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. + h r r u r - - A  chaiienging task tilai must be accomplished for 
e \ e q  legged robot is creating the walking and running behaviors 
needed for it to more. In this paper %e describe our s5stem for 
autonomously eiolviing d5namic gaits on hvo of Sonc's quadruped 

uses the robot's sensors to compute the qualit\ of a gait without 
assistance from the eyperimenter. First v e  show the e.toIution 
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the fastest gait. the robot moves at over IOdmin., which is more 
than f o p  body-len,&~s/min. While these first gaits are someahat 

i050G. 2ui r.0:ii&3zzq z! ;G&hi  7srs OE 5aG-d '&e rcbct -6 

sensitive to the robot and en\-ironment in which the? are evolved. 
we then show the evolution of robust dvnamic gdts, one of which 

Index Terns- genetic algorithm, evolutionary algorithm. dy- 

Fig, enrer;ainment rohotq. proror).pr: b) ERS-I 

, .  . ..- _ _  is used on the ERS-110, the first &mx~r--ver+on of -00. .. 

g z j c  git-f, ~ ~ r n ! ~ f i ~ n ~ y v  ~, mhntirc, - - - - -- - !egged r&of !p@ !~c-x- interested in an autonOm@uS process for developing gaits aS 
tion. quadruped robot part of a gait-learning behavior to match the artificial maturing 

process that comes with the consumer version of our robots. 

I. INTRODCCTION 

E\€LOPlXG locomotion controllers for Icgged robots is 
a pro3lem that has been studied for over twenty years at 3 

\ . ~ r i e t y  of different research goups  (such s: Sony. [63; Honda. 
[lo]; and :he University of Tokyo. [A] and [ 3 j )  and on 9 
lariety of different platforms (1-legged. Zlegged. ?-legged). In 
most projects. the gaits are static and programmed by hand (for 
surveys see [ ? I ]  and [10]). Here u.e describe our work in the 
autonomous acquisition of dynamic gaits using an evolutionary 
algorithm (EA). 

A system for automatically generating dynamic gaits is 
especially important for the entertainment ro$xt iqduspy,for a 
ntimber of reasons. i&%en an entirely new enterainment robor 
is constructed it is necessary to produce gaits for it, and these 
new gaits need to be created quickly so that other members of 
the software development team can use the gaits in developing 
higher-level behaviors. Similarly. to create a personality for a 
robot it is useful to be able to continuously generate a variety 
of different styles of gaits for it. Also. in the process of going 
from a prototype to a consumer version of a robot, several 
different versions of a given robot are created. Each cne of 
these prototypes has slightly different physical characteristics 
and a method for automating the tuning of pre-existing gaits 
to new versions of a robot is extremely useful. FindIy? a e  are 
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For the most part. previous work in the development of gats  
for real robots has either requlred assistance from a source 
external tc; the robot or has focused on acqumng a stauc 
gait in simulation that was later transferred to the ph>sical 
robot. On actual robots. EAs have been used to evol1.e neural 
netu ork controllers for a six-legged robot [ 161 and an eight- 
legged robot 191. In  both cases the experimenter evaluated 
the performance of a gait by measuring the distance traveled 
and eniering this result into the computer running the EA. 
One case of a robot evaluating itself is Genghis. a srx-legged 
robot uhich learned a mpod p i t  [lS]. There the learning 
algonthm used feedback from a uheel that mas attached io 
the end of h e  robot to adjust the parameters of a bebvior; -. . = . 
based controller. More common is the evolution of controllers 
in simulation that are later transferred to the real robot: such 
as neural networks for a six-legged artiliciai cockroach [7]. 
[S: and an eight-legged OCT1 r1-11. and a b i n q  smng of 
ordoff flags for poaering the niunol actuarors of a Stiquito 
II [19]. Similarly. reinforcement learning has been used to 
tram neural networks for a biped robot f i s t  in smulahon, and 
later to fine-tune the neruorks on the actual robot [ 3 ] .  Finaily. 
EA4s hale been used to evoke both the morphology and 
controller of crawling robots [17] and modular. wallilng robots 
[13] in simulation, with these robots then constructed and 
sh0u.n to work in reality. Yet evoluhodearning in sunulation 
is not aluays feasible because the ievel of lideiity may nor 
be attainable (such as for actuators or pliable parts) or m@ 
require large amounts of computational pouer (such as fiuid 
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In this paper M Z  desci-ibe 3 5) stem for the autonomou: 
acquisition of dynamic gaits for two versions of Sony's 
entertainment robots. The system for developing gaits uses 
an EA to optimize a vector of parameters that specify a gait. 

