Lemma 5.1–5.4, we have the fol-
lowing lemma.

Lemma 6: For each and
for

.
This lemma is equivalent to the corresponding lemma in [16],

although we achieve so without using Steiner points that they
add in Stages 2 and 3.

In the above, we assume that the optimal segment is a face-
crossing segment with each of the two endpoints between
two Steiner points. For other types of optimal segments, we
pick approximation segments in the same way as in [16], and
their costs can be bounded in an analogous manner. Therefore,
Steiner points added in Stage 1 can guarantee an -ap-
proximation. (Recall that .
The extra factor is introduced for bounding
approximation segments corresponding to other types of op-
timal segments.) As the number of Steiner points added in the
first stage is per boundary edge, we have the
following result.

Theorem 3: An -approximation of an optimal
anisotropic path can be computed in time,
where .

This is an improvement over the result presented in [16],
which has a time complexity of
with . Not only does
our algorithm reduce the size of the discretization (from

to Steiner
points per boundary edge), but also, its time complexity is less
dependent on the size of the discretization. As the size of the
discretization is decided by not only the user-specified but
also by a number of geometric parameters, it can be very large,
even for a moderate .

V. PARTIALLY TRAVERSABLE TERRAIN FACES

As mentioned above, we assume as in [16] that each terrain
face is totally traversable. Here we briefly discuss the case in
which partially traversable terrain faces are allowed.

In this case, the path-construction scheme described in the
previous section may no longer be valid. Let ,
and be defined as previously. Without loss of generality, we
assume that the approximation segment for the previous optimal
segment of uses as one of its endpoints. It is possible

that (as shown in Fig. 10) although is a permissible direc-

tion, both and are inside the combined impermis-
sible range. Therefore, neither nor can serve as the
approximation segment for , as it is impossible to travel from

to and .
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Fig. 10. No valid approximation segment.

To ensure that at least one approximation segment is available
for each optimal segment, the discretization scheme needs to
satisfy the following property.

Property 4: Let and be two boundary edges of a partially
traversable terrain face . Let and (respectively, and )
be two adjacent Steiner points on (respectively, ). If there

exist two points and so that direction is
not inside the combined impermissible range, then for

at least one of and is not inside the impermissible
range, either.

To construct such a discretization, we need another stage,
Stage 1.b, to add a series of additional Steiner points for each

Steiner point added in Stage 1. Let and be the two
boundary angles of the combined impermissible range. For
any Steiner point on boundary edge of terrain face , if

the ray from with direction intersects another
boundary edge of , we add the intersection point as a Steiner
point on . We apply this rule to all Steiner points recursively
until no more Steiner points can be generated.

Observe that the Steiner points spawned by on boundary
edge ( , respectively) form a geometric series along

( , respectively) with a ratio no less than

, where is the
minimum among all partially traversable terrain faces, and

is again the minimum angle between any two adjacent
boundary edges of any terrain face. When both and
are small, is asymptotically . For a
single Steiner point added in Stage 1, there will be no more
than Steiner points spawned in Stage 1.b. This
process is illustrated in Fig. 11.

It seems as though the total number of Steiner points required
for this discretization is . Re-
call that the Steiner points added on in Stage 1 also form a
geometric series, with a ratio no less than . By adjusting
the ratio properly, we can substantially reduce the number of
Steiner points added in Stage 1.b, as most of the Steiner points
spawned will coincide with existing Steiner points. Therefore,
the number of Steiner points generated can be bounded, as
shown in the following.

Theorem 4: To construct a discretization that guarantees an
-approximation for the case

Fig. 11. New Steiner points added in Stage 1.b.

in which partially traversable terrain faces are allowed, the total
number of Steiner points required is
if , or , otherwise.

VI. EXPERIMENTAL RESULTS

To compare the performance of our approximation algorithm
described in Section IV with that of the previous work, we im-
plemented both algorithms using Java. The experimental results
were acquired from a Linux workstation with a 2.6-GHz Pen-
tium processor and 2 GB memory.

A. Experiment Setup

One dilemma we faced in presenting experimental results is
the choice of experimental data. On one hand, we prefer real
data, as a randomly generated terrain may have an unexpected
impact on the performance of the algorithms. On the other hand,
we want to avoid terrain maps modeled using triangular irreg-
ular networks (TINs). Recall that, for a given terrain of faces
and a user-defined , the size of the resulting discretization is
dependent on not only and , but also a number of other geo-
metric characteristics. Therefore, in an experiment on a group
of TINs, one TIN with some extremely skewed triangular faces
may produce more Steiner points than all other TINs combined,
and therefore, the running time of an algorithm on this TIN will
undesirably dominate the result of the entire experiment.