and each set of gait parameters is evaluated using the robot's 
sensors. First we describe the evolution of pace and trot 
gaits with the OPEN-R prototype (figure 1.a): and then the 
development of a robust trot gait on its successor, the ERS- 
110, which is more commonly known as the first AIBO'? 
(figure 1 .b). Not only does our implementation successfully 
evolve dynamic gaits for both of our quadruped robots - in 
both cases evolving better gaits than were developed manually 
- but one of the evolved gaits is used in the first consumer 
version of ABO. 

The rest of this paper is organized as follows. In the next 
section we describe the two quadruped robots, the locomotion 
module. the evolutionary algorithm and the procedure by 
which a robot evaluates its performance. In sections I11 and 
IV we present and discuss the results of our experiments. The 
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The two robots used in these experiments are the OPEN-R 
prototype, W-hich is the pie-AIBG enteitaiiiiiieii: icjbo:, and :he 
ERS-110, the first consumer version of Sony's entertainment 
robot AIBO. Gaits on both robots are controlled by the 
locomotion module, which uses a set of real-valued parameters 
to specify a gait. To autonomously acquire gaits an evolution- 
ary algorithm optimizes gait parameters by sending sets of 
parameters to the locomotion module and thzn evaluati.iig the 
resulting performance using the robot's onboard sensors. In 
this section we describe first the two robots and the locomotion 
module followed by a description of the evolutionary algo- 
rithm and the method for evaluating a set of gait parameters. 

A. Robot Plai$obrm 

Both robots used in these experiments havqover a dozen 
degrees of freedom and various senso&' Fifteen degrees of 
freedom come from actuators in the head and the four legs, 
each of which has three degrees of freedom. The OPEN- 

of freedom, giving it a total of sixteen, and the ERS-110 
(figure 1.b) has a two-degree of freedom tail and two actuated 
ears, each with a single degree of freedom, giving it a total ' 
of nineteen degrees of freedom. Both robots have a micro- 
camera, stereo microphone. position sensitive device, and 
touch sensors located on the top of the head and on the 
bottom of each leg. The robots' body houses the CPU and 
battery as well as a gyroscope and accelerometers. See [6] 
for a more detailed description of the robots' hardware and 

I R prototype (figure 1.a) has a tail with a single degree 
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B. Lnc-ni!loTioll Modirl~ 
The locomotion module is the software module that controls 

the movement of the robot's legs to perform different gaits. 
A gait is defined by a vector of real-valued parameters that 
are used by a mathematicai function of sines and cosines to 
obtain a cyclic movement of the bottom of each leg. Using 
the dimensions of the robot's physical form and three kinds 
of conrdinzte systems - for the ~ o ! m l ,  the mhot's body and 
one for the bottom of each leg - the desired joint angles for the 
three joints in each of the legs are calculated. The joints in each 
leg are controlled by a special ASIC chip and its current angle 
is sensed with a potentiometer. Every 8ms the software sets the 
target joint position and PID gain value for each joint based 
on the gait parameters and then the ASIC chip calculates the 
output t~ the motm to drive the joint to make its position error 
zero. This reduces the problem of developing a gait to that of 
finding a set of parameters for the locomotion module. In total, 
the locomotion module uses sixty-one real-valued parameters 
to define a gait. 

I )  The Locomotion Module on the OPEN-R Prototype: The 
fiist srersinr? nf the evn!utinr?ary dgorithm ran on the OPEN- 
R prototype and searched a space of twenty parameters by 
setting some of the sixty-one parameters for the locomotion 
module to fixed values (eg. setting body n to 0') 
and using the same value for multige p setting 
the swing time for each leg to be the same). These . .  twenty 
parameters are listed in table I. They specifj: :he p ~ s ; t i ~ i i  and 
orientation of the body, the swing path and rate of swinging 
of the legs, the amplitude of oscillation of the body's location 
and orientation, and how the gain varies during the course 
of a swing cycle for each leg. With a set of parameters, 
the locomotion module moves the OPEN-R Protatype in any 
specified two-dimen%ional translation and rotation - although 
for our experiments we test the OPEN-R prototype only on its 
ability to move forward. 

TABLE I 
GAIT PARAMETERS FOR THE OPEN-R PROTOTYPE 

i 

'.4IBO is a re5stered trademark of Sony Corporation Whereas the first seventeen parameters are used to specify 
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body cenm z m. -10 - 10 4.8 
body pitch de-gees -10 - 10 6.5 
posture center x m. 0 - 20 -1.8 
all legs y mm. -5 - 15 7.4 

the trajecrnricc nf each !e? the Izsr three para~el-ers 2i.e use6 

the Ieg notors during the movement cycle. n e  first of these 
last three parameters. 172bZ.  gair?, specifies the ininimum p i n  
to use - rhe maximum va!ue is fksd  to the Inaxirnum possible. 
The second parameter, slzifi. specifies when in the swing cycle 
to starr reducing the gain. The third parameter, iengrh. is the 
&ration over xhich the gain is iediiczd fram ;lis iiizxiizium ic 
the specified minimum and then back to maximum following 
a sin wave: 

gain = min+(maz-mi~)*(l-sin(Zegphase-shift)) (1) 

The leg phase starts at 0" swinging forward and up, at 1803 
it starts to swing backward, and at 360" it is back at the 

r,, ;,nnrh;.n +La -.-> 
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I front legs z mm 
rear legs z mm. 
step len,gb 1 n.a 
swing height brit 1 mm. 

1 Leg I Cra\r-l j Tror ! Pace 1 Skip 1 
1 iighr foreleg 1 0.0 j 0.0 1 0.0 ! 0.0 1 
I lee foreleg I 0.5 I 0.5 j 0.5 1 0.0 
I righr hind-leg ! 0.75 j 0.5 j 0.0 1 0.5 
I left hind-leg j 0 . 3  1 0.0 1 0.5 j 0.5 

io - 30 21.5 
-5 - is 18.5 

50 - 100 124.4 
25 - 45 36.5 

TABLE Tv 
P.4R.AJvlETER VALLTES FOR DIFFERENT GAITS 

swing heih t  rear I mm. I 25-45  

Parameter I Crawl 1 Trot I Pace 1 Skip 
L-R I 05 I 0.5 1 0.5 I 0.0 
F-H 1 0.75 1 0.5 I 0.0 1 0.5 

44.1 

beginning of the cycle. For example, with the pace gait, legs 
on the same side of the body have the same leg phase and 
legs on the opposite side of the body are 180" Out of phase. 

-3) The LOCO?EO?~OZ M e d d e  #.I! ???e ER5-IlO: Based on 
OUT experience from running experiments with the fist set of 
Parmeters On the OPEN-R ProtofYPe, a new set Of Parmeters 
was used with the ERS-i 10 (tabie Ej. Gain variation was 
removed because the new locomotion module for the ERS-110 
did not ~ ~ P p o r t  iU Parameters were added to d 1 0 ~  different 
trajectxies for the front and rear legs a~ well as 10 add con td  

:, :of-the->.ody posture. Finally, instead of hard-coding the type of 
gait (crawl, pace or trot) the ability to ~ o l v e  the type of gait 

swing times of the legs. 

gait cycle. Unlike with the 0PEN-R protot)rpe, in which the 
erne il? t5e Gvei2;; locomofiGa ezc- leg wcu!d 
swing was fixed at predetermined values, with the ~ ~ ~ - 1 1 0  
two offset parameters are used to specify the relative phases of 

leg. nese parameters specify the offset bemeen left 
right legs, L-R, and fore and h h d  legs, F-H. The nght foreleg 
is fixed to always 
syinging at L-ff; the right hhd-leg leg starts swin,&g at F- 
~5 &d f i 2 ~ 1 -  eft'hind-leg - starts swinging at L-R + F-H ('t 
value is adjusted to the range zero to one by subtracting 1.0 

representing relathe phases with these two parameters is that 
it allows for symmetries and is a smaller search space than 
using a separate start time for each leg. Table III displays the 
starting time for each leg for different types of gaits and F-R 

I 

swinghi-ai 0.0; the left foreleg 

'K?S 2dded by CX3tkg tWS p%XXdCX that CGiikG! the ie!Zt?<e if &e sum is seater than, or equal to, 1.0,). Advm%mes to 

TABLE II 
GAIT PARAMETERS FOR THE ERS-I10 

m d  R-L values fcr these Faits are shown in tshle n'. i parameter I unit I I& range I best-mt j 
1 bcdv center x I mm I 1 0 5 - 1 2 5  I 1101 I 