We chose to use triangular meshes generated from a digital
elevation map (DEM). The advantage of using such triangular
meshes is that each triangular face will not be too skewed, as
its projection on the plane is an isosceles right triangle.
For our experiment, we used the map of the Kaweah River basin
in DEM ASCII format, which is a 1424 1163 grid with 30 m
between two neighboring grid points. We took from the map
20 different 60 45 patches, and converted each of them into a
triangular terrain by connecting two grid points diagonally for
each grid cell.

We used the example of a car-like robot with a specific shape.
The dimension of the robot is considered to be insignificant,
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Fig. 12. Terrain map of Kaweah River basin.

as compared with that of the terrain, but the ratio between the
height and width, which is chosen to be 2:1, is used to compute
the sideslope overturn range for any given terrain face. We also
defined the maximum driving force of the robot.

A friction coefficient is randomly picked for each terrain face,
but only from a small range, again, to avoid producing skewed
data. One major difference from the previous experiments (see
[22]) is that here, we will intentionally pick friction coefficients
to avoid, as much as possible, noninteresting terrain faces with
no special ranges. Therefore, the terrains generated are more
“difficult” than the ones used in the previous experiments, in the
sense that they are more different from the weighted terrains.

With the friction coefficient and the maximum driving force,
we can compute for each terrain face the impermissible force
range, as well as the braking range. We refer readers to Ap-
pendix B for details on computing various special ranges for
a given robot on a given terrain face.

For each generated terrain, we first remove all partially
traversable faces, as both our algorithm and the algorithm of
[16] assume no partially traversable faces. We also remove all
vertices and boundary edges that are only incident to partially
traversable faces. The numbers of remaining vertices (boundary
edges, respectively) of the 20 terrains range from 1988 to
2670 (from 4668 to 7631, respectively), with an average of
2435 (6439, respectively). Fig. 12 shows one of the resulting
terrains. Finally, we handpicked the points closest to the upper
left and lower right corners as source and destination points,
respectively.

B. Experimental Results

For , and , we timed
the performance of the two approximation algorithms, Algo-
rithm 1, which uses BUSHWHACK along with the reduced dis-
cretization method described in Section IV-B, and Algorithm
2, as presented in [16], which uses Dijkstra’s algorithm along
with the original discretization method. Either algorithm is guar-
anteed to find an -good approxi-
mate optimal path. The results for each algorithm are averaged
over 20 runs, one for each terrain, and reported in Table I. Note
that the running times were acquired from a Java implementa-
tion. So the relative performance is more important than the ab-
solute values of running times.

First of all, Table I shows that for the two algorithms we
used in the experiments, the difference in the number of Steiner
points generated is relatively marginal. This difference is ex-
actly the number of Steiner points generated in Stages 2 and 3

TABLE I
PERFORMANCE STATISTICS

Fig. 13. Performance comparison (with respect to 1=�).

of the original discretization method [16]. This is due to the na-
ture of the terrains used, which do not contain skewed terrain
faces. If there exist extremely skinny triangular faces with very
small regular or braking ranges, there will be a large number of
Steiner points generated in Stages 2 and 3. Secondly, the differ-
ence becomes less significant as decreases. This is consistent
with our analysis, as the number of Steiner points generated in
Stages 2 and 3 depends less on than the number of Steiner
points generated in Stage 1.

The difference in the performance of the two approximation
algorithms is, therefore, mainly caused by the difference in the
efficiency of the discrete algorithms adopted for computing op-
timal discrete paths in . Fig. 13 shows a comparison between
Algorithms 1 and 2 on the average running time (excluding time
used for discretization). Note that the advantage of Algorithm 1
becomes more significant as decreases, a finding consistent
with the fact that the time complexity of BUSHWHACK is less
dependent on than the standard Dijkstra-based algorithm is.
Fig. 14 shows that, as decreases, the increase of the speedup
ratio (defined by the ratio between the running time of Algo-
rithm 2 and that of Algorithm 1) correlates to the increase of the
ratio of the number of graph edges touched in , supporting the
analysis that BUSHWHACK outperforms the Dijkstra-based al-
gorithm by accessing a small subset of graph edges in .
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Fig. 14. Correlation between running time and number of graph edges
accessed (with respect to 1=�).

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the energy-minimizing path
problem. We provided some complexity results on the com-
binatorial size of energy-minimizing paths under various
assumptions. We also presented an improved approximation
algorithm using a smaller discretization, as well as a more effi-
cient discrete search algorithm. Our preliminary experimental
results show that our algorithm has a significant performance
improvement over the previous algorithm when is small.

One remaining question is the complexity of the combinato-
rial size of energy-minimizing paths on totally traversable ter-
rains. We believe that the upper bound should be , the
same as that of the weighted terrains, although proving so seems
to be very hard.