- -  
I swine time 1 ms. I 460-540 I 503 I 

I F-H I n.a I 0.5 - 0.75 I 0.67 I 

Relative phases for each leg are specdied by a single value 
in the range of zero to one. This value specifies the point 
in the gait cycle when the start of a leg's movement cycIe 

- ._ occurs. <.-..- For example, a .value of 0,O indicates that the starf. 
of a leg's swing will occur at the start of the overall gait 

C. Evaluating a Set of Gait Parameters 

Evolution takes place inside a walled area (figure 2) v d h  
a strip of colored cloth to mark the center of each end. 
Cables attached to t5e robot supply power and allow the robot 
to communicate data back to a host computer. Evaluating a 
set of gait parameters consists of locomoting with them and 
then measuring the straightness and distance traveled. The 
procedure- by which+ rqb$ qvaluates its own performance 
consists of three parts and was influenced by our experiences 
from manually evaluating sets of gait parameters. 

The lirst part of an evaluation trial consists of the robot 
centering on the color strip. Objects are detected from the 
image returned by the onboard Micro-Camera-Unit (Mcv) by 

(4 (b) 
Y 

cycle and a valui of 0.25 indicates that the start of that leg's 
swing Cycle occurs one quarter of the way through the overall Fig. 2. The exprimental environment (a) OPEN-R P r o t o w :  @) ERS-I 10. 
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80 centimeters, when the robot is further than its maximum 
reliable range it uses a hand-built crawl gait to move closer. 
To convert the value re:urned by the PSD sensu to a distance, 
a lookup table of distances was created by placing the robot 
at fixed distances from a color strip and taking the average 
cf twe-hu~drec! readings. .A sensor rending is converted to a 
distance by linearly interpolating the average sensor reading 
between [he two nearest values in the distance look-up table. 
After the robot has determined how far it is from the color- 
strip it bses the.set:of .lo,comotion parameters to move for seven 
seconds and then stops. The trial also ends if the robot detects 
thrt it has come within 20cm of a wad!. 

The third part of an evaluation trial begins after the robot has 
stopped moving and consists of the robot using its sensors to 
determine the straightness of its movement and the distance 
it traveled. If the robot has fallen (detected by the onboard 
accelerometers) the current individual is given a score of zero, 
then the robot gets u p  by itself (using a,hand-coded behaiav'ioif 
and the next individual is tried. Otherwise, if the robot did 
not fall, the trial ends successfully and the robot pans its 
head until it finds the color strip. Head panning uses the 
MCU in a way similar to the centering behavior, only in this 
case the robot's body remains fixed and the head turns. Once 
the color strip is detected in the appropriate CDT, the robot 
calculates straightness based on the average horizontal location 
of the color strip and the current angle of the head and uses 
these values to compute the-offset-angle between its forward 
direction and the color skip. With' the robot's head centered 
on the color strip, it uses its PSD sensor to find its distance to 
the color strip. The stop distance is determined by averaging 
seven consecutive PSD sensor readings. Using the starting and 
stopping distances from the color strip, as well as the time it 
traveled, the robot calculates its average speed. 

To simplify optimizing both velocity and straightness the 
score of a trial is the product of its velocity and straightness 
scores. Velocity, v(), is the average velocity of the robot during 
the trial. Straightness is a function of the angle between the 
robot's forward direction and the direction to the target color 
strip, 0, and the distance to the target stnp, (figure 3). Before 
calculating the straightness function, B is converted to a 0- 

^T-ineasure oi offset 'by tiic'. i"unctiu5 j (6 j .  'ihe alraigkitness 
fiinctinn, s ( ) ,  normalizes this value to account for the robot's 
distance from the color strip - since with the robot at a fixed 

I $900 
190" 
*goo 
145' 

using an LSI chip v-it11 right color detection tibles (CDTs). 
ibex CDTs detect colors NiI l i i i i  a user-speciiied ran22 fGi 
each pixel location in the image. Using a CDT for each 
color strip. the robot centers by turning its body- in a fixed 
direction in search of iiie desired color. Once detecced :he robot 
continues turning. reversing directions if necessary, until the 
average horizontal location of the color strip falls within 5 6 "  
of [he center of the image for a period of two seconds. 

In the second part of an evaluation trial the robot determines 
how far it is from the color strip and then runs toward it. 
The distance to the color strip is measured using the robot's 
position sensitive device (PSD) sensor, which is located on 
the front part of its head. The start distance is determined 
by averaging seven consecutive PSD sensor readings. Since 
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coior strip 

Fig. 3. Robot position at end of an evaluation trial. 

TABLE V 
the re!iable range over which the PSD sensor works is 10 to SAXiTLE VALUES FGR s(e, dstop). 

80 I o i 
45 0.5 
10 1.0 
80 0.5 

1 4 5 O  
r o o  
-coo 

. *oo 

10 1 1 
60 1 
45 1 

- 10, - -  . 1 

orientation 6' will be larger when the robot is closer to the 
color strip. These functions are defined as: 

score = v(dstart ,  dstop, ti:ne) x s(0, dstop) (2 1 

IJJ t ime  

(5) PI f ( B ) ,  = 1 - - 
90" 

For the function s ( ) ,  80 and 10 are used as the constants 
because they are the PSD..sensqr's .ma@pum .and minimum 
measurable distances. Table V lists values:'of-'s-(Ol dstop)  for 
different values of 8 and dstop. If the robot cannot find the 
color strip it is assumed that the robot's gait caused it to turn 
so sharply that it cannot pan its head far enough to face the 
color strip. In this case the individual receives a score of zero 
for the trial, the same score it would receive if B is greater 
than, or equal to, 90". 

With early versions of our system the experimenter eval- 
uated the performance of each gait and entered the fitness 
score in the same way as [16] and [9]. In performing these 
experiments it was noticed that a single trial with a particular 
set of parameters is a poor measure of the gait's quality 
since the same set of parameters can receive a moderately 

range uf fii'irless sco~cs. CorisecjuznGy, io ac;l;lek(; a ~ X C I  

measure of performance a single individual is evaluated with 
three trials and its fitness is the average of the three scores. 



and dJt: is a randon! number in h e  ranse of -1 IO 1. 

sometimes an individua] u,ou]d receive a 

n e  search algorithm that we me for optimizing gait 
parameters is an evolutionary algorithm (EA). E& are a 

4 problem experienced in ixiitial experiments was that 
higher c--: ‘*i,iib 0: p”pu!ztiGii-hscd 5:oChas:ic search a!g=n:hms t\a,s! 

include genetic algorithms [ 111. evolutionary strategies [?I: 
evolutionary programming [5] and genetic programming [ 151. 
An EA operates by creating an initial.population of candidate 
solutions, called individuals, which it optimizes by iteratively 
using better individuals to create new ones and discarding 
the poor individuals. Because they maintain a population of 
candidate solutions, EAs can 3e speeded up by evaluating 
individuals in parallel and are more robust to optimization in 
the presence of noise than optimization strategies such as hill 
climbing which only operate on a single candidate solution 
r 11. 

In these experiments each individual in the population is a 
sei of gait parameters. Sefore optimization begins, an initid 
population of randomly generated gait parameters must be 
created. An individual in the initial population is created 
by rettiilo e.& cf its pzrrrrmetprs to a r a ~ d ~ m  value wi& 
a uniform distribution over that parameter’s minimum and 
maximum initial search range. These initial search ranges were 
determined from experience in developing gaits by hand and 

- :. iFre lis$ed-fo.r,$:cQ~EN-R - ._ .. Prototype in table I and for the ERS- 
110 in table LI.’ To produce an initial population of minimally 
viable gait parameters, each new set of gait parameters is tested 
to determine whether or not it will cause the robot to fall over. 
If a set of gait parameters does cause the robot to fall over, it is 
replaced by another randomly generated individual. When all 
individuals in the initial population are non-falling, evolution 
begins. 

The particular EA that we use is a steady-state evolutionary 
algorithm [22] with a population of thirty individuals. A 
steady-state EA works by iteratively selecting individuals &om 
the population to act as parents and then using them to 
create a new individual. The number of individuals selected 
is determined by whether mutation or recombination is used 
to produce the new individual, with an equal probability of 
choosing either. If the mutation operator is used, then two 
individuals are selected from the population. The individual 
with the higher fitge&g.xalue is chosen as the parent and its 
offspring repiaces‘ the 0th individual. If the recombination 
operator is used, then three individuals are selected from the 
population. The two individuals with higher fitness are the 
parents and their offspring replaces the individual with the 
lowest fitness. 