Wealsoplan to extend ourexperimentation work. Inparticular,
we would like to study the impact of the improved discretization
method on TINs. Imaginably, for a given , a TIN that contains
skewed triangular faces may require significantly more Steiner
points than does a triangular mesh generated from DEM. The ef-
ficiency of our approximation algorithm could become more evi-
dent due to the following two reasons: a) the size of discretization
of our algorithm is less dependent on various geometric param-
eters and b) the complexity of our algorithm is less dependent
on the number of Steiner points per boundary edge.

APPENDIX

A. Proofs of Two Shortcut Lemmas

Before providing the modified proofs for the two lemmas, we
first introduce some notations. Let and be two adjacent ter-
rain faces, and let be the boundary edge between them. For an
optimal path from to , we say point is an “up-crossing”
(“down-crossing,” respectively) point of on boundary edge if

is directed from to ( to , respectively) when crossing
at . We say two subpaths of are homotopic if they pass

through the same sequence of boundary edges. Again, we use
to denote the weighted length of any path (subpath) . If

and are two points on , we use to denote the subpath
of that is between and .

Fig. 15. Proof of Lemma 7.

We rephrase the two lemmas slightly so that readers can still
understand them without referring to [4].

Lemma 7: Let and be two homotopic subpaths of .
Further, for each , the two endpoints of , namely, and

, are up-crossing points on , while between them there is a
down-crossing point on , denoted by . If precedes along

, then it is not possible for and to be between and ,
and for and to be between and .

Proof: If otherwise, then and must be crossing
boundary edge in the way shown in Fig. 15. Since and
are homotopic, must be homotopic to , and

must be homotopic to . Let ( , re-
spectively) be a chord joining to (
to , respectively) in the cheapest terrain face that

and ( and , respectively)
pass through.

Since precedes along optimal path , there must be
a subpath of that connects to . We construct a path

from byreplacing thesubpathof between and
by “shortcut” . Similarly, we construct by replacing the
subpathof between and by .Wehavethefollowing
equations regarding the weighted lengths of and :

(3)

(4)

Therefore, we have
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Fig. 16. Proof of Lemma 8.

According to Lemma 2, the Euclidean length of is less than
the sum of the Euclidean lengths of and .
Further, because is inside the cheapest terrain face among
all terrain faces that and travels through,
we have . Similarly, we
can show that , and hence,

. This means that either or
has a shorter weighted length than , a contradiction to the
assumption that is optimal.

Lemma 8: Suppose that , and are three homotopic
subpaths of , and that precedes , which precedes
along , as shown in Fig. 16. Each subpath connects an
up-crossing point on to a down-crossing point , and also
passes down-crossing point and then up-crossing point . Let

( , respectively) be the subpath of that connects
and ( and , respectively). Let be the last up-crossing
point of on before it reaches , and let be the last
down-crossing point of . Define and analogously. Then

and cannot be homotopic.
Proof: Suppose otherwise that and

are homotopic. Let be a chord through the cheapest re-
gion crossed by and , joining
to . As and are also homotopic, we can find
chord through the cheapest region crossed by
and , joining to .

We construct a path from by replacing the sub-
path of between and by “shortcut” . Similarly,
we construct by replacing the subpath of between
and by . We have the following equations regarding the
weighted lengths of and :

(5)

(6)

Adding these two equations up, we have

Similar to the proof for Lemma 7, we can prove that
and

. Therefore,
, a contradiction to the assumption that is optimal.

We refer readers to [4] for the usage of these two lemmas, as
well as the complete proof of the theorem.

B. Computing Special Ranges for a Terrain Face

We consider a car-like robot with a maximum driving force of
. Suppose that the support points of the robot have a convex

hull of a rectangle (“support rectangle”) of width and length
. Furthermore, for simplicity, we assume that the projection of

the center of gravity of the robot onto the support rectangle is
located at the geometric center of the rectangle, and use to
denote the distance between the center of gravity and the support
rectangle.

Let be a terrain face with a gradient of and a friction
coefficient of . The two boundary angles of the impermissible
force range can be determined by solving the following equation
for :

(7)

If the above equation has a solution such that ,
the size of the impermissible force range can be computed
by

(8)

Otherwise, the impermissible force range is degenerate.
The two boundary angles of the braking range can be deter-

mined by solving the following equation for :

(9)

If the above equation has a solution such that ,
the size of the braking range can be computed by

(10)

Otherwise, the braking range is degenerate.
The size of each sideslope overturn range can be determined

with the following equation:

(11)

Again, if there is no solution for this equation, the two sideslope
ranges are degenerate.

For a totally traversable terrain face, the impermissible
force range and the sideslope overturn ranges do not overlap,
which implies that , and thus,
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. By substituting (8) and
(11), we have

(12)

and therefore

(13)

Similarly, for a totally traversable terrain face, we have
, as the braking range does not

overlap with any of the two sideslope overturn ranges. Again,
by substituting (10) and (11), we have

(14)

and therefore

(15)
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