Mutation and recombination work as follows. Mutation 
takes one parent individual and perturbs a few genes (one to 
eight, determined at random) by a small amount to generate 
a child individual. The genes to be mutated are selected 
randomIy and the mutated value is, Q = pi + &mi; where di 

is a uniform random value in the range of -1 to 1. Values 
for mi are set to 5% of the size of a parameter’s initial 

.search range- Recomb,ination takes two individuals uarenfs 
@1 andp2) and creates one child individual (e)- Each gene 
of the child is 5ve.n a value according to the equation, 
ci = p l i  + ai(Pli - p2 i ) .  Here, ci is the ith gene of the child 
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fitness score than ii deserbed, such as thraugh an inaccurate 
measure of distance from the PSD sensor This resulted in 
pulling the search toward poor parameters. To reduce this 
p ~ i G . ~ ,  G ~ I  individi;d’s ape. $,e niii&ei sf h e s  it has hem 
used as a parent. is stored. Age is incremented each time 
the individual is used as a parent for either recombination 
or mutation and when an individual reaches the age of four it 
is re-evaluated and its age is reset to zero. Since an individual 
is only replaced by another one with a higher fitness, this re- 
evaluation of an individual is the only way in which the the 
best fitness in the population can Seciease. 
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111. EVOLVING PACE AND TROT GAITS WITH THE 
GTEN-R PZOTGTYPE 

We performed two different experiments with our robots, 

110. Since previous work to manually develop a dynamic gait 
for the OPEN-R Prototype met with poor results, our initial 
objective was to achieve either a pace or a trot gait through the 
use of anSQn-board wolg~o_nary algorithm. After successfully 
evolving both a pace and ’a trot gait with the OPEN-R Proto- 
type, and with the l a ~ ~ c h  of Sony’s cn?ert&nment &et PEG 
approaching, we became interested in evolving a dynamic gait 
that performed robustly on a variety of different surface types. 
In this section we describe the results of evolving gaits for the 
OPEN-R Prototype, and describe the results with the ERS- 110 
in the next section. 

Before taking an evolutionary approach to the development 
of gaits our lab created gaits by hand. The mo best hand- 
developed gaits were a crawl gait of Sdmin .  and a fast-crawl 
gait (halfway between a crawl and a trot) of 6mlmin. A pace 
gait was also developed by hand, but it was not very good 
and would at times move the robot backward. and we were 
not successful in developing a trot gait. 

Unlike our attempts to hand-craft a dynamic gait for the 
OPEN-R Prototype, the evolutionary algorithm was able to 
evolve both a pace and-a . ,Evaluating a single set 
of gait parameters with thi *ides approximately two 
minutes and good gaits are achieved after a couple hundred 
evaluations. Figure 4 shows the average and best fitness scores 
for individuals in the population for one run of both the trot 
and pace gats. From these graphs it appears that the best pace 
parameters from the initial random population are almost as 
good as the best hand tailored controllers. In fact, running the 
best individual from the initial population shows that while the 
robot does move at almost 5dmin..  a little less than its fitness 
score would indicate, it does not move smoothly but stutters. 
bounces in-place, and frequently turns. The average fitness 
score of the population is a better indicator of performance. 

In first thirty individu 
non- rmed the &tid>opu 
of these individuals did not move well, with some moving 
backward and the best moving only 26cm in seven seconds. 

 it!! t!e OPEN-R ?~Ci?t.,lpe ZIC! then with the ERS- 
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Fig 5 A sequence of images showing the best evolved trot ga t  
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(b) 
Fig 4 Results with the OPEN-R Prototype (a) pace Est,- and (bl a tro! -the robot. After centering on the colored strip the robot spend; gait. 

Early individuals tended to move too slowly to have a dynamic 
gait and moved in a curved path because a third leg was 
always dragging on the ground. Individuals which always 
leaned to one side would turn to that side while moving and 
had a poor straightness score. Over the course of evo!ution 
individuals in the population became better at alternating 
between resting on one side and then the other so that by 
the end of the evolution they were trotting in a nearly straight 
line. While the best individual that was evolved did not move 
in a true dynamic gait, it had a fitness score of 630 and moved 
650cm in a one minute trial (approximately twenty-six body- 
lengthslmin.). Figure 5 shows a sequence of images from one 
cycle of the best evolved trot gait and the evolved parameters 

r this individual are listed in table I. In this sequence the 
obot starts with its right legs at their closest point together 

and left legs furthest apart in (a) ,  followed by the right legs 
moving apart and the left legs moving together in (b)-(e),  and 
then reversing direction (f). A digital video of the best evolved 
trot gait is available online [12]. 

Unlike randomly generated trot gaits, which tended to be 
stable, randomly generated pace gaits tended to make the robot 
fall over and it took eighty-four randomly generated sets of gait 
parameters to create the initial population of thuty individuals. 
Like with the trot gait, the initial population had a couple of 
good individuals that moved quickly but did SO awkwardly, 
and most individuals had a fitness score less than 150. After 
eleven generations of evolution (330 evaluations) the best 
individuals couid move ih>ij<i~u'iii~~l., whicil i 3  iipp sxiiiiaieiy 
forty body-lengths/min. At this point the maximum evolvable 
speed seemed to be limited by variation in the starting angle of 

one second switching gait parameters to those of the current 
individua!. Ir! doing so it would often turn slightly and then the 
robot would receive a poor straightness score even though it 
ran straight. As a result the difference in fitness scores between 
the top individuals was mostly a matter of luck. With little 
selective pressure on these individuals the population ceased 
to improve. Table I contains the parameter values for the best 
evolved pace gait and a sequence of images from one cycle 
of this gait are in figure 6. This sequence starts with the robot 
balanced on its left legs with its right legs off the ground (a )  
and then shifting its weight (b-c) until it is balanced on its right 
legs with its left legs off the ground (d), and then shifting its 
balance back to its left side (e-f). A video of this evolved pace 
gait is available online [12]. 

In this first set of experiments the evolutionary algorithm 
produced pace gaits that were faster than the best trot gaits. 

r-.mis%h?j-'be because it is easier to perform a true pace gait 
with this' hardware than a true trot gait. Unlike a pace gait, 
in which legs on the same side of the body move forward 
and backward together, the trot gait has legs on diagonally 
opposing sides of the body moving forward and backward 
together. Without a torso that can twist in the middle, it is 
more difficult to lift both forward-moving legs high enough 
off the ground in the trot gait than it is with a pace gait. This 
is supported by the results of our evolutionary system in which 
we evolved a truly dynamic pace gait, but the evolved trot gaits 
dragged a thud leg along the ground. 

Iv. EVOLVING A ROBUST DYNAMIC GAIT WITH THE 
ERS-110 

One shortcoming that we noticed with the results of the first 
set of experiments is that a particular set of gait parameters 
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Fig. 6 A sequence of mwges showmg the b&t'&&&l pa&e gait. 

will often perform quite differently with different robots of the 
same type or on a different surface. This suggests that evolved 
individuals are somewhat specialized to the environment in  
which they are evolved. W:Je adding sensor feedback might 
reduce diese effects, sensor feedback was not acorporated 
into the locomotion module. This leads to our second set 
of experiments in which our objectlve is to evolve a set of 
gait parameters that are sufficiently robust to be used on the 
consumer version of AIBO. 

One reason why gaits evolved on the OPEN-R Prototype 
were not very robust may be because of the environment in 
which the trials took place. Since the carpet on which trials 
took place is relatively smooth, evolved gaits were not adapted 
to rough surfaces: behaviors evolved- for o-ae env ipmen t  
will work on that environment and should- work on .easier 
environments, but will not necessarily work on harder envi- 
ronments. Similarly, switching robots is a form of changing 
the environment because of differences in manufacture and 
calibration. To achieve robust gaits that work well on a wide 
variety of environments, we hypothesized that evolution should 
take place in a difficult environment. In these second set 
of experiments, this hypothesis is tested by creating a more 
difficult environment for gaits to evolve and comparing gaits 
evolved in this environment to those evolved in the original 
environment. 

To create a more diEcult environment for evolution, plastic 
m d c  were F ~ W - C ~  nn the r o u n d  pemmdicular to the direction 
in which the ERS- 110 would run. In setting up this envi- 
ronment we tried a number of different configurations of the 
plastic rods. When moving across this surface, the ERS-110 

, - 

Fig 7. 
obstructed surface 

Results ul th  the EXS-110 (a) on a normal sirfax; - and .-a'- @),'ax-& 

I would often step on top of a rod and sometimes this would 
cause it to h q  and change direction. As a result, this set of 
parameters would have a poor straightness score and a low 
fitness score even thaugh it may have been a goo.' individual. 
With too many rods the EKS-I10 would step on rods too 
frequently and with too few rods, or with poorly placed rods, 
the ERS-I 10 would have little interaction with them and the 
rods would not influence evolution. The configuration we 
settled on uses six rods (as shown in figure 2.b) which requires 
both the front and rear less of the ERS-I 10 to move over at 
least two rods in a typical trial. 

Three runs of evolution on the obstructed carpet were 
performed and then compared against three runs of evolution 
on the n o d  carpeted surface. Each evolutionary m w y  
five-hundred evaluations, which took approximately men  
five hours. In the early generations of these experiments, most 
individuals would drag their feet along the carpet. With the 
obstructed carpet. individuals with low steps would have a foot 
catch on a rod and fall over. These individuals would receive 
a low fitness score and be replaced by individuals with higher 
fitness scores. By the end of the evolutionary run individuals 
evolved steps high enough to move over the rods. In contrast, 
individuals evolved on the unobstructed carpet received no 
such pressure to use high steps. Evolved gaits were halfway 
between a crawl and a trot gait. The graphs in fiawe 7 are 
plots of both the highest and average fitness scores of the 
population. averaged over-the three trials. Fi-we 8 shows a 
sequence of images of an evolved trot-like gait. Here the robot 
starts with its right legs in the process of coming together (a) 
until they are at their closest point (b), and then extending until 
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Fig. 8 The gait sequence for an e7,iJlved gait on the ERS-110. 

TABLE VI 
EVOLVED GAITS TESTED ON DIFFERENT SURFACES 

/ Surface I Regular Camet 1 Obsmcted Caroet I 

the right legs are furthest apart from each other (c). Videos of 
this experiment and the resulting gait are available online [12]. 

To determine if evolution on the obstructed carpet did result 
in a more robust gait, the best individual evolved for each 
surface type was then run using four different surface types 
and three different ERS-1 10s. Table VI lists the results of these 
trials, with each entry being the speed averaged over the three 
robots. On all four surfaces, the individual evolved on the 
obstructed carpet outperformed the individual evolved on the 
unobstructed carpet. 

In the experiments presented so far, a large search space was 
used to create an ininal population of random gait parameters. 
Once a good set of parameters has been found. these can be 
further refined by using them to seed a second evolutionary 

run. For this second evolutionary run. the initial population is 
created by adding m a i l  raiidlini values io each of thz pziam- 
eters of the seed individual so as to start with a population 
focused on a small part of the entire parameter space. Using 
one of <ne better individuals from an evolutionary rim as th? 
seed individual for further evolution, we evolved a trot gait 
on the rough surface that moves at 900cdmin. This gait is 
~ n c h  h t e r  than ~ n y  of the individuals evolved in the first set 
of experiments with the ERS-110 and was sufficiently robust 
that it was approved by Sony's quality assurance department 
and is used on the consumer version of AIBO. 

V. CONCLUSION 

The primary interest in this project was to develop a system 
that would learn dynamic gaits for the OPEN-R Prototype, the 
ERS-I 10 and future robots with minimal human attention. The 
autonomous gait acquisition system described in this paper 
achieves this goal through rhe use of an evolutionary algorithm 
which runs on both robots and uses the robots' onboard 
sensors to evaluate its own performance. Using this system we 
evolved both pace and trot gaits on the OPEN-R Prototype, 
of which the fastest gait moved at nver lOm/min., which is 
approximately forty body-lengths/min. One shortcoming we 
found with',evolved gaits i,&hek sensitivity to the specific robot 
or environment in which lhey were evolved. By roughening 
the floor of our experimental environment to create a more 
challenging surface we were able to evolve robust trot-like 
gaits on the ERS-110, one of which was approved by our 
quality assurance department and is included in the consumer 
version of AIBO. 

A secondary interest of this project was to investigate the 
viability of an evolutionary algorithm running on a .real robot. 
One limitation on our current system is that cables are used 
to transmit power to the robot and receive data from it. But 
this constraint is not necessary for future versions of our 
system since newer hardware for AIBO includes a wireless 
communication device and a base-station at which AIBO can 
dock to recharge its batteries. While the amount of time 
required to leardevolve a task in real time with a real robot 
may preclude its use in some situations, a robot that evolves 
behaviors over timcthroush it_ ' in the real world has 
the potential to be a valuabl ntal behavior for an 
entertainment robot. 
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